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Take home message

Computational estimates θ̃ are the imbricated result of five factors

1 An initial practitioner target t

2 A data set x

3 A theoretical model m

4 A theoretical estimate θ̂

5 An estimation algorithm A

θ̃ = f (t, x,m, θ̂,A)

This talk

Considered pitfalls in mixtures are degeneracy and label switching

Consequences can be disastrous on θ̃

Often, solutions are sought in m or θ̂

We explore here also solutions through t and A

Focus target t : clustering

Focus algorithms A : EM, SEM, Gibbs
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Unbounded likelihood

d-variate g-Gaussian mixture with θ = ({πk}, {µk}, {Σk})

p(x; θ) =

g∑

k=1

πk

1

(2π)d/2|Σk |1/2
exp

(

−
1

2
(x − µk )

′Σ−1
k (x − µk )

)

︸ ︷︷ ︸
p(x ;µk ,Σk )

Sampling: x = (x1, . . . , xn)
i.i.d.∼ p(.;θ)

Likelihood: ℓ(θ; x) = p(x; θ)

particular center µ2 = xi ⇒ lim
|Σ2|→0

ℓ(θ; x) = +∞

[Kiefer and Wolfowitz, 1956] [Day, 1969]
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EM behaviour: illustration
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degeneracy may occur even when starting from large variances

convergence can be slow when far from the degenerate limit

convergence extremely fast near degeneracy
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EM behaviour: results
pi0k0

pik0

component k0

xixi0

u0 =

[

1
pi0k0

, {pik0}i 6=i0

]

degeneracy of component k0 at xi0
⇔

‖u0‖ → 0
[Biernacki and Chrétien, 2003]

[Ingrassia and Rocci, 2009]

Proposition 1: Existence of a bassin of attraction

∃ǫ > 0 s.t. if ‖u0‖ ≤ ǫ then ‖u+0 ‖ = o‖u0‖ with probability 1.

Proposition 2: Speed towards degeneracy is exponential
∃ǫ > 0, α > 0 and β > 0 s.t. if ‖u0‖ ≤ ǫ then, with probability 1,

|Σ+
k0

| ≤ α/|Σk0
| · exp

(

− β/|Σk0
|
)

.
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Consequences of the EM study

When EM is close to degeneracy, EM mapping is contracting and
reaches numerical tolerance extremely quickly

⇓

Simply starting again EM when numerical tolerance is reached
(pragmatic bahaviour of EM practitioners)

is now somewhat justified

⇓

However, the numerical tolerance is finally
an arbitrary lower bound for |Σk |. . .
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Binned data

A binned partition of R in H intervals Ω1, . . . ,ΩH : Ωh =]αh, βh[

Individuals xi unknown, only the interval where xi lies is known

Hypothesis of Gaussian mixture on xi ’s unchanged

The log-likelihood is written

ℓ(θ) =
H∑

h=1

mh
︸︷︷︸
# Ωh

ln
( K∑

k=1

πk

akh
︷ ︸︸ ︷∫

Ωh

fk(x)dx
)

︸ ︷︷ ︸
p(X ∈ Ωh )

Question

Does degeneracy still exists since ℓ(θ) ≤ 0?

9/72



Overview The degeneracy problem Avoiding degeneracy The label switching problem Conclusion

Degeneracy may still happen!

Proposition 3

Let for all b ∈ N

sequence {ǫb}: ǫb > 0 and ǫb → 0 when b → ∞
bins

{

Ωb
h
, h = 1, . . . ,Hb

}

: if βb
h
− αb

h
≥ ǫb then mb

h
= 0

Ω
hb0

is a non-empty interval and k0 ∈ {1, . . . ,K} a component

θ̂b is the unique consistent root of the ML associated to
{

(Ωb
h
,mb

h
)
}

ℓb(θ) −→ ℓb
deg

(θ) when µk0 ∈ Ωh0 et Σk0 → 0.

Thus, it exists B ∈ N such that for all b > B we have ℓb
deg

(θ̂b) ≥ ℓb(θ̂b).

