Joscha Diehl 
  
Peter K Friz 
  
Paul Gassiat 
  
Stochastic control with rough paths

Keywords: Dyn. 08, 23, 2008]. 1991 Mathematics Subject Classification. Primary 60H99 Stochastic control, Duality, Rough Paths

  L'archive ouverte pluridisciplinaire

Introduction

In classical works [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF][START_REF] Sussmann | On the gap between deterministic and stochastic ordinary differential equations[END_REF] Doss and Sussmann studied the link between ordinary and stochastic differential equations (ODEs and SDEs, in the sequel). In the simplest setting, consider a nice vector field σ and a smooth path B : [0, T ] → R, one solves the (random) ordinary differential equation Ẋ = σ (X) Ḃ, so that X t = e σBt X 0 , where e σBt denotes flow, for unit time, along the vector field σ (•) B t . The point is that the resulting formula for X t makes sense for any continuous path B, and in fact the Itô-map B → X is continuous with respect to • ∞;[0,T ] . In particular, one can use this procedure for every (continuous) Brownian path; the so-constructed SDE solution then solves the Stratonovich equation,

dX = σ (X) • dB = σ (X) dB + 1 2 (σσ ) (X) dt.
When B = B (ω) : [0, T ] → R d is a multidimensional Brownian motion, which we shall assume from here on, this construction fails and indeed the Itô-map is notorious for its lack of (classical) continuity properties. Nonetheless, many approximations, B n → B, examples of which include the piecewise linear -, mollifier -and Karhunen-Love approximations, have the property that the corresponding (random) ODE solutions, say to dX n = b (X n ) dt+σ (X n ) dB n with σ = (σ 1 , . . . , σ d ), converge to the solution of the Stratonovich equation dX = b (X) dt + σ (X) • dB.

(At least in the case of piecewise linear approximations, this result is known as Wong-Zakai theorem 1 ). It was a major step forward, due to T. Lyons [START_REF] Lyons | Differential equations driven by rough signals[END_REF], to realize that the multidimensional SDE case can also be understood via deterministic differential equations (known as rough differential equations, short: RDEs); they do, however, require more complicated driving signals (known as rough paths) which in the present context are of the form

B (ω) : [0, T ] → R d ⊕ so (d) ,
and "contain", in addition to the Brownian sample path, Lévy stochastic area, viewed as process with values in so (d). It is known that B (ω) enjoys p-variation rough path regularity, for any p ∈ (2, 3). Given the increasing amount of text books on the subject, [START_REF] Lyons | System control and rough paths[END_REF][START_REF] Lyons | Differential equations driven by rough paths: École d'été de probabilités de Saint-Flour XXXIV-2004[END_REF][START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF][START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF], we shall keep further background to a minimum. Let us just mention that, among the many applications of rough paths to stochastic analysis, (i) all Wong-Zakai type results follow from B n → B in p-variation rough path metric (essentially thanks to continuity of rough integration with respect to rough path metrics) and (ii) the (rough)pathwise resolution of SDE can handle immediately situations with anticipating randomness in the coefficients; consistency with anticipating SDE in the sense of Nualart, Ocone, Pardoux [START_REF] Nualart | Stochastic calculus with anticipating integrands[END_REF][START_REF] Ocone | A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations[END_REF] was established in [START_REF] Coutin | Good rough path sequences and applications to anticipating stochastic calculus[END_REF].

Given the deep insights of rough paths analysis to deterministic and stochastic differential equations, it is a natural question what such a (rough) pathwise point of view can contribute to our understanding of controlled deterministic, and then stochastic, differential equations.

An obstacle, both technical and conceptual, to overcome is that a pathwise approach to (eventually stochastic) control problem naturally leads to anticipating controls (and then potentially to serious measurability issues, as was seen e.g. in [START_REF] Buckdahn | Pathwise stochastic control problems and stochastic HJB equations[END_REF]) as well as the question of how to relate such anticipating controls to classical adapted controls. We feel that our results here constitute convincing evidence that rough path analysis is ideal to formulate and analyze these problems. In particular, one is able to write down, in a meaningful and direct way, all the quantities that one wants to write down -without any headache related to measurability and anticipativity technicalities : throughout, all quantities depend continuously on some abstract rough path η and are then -triviallymeasurable upon substitution η ← B (ω).

Loosely stated, our main results are as follows.

Theorem 1. (cf. Section 3) Let η : [0, T ] → R d ⊕ so (d) be a rough path (of p-variation regularity, p < 3) and µ = (µ t ) a control. (i) The controlled rough differential equation

(1.1) dX = b (X, µ) dt + σ (X) dη, X t = x
has a unique solution.

(ii) The value function

v (t, x) = sup µ T t f (s, X s , µ s ) ds + g (X T )
1 ... although, strictly speaking, the multi-dimensional case is due to M. Clark and Stroock-Varadhan.

satisfies a non-linear (rough) partial differential equation, in the sense of Caruana et al. [START_REF] Caruana | A (rough) pathwise approach to a class of nonlinear SPDEs[END_REF]. Moreover, a (rough) Pontryagin type maximum principle (based on a controlled, backward RDE) gives a necessary condition for a pair X, μ to be optimal.

It should be noted that the controlled rough differential equation in (i) does not immediately fall into the standard framework of rough path theory. But, as we lay out in the appendix, it can be easily treated as an infinite dimensional rough differential equation. The required rough PDE theory [START_REF] Caruana | A (rough) pathwise approach to a class of nonlinear SPDEs[END_REF] is far from the standard setting of rough paths and requires a subtle combination of rough path analysis with stochastic viscosity solution in the spirit Lions-Souganidis [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: non-smooth equations and applications[END_REF].

When applied with η = B (ω), the above theorem provides information about the optimal control of the following Stratonovich equation2 dX = b (X, µ) dt + σ (X) • dB, considered up to time T . On the other hand, any optimal control for the deterministic control problem in (ii) above is of the form µ * t = µ * t (η) = µ * t (B (ω)), depending on σ (B t : t ≤ T ), and thus fails to satisfy the crucial adaptedness condition in stochastic control theory. Moreover, the ω-wise optimization has (at first glance) little to do with the classical stochastic control problem in which one maximizes the expected value, i.e. an average over all ω's, of a payoff function.

Nonetheless, stochastic and pathwise control are intimately connected and we are able to prove the following duality result.

Theorem 2. (cf. Section 4) (i) Write X µ,η for the solution to the controlled RDE (1.1). Let ν be an adapted control. Then

X ν = X µ,η | µ=ν(ω),η=B(ω) solves the (classical, non-anticipating) Stratonovich equation dX ν = b (X ν , ν) dt + σ (X ν ) • dB.
(ii) The stochastic optimal control problem

V (t, x) = sup ν adapted E T t f (s, X ν s , ν s ) ds + g (X ν T )
admits a dual representation, given by

V (t, x) = inf z E   sup µ T t f (s, X µ,η s , ν s ) ds + g (X µ,η T ) + z (µ, η) η=B(ω)  
where z ranges over suitable classes of penality functionals for non-adapted controls. Special choices of such classes lead to the Davis-Burstein duality [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF] and to an extension of Rogers [START_REF] Rogers | Pathwise Stochastic Optimal Control[END_REF] to continuous time (as conjectured in that paper).

