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Testing for the signature of policy in online
communities

Alberto Cottica 1, Guy Melançon 2, and Benjamin Renoust 3

Abstract Most successful online communities employ professionals, sometimes
called “community managers”, for a variety of tasks including onboarding new
participants, mediating conflict, and policing unwanted behaviour. We interpret the
activity of community managers as network design: they take action oriented at
shaping the network of interactions in a way conducive to their community’s goals.
It follows that, if such action is successful, we should be able to detect its signature
in the network itself. Growing networks where links are allocated by a preferential
attachment mechanism are known to converge to networks displaying a power
law degree distribution. Our main hypothesis is that managed online communities
would deviate from the power law form; such deviation constitutes the signature of
successful community management. Our secondary hypothesis is that said deviation
happens in a predictable way, once community management practices are accounted
for. We investigate the issue using empirical data on three small online communities
and a computer model that simulates a widely used community management activity
called onboarding. We find that the model produces in-degree distributions that
systematically deviate from power law behavior for low-values of the in-degree; we
then explore the implications and possible applications of the finding.

1 Introduction
Organizations running online communities typically employ community managers,
tasked with encouraging participation and resolving conflict [18]. Only a small
number of the participants (one or two members in the smaller communities) will
recognize some central command, and carry out its directives. We shall henceforth
call such directives policies. Putting in place policies for online communities is costly,
in terms of recruitment, training, and software tools. This raises the question of what
benefits organizations running online communities expect from policies; and why
they choose certain policies, and not others.

Online communities can be modeled as social networks of interactions across
participants, and organizations can be modeled as economic agents maximizing
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some objective function (e.g. profit, welfare). Hence the topology of the interaction
network affects the ability for participants to contribute to the maximization of the
target variable. For example, Facebook is constantly rewiring the interaction network
across its users to ensure better targeted and more effective advertising, therefore
enhancing their revenue [21].

Such organizations choose their policies such as community managers could take
action to change the network towards maximizing their objective function.

All this implies that the decision to deploy a particular policy on an online
community is a network design exercise. An organisation decides to employ a
community manager to shape the interaction network of its community in a way that
helps ist own ultimate goals. And yet, interaction networks in online communities
cannot really be designed; they are the result of many independent decisions, made
by individuals who do not respond to the organization’s command structure. An
online community management policy is then best understood as an attempt to
“influence” emergent social dynamics; to use a more synthetic expression, it can be
best understood as the attempt to design for emergence. Its paradoxical nature is at
the heart of its appeal.

We are interested in detecting the mathematical signature of specific policies in
the network topology. We consider a simple policy called onboarding [18, 19]. As a
new participant becomes active (e.g. by posting her first post), community managers
are instructed to leave her a comment that contains (a) positive feedback and (b)
suggestions to engage with other participants that she might share interests with.

We model online conversations as social networks, and look for the effect of
onboarding on the topology of those networks. We proceed as follows:
1. We initially examine data from three small online communities. Only two of

them deploy a policy of onboarding. We observe that, indeed, the shape of the
degree distribution of these two differs from that of the third.

2. We propose an experiment protocol to determine whether onboarding policies
can explain the differences observed between the degree distributions of the first
two online communities and that of the third one.

3. Based on the generalized model [10] we simulate the growth of online commu-
nities. Variants to the model cover the relevant cases: the absence of onboarding
policies and their presence, with varying degrees of effectiveness.

4. We run the experiment protocol against the degree distributions generated by the
computer model, and discuss its results.

Section 2 briefly examines the two strands of literature that we mostly draw upon.
Section 3 presents some data from real-world online communities; it then proceeds
to describe our main experiment, a computer simulation of interaction in online
communities with and without onboarding. Section 4 presents the experiment’s
results. Section 5 discusses them.

2 Related work
Collective intelligence [15] scholars confirmed importance of online community
management practices, indeed, they have tried to systematize it [9] and produce
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technological innovation to support it [20, 8]. These tools are meant to facilitate and
encourage participation to online communities, to make it easier for individuals to
extract knowledge from them. Studying human communities is a traditional focus
of network science [5, 6], for which easily available datasets of online communities
make an ideal ground for structural analysis: friendship in Facebook [16, 17], follow-
ing/retweet/mentions for Twitter [13, 12, 11], or vote and comments in discussions
[11, 14, 23, 22].