Sketch of proof At a first time, we have to show that, for all θ, it exists Bθ ∈ N such
that for all b > Bθ we have ℓb

deg
(θ) ≥ ℓb(θ).

Then, we conclude by noting that B = supθ Bθ.
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Meaning

If dimension of non-empty bins is “small enough”, then the global maximum of the
likelihood is obtained in a degenerate situation
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EM behaviour in a degeneracy neighborough?

Remind

component k0 degenerates inside Ωh0 ⇔
(
µk0 ∈ Ωh0 and Σk0 → 0

)

Notations

Ωh′0
: bin the closest to the center µk0 (left or right of Ωh0 )

γ: borderline of Ωh0 the closest to µk0 (either αh0 , or βh0)

η = |γ − µk0 |: distance between the center and the closest center

σ = sign(γ − µk0) and u = Σk0 fk0(γ)

Rh = (πk0 + Ak0h0 )/Ak0h with Ak0h =
∑

k 6=k0
πkakh
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Possibility to be attracted around degeneracy

Proposition 4

It exists ǫ > 0 such that, if

0 < Σk0 < ǫ

η ∈ (δ,∆−
√

Σk0) with 0 < δ < ∆ < (βh0 − αh0 )/2

1−
m

h′
0

mh0
Rh′0

> 0

then,

0 < Σ+
k0

< Σk0







1−

(

1−
mh′0

mh0

Rh′0

)

︸ ︷︷ ︸
ρ

δ

2
√

2πΣk0

e
−∆2/(2Σk0

)








and

η+ ∈
(

δ,∆−
√

Σ+
k0

)

.
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sketch of proof It relies on Taylor expansions around Σk0 = 0 with µk0 ∈ Ωh0

µ+
k0

= µk0 − σρu + o(u) and Σ+
k0

= Σk0 − ηρu + o(u).

Then the inequality on Σk0 arises easily.
For the second expression, we obtain in the same manner (for Σk0 “small enough”)

δ < |γ − µ+
k0
| < ∆−

√

Σ+
k0
.

Thus |γ − µ+
k0
| < ∆ < (βh0 − αh0 )/2 and so γ+ = γ (the closest borderline is kept

unchanged). Since η+ = |γ − µ+
k0
|, conclusion follows.
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Attraction or repulsion?

Around a degenerate solution, EM runs closer or further depending on the sign of ρ
which itself depends on the sample size of the “closest” bin.

Attraction: ρ > 0

from the theorem, if Σk0 is “close enough” to 0 and µk0 ∈ Ωh0 then

0 < Σ+
k0

< Σk0 [1− ρ× |fcte(θ)|]
︸ ︷︷ ︸

Σk0 decreases

and µ+
k0

∈ Ωh0

Repulsion: ρ < 0

Taylor: Σ+
k0

= Σk0 − ηρu + o(u) ⇒ Σk0 increases
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The sign of ρ if mainly controlled by the ratio of sample sizes

r =
mh′0

mh0

=
sample size of the closest bin

sample size of the bin where degeneracy occurs

r “small” favors ρ > 0

r “large” favors ρ < 0

r = 0: convergence of EM towards degeneracy established

Ωh0 = (1 2) and Ωh′0
= (2 3)
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EM speed

EM is very slow around degeneracy because its global convergence rate is equal to 1

Σ+
k0
/Σk0 −→ 1 when µk0 ∈ Ωh0 et Σk0 → 0
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A stopping rule is required for EM!