Readers familiar with [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF] will recall a similar setup to ours, with control only in the drift term, b = b (X, ν) but not in the volatility term, σ = σ (X). On the other hand, time discretization of general controlled diffusion, i.e. with control in both drift and volatility, leads to the setting of controlled Markov chains discussed in [START_REF] Rogers | Pathwise Stochastic Optimal Control[END_REF]. One may then wonder (question posed to us by M. Davis) why the continuous time formulation does not allow for controlled volatility. From a technical point of view, the problem is that there is no satisfactory extension of (i) to a setting of rough differential equations with controlled volatility coefficients. (In a sense, there is missing information between the control, itself a rough signal, and the actual driving signal). If one attempts to bypass this by considering piecewise constant controls, with vanishing mesh size, one is led to the observation that (in non-degenerate situations) one simply obtains trivial upper duality bounds. (See the Remarks 13 and 21).

Let us briefly review some past works in the area of pathwise versus stochastic control. Wets [START_REF] Wets | On the relation between stochastic and deterministic optimization. Control theory, numerical methods and computer systems modelling[END_REF] first observed that stochastic optimization problems resemble deterministic optimization problems up to the nonanticipativity restriction on the choice of the control policy. Davis-Burstein, Davis-Karatzas, Rogers and then also Brown et al [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF][START_REF] Davis | A deterministic approach to optimal stopping[END_REF][START_REF] Rogers | Monte Carlo valuation of American options[END_REF][START_REF] Rogers | Pathwise Stochastic Optimal Control[END_REF][START_REF] Brown | Information relaxations and duality in stochastic dynamic programs[END_REF] all implement duality type results in various settings.

At last, we mention Mazliak-Nourdin [START_REF] Mazliak | Optimal control for rough differential equations[END_REF] for a first investigation of controlled rough differential equations. While this obviously relates to this paper, they stay on "level 1" of rough path theory, i.e. the case handled by Young integration, and so do not cover any situations with Brownian or Brownian-like noise. In particular, our paper seems to be the first proper use of rough path analysis in the important field of (stochastic) optimal control.

Notation

For p < 3 denote by C 0,p-var = C 0,p-var (E) the space of geometric p-variation rough paths in E, where E is a Banach space chosen according to context. 3 On this space, we denote by ρ p-var the corresponding inhomogenous distance. For p < 2 this is just the p-variation norm ||.|| p-var .

Let U be some separable metric space (the control space). Denote by M the class of measurable controls µ : [0, T ] → U .

When working on a filtered probability space (Ω, F, F t , P), A will denote the class of progressively measurable controls ν : Ω × [0, T ] → U .

BU C(R e ) denotes the space of bounded, uniformly continuous functions that is usually employed in viscosity theory for partial differential equations.

Deterministic control with rough paths

Let η : [0, T ] → R d be a smooth path. Write X t,x,µ for the solution to the controlled ordinary differential equation

(3.1) dX t,x,µ s = b X t,x,µ s , µ s ds + σ X t,x,µ s dη s , s ≥ t, X t,x,µ t = x ∈ R e .
Classical control theory allows to maximize

T t f (s, X t,x,µ s , µ s ) ds+g (X µ T ) over a class of admissible controls µ. As is well-known, (3.2) v (t, x) := sup µ T t f s, X t,x,µ s , µ s ds + g X t,x,µ
T is the (under some technical conditions: unique, bounded uniformly continuous) viscosity solution to the HJB equation

-∂ t v -H (t, x, Dv) -σ (x) , Dv η = 0, v(T, x) = g(x)
.

where H acting on v is given by

(3.3) H (t, x, p) = sup u { b (x, u) , p + f (t, x, u)} .
Now, (3.1) also makes sense for a driving rough path (including a controlled drift terms to the standard setting of RDEs is fairly straight-forward; for the reader's convenience proofs are given in the appendix). This allows to consider the optimization problem (3.2) for controlled RDEs.

3.1. HJB equation. The main result here is that the corresponding value function satisfies a "rough PDE". Such equations go back to Lions-Souganidis ( [START_REF] Lions | Fully nonlinear stochastic partial differential equations: non-smooth equations and applications[END_REF] considers a pathwise stochastic control problem and give an associated stochastic HJB equation, see also [START_REF] Buckdahn | Pathwise stochastic control problems and stochastic HJB equations[END_REF]; these correspond to η = B(ω) in the present section). However their (non-rough) pathwise setup is restricted to commuting diffusion vector fields σ 1 , . . . , σ d (actually, [START_REF] Lions | Fully nonlinear stochastic partial differential equations: non-smooth equations and applications[END_REF] considers constant vector fields). Extensions to more general vector fields via a rough pathwise approach were then obtained in [START_REF] Caruana | A (rough) pathwise approach to a class of nonlinear SPDEs[END_REF] (see also [START_REF] Diehl | Regularity theory for rough partial differential equations and parabolic comparison revisited[END_REF]).

Definition 3. Let η ∈ C 0,p-var be a geometric rough path, p-var ≥ 1. Assume F, G, φ to be such that for every smooth path η there exists a unique BUC viscosity solution to

-∂ t v η -F (t, x, v η , Dv η , D 2 v η ) -G(t, x, v η , Dv η ) ηt = 0, v η (T, x) = φ(x).
We say that v ∈ BU C(R e ) solves the rough partial differential equation

-dv -F (t, x, v, Dv, D 2 v)dt -G(t, x, v, Dv)dη t = 0, v(T, x) = φ(x),
if for every sequence of smooth paths η n such that η n → η in rough path metric we have locally uniformly

v η n → v.
Remark 4.

(1) We remark that uniqueness of a solution, if it exists, is built into the definition (by demanding uniqueness for the approximating problems).

(2) In special cases (in particular the gradient noise case of the following theorem) it is possible to define the solution to a rough PDE through a coordinate transformation (if the vector fields in front of the rough path are smooth enough). This approach is followed in [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF].

The two definitions are equivalent, if the coefficients admit enough regularity (see [START_REF] Caruana | A (rough) pathwise approach to a class of nonlinear SPDEs[END_REF]). In the following theorem the coordinate transformation is not applicable, since σ is only assumed to be Lip γ instead of Lip γ+2 . Theorem 5. Let η ∈ C 0,p-var (R d ) be a rough path, p ∈ [2, 3). Let γ > p. Let b : R e × U → R e be continuous and let b(

•, u) ∈ Lip 1 (R e ) uniformly in u ∈ U . Let σ 1 , . . . , σ d ∈ Lip γ (R e ). Let g ∈ BU C(R e ). Let f : [0, T ] × R e × U →
R be bounded, continuous and locally uniformly continuous in t, x, uniformly in u.

For µ ∈ M consider the RDE with controlled drift 4 (Theorem 29),

(3.4) dX t,x,µ,η = b X t,x,µ,η , µ dt + σ X t,x,µ,η dη, X t,x,µ,η t = x.
4 An extension to a time-dependent b is straightforward, as an inspection of the proof of Theorem 29 shows. A time-dependent σ can be treated immediately by adding a time-component to the rough path, although this leads to strong regularity assumption in t. For a more nuanced approach one could adopt the ideas from [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Chapter 12].

It is also possible to consider the controlled hybrid RDE/SDE dX = b(X, µ)dt + σ(X, µ)dW + σ(X)dη, see [START_REF] Diehl | Topics in Stochastic Differential Equations and Rough Path Theory[END_REF].