Starting in the 2000s, online communities became the object of another line of
enquiry, stemming from network science. Network representation of relationships
across groups of humans has yielded considerable insights in social sciences since
the work of the sociometrists in the 1930s, and continues to do so; phenomena
like effective spread of information, innovation adoption, and brokerage have all
been addressed in a network perspective [5, 6]. As new datasets encoding human
interaction became available, many online communities came to be represented as
social networks. This was the case for social networking sites, like Facebook [16, 17];
microblogging platform like Twitter [13, 12, 11]; news-sharing services like Digg
[11]; collaborative editing projects like Wikipedia [14]; discussion forums like the
Java forum [23]; and bug reporting services for software developers like Bugzilla
[22]. Generally, such networks represent participants as nodes. Edges represent a
relationship or interaction. The nature of interaction varies across online communities:
one edge can stand for friendship for Facebook; follower-followed relationship,
retweet or mention in Twitter; vote or comment in Digg and the Java forum; talk in
Wikipedia; comment in Bugzilla.

In contrast to collective intelligence scholars, network scientists typically do not
address the issue of community management, and treat social networks drawn from
online interaction as fully emergent. In this paper, we employ a network approach to
investigate the issue of whether the work of community managers leaves a footprint
detectable by quantitative analysis. To our knowledge, no other work attempted this
investigation. In particular, we exploit a result from the theory of evolving networks,
from seminal work by Barabási and Albert [2] showing that the assumption of growth
and preferential attachment, when taken together, result in a network whose degree
distribution converges to a power law ( [1, 3]). The model was later generalized in
various ways and tested across a broad range of networks, including social networks
[10].

We use this generalization as a baseline state. The degree distribution of the
interaction network in an online community follows a power law by default. The
action of online community managers, as they attempt to further the goals of the
organisation that runs the online community, will result in its degree distribution
deviating from the baseline power law in predictable ways. Such deviation can be
interpreted as the signature that the policy is working well.

The most important difficulty with this method is the absence of a counterfactual:
if a policy is enacted in the online community, the baseline degree distribution
corresponding to the absence of the policy is not observable, and viceversa. This
rules out a direct proof that the policy “works”. Hence our choice to combine
empirical data and computer simulations.
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Innovatori PA Edgeryders Matera2019
Policy “no special policy” “onboard new users” “onboard new users”

In existence since December 2008 October 2011 March 2013
Accounts created 10,815 2,419 512

Active participants (nodes) 619 596 198
Number of edges (weighted) 1,241 4,073 883

Average distance 3.77 2.34 2.51
Maximum degree 155 238 46
Average degree 2.033 6.798 4.454

Goodness-of-fit for k ≥ 1
exponent 1.611 1.477 1.606
p-value 0.21 0.00 (reject) 0.00 (reject)

Goodness-of-fit for k ≥ kmin
kmin 2 5 6

exponent 1.834 2.250 2.817
p-value 0.76 0.45 0.94

Table 1: Comparing interaction networks of the three online communities and testing
for goodness-of-fit of power functions to degree distributions. ”Exponent” refers to
the power law’s scaling parameter. ”p-value” to the result of the test that the degree
distribution of the community was generated by a power law with that exponent.

3 Materials and methods
In this section we introduce the empirical data, the experiment protocol and the
simulation model we use in the experiment.

3.1 Empirical data
We examine data from three real-world online communities: InnovatoriPA is a com-
munity of (mostly) Italian civil servants discussing how to introduce and foster
innovation in the public sector. It does not employ any special onboarding or modera-
tion policy. Edgeryders is a community of (mostly) European citizens, discussing
public policy issues from the perspective of grassroot activism and social innovation.
It adopts the onboarding of new members policy. Matera 2019 is a community of
(mostly) citizens of the Italian city of Matera and the surrounding region, discussing
the city’s policies. It also adopts the onboarding policy.