Danger: the ML could correspond to a degenerate solution

Save computation time: numerous wasted iterations when ρ > 0

Still running: run other iterations when ρ < 0

Stopping rules to be avoided

|Σ+
k0

−Σk0 | < ǫ: confusion with convergence

Σk0 < ǫ: huge iteration number

Stopping rule relying on Taylor

|Σ+
k0

− Σk0 + ηρu| < ǫ
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Numerical experiment 1: simulations
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grouped data with interval of width 0.4
grouped data with interval of width 0.2
grouped data with interval of width 0.1
grouped data with interval of width 0.05
ungrouped data

ρ < 0 rare

degeneracy ρ > 0 ր with bin width and ց with n

degeneracy binned case more frequent that the individual data case!
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Numerical experiment 2: wing measurements of butterflies
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data known with 1mm precision: natural bins

better likelihood at degeneracy

the user could make a confusion between degeneracy and convergence

the second variance has no meaning: DANGER

20/72



Overview The degeneracy problem Avoiding degeneracy The label switching problem Conclusion

Outline

1 Overview

2 The degeneracy problem
Individual data
Binned data
Missing data

3 Avoiding degeneracy
Adding a minimal clustering information
Strategy 1: a data-driven lower bound on variances
Strategy 2: an approximate EMgood algorithm

4 The label switching problem
The problem
Existing solutions
Proposed solution (in progress)

5 Conclusion

21/72



Overview The degeneracy problem Avoiding degeneracy The label switching problem Conclusion

Clustering with missing data

X1 X2 X3 Cluster
1.23 ? 3.42 ?
? ? 4.10 ?

4.53 1.50 5.35 ?
? 5.67 ? ?

Discarded solutions

Suppress units and/or variables with missing data ⇒ loss of information

Imputation of the missing data by the mean or more evolved methods ⇒
uncertainty of the prediction not taken into account

Retained solution

Use an integrated approach which allows to take into account all the available
information to perform clustering
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Notations

Oi ⊆ {1, . . . , d} the set of the observed variables from sample i

x

O

i the observed data from sample i

Mi the set of the missing variables for sample i

µO

ik
the sub-vector of µk associated to index Oi (the same for Mi )

Σ
OM

ik
the sub-matrix of Σk associated to row Oi and columns Mi (the same for

any other combination)

Assumption on the missingness mecanism

Missing At Randon (MAR): the probability that a variable is missing does not
depend on its own value given the observed variables.
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Maximum likelihood estimator

Unbounded likelihood. . .

ℓ(θ; xO) =
n∑

i=1

log

(
K∑

k=1

πkφ(x
O

i ;µk ,Σk)

)

µk = xi and |Σk | → 0 ⇒ ℓ(θ; xO) unbounded ⇒
✭
✭
✭
✭
✭
✭
✭
✭✭

θ̂ = argmaxθ ℓ(θ; xO)

Consistent root

A root of ∂ℓ(θ;xO)
∂θ

= 0 is a consistent estimator of the parameters. So choose

θ̂ = argmax
θ

ℓ(θ; xO) s.c.
∂ℓ(θ; xO)

∂θ
= 0

Practical solution

Use the EM algorithm and discard solutions associated to unbounded likelihood.
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E step

θ and θ+ the parameters for two successive steps (idem for missing data)

z+
ik

= P(Zik = 1|xOi ;θ) =
πkφ(x

O

i
;Σk)

∑K
ℓ=1 πℓφ(x

O

i
;Σℓ)

x

M+

ik = E
[

X

M
i

∣
∣
∣x

O

i ,Zik = 1; θ
]

= µM

ik +Σ
MO

ik

(

Σ
OO

ik

)−1
(xOi − µO

ik).

Interpretation

z+
ik
: class posterior probability membership given the available information x

O

i
.

x

M
+

ik
: conditional imputation of the missing data given the cluster.
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M step

π+
k

=
1

n+
k

n∑

i=1

z+
ik
, µ+

k
=

1

n+
k

n∑

i=1

z+
ik
x

+
ik

Σ
+
k

=
1

n+
k

n∑

i=1

z+
ik

[

(x+
ik

− µ+
k
)(x+

ik
− µ+

k
)′ +Σ

+
ik

]

where n+
k

=
∑n

i=1 z
+
ik
, x+

ik
=

(
x

O

i

x

M
+

ik

)

, Σ+
ik
=

(
0Oi 0OM

i

0MO

i Σ
M

+

ik

)

with 0 the d × d

null matrix, and Σ
M

+

ik
= Σ

MO

ik

(
Σ

O

ik

)−1
Σ

OM

ik
.