Then

v (t, x) := v η (t, x) := sup µ∈M T t f s, X t,x,µ,η s , µ s ds + g X t,x,µ,η
T is the unique bounded, uniformly continuous viscosity solution to the rough HJ equation

-dv -H (x, Dv) dt -σ (x) , Dv dη = 0, v(T, x) = g(x). (3.5)
Proof. The case f = 0, σ ∈ Lip γ+2 appears in [START_REF] Diehl | Topics in Stochastic Differential Equations and Rough Path Theory[END_REF]. The general case presented here is different, since we cannot use a coordinate transformation. Let a smooth sequence η n be given, such that

η n → η in C 0,p-var . Let v n (t, x) := sup µ∈M Ξ t,x [η n , µ],
where

Ξ t,x [γ, µ] := T t f (s, X t,x,µ,γ s , µ s ) ds+g X t,x,µ,γ T
for any (rough) path γ. By classical control theory (e.g. Corollary III.3.6 in [START_REF] Bardi | Dolcetta: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]) we have that v n is the unique bounded, continuous viscosity solution to

-dv n -H (x, Dv n ) dt -σ (x) , Dv n dη n = 0, v n (T, x) = g(x). Then |v n (t, x) -v(t, x)| ≤ sup µ∈M |Ξ t,x [η, µ] -Ξ t,x [η n , µ]| .
Note that Ξ is continuous in γ uniformly in µ (and (t, x)) by Theorem 29. Therefore, v n converges locally uniformly to v and then, by Definition 3, v solves (3.5).

Example 6. In the case with additive noise (σ(x) ≡ Id) and state-independent gains / drift (f (s, x, u) = f (s, u), b(x, u) = b(s, u)), this rough deterministic control problem admits a simple solution. Indeed, if v 0 is the value function to the standard deterministic problem for η ≡ 0, i.e.

v 0 (t, x) = sup µ∈M T t f (s, µ s )ds + g x + T t b(s, µ s )ds ,
then one has immediately (since η only appears in the terminal gain)

v η (t, x) = v 0 (t, x + η T -η t ).
When v 0 has a nice form, this gives simple explicit solutions. For instance, assuming in addition f ≡ 0, U convex and b(s, u) = u, v 0 is reduced to a static optimization problem and

v η (t, x) = sup u∈U g x + η T -η t + (T -t)u .

Pontryagin maximum principle.

If η is smooth, then Theorem 3.2.1 in [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF] gives the following optimality criterium.

Theorem 7. Let η be a smooth path. Assume b, f, g be C 1 in x, such that the derivative is Lipschitz in x, u and bounded and let σ, g be C 1 with bounded, Lipschitz first derivative. Let X, μ be an optimal pair for problem (3.2) with t = 0. Let p be the unique solution to the backward ODE

-ṗ(t) = Db( Xt , μt )p(t) + Dσ( Xt ) ηt p(t) + Df ( Xt , μt ), p(T ) = Dg( XT ). Then b( Xt , μt )p(t) + f ( Xt , μt ) = sup u∈U b( Xt , u)p(t) + f ( Xt , u) , a.e. t ∈ [0, T ].
Let now η be rough. We have the following equivalent statement.

Theorem 8. Let η ∈ C 0,p-var be a geometric rough path, p ∈ [2, 3). Assume the same regularity on b, f, g, σ as in Theorem 7. Let X, μ be an optimal pair. Let p be the unique solution to the controlled, backward RDE (Remark 31)

-dp(t) = Db( Xt , μt )p(t)dt + Dσ( Xt )p(t)dη t + Df ( Xt , μt )dt, p(T ) = Dg( XT ). Then b( Xt , μt )p(t) + f ( Xt , μt ) = sup u∈U b( Xt , u)p(t) + f ( Xt , u) , a.e. t.
Remark 9. This is the necessary condition for an admissible pair to be optimal. In the classical setting there do also exist sufficient conditions (see for example Theorem 3.2.5 in [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF]). They rely on convexity of the Hamiltonian and therefore will in general (unless σ is affine in x) not work in our setting because, informally, the dη-term switches sign all the time.

Define for µ ∈ M J(µ) := T 0 f (r, X 0,x0,µ,η r , µ r )dr + g(X 0,x0,µ,η T ),
so that v(0, x 0 ) = inf µ∈M J(µ). We prepare the proof with the following Lemma.

Lemma 10. Let X, μ be an optimal pair. Let µ be any other control. Let I ⊂ [0, T ] be an interval with |I| = ε. Define

µ ε (t) := 1 I (t)µ(t) + 1 [0,T ]\I (t)μ(t).
Let X ε be the solution to the controlled RDE (3.4) corresponding to the control µ ε . Let Y ε be the solution to the RDE

Y ε t = t 0 Db( Xr , μr )Y ε r dr + t 0 Dσ( Xr )Y ε r dη r + t 0 b( Xr , µ r ) -b( Xr , μr ) 1 I (r)dr. Then sup t |X ε t -Xt | = O(ε), sup t |Y ε t | = O(ε), (3.6) 
sup t |X ε t -Xt -Y ε t | = O(ε 2 ), (3.7) 
J(µ ε ) -J(μ) = Dg( XT ), Y ε T + T 0 Df ( Xr , μr ), Y ε r + f ( Xr , µ r ) -f ( Xr , μr ) 1 I (r) dr + O(ε 2 ). (3.8)
Proof. We have

T 0 ||b(•, μr ) -b(•, µ ε r )|| Lip 1 dr ≤ cε.
Hence looking at the proof of Theorem 33 (note that X ε and X have the same initial condition), we get

||X ε -X|| ∞ ≤ ||X ε -X|| p-var ≤ cε,
which proves the first equality in (3.6). The second one follows analogously.

Now D ε t := X ε t -Xt -Y ε t satisfies dD ε t = b(X ε t , µ ε t ) -b( Xt , μt ) -Db( Xt , μt )Y ε t -b( Xt , µ t ) -b( Xt , μt ) 1 I (t) dt + σ(X ε t ) -σ( Xt ) -Dσ( Xt )Y ε t dη t = t 0 Db( Xt + θ(X ε t -Xt ), µ ε t ) -Db( Xt , µ ε )dθ(X ε t -Xt ) + Db( Xt , µ ε t ) -Db( Xt , μt ) (X ε t -Xt ) + Db( Xt , μt )D ε t dt + 1 0 Dσ( Xt + θ(X ε t -Xt )) -Dσ( Xt )dθ(X ε t -X t )dη t + Dσ( Xt )D ε t dη t = dA ε t + Db( Xt , μt )D ε t dt + dM t D ε t
where

dA ε t = t 0 Db( Xt + θ(X ε t -Xt ), µ ε t ) -Db( Xt , µ ε )dθ(X ε t -Xt ) + Db( Xt , µ ε t ) -Db( Xt , μt ) (X ε t -Xt ) dt + 1 0 Dσ( Xt + θ(X ε t -Xt )) -Dσ( Xt )dθ(X ε t -X t )dη t dM t = Dσ( Xt )dη t .
It is straightforward to check that A ε = O(ε 2 ) as a path controlled by η (see Remark 34). The result then follows from Lemma 35.

Proof of Theorem 8. We follow the idea of the proof of Theorem 3.2.1 in [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF]. Fix

x 0 ∈ R e .
Since η is geometric, we have

Dg( XT ), Y ε T = p T , Y ε T -p 0 , Y ε 0 = - T 0 Df ( Xr , μr ), Y ε r dr + T 0 p(r), b( Xr , µ r ) -b( Xr , μr ) 1 I (r) dr.
Here, Y ε and I are given as in Lemma 10.

