Overview	The degeneracy problem	Avoiding degeneracy	The label switching problem	
	00000	00000000	00000	
	000000000000	000000	000000	
	0000000000	000000	0000000	

Pitfalls in Mixtures from the Clustering Angle

C. Biernacki (with G. Castellan, S. Chrétien, B. Guedj, V. Vandewalle)

Working Group on Model-Based Clustering Summer Session, Paris, July 17-23, 2016

Ínría

 The degeneracy problem

 00000

 000000000000

 00000000000

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Take home message

Computational estimates $\tilde{\theta}$ are the imbricated result of five factors

- **1** An initial practitioner target t
- A data set x
- 3 A theoretical model m
- **4** A theoretical estimate $\hat{\theta}$
- 5 An estimation algorithm A

$$\tilde{\theta} = f(t, \mathbf{x}, m, \hat{\theta}, A)$$

This talk

- Considered pitfalls in mixtures are degeneracy and label switching
- Consequences can be disastrous on $\tilde{\theta}$
- Often, solutions are sought in m or $\hat{\theta}$
- We explore here also solutions through t and A
- Focus target *t* : clustering
- Focus algorithms A : EM, SEM, Gibbs

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

Individual data

- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

Avoiding degeneracy 00000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Unbounded likelihood

• *d*-variate *g*-Gaussian mixture with $\theta = (\{\pi_k\}, \{\mu_k\}, \{\Sigma_k\})$

$$p(\boldsymbol{x};\boldsymbol{\theta}) = \sum_{k=1}^{g} \pi_{k} \underbrace{\frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_{k}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_{k})' \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{k})\right)}_{p(\boldsymbol{x};\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})}$$

Sampling:
$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \stackrel{i.i.d.}{\sim} p(.; \theta)$$

Likelihood: $\ell(\theta; \mathbf{x}) = p(\mathbf{x}; \theta)$

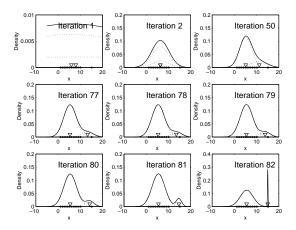
particular center
$$\mu_2 = \mathbf{x}_i \quad \Rightarrow \quad \lim_{|\Sigma_2| \to 0} \ell(\boldsymbol{ heta}; \mathbf{x}) = +\infty$$

[Kiefer and Wolfowitz, 1956] [Day, 1969]

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

EM behaviour: illustration

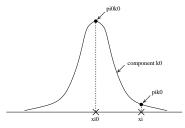


degeneracy may occur even when starting from large variances

convergence can be slow when far from the degenerate limit

convergence extremely fast near degeneracy

EM behaviour: results



$$\mathbf{u}_0 = \left[\frac{1}{p_{i_0k_0}}, \{p_{ik_0}\}_{i\neq i_0}\right]$$

degeneracy of component k_0 at \mathbf{x}_{i_0}

 $\|\mathbf{u}_0\| \to 0$ [Biernacki and Chrétien, 2003] [Ingrassia and Rocci, 2009]

Proposition 1: Existence of a bassin of attraction

 $\exists \epsilon > 0 \text{ s.t. if } \|\mathbf{u}_0\| \leq \epsilon \text{ then } \|\mathbf{u}_0^+\| = o\|\mathbf{u}_0\| \text{ with probability 1.}$

Proposition 2: Speed towards degeneracy is exponential

 $\exists \epsilon > 0, \alpha > 0$ and $\beta > 0$ s.t. if $\|\mathbf{u}_0\| \le \epsilon$ then, with probability 1,

$$|\Sigma_{k_0}^+| \le \alpha/|\Sigma_{k_0}| \cdot \exp\left(-\beta/|\Sigma_{k_0}|\right)$$

The label switching problem 00000 000000 0000000 Conclusion

Consequences of the EM study

When EM is close to degeneracy, EM mapping is contracting and reaches numerical tolerance extremely quickly

∜

Simply starting again EM when numerical tolerance is reached (pragmatic bahaviour of EM practitioners) is now somewhat justified

₩

However, the numerical tolerance is finally an arbitrary lower bound for $|\Sigma_k|...$

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

Individual data

Binned data

Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

 The degeneracy problem

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Binned data

- A binned partition of \mathbb{R} in H intervals $\Omega_1, \ldots, \Omega_H$: $\Omega_h =]\alpha_h, \beta_h[$
- Individuals x_i unknown, only the interval where x_i lies is known
- Hypothesis of Gaussian mixture on x_i's unchanged
- The log-likelihood is written

$$\ell(\theta) = \sum_{h=1}^{H} \underbrace{m_h}_{\# \Omega_h} \ln \underbrace{\left(\sum_{k=1}^{K} \pi_k \int_{\Omega_h}^{a_{kh}} f_k(x) dx\right)}_{P(X \in \Omega_h)}$$

Question

Does degeneracy still exists since $\ell(\theta) \leq 0$?

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Degeneracy may still happen!

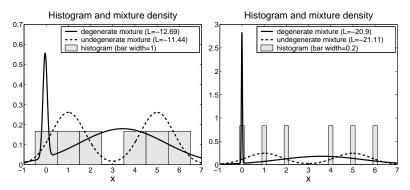
Proposition 3

Let for all $b \in \mathbb{N}$ \blacksquare sequence $\{\epsilon^b\}$: $\epsilon^b > 0$ and $\epsilon^b \to 0$ when $b \to \infty$ \blacksquare bins $\{\Omega_h^b, h = 1, \dots, H^b\}$: if $\beta_h^b - \alpha_h^b \ge \epsilon^b$ then $m_h^b = 0$ $\blacksquare \Omega_{h_0^b}$ is a non-empty interval and $k_0 \in \{1, \dots, K\}$ a component $\blacksquare \hat{\theta}^b$ is the unique consistent root of the ML associated to $\{(\Omega_h^b, m_h^b)\}$ $\blacksquare \ell^b(\theta) \longrightarrow \ell^b_{deg}(\theta)$ when $\mu_{k_0} \in \Omega_{h_0}$ et $\Sigma_{k_0} \to 0$. Thus, it exists $B \in \mathbb{N}$ such that for all b > B we have $\ell^b_{deg}(\hat{\theta}^b) \ge \ell^b(\hat{\theta}^b)$.

Sketch of proof At a first time, we have to show that, for all θ , it exists $B_{\theta} \in \mathbb{N}$ such that for all $b > B_{\theta}$ we have $\ell_{deg}^{b}(\theta) \ge \ell^{b}(\theta)$. Then, we conclude by noting that $B = \sup_{\theta} B_{\theta}$.