Interpretation of ΣM
+

ik

Variance correction due to the under-estimation of variability caused by the
imputation of missing data.
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Example

Breast cancer tissue of the UCI database repository: 106 units, 9 variables.

10% of missing data randomly generated

K = 4 clusters
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Detail on the example

1 2 3 4 5 6 7 8 9

1 211.00 0.09 30.75 151.98 4.94 14.27 27.24 217.13
2 196.86 0.02 0.09 28.59 82.06 2.87 7.97 27.66 200.75
3 144.00 0.12 0.05 19.65 70.43 3.58 7.57 160.37
4 172.52 0.13 0.04 192.22 5.12 19.32 32.19 174.93
5 121.00 0.17 0.09 24.44 144.47 5.91 22.02 10.59 141.77
6 223.00 0.12 0.08 33.10 197.01 5.95 30.45 12.96 252.48
7 0.17 0.23 34.22 94.35 2.76 31.28 13.88 180.61
8 303.00 0.06 0.04 22.57 4.54 21.83 5.72 321.65
9 250.00 0.09 0.09 29.64 180.76 6.10 26.14 13.96 280.12

10 391.00 0.06 0.01 35.78 7.41 22.13 28.11 400.99
11 176.00 0.09 0.08 20.59 79.71 18.23 9.58 191.99
12 145.00 0.11 21.22 82.46 3.89 20.30 6.17 162.51
13 124.13 0.13 0.11 20.59 18.46 9.12 134.89
14 103.00 0.16 0.29 23.75 78.26 3.29 22.32 8.12 124.98

Table : Data belonging to the degenerated component.

Remarks

Convergence towards a degenerated component

Convergence relatively slow : log-likelihood linear according to the number of
iterations

Number of points of the degenerated solution greater than the space dimension
d (but the number of complete points lower than d)
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Intermediate conclusion on missing data

Risks

Consider a degenerated solution as valid

Lose a lot of time in useless iterations

Missing data: an intermediary framework between complete and binned
data

Unbounded likelihood like complete data

Slow degeneracy like binned data (but geometrical, not linear)
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Degeneracy speed on a toy example

Univariate framework, no mixture, only one observed data: x

Maximum likelihood estimator:
µ̂ = x

Σ̂ = 0

Unbounded likelihood

Suppose now that n − 1 data have not been observed:

Useless EM algorithm

µ+ =
(n − 1)µ + x

n
et Σ+ =

(n − 1)Σ + (x − µ+)2

n
.

This leads to a linear grow of the log-likelihood (have a look also when n increases!):

ℓ(θ(q); x) ∼ −0.5q log
n − 1

n

and geometrical convergence rate towards 0 for the variance:

Σ(q) ∼ Σ(0)

(
n − 1

n

)q
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Influence of the missing data rate

% missing data 0 5 10 15 20 25 30

% deg. 16 4 12 11 46 51 100
Average nb of iterations before deg. 2 13 13 82 304 138 215

Table : Frequency and speed of degeneracy (deg.) according to the rate of missing data on the
breast cancer data set.

When the rate of missing data increases:

The rate of degeneracy increases

The number of iterations before degeneracy decreases
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Existing strategies for avoiding degeneracy

Constraining the covariance matrices (e.g. num. tol.):

∀k, |Σk | ≥ α(n) > 0
[Tanaka and Takemura, 2006]

Relative constraints between covariance matrices:

∀k 6= j , |Σk | ≥ β|Σj | (0 < β ≤ 1)
[Hathaway, 1985] [Ingrassia and Rocci, 2007]

Bayesian approach: With a well-behaved prior γ, maximise

ln ℓ(θ; x) + ln γ(θ)
[Snoussi and Mahammad-Djafari, 2001] [Ciuperca et al., 2003]