The communities are modeled as interaction networks (summarized in Table 1) in
which nodes are users and edges represent directed comments from A to B, weighted
by the number of comments written. A glance at their respective visualizations
(Figure 1) suggests that the networks of the three communities have very different
topologies. Innovatori PA displays more obviously visible hubs than the other two.

We fitted power laws in-degree distributions of these three online communities,
as of early December 2014. Next, we tested the hypothesis that degree distributions
follow a power law, as predicted by [10]. To do so, we first fitted power functions
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Fig. 1: Interaction networks of three small online communities. Innovatori PA (left)
does not have an onboarding policy in place, whereas the two others do (Edgeryders:
center, Matera: right).

to the entire support of each in-degree distribution1. We next fitted power functions
to the right tail of each in-degree distribution, i.e. for any degree k(n)≥ kmin, where
kmin is the in-degree that minimizes the Kolmogorov-Smirnov distance (hereafter
denoted as D) between the fitted function and the data with in-degree k ≥ kmin.

Finally, we ran goodness-of-fit (hereafter GoF) tests for each in-degree distribu-
tion and for fitted power functions. The method we followed throughout the paper
is borrowed from Clauset et al [7]. The null hypothesis tested is that the observed
distribution is generated by a power function with exponent α . We compare the D
statistic of the observed distribution with those of a large number of synthetic datasets
drawn by the fitted power function. Such comparison is summarized in a p-value, that
indicates the probability of the D statistic to exceed the observed value conditional to
the null hypothesis being true. p-values close to 1 indicate that the power function
is a good fit for the data: the null hypothesis is not rejected. p-values close to zero
indicate that the power function is a bad fit for the data, and reject the null hypothesis.
The rejection value is set, conservatively, at 0.1. Results are summarized in Table 1.

As we consider the interval k ≥ 1, we find that the in-degree distribution of the
Innovatori PA network – the unmoderated one – is consistent with the expected
behavior of an evolving network with preferential attachment. We cannot reject the
null hypothesis that it was generated by a power law. For other two communities,
both with onboarding policies, the null hypothesis is strongly rejected. On the other
hand, when we consider only the tail of the degree distributions, i.e. k ≥ kmin, all
three communities display a behavior that is consistent of a setting with preferential
attachment.

These results are consistent with the objectives of the onboarding policy, consisting
in helping newcomers find their way around a community that they don’t know yet.
A successfully onboarded new user will generally have some extra interaction with
existing active members. All things being equal, we can expect extra edges to appear
in the network, and interfere with the in-degree distribution that would appear in the

1 We emphasize in-degree, as opposed to out-degree, because directedness is implicit in the idea of
preferential attachment, and because the in-degree distribution is the one to follow a power law in
online conversation networks ([10]).
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(a) (b)

(c) (d)

Fig. 2: (log - log) Probability density function from the degree distributions of: (a)
the Innovatori PA network without onboarding policy in place versus (b) a simulated
network with preferential attachment and no onboarding. (c) The Edgeryders network
with onboarding and preferential attachment versus (d) a simulated network with
preferential attachment and fully effective onboarding (ν1 = ν2 = 1).

absence of onboarding – explaining the non-power law distribution of Edgeryders
and Matera2019. Extra edges target mostly low connectivity nodes: onboarding
targets newcomers, and focuses on helping them through the first few successful
interactions. Highly active (therefore highly connected) members do not need to be
onboarded. This may explain why all three communities display power law behavior
in the upper tail of their in-degree distributions, regardless of onboarding.

3.2 Experiment protocol
The difference observed between the two communities with onboarding policies
and the one without might be caused not by the policy itself, but by some other
unobserved variable. To explore the policy’s effects, we generate and compare
computer simulations of interaction networks in online communities that are identical
except for the presence and effectiveness of onboarding policies.

Communities are assumed to grow over time, with new participants joining them
in sequence. At each point in time, new edges appear; their probability of targeting an
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existing node grows linearly with that node’s in-degree. Additionally, communities
might have or not have onboarding policies. See section 3.3 below for a specification
of onboarding in the model.