Let any u ∈ U be given. Let µ(t) ≡ u. Let t ∈ [0, T ) and let ε > 0 be small enough such that

I ε := [t, t + ε] ⊂ [0, T ].
Then, combined with Lemma 10 we get

0 ≥ J(µ ε ) -J(μ) = Dg( XT ), Y ε T + T 0 Df (x r , μr ), Y ε r + f ( Xr , µ r ) -f ( Xr , μr ) 1 I (r) dr + o(ε) = - T 0 Df ( Xr , μr ), Y ε r dr + T 0 p(r), b( Xr , µ r ) -b( Xr , μr ) 1 I (r) dr + T 0 Df (x r , μr ), Y ε r + f ( Xr , µ r ) -f ( Xr , μr ) 1 I (r) dr + o(ε) = t+ε t p(r), b( Xr , u) -b( Xr , μr ) + f ( Xr , u) -f ( Xr , μr )dr + o(ε).
Dividing by ε and sending ε → 0 yields, together with the separability of the metric space, the desired result. Proposition 11. Under the assumptions of Theorem 5, the map

ω → sup µ∈M T t f (s, X µ,η , µ s ) ds + g (X µ,η T ) η=B(ω)
is measurable. In particular, the expected value of the pathwise optimization problem,

(3.9) v (t, x) = E   sup µ∈M T t f (s, X µ,η , µ s ) ds + g (X µ,η T ) η=B(ω)   is well-defined.
Proof. The lift into rough pathspace, ω → B (ω), is measurable. v η as element in BUC space depends continuously (and hence: measurably) on the rough path η. Conclude by composition.

Remark 12. Well-definedness of such expressions was a non-trivial technical obstacle in previous works on pathwise stochastic control; e.g. [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF][START_REF] Buckdahn | Pathwise stochastic control problems and stochastic HJB equations[END_REF]. The use of rough path theory allows to bypass this difficulty entirely.

Remark 13. Let us explain why we only consider the case where the coefficient σ(x) in front of the rough path is not controlled. It would not be too difficult to make sense of RDEs

dX = b(t, X, u)dt + σ(X, u)dη t ,
assuming good regularity for σ and (u s ) s≥0 chosen in a suitable class (for instance : u piecewise constant, u controlled by η in the Gubinelli sense,...). However, in most cases of interest the control problem would degenerate, in the sense that we would have

v η (t, x) = sup µ∈M T t f s, X t,x,µ,η s , µ s ds + g X t,x,µ,η T = T t (sup µ,x f (s, x, µ))ds + sup x g(x).
The reason is that if σ has enough u-dependence (for instance if d = 1, U is the unit ball in R e and σ(x, u) = u) and η has unbounded variation on any interval (as is the case for typical Brownian paths), the system can essentially be driven to reach any point instantly.

In order to obtain nontrivial values for the problem, one would need the admissible control processes to be uniformly bounded in some particular sense (see e.g. [START_REF] Mazliak | Optimal control for rough differential equations[END_REF] in the Young case, where the (µ s ) need to be bounded in some Hölder space), which is not very natural (for instance, Dynamic Programming and HJB-type pointwise optimizations are then no longer valid).

Duality results for classical stochastic control

We now link the expected value of the pathwise optimization problem, as given in (3.9), to the value function of the (classical) stochastic control problem as exposed in [START_REF] Krylov | Controlled diffusion processes[END_REF][START_REF] Fleming | controlled markov processes and viscosity solutions[END_REF],

(4.1) V (t, x) := sup ν∈A E T t f s, X t,x,ν s , ν s ds + g X t,x,ν T .
Her A denotes the class of progressively measurable controls ν : Ω × [t, T ] → U , where we use notation in not specifying t. There are well-known assumptions under which V is a classical (see [START_REF] Krylov | Controlled diffusion processes[END_REF]) resp. viscosity (see [START_REF] Fleming | controlled markov processes and viscosity solutions[END_REF]) solution to the HJB equation, i.e. the non-linear terminal value problem

-∂ t V -F t, x, DV, D 2 V = 0 V (T, •) = g;
uniqueness holds in suitable classes. In fact, assume the dynamics

dX s,x,ν t = b (X s,x,ν t , ν t ) dt + d i=1 σ i (X s,x,ν t ) • dB i t , = b (X s,x,ν t , ν t ) dt + d i=1 σ i (X s,x,ν t ) dB i t , X s,x,ν s = x, (4.2) 
where

b(x, u) = b(x, u) + 1 2 d i=1 (σ i • Dσ i )(x)
is the corrected drift. Then the equation is semilinear of the form

-∂ t V -H (t, x, DV ) -LV = 0, V (T, •) = g. (4.3) where LV = 1 2 Tr[(σσ T )D 2 V ]
and H is given by H (t, x, p) = sup u b (x, u) , p + f (t, x, u) .

Let us also write

L u V = b (•, u) DV + LV, u ∈ U.
As before M is the class of measurable functions µ : [t, T ] → U , with the topology of convergence in measure (with respect to dt), where we abuse notation by not specifying t.

Inspired by results in discrete time [START_REF] Brown | Information relaxations and duality in stochastic dynamic programs[END_REF], we have the following duality result.

Theorem 14. Let Z F be the class of all mappings z : C 0,p-var × M → R such that • z is bounded, measurable and continuous in η ∈ C 0,p-var uniformly over

µ ∈ M • E[z(B, ν)] ≥ 0, if ν is adapted Let b : R e × U → R e be continuous and let b(•, u) ∈ Lip 1 (R e ) uniformly in u ∈ U and such that u → b(•, u) is Lipschitz. Let σ 1 , . . . , σ d ∈ Lip γ (R e ), for some γ > 2, g ∈ BU C(R e ) and f : [0, T ] × R e × U →
R bounded, continuous and locally uniformly continuous in t, x, uniformly in u. Then we have

V (t, x) = inf z∈Z F E   sup µ∈M T t f (r, X t,x,µ,η r , µ r )dr + g(X t,x,µ,η T ) + z(η, µ) η=B(ω)   .
Where B denotes the Stratonovich lift of the Brownian motion to a geometric rough path and X t,x,µ,η is the solution to the RDE with controlled drift (Theorem 29)

dX t,x,µ,η = b X t,x,µ,η , µ dt + σ X t,x,µ,η dη, X t,x,µ,η t = x.
Remark 15. Every choice of admissible control ν ∈ A in (4.1) leads to a lower bound on the value function (with equality for ν = ν * , the optimal control). In the same spirit, every choice z leads to an upper bound. There is great interest in such duality results, as they help to judge how much room is left for policy improvement. The result is still too general for this purpose and therefore it is an important question, discussed below, to understand whether duality still holds when restricting to some concrete (parametrized) subsets of Z F .

Proof. We first note, that the supremum inside the expectation is continuous (and hence measurable) in η, which follows by the same argument as in the proof of Theorem 5. Since it is also bounded, the expectation is well-defined.

Recall that X t,x,ν is the solution to the (classical) controlled SDE and that X t,x,µ,η is the solution to the controlled RDE. Let z ∈ Z F . Then, using Theorem 29 to justify the step from second to third line,

V (t, x) = sup ν∈A E T t f (s, X t,x,ν s , ν s )ds + g(X t,x,u T ) ≤ sup ν∈A E T t f (s, X t,x,ν s , ν s )ds + g(X t,x,ν T ) + z(B, ν) = sup ν∈A E   T t f (s, X t,x,µ,η s , µ s )ds + g(X t,x,µ,η T ) + z(η, µ) µ=ν,η=B   ≤ E   sup µ∈M T t f (s, X t,x,µ,η s , µ s )ds + g(X t,x,µ,η T ) + z(η, µ) η=B   ,
and to show equality, let

z * (η, µ) := V (t, x) - T t f (s, X t,x,µ,η s , µ s )ds + g(X t,x,µ,η T ).
Then z * ∈ Z F and equality is attained. 4.1. Example I, inspired by the discrete-time results of Rogers [START_REF] Rogers | Pathwise Stochastic Optimal Control[END_REF]. We now show that Theorem 14 still holds with penalty terms based on martingale increments. Theorem 16. Under the (regularity) assumptions of Theorem 14 we have

V (t, x) = inf h∈C 1,2 b E   sup µ∈M T t f s, X t,x,µ,η s , µ s ds + g X t,x,µ,η T -M t,x,µ,η,h t,T η=B(ω)   ,
where