Common difficulty

Additional information α, β or γ is difficult to fix.
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A meaningful decomposition of the likelihood

z = (z1, . . . , zn) = a partition of x in binary notation

nk =
∑n

i=1 zik = nb. indiv. in class k from z

Z∗ = {z : ∀k, nk ≥ d + 1} = at least d + 1 elements by class

ℓ(θ; x) = ℓ(θ; x, z ∈ Z∗)
︸ ︷︷ ︸

< ∞ with proba. 1

+ ℓ(θ; x, z /∈ Z∗)
︸ ︷︷ ︸

can degenerate

⇓
Degeneracy in ℓ(θ; x) only occurs through ℓ(θ; x, z /∈ Z∗)
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Discarding some z values to avoid degeneracy

z /∈ Z∗ ⇒
{

If ∃k, nk = 0: θ̂ is partially non-identifiable
If ∃k, 1 ≤ nk < d + 1: Degeneracy in ℓ(θ; x, z /∈ Z∗)

⇓
z /∈ Z∗ has to be naturally discarded

⇓

Strategy for avoiding degeneracy: Discarding z /∈ Z∗

θ̂ = argmax
θ

ℓ(θ; x, z ∈ Z∗)a

aAdapt it with missing data: z /∈ Z∗ corresponding to only observed data xO

Remarks

z ∈ Z∗ natural in the supervised setting to obtain non-singular cov. matrices

θ̂ approaches the ML estimator as the number of data increases [Policello, 1981]
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Effect of Z∗ on the log-likelihood
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Specific EM algorithm (’EMgood’): Definition

E step: z̃+
ik

∝ p(Z ∈ Z∗|x, zik = 1;θ)

z+
ik

︷ ︸︸ ︷

p(zik = 1|x; θ)
M step: Standard formulas where z+

ik
is replaced by z̃+

ik

Detail of E step for g = 2

p(Z ∈ Z∗|x,Zi1 = 1; θ) = 1 −




∏

j 6=i

tj2 +
∏

j 6=i

tj1 +
∑

j 6=i

tj2
∏

h 6=i,j

th1





Combinatorial problem for g > 2 (Stirling nb of 2nd kind involved)

Calculus of E step becomes infeasible for most situations. . .

p(Z ∈ Z∗|x,Zik = 1; θ) =
∑

z∈Z∗

p(Z = z|x,Zik = 1; θ)
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Example of EMgood on individual data
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Example of EMgood on missing data

π1 = π2 = 0.5

Xi |Zi1 = 1 ∼ N

((
0
0

)

;

(
1 0
0 1

))

Xi |Zi2 = 1 ∼ N

((
2
2

)

;

(
1 0
0 1

))

n = 30 data, p = 80% of missing data.
Results on 100 simulations, 300 iterations, 10
starting values.

Algorithm Adjusted Rand Index
EM 0.171 (0.015)
EMgood 0.200 (0.015)
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The by-product question

How to use natural information Z ∈ Z∗ in a more efficient way than EMgood?

⇓

Two strategies

Strategy 1: Return to a lower bound on variances. . . but by using now
additional information Z ∈ Z∗!

Strategy 2: Design an approximate EMgood
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Multivariate towards univariate mixtures

Class with the smallest variance: k0 = argmin1≤k′≤g σ2
kj{k′}
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A non-asymptotic stochastic lower bound on variances

Proposition 3: The bound

For any α ∈ (0, 1), we have,

p
(

∀k ∈ {1, . . . , g} , σ2
kj{k0}

≥ Bd
jk(α) | Z ∈ Z

)

≥ 1− α,

where
Bd
jk(α) = Sd

jk/χ
2
d (1− α)

with Sd
jk

the minimum non-normalized variance among all subsamples of size d + 1

in the whole sample {Xijk}i∈{1,...,n}:

Sd
jk = min

{I:#I=d+1}
SIjk .

Empirical variance and mean of the subsample {Xijk}i∈I (I ⊂ {1, . . . , n})

SIjk =
∑

i∈I

(Xijk − X̄Ijk )
2
, X̄Ijk =

1

#I

∑

i∈I

Xijk
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Sketch of proof

The proof is straightforward.