Meaning

If dimension of non-empty bins is "small enough", then the global maximum of the likelihood is obtained in a degenerate situation



The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

EM behaviour in a degeneracy neighborough?

Remind

component k_0 degenerates inside $\Omega_{h_0} \Leftrightarrow (\mu_{k_0} \in \Omega_{h_0} \text{ and } \Sigma_{k_0} \to 0)$

Notations

- $\Omega_{h'_0}$: bin the closest to the center μ_{k_0} (left or right of Ω_{h_0})
- γ : borderline of Ω_{h_0} the closest to μ_{k_0} (either α_{h_0} , or β_{h_0})
- $\eta = |\gamma \mu_{k_0}|$: distance between the center and the closest center
- $\sigma = \operatorname{sign}(\gamma \mu_{k_0})$ and $u = \sum_{k_0} f_{k_0}(\gamma)$
- $R_h = (\pi_{k_0} + A_{k_0 h_0}) / A_{k_0 h}$ with $A_{k_0 h} = \sum_{k \neq k_0} \pi_k a_{kh}$

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Possibility to be attracted around degeneracy

Proposition 4

It exists $\epsilon > 0$ such that, if

$$\begin{array}{l} \bullet \ 0 < \Sigma_{k_0} < \epsilon \\ \bullet \ \eta \in (\delta, \Delta - \sqrt{\Sigma_{k_0}}) \ \text{with} \ 0 < \delta < \Delta < (\beta_{h_0} - \alpha_{h_0})/2 \\ \bullet \ 1 - \frac{m_{h'_0}}{m_{h_0}} R_{h'_0} > 0 \end{array}$$

then,

$$0 < \Sigma_{k_0}^+ < \Sigma_{k_0} \left[1 - \underbrace{\left(1 - \frac{m_{h_0'}}{m_{h_0}} R_{h_0'} \right)}_{\rho} \frac{\delta}{2\sqrt{2\pi\Sigma_{k_0}}} e^{-\Delta^2/(2\Sigma_{k_0})} \right]$$

and

$$\eta^+ \in \left(\delta, \Delta - \sqrt{\Sigma_{k_0}^+}\right).$$

Overview	The degeneracy problem	Avoiding degeneracy	The label switching problem	Conclusion
	00000 000000000000 0000000000	00000000 000000 000000	00000 000000 0000000	

sketch of proof It relies on Taylor expansions around $\Sigma_{k_0} = 0$ with $\mu_{k_0} \in \Omega_{h_0}$

$$\mu_{k_0}^+=\mu_{k_0}-\sigma
ho u+o(u) \quad ext{ and } \quad \Sigma_{k_0}^+=\Sigma_{k_0}-\eta
ho u+o(u)$$

Then the inequality on Σ_{k_0} arises easily.

For the second expression, we obtain in the same manner (for Σ_{k_0} "small enough")

$$\delta < |\gamma - \mu_{k_0}^+| < \Delta - \sqrt{\Sigma_{k_0}^+}$$

Thus $|\gamma - \mu_{k_0}^+| < \Delta < (\beta_{h_0} - \alpha_{h_0})/2$ and so $\gamma^+ = \gamma$ (the closest borderline is kept unchanged). Since $\eta^+ = |\gamma - \mu_{k_0}^+|$, conclusion follows.

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Attraction or repulsion?

Around a degenerate solution, EM runs closer or further depending on the sign of ρ which itself depends on the sample size of the "closest" bin.

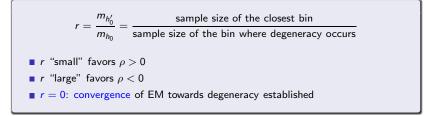
$$\begin{array}{l} \mbox{Attraction: } \rho > 0 \\ \mbox{from the theorem, if } \Sigma_{k_0} \mbox{ is "close enough" to 0 and } \mu_{k_0} \in \Omega_{h_0} \mbox{ then} \\ \\ \underbrace{0 < \Sigma_{k_0}^+ < \Sigma_{k_0} \mbox{ [} 1 - \rho \times |\mbox{fcte}(\theta)|\mbox{]}}_{\Sigma_{k_0} \mbox{ decreases}} \mbox{ and } \mu_{k_0}^+ \in \Omega_{h_0} \end{array}$$

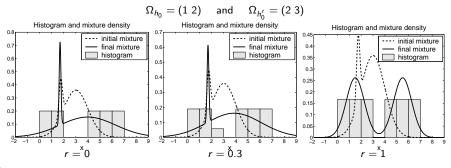
Repulsion: $\rho < 0$ Taylor: $\Sigma_{k_0}^+ = \Sigma_{k_0} - \eta \rho u + o(u) \Rightarrow \Sigma_{k_0}$ increases

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

The sign of ρ if mainly controlled by the ratio of sample sizes



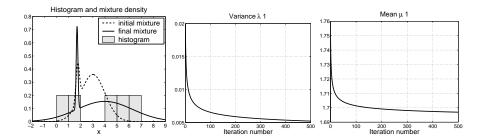


16/72

EM speed

EM is very slow around degeneracy because its global convergence rate is equal to 1

$$\Sigma_{k_0}^+/\Sigma_{k_0}\longrightarrow 1$$
 when $\mu_{k_0}\in\Omega_{h_0}$ et $\Sigma_{k_0}
ightarrow 0$



Avoiding degeneracy 000000000 000000 000000 Conclusion

A stopping rule is required for EM!

- Danger: the ML could correspond to a degenerate solution
- Save computation time: numerous wasted iterations when $\rho > 0$
- **Still running:** run other iterations when $\rho < 0$

Stopping rules to be avoided

•
$$|\Sigma_{k_0}^+ - \Sigma_{k_0}| < \epsilon$$
: confusion with convergence

• $\Sigma_{k_0} < \epsilon$: huge iteration number

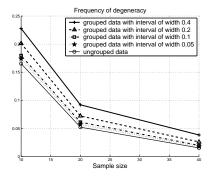
Stopping rule relying on Taylor

$$|\boldsymbol{\Sigma}_{k_0}^+ - \boldsymbol{\Sigma}_{k_0} + \eta \rho \boldsymbol{u}| < \epsilon$$

The degeneracy problem

0000000000000

Numerical experiment 1: simulations



 $\rho < 0$ rare

- degeneracy $\rho > 0 \nearrow$ with bin width and \searrow with *n*
- degeneracy binned case more frequent that the individual data case!