M t,x,µ,η,h t,T := h T, X t,x,µ,η T -h t, X t,x,µ,η t - T t (∂ s + L µ s ) h s, X t,x,µ,η s ds.
That is, Theorem 14 still holds with Z F replaced by the set {z :

z(η, µ) = M t,x,µ,η,h t,T , h ∈ C 1,2 b }. Moreover, if V ∈ C 1,2 b the infimum is achieved at h * = V .
Proof. We have

V (t, x) ≤ inf h∈C 1,2 b E   sup µ∈M T t f (s, X t,x,µ,η s , µ s )ds + g(X t,x,µ,η T ) -M t,x,µ,η,h t,T η=B   = inf h∈C 1,2 b h(t, x) + E   sup µ∈M T t f (s, X t,x,µ,η s , µ s ) + (∂ s + L µ s )h(s, X t,x,µ,η s )ds + g(X t,x,µ,η T ) -h(T, X t,x,µ,η T ) η=B   ≤ inf h∈C 1,2 b h(t, x) + T t sup x∈R e ,u∈U [f (s, x, u) + (∂ s + L u )h(s, x)] ds + sup x∈R e [g(x) -h(T, x)] ≤ inf h∈S + s h(t, x) + T t sup x∈R e ,u∈U [f (s, x, u) + (∂ s + L u )h(s, x)] ds + sup x∈R e [g(x) -h(T, x)] ≤ inf h∈S + s h(t, x).
where the first inequality follows from (the proof of) Theorem 14 and S + s denotes the class of smooth bounded super solutions of the HJB equation. Note that S + s ⊂ C 1,2 b , which yields the third to last inequality.

But in fact the infimum of smooth supersolutions is equal to the viscosity solution V , all inequalities are actually equalities and the result follows. This can be proved via a technique due to Krylov [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF] which he called "shaking the coefficients". For the reader's convenience let us recall the argument.

Recall that b is the corrected drift, see (4.2). Extending by continuity b, σ and f to t ∈ (-∞, ∞), define for ε > 0,

F ε (t, x, p, X) := sup u∈U,|s|,|e|≤ε b(x + e, u), p + 1 2
Tr(σσ T (x + e)X) + f (t + s, x + e, u) , and consider V ε the unique viscosity solution to

-∂V ε ∂t -F ε (t, x, DV ε , D 2 V ε ) = 0, V ε (T, •) = g.
By (local) uniform continuity of b, σ, f one can actually show that V → V ε as ε → 0, locally uniformly. This can be done for instance by interpreting V ε as the value function of a stochastic control problem. Now take some smoothing kernel ρ ε with R e+1 ρ ε = 1 and supp(ρ ε ) ⊂ [-ε, ε] e+1 , and define

V ε := V ε * ρ ε . Clearly by definition of F ε , for each |s|, |e| ≤ ε, V ε (• -s, • -e) is a supersolution to the HJB equation -∂ t V -F ε (t, x, DV, D 2 V ) = 0. Since F is convex in (DV, D 2 V ) it follows that V ε = [-ε,ε] e+1 V ε (• -s, • -e)ρ ε (s, e)dsde
is again a (smooth) supersolution (for the details see the appendix in [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]). Finally it only remains to notice that |V -

V ε | ≤ |V -V * ρ ε | + |(V -V ε ) * ρ ε | → 0 (locally uniformly). Remark 17. Note that V h (t, x) := E   sup µ∈M T t f s, X t,x,µ,η , µ s ds + g X t,x,µ,η T -M t,x,µ,η,h t,T η=B(ω)   ,
for fixed x, t, is precisely of the form (3.9) with f resp. g replaced by f resp. g, given by

f (s, •, µ) = f (s, •, µ) + (∂ s + L µ ) h (s, •) , g (•) = g (•) + h (T, •) -h (t, x) .
The point is that the inner pathwise optimization falls directly into the framework of Section 3.

Remark 18. For η a geometric rough path, we may apply the chain rule to h(s, X s ) and obtain

h(T, X T ) -h(t, x) = T t Dh(s, X s ), b(s, X s , µ s )ds + σ(X s )dη s .
It follows that the penalization may also be rewritten in a (rough) integral form

M t,x,µ,η,h t,T = T t Dh(s, X s ), σ(X s )dη s + T t (b -b)(s, X s , µ s ), Dh(s, X s ) - 1 2 Tr[(σσ T )D 2 h](s, X s ) ds.
Note that for η = B and adapted ν, this is just the Itô integral T t Dh(s, X s ), σ(X s )dB s . Remark 19. If one were to try anticipating stochastic calculus, in the spirit of [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF], to implement Roger's duality in continuous time, then -leaving aside all other technical (measurability) issues that have to be dealt with -more regularity on the coefficient will be required. This is in stark contrast to the usual understanding in SDE theory that rough paths require more regularity than Itô theory.

Example 20. From Example 6 we can see that in some special cases this method gives explicit upper bounds. Assume :

• additive noise (σ ≡ Id),

• state-independent drift b ≡ b(u),

• running gain f (s, x, u) = f 0 (u) -∇h(x) • b(u), with h superharmonic (∆h ≤ 0). Then for the penalty corresponding to h(t, x) = h(x), the inner optimization problem is given by

sup µ∈M T t (f 0 (µ s ) -∇h(X t,x,µ,η s ), b(µ s ) )ds + (g -h) X t,x,µ,η T + h(x) + T t ( ∇h(X t,x,µ,η s ), b(µ s ) + 1 2 ∆h(X t,x,µ,η s ))ds ≤ sup µ∈M T t f 0 (µ s ) ds + (g -h) X t,x,µ,η T + h(x) = h(x) + V 0,h (t, x + η T -η t ),
where V 0,h is the value function to the standard control problem

V 0 (t, x) = sup µ∈M T t f 0 (µ s )ds + (g -h) x + T t µ s ds .
From Theorem 16, we then have the upper bound

V (t, x) ≤ h(x) + E V 0,h (t, x + B T -B t ) .
Remark 21. As in Remark 13, one can wonder how Theorem 16 could translate in the case where σ depends on u. As mentioned in that remark, under reasonable conditions on σ the control problem degenerates so that for any choice of h, say for piecewise-constant controls µ, we can expect that

E   sup µ T t f (s, X t,x,µ,η s , µ s ) + (∂ t + L µ s )h(s, X t,x,µ,η s )ds + g(X t,x,µ,η T ) -h(T, X t,x,µ,η T ) η=B   = T t sup x∈R e ,u∈U [f (s, x, u) + (∂ t + L u )h(s, x)] ds + sup x∈R e [g(x) -h(T, x)] .
In other words there is nothing to be gained from considering the (penalized) pathwise optimization problem, as we always get

V (t, x) ≤ h(t, x) + T t sup x∈R e ,u∈U [f (s, x, u) + (∂ t + L u )h(s, x)] ds + sup x∈R e [g(x) -h(T, x)]
which is in fact clear from a direct application of Itô's formula (or viscosity comparison). [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF]. We now explore a different penalization, possible under concavity assumptions.

Example II, inspired by Davis-Burstein

Theorem 22. Let g be as in Theorem 14 and assume f = 0; furthermore make the (stronger) assumption that b ∈ C 5 b , σ ∈ C 5 b , σσ T > 0, and that (4.1) has a feedback solution u * 5 which is continuous, C 1 in t and C 4 b in x, taking values in the interior of U . Assume that U is a compact convex subset of R n . 5 That is, the optimal control is given as a deterministic function u * of time and the current state of the system. This is also called a Markovian control.