1 Axis j of component k

2 Project multivariate into univariate mixture on this axis

3 Conditionally to Z ∈ Z∗, there exists d + 1 distinct random variables {Xijk}i∈{I}

which belong to the class k0

4 Classical result from a univariate Gaussian

p

(

σ2
kj{k0}

≥ SIjk

χ2
d
((1 − α))

∣
∣
∣{i ∈ I : Zi,k0 = 1}, z ∈ Z∗

)

= 1− α.

5 We conclude since Sd
jk

≤ SIjk .
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Properties

Easy and fast to compute from the order statistics

Not very sharp since it is likely verified with far higher probability than 1− α

EMα: Stop standard EM run overstepping the lower bound

Proposition 4: Consistency

θ̂(α) = argmaxθ∈Θ(α) L(θ; x) is a consistent estimate of θ where

Θ(α) = {θ : θ ∈ Θ, σ2
kj{k0}

≥ Bd
jk (α)}.

Sketch of proof

Univariate: Rely on the result of [Tanaka and Takemura, 2006]

Multivariate: In progress
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Numerical comparison of EM0 and EMα: Counting runs

g = 2 Gaussians, 1000 samples of size n = 10d

θ[0] choosen at random

Classical EM (EM0): Stop either when relative increase of the log-likelihood is smaller than a standard threshold

ε = 10−6 (“normal stop”) or if the numerical tolerance of the computer is reached when estimating covariance matrices (“crash

stop”; indicating probably degeneracy)

New strategy (EMα): Stop either with a “normal stop” or a “crash stop” (the same “normal stop” and “crash stop”

as EM0), or when our bound on singular matrices is reached with α = 0.01 (our so-called “degeneracy stop”)

EM0 stop: crash normal
EMα stop: degeneracy crash or normal normal degeneracy or crash

d = 1 189/189 0/189 811/811 0/811
d = 2 57/57 0/57 943/943 0/943
d = 4 34/34 0/34 966/966 0/966
d = 8 37/37 0/37 963/963 0/963

And about the missing data case?

This bound is expected to be inefficient because of the slow variance decrease. . .
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The SEMgood algorithm

Stochastic EMgood

Introduces a stochastic step between the E and the M step of the EM algorithm:

S step : z+ ∼ Z|x,Z ∈ Z∗;θ

Partition constraints easy to include: Rejection sampling, Gibbs sampling. . .

Generate a sequence θ(1), . . . ,θ(N)

Estimated parameter: θ̂SEMgood = argmax
θ∈θ(1),...,θ(N) ∈ ℓ(θ; x)

Numerical comparison design between EM and SEMgood

Start both algo. from 10 random values, for each initialization iterate 300 times

Keep the parameter associated to the best likelihood ℓ(θ; x)

Compute the rand index between the estimated and the true partition
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SEMgood on the breast cancer tissu data set

Dataset

Dataset: Breast cancer tissue of the UCI database repository : n = 106, d = 9.

Draw 5% missing data completely at random

Try to find the 6 clusters in the data

Results

EM degenerates for each initialisation ⇒ no performances available

SEMgood never degenerates, the solution with the higher likelihood has an
adjusted rand index of 0.30 ⇒ SEMgood has good behavior?
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SEMgood on simulated data: Spurious maxima
π1 = π2 = 0.5

Xi |Zi1 = 1 ∼ N

((
0
0

)

;

(
1 0
0 1

))

Xi |Zi2 = 1 ∼ N

((
2
2

)

;

(
1 0
0 1

))

n = 50 data, p = 10% of missing data.

Results on 100 simulations, 10 starting values, 300 itera-

tions by starting value.