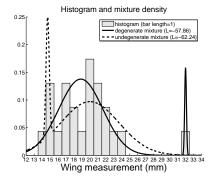
 Overview
 The degeneracy problem
 Avoiding degeneracy
 The label switching problem

 00000
 0000000000
 000000
 000000

 000000000000
 000000
 000000
 000000

 000000000000
 000000
 000000
 000000

Numerical experiment 2: wing measurements of butterflies



- data known with 1mm precision: natural bins
- better likelihood at degeneracy
- the user could make a confusion between degeneracy and convergence
- the second variance has no meaning: DANGER

The degeneracy problem

00000 0000000000000 0000000000 Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

21/72

	iew	

The degeneracy problem

00000 00000000000000000 000000000000

-

Avoiding degeneracy 000000000 000000 000000 The label switching proble

Conclusion

Clustering with missing data

X_1	X_2	X_3	Cluster
1.23	?	3.42	?
?	?	4.10	?
4.53	1.50	5.35	?
?	5.67	?	?

Discarded solutions

Suppress units and/or variables with missing data \Rightarrow loss of information

Imputation of the missing data by the mean or more evolved methods \Rightarrow uncertainty of the prediction not taken into account

Retained solution

Use an integrated approach which allows to take into account all the available information to perform clustering

Avoiding degeneracy	The label switching p
00000000 000000 000000	00000 000000 00000000
	00000000

Conclusion

• $O_i \subseteq \{1, \ldots, d\}$ the set of the observed variables from sample *i*

- **x**_{*i*}^O the observed data from sample i
- *M_i* the set of the missing variables for sample *i*
- μ_{ik}^{O} the sub-vector of μ_k associated to index O_i (the same for M_i)
- **\Sigma_{ik}^{OM}** the sub-matrix of Σ_k associated to row O_i and columns M_i (the same for any other combination)

Notations

Assumption on the missingness mecanism

Missing At Randon (MAR): the probability that a variable is missing does not depend on its own value given the observed variables.

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Maximum likelihood estimator

Unbounded likelihood...

$$\ell(\boldsymbol{ heta}; \mathbf{x}^{\mathrm{O}}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \phi(\mathbf{x}_i^{\mathrm{O}}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

 $\mu_k = \mathbf{x}_i \text{ and } |\mathbf{\Sigma}_k| \to 0 \Rightarrow \ell(\boldsymbol{\theta}; \mathbf{x}^{\mathrm{O}}) \text{ unbounded } \Rightarrow \hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathbf{x}^{\mathrm{O}})$

Consistent root

A root of $\frac{\partial \ell(\theta; x^0)}{\partial \theta} = \mathbf{0}$ is a consistent estimator of the parameters. So choose

$$\hat{\boldsymbol{ heta}} = rg\max_{\boldsymbol{ heta}} \ell(\boldsymbol{ heta}; \mathbf{x}^{\mathrm{O}}) \text{ s.c. } \frac{\partial \ell(\boldsymbol{ heta}; \mathbf{x}^{\mathrm{O}})}{\partial \boldsymbol{ heta}} = \mathbf{0}$$

Practical solution

Use the EM algorithm and discard solutions associated to unbounded likelihood.

heta and $heta^+$ the parameters for two successive steps (*idem* for missing data)

$$\begin{aligned} z_{ik}^{+} &= P(Z_{ik} = 1 | \mathbf{x}_{i}^{\mathrm{O}}; \boldsymbol{\theta}) = \frac{\pi_{k} \phi(\mathbf{x}_{i}^{\mathrm{O}}; \boldsymbol{\Sigma}_{k})}{\sum_{\ell=1}^{K} \pi_{\ell} \phi(\mathbf{x}_{i}^{\mathrm{O}}; \boldsymbol{\Sigma}_{\ell})} \\ \mathbf{x}_{ik}^{M^{+}} &= E\left[\mathbf{X}_{i}^{M} \left| \mathbf{x}_{i}^{\mathrm{O}}, Z_{ik} = 1; \boldsymbol{\theta} \right] = \boldsymbol{\mu}_{ik}^{\mathrm{M}} + \boldsymbol{\Sigma}_{ik}^{\mathrm{MO}} \left(\boldsymbol{\Sigma}_{ik}^{\mathrm{OO}} \right)^{-1} (\mathbf{x}_{i}^{\mathrm{O}} - \boldsymbol{\mu}_{ik}^{\mathrm{O}}). \end{aligned}$$

-

Interpretation

 z_{ik}^+ : class posterior probability membership given the available information x_i^O .

• $\mathbf{x}_{ik}^{M^+}$: conditional imputation of the missing data given the cluster.

The degeneracy problem

00000

Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

M step

$$\pi_{k}^{+} = \frac{1}{n_{k}^{+}} \sum_{i=1}^{n} z_{ik}^{+}, \ \mu_{k}^{+} = \frac{1}{n_{k}^{+}} \sum_{i=1}^{n} z_{ik}^{+} \mathbf{x}_{ik}^{+}$$
$$\mathbf{\Sigma}_{k}^{+} = \frac{1}{n_{k}^{+}} \sum_{i=1}^{n} z_{ik}^{+} \left[(\mathbf{x}_{ik}^{+} - \mu_{k}^{+}) (\mathbf{x}_{ik}^{+} - \mu_{k}^{+})' + \mathbf{\Sigma}_{ik}^{+} \right]$$

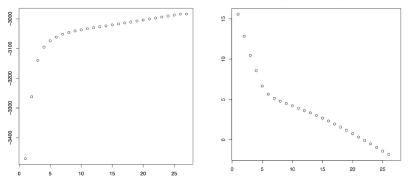
where $n_k^+ = \sum_{i=1}^n z_{ik}^+$, $\mathbf{x}_{ik}^+ = \begin{pmatrix} \mathbf{x}_i^{\mathrm{O}} \\ \mathbf{x}_{ik}^{\mathrm{M}^+} \end{pmatrix}$, $\mathbf{\Sigma}_{ik}^+ = \begin{pmatrix} \mathbf{0}_i^{\mathrm{O}} & \mathbf{0}_i^{\mathrm{OM}} \\ \mathbf{0}_i^{\mathrm{MO}} & \mathbf{\Sigma}_{ik}^{\mathrm{M}^+} \end{pmatrix}$ with 0 the $d \times d$ null matrix, and $\mathbf{\Sigma}_{ik}^{\mathrm{M}^+} = \mathbf{\Sigma}_{ik}^{\mathrm{MO}} (\mathbf{\Sigma}_{ik}^{\mathrm{O}})^{-1} \mathbf{\Sigma}_{ik}^{\mathrm{OM}}$.