Let Z t,x,η be the solution starting from x at time t to (denote b

u := ∂ u b) dZ = b (Z, u * (t, Z)) dt + σ (Z) dη -b u (Z, u * (t, Z))u * (t, Z)dt, (4.4) let W (t, x) := W (t, x; η) := g(Z t,x,η T
) and assume that

∀(t, x), u → b(x, u), DW (t, x; B)
is strictly concave, a.s. (4.5)

Then V (t, x) = inf λ∈A E[ sup µ∈M g(X t,x,µ,η T ) + T t λ(r, X t,x,µ,η r , η), µ r dr η=B(ω)
].

Where A is the class of all λ : [0, T ] × R e × C 0,p-var → R d such that

• λ is bounded and uniformly continuous on bounded sets • λ is future adapted, i.e. for any fixed t, x, λ(t, x, B) ∈ σ(B s : s ∈ [t, T ])

• E[λ(t, x, B)] = 0 for all t, x. That is, Theorem 14 still holds with Z F replaced by the set

{z : z(η, µ) = T t λ(s, X t,x,µ,η r , η), µ s ds, λ ∈ A}.
Moreover the infimum is achieved with λ * (t, x, η) := t b u (t, u * (t, x))DW (t, x; η).

Remark 23.

The concavity assumption is difficult to verify for concrete examples. It holds for the linear quadratic case, which we treat in Section 4.3.

Remark 24. The case of running cost f is, as usual, easily covered with this formulation. Indeed, let the optimal control problem be given as

dX = b(X, ν)dt + σ(X) • dW, V (t, x) = sup ν E[ T t f (X, ν)dr + g(X T )].
Define the new component

dX d+1 t = f (X, u)dt, X d+1 t = x.
Then the theorem yields that the penalty

λ * (t, x) := (b u , f u ) • (D x 1...d g(Z T ) + D x 1...d Z e+1 T , D xe+1 Z e+1 T ) = (b u , f u ) • (D x 1...d g(Z T ) + D x 1...d Z e+1 T , 1). is optimal, where dZ = b(Z, u * )dt + σ(Z)dη -b u (Z, u * )u * dt, dZ e+1 = f (Z, u * )dt -f u (Z, u * )u * dt.
Proof. From (the proof of) Theorem 14 we know

V (t, x) ≤ inf λ∈A E[. . . ]. The converse direction is proven in [8] by using 6 λ * (t, x, η) = t b u (t, u * (t, x))DW (t, x).
For the reader's convenience we provide a sketch of the argument below.

Sketch of the Davis-Burstein argument. We have assumed that the optimal control for the stochastic problem (4.1) is given in feedback form by u * (t, x). Write X t,x, * := X t,x,u * .

Recall that Z t,x,η is the solution starting from x at time t to :

dZ = b (Z, u * (t, Z)) dt + σ (Z) dη -b u (Z, u * (t, Z))u * (t, Z)dt. Assume that W (t, x) := W (t, x; η) = g(Z t,x,η T
) is a (viscosity) solution to the rough PDE

-∂ t W -b(x, u * (t, x)) -b u (x, u * (t, x))u * (t, x), DW -σ (x) , DW η = 0, (4.6) 
and assume that W is differentiable in x.

We assumed that

∀(t, x), u → b(x, u), DW (t, x) is strictly concave. It then follows that b(x, u * (t, x)) -b u (x, u * (t, x))u * (t, x), DW = sup u∈U b(x, u) -b u (x, u * (t, x))u, DW . (4.7)
Because of (4.7) the PDE (4.6) may be rewritten as

-∂ t W -b(x, u * (t, x)), DW -u * (t, x), λ * (t, x; η) -σ (x) , DW η = -∂ t W -sup u∈U { b(x, u), DW -u, λ * (t, x; η) } -σ (x) , DW η = 0.
By verification it follows that actually W is also the value function of the problem with penalty λ * , and the optimal control is given by u * , i.e.

W (t, x) = W (t, x; η) = sup µ∈M g(X t,x,µ,η T ) - T t λ * (s, X t,x,µ,η s ; η), µ s ds = g(X t,x,u * ,η T ) - T t λ * (s, X t,x,u * ,η s ; η), u * (s, X t,x,u * ,η s ) ds
Then, by Theorem 29 we have (if the convexity assumption (4.5) is satisfied a.s. by η = B(ω))

W (t, x; B) = g(X t,x, * T ) - T t λ * (s, X t,x, * s ; B), u * (s, X t,x, * s ) ds.
It follows in particular that for the original stochastic control problem

V (t, x) = sup ν∈A E g(X t,x,ν T ) = E g(X t,x, * T ) = E g(X t,x, * T ) - T t λ * (s, X t,x, * s ; B), u * (s, X t,x, * s ) ds = E sup µ∈M g(X t,x,µ,η T ) - T t λ * (s, X t,x,µ,η s ; η), µ s ds | η=B .
Here we have used that λ * (t, x, B) is future adapted and E[λ * (t, x, B)] = 0 ∀t, x, which is shown on p. 227 in [START_REF] Davis | A deterministic approach to stochastic optimal control with application to anticipative optimal control[END_REF].

Remark 25. The two different penalizations presented above are based on verification arguments for respectively the stochastic HJB equation and the (rough) deterministic HJB equation. One can then also try to devise an approach based on Pontryagin's maximum principles (both stochastic and deterministic). While this is technically possible, the need to use sufficient conditions in the rough Pontryagin maximum principle means that it can only apply to the very specific case where σ is affine in x, and in consequence we have chosen not to pursue this here.

4.3.

Explicit computations in LQC problems. We will compare the two optimal penalizations in the case of a linear quadratic control problem (both for additive and multiplicative noise).

4.3.1.

LQC with additive noise. The dynamics are given by7 

dX = (M X + N ν)dt + dB t (4.8)
and the optimization problem is given by

V (t, x) = sup ν∈A E 1 2 T t ( QX s , X s + Rν s , ν s )ds + 1 2 GX T , X T . (4.9)
This problem admits the explicit solution (see e.g. Section 6.3 in [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF])

V (t, x) = 1 2 P (t)x, x + 1 2 T t
Tr(P (s))ds, (4. [START_REF] Diehl | Regularity theory for rough partial differential equations and parabolic comparison revisited[END_REF] where P is the solution to the matrix Riccati equation

Ṗ = -P (t)M -t M P (t) + P N R -1t N P (t) -Q P (T ) = G,
and the optimal control is then given in feedback form by

ν * (t, x) = -R -1t N P (t)x.
Proposition 26. For this LQ control problem the optimal penalty corresponding to Theorem 22 is given by

z 1 (η, µ) = - T t λ 2 (s; η), µ s ds,
where

λ 1 (t; η) = -t N T t e t M (s-t) P (s)dη s .
The optimal penalty corresponding to Theorem 16 is given by

z 2 (η, µ) = z 1 (η, µ) + γ R (η), where γ R (η) = T t P (s)X 0 s , dη s - 1 2 T t
Tr(P (s))ds, X 0 denoting the solution to the RDE dX = M Xdt + dη starting at (t, x). In particular, these two penalizations are equal modulo a random constant (not depending on the control) with zero expectation.

Proof. The formula for z Hence we see that this penalization can be written as 2 = z 1 + γ R (η), where γ R (η) does not depend on the chosen control. One can check immediately that E[γ R (η)| η=B(ω) ] = 0. 4.3.2. LQC with multiplicative noise. Let the dynamics be given by

dX = (M X + N ν)dt + n i=1 C i X • dB i t (4.11) = ( M X + N ν)dt + n i=1 C i XdB i t . (4.12)
Denote by X t,x,µ,η the solution starting from x at time t to dX t,x,µ,η s = (M X t,x,µ,η s

+ N µ)dt + n i=1 C i X t,x,µ,η s dη i t
and by Γ t,s the (matrix) solution to the RDE

d s Γ t,s = M Γ t,s ds + n i=1 C i Γ t,s dη s , Γ t,t = I Then X t,x,µ,η s = Γ t,s x + s t Γ r,s N µ r dr. (4.13)
For simplicity we now take d = n = 1: the general case is only notationally more involved.