Algorithm EM SEMgood
ARI 0.217 0.067
#best ℓ(θ; x) 24 76

Problem

SEMgood efficient in finding local
maxima of ℓ(θ; x)

But maximum likelihood can be
jeopardized by spurious local maxima
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Alternative to EMgood and SEMgood: EMgood

Summary

EMgood: combinatorial problem

SEMgood: spurious problem (too efficient scan of the parameter space. . . )

Initial optimization pb

θ̂ = arg max
θ

ℓ(θ; x, z ∈ Z∗)

where

Z∗ = {z : ∀k, nk ≥ d + 1)}

New (and easier) optimization pb

θ̂ = arg max
θ

ℓ(θ; x, E [
∑n

i=1Zi ] ∈ Z̄∗)

where

Z̄
∗
= {(n1, . . . , ng ) : ∀k, nk ≥ d + 1)}

EMgood

The constraint E [
∑n

i=1 Zi ] ∈ Z̄∗ is easy to satisfy

At each E step of EM, just verify that nk ≥ d + 1!

If not, just stop EM (deg. situation) and start it again from another position

51/72



Overview The degeneracy problem Avoiding degeneracy The label switching problem Conclusion

Numerical experiments with EMgood on simulated data

π1 = π2 = 0.5, d = {2, ...,13}, δ = 6/
√
d , µ1 = (0, . . . , 0), µ2 = (δ, . . . , δ),

Σ1 = Σ2 = Id .

20% of missing data

n = 150, niter = 300, nbStart = 1, nrep = 100

2 3 4 5 6 7 8 9 10 11 12 13
EM 0.97 0.94 0.93 0.89 0.82 0.74 0.79 0.75 0.76 0.70 0.67 0.68

EMgood 0.97 0.94 0.94 0.90 0.86 0.85 0.91 0.82 0.85 0.79 0.83 0.80

Table : Mean ARI for each dimension d

2 3 4 5 6 7 8 9 10 11 12 13
EM 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.04 0.09 0.13 0.09 0.12

EMgood 0.00 0.00 0.01 0.04 0.13 0.77 1.19 2.58 3.82 6.46 8.63 9.43

Table : Mean number of restarts for each dimension d

Thus EMgood seems to detect deg., allowing welcomed restartings
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What is label switching?

A useful notation

Pg permutation set of {1, . . . , g}
σ(θ) = (θσ(1), . . . , θσ(g)) with σ ∈ Pg

Posterior invariant to label permutation
{

Label invariant mixture distribution p(x|θ) = p(x|σ(θ))
Label invariant prior p(θ) = p(σ(θ))

}

⇓
Label invariant posterior p(θ|x) = p(σ(θ)|x)

Consequences

Many ponctual estimates are useless: Posterior mean (E [θ1|x] = E [θ2|x]), . . .
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Gibbs algorithm in mixtures

Principle (iteration q)

zq ∼ p(z|x,θq−1)

θq ∼ p(θ|x, zq)

Convergence towards invariant distributions

(θq , zq)
d→ p(θ, z|x)

⇒ θq d→ p(θ|x)

⇒ zq
d→ p(z|x)
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A toy example (to be continued)

Mixture model

Two univariate Gaussians (g = 2): p(·|µk) = N (µk ,Σk)

Known proportions (πk = 0.5) and variances (Σk = 1)

Unknown centers: µ1 and µ2 (µ1 = 0, µ2 = 0.25)

Prior

µk ∼ N (0, 1) with µ1 ⊥ µ2

Posterior sampling from Gibbs

µk |z, x ∼ N (nk x̄k/(nk + 1), 1/(nk + 1))

zi |µ1, µ2, x ∼ M2(1, ti1(µ1, µ2), ti2(µ1, µ2))

with nk =
∑n

i=1 Izi=k , x̄k =
∑n

i=1 Izi=kxi/nk , tik (µ1, µ2) = p(zi = k|x, µ1, µ2)
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p(θ|x): Two modes!
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Constraining the prior

Artificial identifiability constraints on θ

[Diebolt & Robert ’94]

Ordering constraints: µ1 < µ2

The new prior becomes proportional to p(θ)Iµ1<µ2

Fail to solve the problem
[Celeux et al. ’00], [Jasra et al. ’05]
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k-means algorithm on Θ

Relabeling algorithms on generated θ

[Stephens ’97], [Celeux ’98]

Search for a permutation minimizing a loss function

k-means like algorithm on Θ

Variability underestimation of the posterior p(θ|x)
[Celeux ’97]
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Invariant loss function