Interpretation of $\Sigma_{i\nu}^{M^+}$

Variance correction due to the under-estimation of variability caused by the imputation of missing data.

- Breast cancer tissue of the UCI database repository: 106 units, 9 variables.
- 10% of missing data randomly generated
- K = 4 clusters

Log-likelihood according to the number of iterations





The degeneracy problem

00000

Avoiding degeneracy 00000000 000000 000000 The label switching problem

Conclusion

Detail on the example

	1	2	3	4	5	6	7	8	9
1	211.00		0.09	30.75	151.98	4.94	14.27	27.24	217.13
2	196.86	0.02	0.09	28.59	82.06	2.87	7.97	27.66	200.75
3	144.00	0.12	0.05	19.65	70.43	3.58		7.57	160.37
4	172.52	0.13	0.04		192.22	5.12	19.32	32.19	174.93
5	121.00	0.17	0.09	24.44	144.47	5.91	22.02	10.59	141.77
6	223.00	0.12	0.08	33.10	197.01	5.95	30.45	12.96	252.48
7		0.17	0.23	34.22	94.35	2.76	31.28	13.88	180.61
8	303.00	0.06	0.04	22.57		4.54	21.83	5.72	321.65
9	250.00	0.09	0.09	29.64	180.76	6.10	26.14	13.96	280.12
10	391.00	0.06	0.01	35.78		7.41	22.13	28.11	400.99
11	176.00	0.09	0.08	20.59	79.71		18.23	9.58	191.99
12	145.00		0.11	21.22	82.46	3.89	20.30	6.17	162.51
13	124.13	0.13	0.11	20.59			18.46	9.12	134.89
14	103.00	0.16	0.29	23.75	78.26	3.29	22.32	8.12	124.98

Table : Data belonging to the degenerated component.

Remarks

- Convergence towards a degenerated component
- Convergence relatively slow : log-likelihood linear according to the number of iterations
- Number of points of the degenerated solution greater than the space dimension d (but the number of complete points lower than d)

The degeneracy problem

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Intermediate conclusion on missing data

Risks

- Consider a degenerated solution as valid
- Lose a lot of time in useless iterations

Missing data: an intermediary framework between complete and binned data

- Unbounded likelihood like complete data
- Slow degeneracy like binned data (but geometrical, not linear)

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Degeneracy speed on a toy example

Univariate framework, no mixture, only one observed data: x

- Maximum likelihood estimator:
 - $\hat{\mu} = x$ $\hat{\Sigma} = 0$
- Unbounded likelihood

Suppose now that n-1 data have not been observed:

Useless EM algorithm $\mu^{+} = \frac{(n-1)\mu + x}{n} \text{ et } \Sigma^{+} = \frac{(n-1)\Sigma + (x-\mu^{+})^{2}}{n}.$

This leads to a linear grow of the log-likelihood (have a look also when n increases!):

$$\ell(\boldsymbol{\theta}^{(q)}; \mathbf{x}) \sim -0.5q \log rac{n-1}{n}$$

and geometrical convergence rate towards 0 for the variance:

$$\Sigma^{(q)} \sim \Sigma^{(0)} \left(rac{n-1}{n}
ight)^q$$

The degeneracy problem

Avoiding degeneracy 00000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Influence of the missing data rate

% missing data		5	10	15	20	25	30
% deg.	16	4	12	11	46	51	100
Average nb of iterations before deg.	2	13	13	82	304	138	215

Table : Frequency and speed of degeneracy (deg.) according to the rate of missing data on the breast cancer data set.

When the rate of missing data increases:

- The rate of degeneracy increases
- The number of iterations before degeneracy decreases

The degeneracy problem 00000 000000000000 0000000000000000 Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

Adding a minimal clustering information

- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

32/72

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Existing strategies for avoiding degeneracy

Constraining the covariance matrices (*e.g.* num. tol.):

 $\forall k, |\Sigma_k| \ge \alpha_{(n)} > 0$

[Tanaka and Takemura, 2006]

Relative constraints between covariance matrices:

 $\forall k \neq j, |\Sigma_k| \geq \beta |\Sigma_j| \quad (0 < \beta \leq 1)$

[Hathaway, 1985] [Ingrassia and Rocci, 2007]

Bayesian approach: With a well-behaved prior γ , maximise

 $\ln \ell(\boldsymbol{\theta}; \mathbf{x}) + \ln \gamma(\boldsymbol{\theta})$

[Snoussi and Mahammad-Djafari, 2001] [Ciuperca et al., 2003]

Common difficulty

Additional information $\alpha,\,\beta$ or γ is difficult to fix.

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

A meaningful decomposition of the likelihood

z =
$$(z_1, \ldots, z_n)$$
 = a partition of **x** in binary notation

n_k =
$$\sum_{i=1}^{n} z_{ik}$$
 = nb. indiv. in class k from **z**

$$\mathbb{Z}^* = \{ \mathsf{z} : orall k, n_k \geq d+1 \} = \mathsf{at} \text{ least } d+1 \text{ elements by class}$$

$$\ell(\boldsymbol{\theta}; \mathbf{x}) = \underbrace{\ell(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z} \in \mathcal{Z}^*)}_{< \infty \text{ with proba. } 1} + \underbrace{\ell(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z} \notin \mathcal{Z}^*)}_{\text{ can degenerate}}$$

 \downarrow Degeneracy in $\ell(\theta; x)$ only occurs through $\ell(\theta; x, z \notin \mathcal{Z}^*)$

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Discarding some z values to avoid degeneracy

 $\mathbf{z} \notin \mathcal{Z}^* \Rightarrow \begin{cases} \text{ If } \exists k, n_k = 0: \ \hat{\theta} \text{ is partially non-identifiable} \\ \text{ If } \exists k, 1 \leq n_k < d+1: \text{ Degeneracy in } \ell(\theta; \mathbf{x}, \mathbf{z} \notin \mathcal{Z}^*) \end{cases}$

₩

 $\mathbf{z} \notin \mathcal{Z}^*$ has to be naturally discarded

∜

Strategy for avoiding degeneracy: Discarding $\mathbf{z} \notin \mathcal{Z}^*$

 $\hat{oldsymbol{ heta}} = rg\max_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; {f x}, {f z} \in \mathcal{Z}^*)^a$