The optimization problem is given by

V (t, x) = sup ν∈A E 1 2 T t (QX 2 s + Rν 2 s )ds + 1 2 GX 2 T . (4.14)
By Section 6.6 in [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF] the value function is again given as

V (t, x) = 1 2 P t x 2
and the optimal control as

u * (t, x) = -R -1 N P t x,
where

Ṗt + 2P t M + 2P t C 2 + Q -N 2 R -1 P 2 t = 0, P T = G. (4.15)
We can then compute explicitely the Davis-Burstein and Rogers penalties :

Proposition 27. For t ≤ r ≤ T , define Θ r = T r P s Γ 2
r,s (dη s -Cds).

Then the optimal penalty corresponding to Theorem 22 is given by

z 1 (η, µ) = 2CN x T t Γ t,s Θ s µ s ds + CN 2 T t T t
Γ r∧s,r∨s Θ r∨s µ r µ s drds, while the optimal penalty corresponding to Theorem 16 is given by

z 2 (η, µ) = CΘ t x 2 + z 1 (η, µ).
Proof. The optimal penalty stemming from Theorem 22 (see also Remark 24) is given by T t λ * (r, x)µ r dr, where

λ * (r, x) = N GZ 1 T ∂ x Z 1 T + ∂ x Z 2 T -N P (r)x,
where

dZ 1 = M Z 1 ds + CZ 1 dη t , Z 1 r = x; dZ 2 = 1 2 Q -N 2 R -1 P (s) 2 (Z 1 ) 2 ds, Z 2 r = 0. Since Z 1 s = Γ r,s x, this is computed to λ * (r, x) = N x GΓ 2 r,T + T r Q -N 2 R -1 P (s) 2 Γ 2 r,s ds -P (r) . = N x P (s)Γ 2 r,s T s=r + T r -Ṗ (s) -2M P (s) -2C 2 P (s) Γ 2 r,s ds = 2N x T r P (s)Γ 2 r,s (Cdη s -C 2 ds) = 2N CxΘ r .
Using the formula (4.13), we immediately obtain

z 1 (η, µ) = T t λ * (s, X t,x,µ,η s )µ s ds = 2CN x T t Γ t,s Θ s µ s ds + CN 2 T t T t
Γ r∧s,r∨s Θ r∨s µ r µ s drds.

For the optimal penalty corresponding to Theorem 16, we apply again Remark 18 to see that the optimal penalty is given by

M t,x,µ,η,V t,T = T t DV (s, X s ), CXdη s - T t Tr[C 2 X 2 D 2 V (s, X s )]ds = T t P r C|X t,x,µ,η r | 2 dη r - T t C 2 |X t,x,µ,η r | 2 P r dr.
It only remains to perform straightforward computations expanding the quadratic terms and applying Fubini's theorem.

Remark 28. Let us also draw attention to the linear-quadratic Gaussian stochastic control studied in [START_REF] Duncan | Linear-quadratic fractional Gaussian control[END_REF], noting however that the type of penalization proposed in Theorem 16 and Theorem 22 will not work for this, since they rely on a Markovian setting.

Appendix: RDEs with controlled drift

Theorem 29 (RDE with controlled drift). Let p ∈ [2, 3). Let η ∈ C 0,p-var a geometric p-variation rough path. Let γ > p. Let U be the subset of a separable Banach space. Let b : R e

× U → R e such that b(•, u) ∈ Lip 1 (R e ) uniformly in u ∈ U (i.e. sup u∈U ||b(•, u)|| Lip 1 (R e ) < ∞) and such that u → b(•, u) is measurable. Let σ 1 , . . . , σ d ∈ Lip γ (R e ). Let µ : [0, T ] → U be measurable, i.e. µ ∈ M.
(i) There exists a unique Y ∈ C 0,p-var that solves

Y t = y 0 + t 0 b(Y r , µ r )dr + t 0 σ(Y )dη r .
Moreover the mapping 

(x 0 , η) → Y ∈ C 0,p-var
(t, x, u) i = k ∂ x k (φ -1 ) i (t, φ(t, x))b k (φ(t, x), u).
Remark 30. In the last case, i.e. point (iv), we can immediately use results in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] (Theorem 10.53) to also handle linear vector fields.

Remark 31. Given a rough path η on [0, T ], the time-inverted object ←η t := η T -t is again a rough path. We can hence solve controlled, backward RDEs using the previous Theorem by inverting time.

Proof. Denote for µ ∈ M

Z µ t (•) := t 0 b(•, µ r )dr,
which is a well defined Bochner integral in the space Lip 1 (R e ) (indeed, by assumption on b,

t 0 ||b(•, µ r )|| Lip 1 (R e ) dr < ∞). Then Z µ ∈ C 1-var ([0, T ], Lip 1 (R e )). Indeed ||Z µ || 1-var ≤ T 0 ||b(•, µ r )|| Lip 1 (R e ) dr ≤ T 0 sup u∈U ||b(•, u)|| Lip 1 (R e ) dr, (5.3) independent of µ ∈ M.
By Theorem 33 we get a unique solution to the RDE

dY = f (Y )dZ µ + σ(Y )dη,
where f : R e → L(Lip 1 (R e ), R e ) is the evaluation operator, i.e. f (y)V := V (y). This gives existence of the controlled RDE as well as continuity in the starting point and in η. By (5.3), this is independent of µ ∈ M and we hence have shown (i). Concerning (ii), assume now that U u → b(•, u) ∈ Lip 1 is Lipschitz. Using the representation given in the proof of (i) it is sufficient to realize that if

µ n → µ ∈ M in measure, then Z µ n → Z µ in C 1-var ([0, T ], Lip 1 (R e )).
Concerning (iii): First of all, we can regard ν as a measurable mapping from (Ω, F) into the space of all measurable mappings from [0, T ] → U with the topology of convergence in measure. Indeed, if U is a compact subset of a separable Banach space, then this follows from the equivalence of weak and strong measurability for Banach space valued mappings (Pettis Theorem, see Section V.4 in [START_REF] Yosida | Functional Analysis[END_REF]). If U is a general subset of a separable Banach space, then define ν n : Ω → M with ν n (ω) t := Φ n (ν(ω) t ). Here Φ n is a (measurable) nearest-neighbor projection on {x 1 , . . . , x n }, the sequence (x k ) k≥0 being dense in the Banach space. Then ν n is taking values in a compact set and hence by the previous case, is measurable as a mapping to M. Finally ν is the pointwise limit of the ν n and hence also measurable.

Hence Y | µ=ν,η=B is measurable, as the concatenation of measurable maps (here we use the joint continuity of RDE solutions in the control and the rough path, i.e. continuity of the mapping (5.1)). Now, to get the equality (5.2): we can argue as in [START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF] using the Riemann sum representation of stochastic integral.

(iv) This follows from Theorem 1 in [START_REF] Diehl | Topics in Stochastic Differential Equations and Rough Path Theory[END_REF] or Theorem 2 in [START_REF] Crisan | Robust Filtering: Correlated Noise and Multidimensional Observation[END_REF].