Invariant loss function to a permutation of θ (ex.: MAP)
[Celeux et al. ’00]

Require to choose a loss function related to the problem at hand

Optimization of this function

Many standard loss functions are not label invariant. . .
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Probabilistic relabeling

Take into account uncertainty on parameter permutation
[Jasra et al. ’05]

Model on a noswitch posterior learned from a noswitched sequence

Probability of each parameter permutation arising from Gibbs sampling

Allow standard loss functions as posterior mean

What is a noswitched sequence? Which model to choose?
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Restricting the latent partition

Use a Bernoulli mixture model for modeling zq

Then, retain a particular permutation on zq

[Puolamäki & Kaski ’09]

Justification of this ad hoc approach?
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Main idea

Ascertainment

The label switching is inherent to the mixture model

Thus, there is no theoretical solution to “unswitch” p(θ|x)
(at least without an external and new information but we have not)

An algorithmic (and pragmatic) idea

Consider a sequence θ1, . . . ,θQ from the Gibbs sampler for a n sample x, thus

θ1, . . . ,θQ ∼ pQ (θ|x) Q→∞−→ p(θ|x)

We know that infinite sampler p(θ|x) is “bad” for some tasks because switch

We expect that finite sampler pQ(θ|x) could be “better” for such tasks

We say “pragmatic” since many practitioners use pQ(θ|x) as it. . . we no real problems
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Example of theoretical guarantees we could expect

Let θ̂MEAN
Q

be the mean of the Gibbs sample:

θ̂MEAN
Q =

1

Q

Q∑

q=1

θq

Classical result

lim
n→∞

(

lim
Q→∞

θ̂MEAN
Q

)

6=θ

Result we expect

With Qn an increasing function of n (to be defined)

lim
n→∞

θ̂MEAN
Qn

=θ

Thus Qn plays the role of a stopping time in the Gibbs sampler
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Gibbs simulation (ex. continued)

Effect of overlapping |µ1 − µ2| and sample size n on
|µ̂1 − µ̂2|
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Gibbs simulation (ex. continued)

Effect of overlapping |µ1 − µ2| and sample size n on
|µ̂1 − µ̂2|
|µ1 − µ2|
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First theoretical attempt

A necessary condition to obtain a “good” stopping time Qn is to have guarantee to
vanish label switching in pQn

(θ|x), thus

pQn
(θ|x) 6= pQn

(σ(θ)|x)

Our way

It implies to control the switch probability during the Gibbs dynamics
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Simplified theoretical example in Gaussian mixtures

Two homoscedastic Gaussian components and θ known up to a permutation
Probability of switch for one iteration is given by

pswitch =
p(x, z;σ(θ))

p(x, z;σ(θ)) + p(x, z;θ)

After some algebra, we asymptotically have on n

pswitch ∝ exp
(

−n

2
‖µ1 − µ2‖2Σ−1

)

We deduce the (asymptotic) probability of no switch during Q Gibbs iterations

pnoswitchQ =
(

1− pswitch
)Q

≃
(

1 + exp
(

−n

2
‖µ1 − µ2‖2Σ−1

))−Q
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Simplified theoretical example in Gaussian mixtures (continued)

And thus, for n and/or ‖µ1 − µ2‖ large enough

pnoswitchQ ≥ 1− ε ⇔ Q ≤ ln(1 − ε) exp
(n

2
‖µ1 − µ2‖2Σ−1

)

So, we recognize the previous numerical results:

Q is an increasing (fast!) function of n

Q is also an increasing (fast!) function of the component separation

It could also explain why, in (co-)clustering (separated components), practitioners
use Gibbs sampler as it and without dramatic label switching problems
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Conclusion

Degeneracy

Better undestanding, some hidden but dramatic difficulties

Some solutions by playing on t (clustering) or A (dynamics)

Label switching

Definitively present for m and (some) θ̂

But again some (early) solutions by playing on t (clustering) or A (dynamics)

Spurious

We have seen it is very present through a SEMgood for instance

Still open question to solve it. . .
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