^aAdapt it with missing data: $\textbf{z} \notin \mathcal{Z}^*$ corresponding to only observed data \textbf{x}^O

Remarks

- ${\color{black} \hspace{0.1 cm} z \in \mathcal{Z}^*}$ natural in the supervised setting to obtain non-singular cov. matrices
- $\hat{ heta}$ approaches the ML estimator as the number of data increases [Policello, 1981]

 The degeneracy problem

 00000

 0000000000000

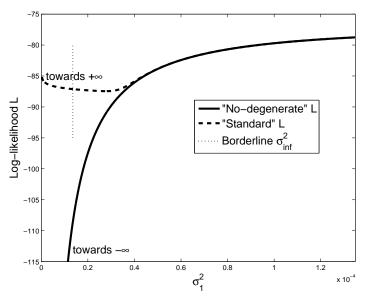
 000000000000

Avoiding degeneracy

The label switching problem

Conclusion

Effect of \mathcal{Z}^* on the log-likelihood



36/72

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Specific EM algorithm ('EMgood'): Definition

-+

• E step:
$$\tilde{z}_{ik}^+ \propto \rho(\mathbf{Z} \in \mathcal{Z}^* | \mathbf{x}, z_{ik} = 1; \theta) \overbrace{\rho(z_{ik} = 1 | \mathbf{x}; \theta)}^{-ik}$$

• M step: Standard formulas where z_{ik}^+ is replaced by \tilde{z}_{ik}^+

Detail of E step for g = 2

$$p(\mathbf{Z} \in \mathcal{Z}^* | \mathbf{x}, Z_{i1} = 1; \boldsymbol{ heta}) = 1 - \left(\prod_{j \neq i} t_{j2} + \prod_{j \neq i} t_{j1} + \sum_{j \neq i} t_{j2} \prod_{h \neq i, j} t_{h1}\right)$$

Combinatorial problem for g > 2 (Stirling nb of 2nd kind involved)

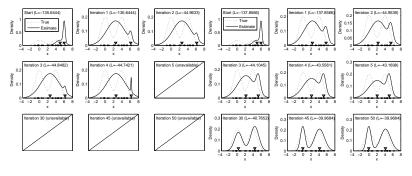
Calculus of E step becomes infeasible for most situations...

$$p(\mathbf{Z} \in \mathcal{Z}^* | \mathbf{x}, Z_{ik} = 1; \boldsymbol{\theta}) = \sum_{\mathbf{z} \in \mathcal{Z}^*} p(\mathbf{Z} = \mathbf{z} | \mathbf{x}, Z_{ik} = 1; \boldsymbol{\theta})$$

The degeneracy problem 00000 000000000000 00000000000 Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Example of EMgood on individual data



Standard EM

EMgood

 The degeneracy problem

 00000

 000000000000

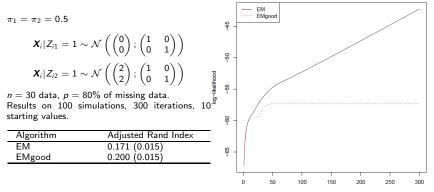
 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 00000000 Conclusion

Example of EMgood on missing data

Log-likelihood according to the number of iterations and the algorithm



number of iterations

Overview	The degeneracy problem	Avoiding degeneracy	The label switching problem	Conclusion
	00000 000000000000 0000000000	00000000 000000 000000	00000 000000 0000000	
		ha hu ana duat an	antinu.	

The by-product question

How to use natural information $Z \in \mathcal{Z}^*$ in a more efficient way than EMgood?

₩

Two strategies

Strategy 1: Return to a lower bound on variances... but by using now additional information $Z \in \mathcal{Z}^*$!

Strategy 2: Design an approximate EMgood

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

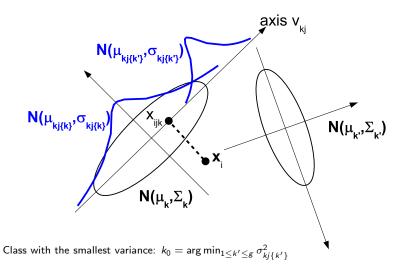
5 Conclusion

The degeneracy problem 00000 0000000000000 00000000000000 Avoiding degeneracy

The label switching problem

Conclusion

Multivariate towards univariate mixtures



 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

A non-asymptotic stochastic lower bound on variances

Proposition 3: The bound

For any $\alpha \in (0, 1)$, we have,

$$p\left(orall k \in \{1, \dots, g\} \ , \ \sigma^2_{kj\{k_0\}} \geq B^d_{jk}(lpha) \mid \mathbf{Z} \in \mathcal{Z}
ight) \geq 1 - lpha,$$

where

$$B^d_{jk}(lpha) = S^d_{jk}/\chi^2_d(1-lpha)$$

with S_{jk}^d the minimum non-normalized variance among all subsamples of size d + 1in the whole sample $\{X_{ijk}\}_{i \in \{1,...,n\}}$:

$$S_{jk}^d = \min_{\{\mathcal{I}: \#\mathcal{I}=d+1\}} S_{\mathcal{I}jk}.$$

Empirical variance and mean of the subsample $\{X_{ijk}\}_{i \in \mathcal{I}} (\mathcal{I} \subset \{1, \ldots, n\})$

$$S_{\mathcal{I}jk} = \sum_{i \in \mathcal{I}} (X_{ijk} - \bar{X}_{\mathcal{I}jk})^2, \quad \bar{X}_{\mathcal{I}jk} = \frac{1}{\#\mathcal{I}} \sum_{i \in \mathcal{I}} X_{ijk}$$

The degeneracy problem 00000 00000000000000 0000000000000 Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Sketch of proof

The proof is straightforward.