Remark 32. One can also prove "by hand" existence of a solution, using a fixpoint argument, like the one used in [START_REF] Gubinelli | Controlling Rough Paths[END_REF]. This way one arrives at the same regularity demands on the coefficients. Using the infinite dimensional setting makes it possible to immediately quote existing results on existence, which shortens the proof immensely. We thank Terry Lyons for drawing our attention to this fact.

In the proof of the previous theorem we needed the following version of Theorem 6.2.1 in [START_REF] Lyons | System control and rough paths[END_REF].

Theorem 33. Let V, W, Z be some Banach spaces. Let tensor products be endowed with the projective tensor norm. 8 Let p ∈ [2, 3) η ∈ C 0,p-var (W ) and Z ∈ C q-var ([0, T ], V ) for some 1/q > 1 -1/p. Let f : Z → L(V, Z) be Lip 1 , let g : Z → L(W, Z) be Lip γ , γ > p. Then there exists a unique solution Y ∈ C 0,p-var (Z) to the RDE dY = f (Y )dZ + g(Y )dη, in the sense of Lyons. 9 Moreover for every R > 0 there exists C = C(R) such that ρ p-var (Y, Ȳ ) ≤ C||Z -Z|| q-var .

whenever (Z, X) and ( Z, X) are two driving paths with ||Z|| q-var , || Z|| q-var , ||X|| p-var ≤ R.

Proof. Since Z and X have complementary Young regularity (i.e. 1/p+1/q > 1) there is a canonical joint rough path λ over (Z, X), where the missing integrals of Z and the cross-integrals of Z and X are defined via Young integration. So we have λ s,t = 1 + Z s,t X s,t + t s Z s,r ⊗ dZ r t s Z s,r ⊗ dη r t s η s,r ⊗ dZ r t s η s,r ⊗ dη r Then, by Theorem 6.2.1 in [START_REF] Lyons | System control and rough paths[END_REF], there exists a unique solution to the RDE dY = h(Y )dλ, where h = (f, g).

We calculate how λ depends on Z. For the first level we have of course ||λ (1) λ(1) || p-var ≤ ||Z -Z|| q-var . For the second level we have, by Young's inequality, Together this gives ρ p-var (λ, λ) ≤ c||Z -Z|| q-var .

8 See [START_REF] Lyons | Differential equations driven by rough paths: École d'été de probabilités de Saint-Flour XXXIV-2004[END_REF] p. 18 for more on the choice of tensor norms which, of course, only matter in an infinite dimensional setting.

9 See e.g. Definition 5.1 in [START_REF] Lyons | Differential equations driven by rough paths: École d'été de probabilités de Saint-Flour XXXIV-2004[END_REF].

Plugging this into the continuity estimate of Theorem 6.2.1 in [START_REF] Lyons | System control and rough paths[END_REF] we get ρ p-var (Y, Ȳ ) ≤ C||Z -Z|| q-var as desired.

Remark 34. The following Lemma as well as the proof the Pontryagin principle use the concept of controlled rough paths in the sense of Gubinelli [START_REF] Gubinelli | Controlling Rough Paths[END_REF]. Even though it is usually set up in Hölder spaces, the modification to variation spaces poses no problem (see [START_REF] Perkowski | Pathwise stochastic integrals for model free finance[END_REF]Section 4.1]). Let X ε solve dX ε t = dA ε t + A t dη t X ε 0 = 0.

(5.4)

Then ρ p-var (X ε , 0) = O(ε).

Proof. For every ε there exists a unique solution solution to (5.4), and it is uniformly bounded in ε ∈ (0, 1]. This follows from [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Theorem 10.53], by considering (A ε , η) as a joint rough path. We can hence, uniformly in ε, replace the linear vector field by a bounded one. We then get from [START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF]Theorem 8.5] ρ p-var (X ε , X 0 ) ≤ c ρ p-var ((A ε , η), (0, η)).

where X 0 denotes the unique solution to (5.4) with A ε replaced by the constant 0-path. Obviously X 0 ≡ 0 and it easy to see that ρ p-var ((A ε , η), (0, η)) = O(ε), which yields the desired result.

3. 3 .

 3 Pathwise stochastic control. We can apply Theorem 5 to enhanced Brownian motion, i.e. take η = B (ω), Brownian motion enhanced with Lévy's stochastic area which constitutes for a.e. ω a geometric rough path. The (rough)pathwise unique solution to the RDE with controlled drift, X µ,η | η=B(ω) then becomes a solution to the classical stochastic differential equation (in Stratonovich sense) (Theorem 29).

  is locally Lipschitz continuous, uniformly in µ ∈ M.(ii) Assume that u → b(•, u) is Lipschitz. If we use the topology of convergence in measure on M, thenM × R e × C 0,p-var → C 0,p-var (µ, x 0 , η) → Y, (5.1) is continuous. (iii) Assume that u → b(•, u) is Lipschitz. If ν : Ω × [0, T ] → U isprogressively measurable and B is the Stratonovich rough path lift of a Brownian motion B, then Y | µ=ν,η=B = Ỹ , P -a.s., (5.2) where Ỹ is the (classical) solution to the controlled SDE Ỹt = y 0 + t 0 b( Ỹr , ν r )dr + t 0 σ( Ỹ ) • dB r . (iv) If σ 1 , . . . , σ d ∈ Lip γ+2 (R e ), we can write Y = φ(t, Ŷt ) where φ is the solution flow to the RDE φ(t, x) = x + t 0 σ(φ(r, x))dη r , and Ŷ solves the classical ODE Ŷt = x 0 + t 0 b(r, Ŷr , µ r )dr, where we define componentwise b

  r dZ r -t s Zs,r d Zr | ≤ | t s Z s,r d Z r -Zr | + | t s Z s,r -Zs,r d Zr | ≤ c||Z|| q-var;[s,t] ||Z -Z|| q-var;[s,t] + c||Z -Z|| q-var;[s,t] ||Z|| q-var;[s,t] . r d Zr | ≤ c||X|| p-var;[s,t] ||Z|| q-var;[s,t] .

Lemma 35 .

 35 In particular we define for a path Y controlled by η with derivative Y ||Y, Y || η,p-var := ||Y || p-var + ||R|| p/2-var , where R s,t := Y s,t -Y s η s,t . Let η be a geometric p-variation rough path, p ∈ (2, 3). Let M be controlled by η and for ε ∈ (0, 1] let (A ε , (A ) ε ) be controlled by η with ||A ε , (A ) ε || η,p-var = O(ε).

  1 is in fact already computed in [8, sec. 2.4], so that it only remains to do the computation for the Rogers penalization.

	It follows from Remark 18 that								
	M t,x,µ,η,V t,T	=	t	T	DV (s, X s ), dη s -	1 2		t	T	Tr(D 2 V (s, X s ))ds
		=	t	T	P (s)X µ s , dη s -	1 2	t	T	Tr(P (s))ds
		=	t	T	P (s)(X 0 s +	0	s	e M (s-r) N µ r dr), dη s -	1 2	t	T	Tr(P (s))ds
		=	t	T	µ r , ( t N	r	T	e	t M (s-r) P (s)dη s ) dr +	t	T	P (s)X 0 s , dη s -	1 2	t	T	Tr(P (s))ds.

See e.g.[START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF][START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF] for consistency of rough integration again B (ω) with Stratonovich integration.

For p < 2 these are just continuous E-valued paths with finite p-variation. For p ∈ [2, 3) additional "area" information is necessary. We refer to[START_REF] Lyons | System control and rough paths[END_REF] and[START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] for background on rough path theory.

The paper of Davis-Burstein predates rough path theory relies heavily on anticipating stochastic calculus.

This equation admits an obvious pathwise SDE solution (via the ODE satisfied by X -B) so that, strictly speaking, there is no need for rough paths here.
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