- **1** Axis j of component k
- 2 Project multivariate into univariate mixture on this axis
- **B** Conditionally to $Z \in \mathbb{Z}^*$, there exists d + 1 distinct random variables $\{X_{ijk}\}_{i \in \{\mathcal{I}\}}$ which belong to the class k_0
- 4 Classical result from a univariate Gaussian

$$p\left(\sigma_{kj\{k_0\}}^2 \geq \frac{S_{\mathcal{I}jk}}{\chi_d^2((1-\alpha))} \Big| \{i \in \mathcal{I} : Z_{i,k_0} = 1\}, \mathbf{z} \in \mathcal{Z}^*\right) = 1 - \alpha.$$

5 We conclude since $S_{jk}^d \leq S_{\mathcal{I}jk}$.

The label switching problem

Conclusion

Properties

- Easy and fast to compute from the order statistics
- \blacksquare Not very sharp since it is likely verified with far higher probability than $1-\alpha$
- **E** M_{α} : Stop standard EM run overstepping the lower bound

Proposition 4: Consistency

 $\hat{\theta}(\alpha) = \arg \max_{\theta \in \Theta(\alpha)} L(\theta; \mathbf{x})$ is a consistent estimate of θ where

$$\Theta(\alpha) = \{ \boldsymbol{\theta} : \boldsymbol{\theta} \in \Theta, \sigma^2_{kj\{k_0\}} \geq B^d_{jk}(\alpha) \}.$$

Sketch of proof

- Univariate: Rely on the result of [Tanaka and Takemura, 2006]
- Multivariate: In progress

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Numerical comparison of EM_0 and EM_α : Counting runs

- **g** = 2 Gaussians, 1000 samples of size n = 10d
- \bullet $heta^{[0]}$ choosen at random
- Classical EM (EM₀): Stop either when relative increase of the log-likelihood is smaller than a standard threshold $\varepsilon = 10^{-6}$ ("normal stop") or if the numerical tolerance of the computer is reached when estimating covariance matrices ("crash stop"; indicating probably degeneracy)
- New strategy (EM_α): Stop either with a "normal stop" or a "crash stop" (the same "normal stop" and "crash stop" as EM₀), or when our bound on singular matrices is reached with α = 0.01 (our so-called "degeneracy stop")

EM ₀ stop:	crash				normal
EM_{α} stop:	degeneracy	crash or normal		normal	degeneracy or crash
d = 1	189/189	0/189		811/811	0/811
d = 2	57/57	0/57		943/943	0/943
d = 4	34/34	0/34		966/966	0/966
<i>d</i> = 8	37/37	0/37		963/963	0/963

And about the missing data case?

This bound is expected to be inefficient because of the slow variance decrease...

The degeneracy problem 00000 0000000000000 00000000000000 Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

47/72

The label switching problem 00000 000000 0000000 Conclusion

The SEMgood algorithm

Stochastic EMgood

Introduces a stochastic step between the E and the M step of the EM algorithm:

- S step : $z^+ \sim Z | x, Z \in \mathcal{Z}^*; \theta$
- Partition constraints easy to include: Rejection sampling, Gibbs sampling...
- Generate a sequence $\theta^{(1)}, \ldots, \theta^{(N)}$
- Estimated parameter: $\hat{\theta}^{\text{SEMGOOD}} = \arg \max_{\theta \in \theta^{(1)}, \dots, \theta^{(N)}} \in \ell(\theta; \mathbf{x})$

Numerical comparison design between EM and SEMgood

- Start both algo. from 10 random values, for each initialization iterate 300 times
- Keep the parameter associated to the best likelihood $\ell(\theta; \mathbf{x})$
- Compute the rand index between the estimated and the true partition

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

SEMgood on the breast cancer tissu data set

Dataset

- Dataset: Breast cancer tissue of the UCI database repository : n = 106, d = 9.
- Draw 5% missing data completely at random
- Try to find the 6 clusters in the data

Results

- \blacksquare EM degenerates for each initialisation \Rightarrow no performances available
- SEMgood never degenerates, the solution with the higher likelihood has an adjusted rand index of $0.30 \Rightarrow$ SEMgood has good behavior?

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

SEMgood on simulated data: Spurious maxima

 $\pi_1 = \pi_2 = 0.5$

$$\begin{split} \mathbf{X}_{i} | Z_{i1} &= 1 \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \\ \mathbf{X}_{i} | Z_{i2} &= 1 \sim \mathcal{N}\left(\begin{pmatrix} 2 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \end{split}$$

n = 50 data, p = 10% of missing data.

Results on 100 simulations, 10 starting values, 300 iterations by starting value.

Algorithm	EM	SEMgood
ARI	0.217	0.067
#best $\ell(\theta; \mathbf{x})$	24	76

X[,1]

2

Problem SEMgood efficient in finding local maxima of $\ell(\theta; \mathbf{x})$ But maximum likelihood can be jeopardized by spurious local maxima $\mathbf{x} = \begin{bmatrix} 0 & \mathbf{x} & 0 & 0 \\ 0 & \mathbf{x} & 0 & \mathbf{x} \\ 0 & \mathbf{x} & \mathbf{x} & 0 \\ 0 & \mathbf{x} & \mathbf{x} & 0 \\ 0 & \mathbf{x} & \mathbf{x} & 0 \\ 0 & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & \mathbf{x$

-1

50/72

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Alternative to EMgood and SEMgood: EMgood

Summary

- EMgood: combinatorial problem
- SEMgood: spurious problem (too efficient scan of the parameter space...)

Initia	l optimization pb	New (and easier) optimization pb
	$\hat{oldsymbol{ heta}} = rg\max_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; { t x}, { t z} \in \mathcal{Z}^*)$	$\hat{oldsymbol{ heta}} = rg\max_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; \mathbf{x}, E[\sum_{i=1}^n \mathbf{Z}_i] \in ar{\mathcal{Z}}^*)$
where	$\mathcal{Z}^* = \{\mathbf{z} : \forall k, n_k \ge d+1)\}$	where $ ilde{\mathcal{Z}}^* = \{(n_1,\ldots,n_g): orall k, n_k \geq d+1)\}$

EMgood

- The constraint $E[\sum_{i=1}^{n} \mathbf{Z}_{i}] \in \bar{\mathcal{Z}}^{*}$ is easy to satisfy
- At each E step of EM, just verify that $n_k \ge d + 1!$
- If not, just stop EM (deg. situation) and start it again from another position

 The degeneracy problem

 00000

 0000000000000

 000000000000

Avoiding degeneracy

The label switching problem 00000 000000 0000000 Conclusion

Numerical experiments with EMgood on simulated data

- $\pi_1 = \pi_2 = 0.5$, $d = \{2, ..., 13\}$, $\delta = 6/\sqrt{d}$, $\mu_1 = (0, ..., 0)$, $\mu_2 = (\delta, ..., \delta)$, $\Sigma_1 = \Sigma_2 = I_d$.
- 20% of missing data
- *n* = 150, *niter* = 300, *nbStart* = 1, *nrep* = 100

	2	3	4	5	6	7	8	9	10	11	12	13
EM	0.97	0.94	0.93	0.89	0.82	0.74	0.79	0.75	0.76	0.70	0.67	0.68
EMgood	0.97	0.94	0.94	0.90	0.86	0.85	0.91	0.82	0.85	0.79	0.83	0.80

Table : Mean ARI for each dimension d

	2	3	4	5	6	7	8	9	10	11	12	13
EM	0.00	0.00	0.00	0.01	0.00	0.01	0.02	0.04	0.09	0.13	0.09	0.12
EMgood	0.00	0.00	0.01	0.04	0.13	0.77	1.19	2.58	3.82	6.46	8.63	9.43

Table : Mean number of restarts for each dimension d

Thus EMgood seems to detect deg., allowing welcomed restartings

The degeneracy problem 00000 0000000000000 00000000000000 Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

The problem

- Existing solutions
- Proposed solution (in progress)

5 Conclusion

53/72

The label switching problem 00000

What is label switching?

A useful notation

- \mathcal{P}_g permutation set of $\{1, \ldots, g\}$
- $\sigma(\theta) = (\theta_{\sigma(1)}, \dots, \theta_{\sigma(g)})$ with $\sigma \in \mathcal{P}_g$

Posterior invariant to label permutation

·(...|0) Label invariant mixture distribution Label invariant prior

$$p(\mathbf{x}|\boldsymbol{\theta}) \equiv p(\mathbf{x}|\boldsymbol{\theta})$$
$$p(\boldsymbol{\theta}) = p(\mathbf{x}|\boldsymbol{\theta})$$

 $\mathbf{x}(\mathbf{x}|\sigma(\boldsymbol{\theta}))$ $\sigma(\boldsymbol{\theta})$

∜ Label invariant posterior $p(\theta|\mathbf{x}) = p(\sigma(\theta)|\mathbf{x})$

Consequences

Many ponctual estimates are useless: Posterior mean $(E[\theta_1|\mathbf{x}] = E[\theta_2|\mathbf{x}]), \ldots$

The degeneracy problem 00000 00000000000000000 Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Gibbs algorithm in mixtures

Principle	(iteration	q)
-----------	------------	----

$$\mathbf{z}^q \sim p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^{q-1})$$

$$\mathbf{P} \boldsymbol{\theta}^q \sim p(\boldsymbol{\theta}|\mathbf{x}, \mathbf{z}^q)$$

Convergence towards invariant distributions

$$\bullet (\theta^q, \mathsf{z}^q) \stackrel{d}{\to} p(\theta, \mathsf{z}|\mathsf{x})$$

$$\mathbf{I} \Rightarrow \boldsymbol{\theta}^q \stackrel{d}{\rightarrow} p(\boldsymbol{\theta}|\mathbf{x})$$

$$\mathbf{z} \Rightarrow \mathbf{z}^q \stackrel{d}{\rightarrow} p(\mathbf{z}|\mathbf{x})$$

 The degeneracy problem

 00000

 000000000000

 000000000000

Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

A toy example (to be continued)

Mixture model

- Two univariate Gaussians (g = 2): $p(\cdot|\mu_k) = \mathcal{N}(\mu_k, \Sigma_k)$
- Known proportions ($\pi_k = 0.5$) and variances ($\Sigma_k = 1$)
- Unknown centers: μ_1 and μ_2 ($\mu_1 = 0, \mu_2 = 0.25$)

Prior

•
$$\mu_k \sim \mathcal{N}(0,1)$$
 with $\mu_1 \perp \mu_2$

Posterior sampling from Gibbs

$$\mathbf{I} \mu_k | \mathbf{z}, \mathbf{x} \sim \mathcal{N}(n_k \bar{x}_k / (n_k + 1), 1 / (n_k + 1))$$

$$z_i | \mu_1, \mu_2, \mathbf{x} \sim \mathcal{M}_2(1, t_{i1}(\mu_1, \mu_2), t_{i2}(\mu_1, \mu_2))$$

with
$$n_k = \sum_{i=1}^n \mathbb{I}_{z_i=k}$$
, $\bar{x}_k = \sum_{i=1}^n \mathbb{I}_{z_i=k} x_i/n_k$, $t_{ik}(\mu_1, \mu_2) = p(z_i = k | \mathbf{x}, \mu_1, \mu_2)$

Standard Oibbs

Conclusion

The degeneracy problem 00000 000000000000 00000000000 Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

58/72

The degeneracy problem

Avoiding degeneracy 00000000 000000 000000 The label switching problem

Conclusion

Constraining the prior

- Artificial identifiability constraints on θ
 [Diebolt & Robert '94]
- Ordering constraints: $\mu_1 < \mu_2$
- The new prior becomes proportional to $p(\theta)\mathbb{I}_{\mu_1<\mu_2}$
- Fail to solve the problem

[Celeux et al. '00], [Jasra et al. '05]

 The degeneracy problem

 00000

 0000000000000

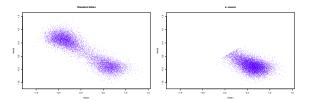
 000000000000

Avoiding degeneracy 00000000 000000 000000 The label switching problem

Conclusion

k-means algorithm on Θ

- Relabeling algorithms on generated θ [Stephens '97], [Celeux '98]
- Search for a permutation minimizing a loss function
- k-means like algorithm on Θ
- Variability underestimation of the posterior p(θ|x) [Celeux '97]



Overview	The degeneracy problem	Avoiding degeneracy	The label switching p
	00000	00000000	00000
	000000000000	00000	000000
	0000000000	000000	0000000

Conclusion

oroblem

Invariant loss function

- Invariant loss function to a permutation of θ (ex.: MAP)
 [Celeux et al. '00]
- Require to choose a loss function related to the problem at hand
- Optimization of this function
- Many standard loss functions are not label invariant...

verview	The degeneracy problem	Avoiding degeneracy
	00000	00000000
	0000000000	000000

The label switching problem

Conclusion

Probabilistic relabeling

- Take into account uncertainty on parameter permutation [Jasra et al. '05]
- Model on a noswitch posterior learned from a noswitched sequence
- Probability of each parameter permutation arising from Gibbs sampling
- Allow standard loss functions as posterior mean
- What is a noswitched sequence? Which model to choose?

rview	The degeneracy problem
	00000
	000000000000
	00000000000

The label switching problem

Conclusion

Restricting the latent partition

- **u** Use a Bernoulli mixture model for modeling \mathbf{z}^q
- Then, retain a particular permutation on z^q [Puolamäki & Kaski '09]
- Justification of this ad hoc approach?

The degeneracy problem 00000 000000000000 00000000000 Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Outline

1 Overview

2 The degeneracy problem

- Individual data
- Binned data
- Missing data

3 Avoiding degeneracy

- Adding a minimal clustering information
- Strategy 1: a data-driven lower bound on variances
- Strategy 2: an approximate EMgood algorithm

4 The label switching problem

- The problem
- Existing solutions
- Proposed solution (in progress)

5 Conclusion

The label switching problem

Conclusion

Main idea

Ascertainment

- The label switching is inherent to the mixture model
- Thus, there is no theoretical solution to "unswitch" $p(\theta|\mathbf{x})$
 - (at least without an external and new information but we have not)

An algorithmic (and pragmatic) idea

 \blacksquare Consider a sequence $\pmb{\theta}_1,\ldots,\pmb{\theta}_Q$ from the Gibbs sampler for a n sample x, thus

$$oldsymbol{ heta}_1,\ldots,oldsymbol{ heta}_Q\sim p_Q(oldsymbol{ heta}|{f x})\overset{Q o\infty}{\longrightarrow} p(oldsymbol{ heta}|{f x})$$

- We know that infinite sampler $p(\theta|\mathbf{x})$ is "bad" for some tasks because switch
- We expect that finite sampler $p_Q(\theta|\mathbf{x})$ could be "better" for such tasks

We say "pragmatic" since many practitioners use $p_Q(heta|\mathbf{x})$ as it... we no real problems

The label switching problem
0000
00000
000000

Conclusion

Example of theoretical guarantees we could expect

Let $\hat{\theta}_{Q}^{\mathsf{MEAN}}$ be the mean of the Gibbs sample:

$$\hat{ heta}_Q^{\mathsf{MEAN}} = rac{1}{Q}\sum_{q=1}^Q oldsymbol{ heta}_q$$

Classical result

$$\lim_{n \to \infty} \left(\lim_{Q \to \infty} \hat{\theta}_Q^{\mathsf{MEAN}} \right) \neq \boldsymbol{\theta}$$

Result we expect

With Q_n an increasing function of n (to be defined)

$$\lim_{n\to\infty}\hat{\theta}_{Q_n}^{\mathsf{MEAN}} = \theta$$

Thus Q_n plays the role of a stopping time in the Gibbs sampler

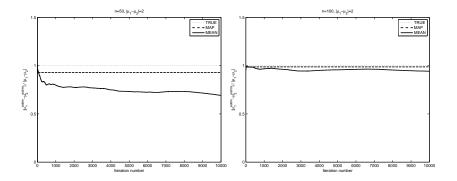
The label switching problem

Conclusion

Gibbs simulation (ex. continued)

Effect of overlapping
$$|\mu_1 - \mu_2|$$
 and sample size *n* on $\frac{|\hat{\mu}_1 - \hat{\mu}_2|}{|\mu_1 - \mu_2|}$

"High" overlapp



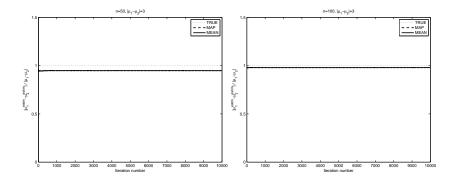
The label switching problem

Conclusion

Gibbs simulation (ex. continued)

Effect of overlapping
$$|\mu_1 - \mu_2|$$
 and sample size *n* on $\frac{|\hat{\mu}_1 - \hat{\mu}_2|}{|\mu_1 - \mu_2|}$

"Low" overlapp



The label switching problem

Conclusion

First theoretical attempt

A necessary condition to obtain a "good" stopping time Q_n is to have guarantee to vanish label switching in $p_{Q_n}(\theta|\mathbf{x})$, thus

 $p_{Q_n}(\boldsymbol{\theta}|\mathbf{x}) \neq p_{Q_n}(\sigma(\boldsymbol{\theta})|\mathbf{x})$

Our way

It implies to control the switch probability during the Gibbs dynamics

 Fhe degeneracy problem

 00000

 000000000000

 000000000000

Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Simplified theoretical example in Gaussian mixtures

Two homoscedastic Gaussian components and θ known up to a permutation Probability of switch for one iteration is given by

$$p^{switch} = \frac{p(\mathbf{x}, \mathbf{z}; \sigma(\theta))}{p(\mathbf{x}, \mathbf{z}; \sigma(\theta)) + p(\mathbf{x}, \mathbf{z}; \theta)}$$

After some algebra, we asymptotically have on n

$$p^{\textit{switch}} \propto \exp\left(-rac{n}{2}\|oldsymbol{\mu}_1 - oldsymbol{\mu}_2\|_{oldsymbol{\Sigma}^{-1}}^2
ight)$$

We deduce the (asymptotic) probability of no switch during Q Gibbs iterations

$$p_Q^{noswitch} = \left(1 - p^{switch}
ight)^Q \simeq \left(1 + \exp\left(-rac{n}{2}\|oldsymbol{\mu}_1 - oldsymbol{\mu}_2\|_{oldsymbol{\Sigma}^{-1}}^2
ight)
ight)^{-Q}$$

 The degeneracy problem

 00000

 000000000000

 00000000000

Avoiding degeneracy 000000000 000000 000000 The label switching problem

Conclusion

Simplified theoretical example in Gaussian mixtures (continued)

And thus, for n and/or $\| {\boldsymbol{\mu}}_1 - {\boldsymbol{\mu}}_2 \|$ large enough

$$p_Q^{\textit{noswitch}} \geq 1 - arepsilon \quad \Leftrightarrow \quad Q \leq \ln(1 - arepsilon) \exp\left(rac{n}{2} \|oldsymbol{\mu}_1 - oldsymbol{\mu}_2 \|_{\mathbf{\Sigma}^{-1}}^2
ight)$$

So, we recognize the previous numerical results:

- Q is an increasing (fast!) function of n
- Q is also an increasing (fast!) function of the component separation

It could also explain why, in (co-)clustering (separated components), practitioners use Gibbs sampler as it and without dramatic label switching problems

 The degeneracy problem

 00000

 000000000000

 000000000000

Avoiding degeneracy 000000000 000000 000000 The label switching problem 00000 000000 0000000 Conclusion

Conclusion

Degeneracy

- Better undestanding, some hidden but dramatic difficulties
- Some solutions by playing on t (clustering) or A (dynamics)

Label switching

- Definitively present for m and (some) $\hat{\theta}$
- But again some (early) solutions by playing on t (clustering) or A (dynamics)

Spurious

- We have seen it is very present through a SEMgood for instance
- Still open question to solve it...