We generated 100 communities with no onboarding policy (control group), 100
communities for each couple of ν1 and ν2 in {0.0,0.2,0.4,0.6,0.8,1.0} (treatment
group), and computed their in-degree distribution. Next, we tested two hypotheses
for the 3700 networks generated.

• Hypothesis 1. The in-degree distribution of C is generated by P for any k ≥ 1.
• Hypothesis 2. The in-degree distribution of C is generated by P for any k ≥ kmin.

Where C is the synthetic network; k(s) is the in-degree of a node s; kmin is the
in-degree that minimizes the Kolmogorov-Smirnov distance D between the fitted
function and the data over k ≥ kmin; and P is the best-fit power-law model for the in-
degree distribution of C. We expect non-rejection of both hypotheses for the control
group; and rejection of Hypothesis 1, but not of Hypothesis 2, in case of effective
onboarding (high ν1) in the treatment group.

3.3 Simulation
We simulated the growth of network in an online community with and without
onboarding following preferential attachment [2] in the generalized model [10].

Without onboarding: A network is initialized with two reciprocally connected
nodes. At each step a new node (new user) is introduced, and m new edges (comments)
are also created, with a uniformly random picked source. The probability that the
new edge points to a node s is proportional to k(s)+As where k(s) is the in-degree
of node s and As is a parameter representing additional attractiveness of the node.

With onboarding: Network initialization and growth are as in the case of no on-
boarding. Additionally, an edge targeting the newly created node is added at each step.
This edge represents the action of the community manager, addressing a welcome
message to the newcomer. At this point of each step, with probability ν1 ∈ [0,1], a
new edge is added with source as the new node (the newcomer becomes active). The
edge’s target is chosen by preferential attachment, as described previously2. Next
(still in the same step), with probability ν2 ∈ [0,1], another edge is added with a
uniformly picked source and the newcomer node as target. This represent the online
community acknowledging the newcomer by addressing her a comment.

We call ν1 onboarding effectiveness. It is the probability of the newcomer to react
to the community manager’s onboarding activity. We call ν2 community responsive-
ness. It is the probability for the new participant to have attracted the attention of
other participants and engage in a conversation. We set network size to 2000 nodes;
m = 1; and As = 1 for all nodes, in the tradition of [2] and [10].

2 The source of the new edge is irrelevant to the model’s results, since we only study in-degree. We
specify it in the text to help exposition, since the expected result of onboarding is the activation of
newcomers.



8 A. Cottica, G. Melançon and B. Renoust

Table 2: Average p-values (number of rejections) for GoF tests of power-law models
to in-degree distributions of interaction networks in online communities. Control
group communities have no onboarding (control group). Power-law models are
estimated over all nodes with degree k ≥ 1

Control group: 0.262688 (23)
ν2 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 0.0593 (83) 0.0601 (81) 0.0520 (83) 0.0479 (88) 0.0551 (82) 0.0514 (85)
ν1 = 0.2 0.0629 (78) 0.0797 (73) 0.0852 (70) 0.0834 (73) 0.0834 (73) 0.0796 (70)
ν1 = 0,4 0.1047 (66) 0.0970 (65) 0.0986 (61) 0.0831 (69) 0.0829 (76) 0.1157 (56)
ν1 = 0.6 0.0964 (59) 0.0855 (67) 0.1021 (63) 0.1269 (51) 0.0906 (70) 0.0797 (71)
ν1 = 0.8 0.1326 (55) 0.1152 (60) 0.1036 (66) 0.1091 (61) 0.1188 (60) 0.1228 (61)
ν1 = 1 0.1009 (65) 0.1207 (62) 0.1326 (54) 0.1164 (60) 0.1230 (54) 0.1205 (57)

4 Results
4.1 Goodness-of-fit of the power-law model
For each network evolved we computed two best-fit power-law models, one for k≥ 1
and the other for k ≥ kmin where kmin is the in-degree the minimizes D between the
fitted function and the data over k ≥ kmin. On each of these models, we ran a GoF
test as in section 3.1, results are reported in Table 2.

We first examine the case in which k ≥ 1. We conclude that onboarding seems to
have some effect on the goodness-of-fit of the generated data to their respective best-
fit power-law models. When onboarding is introduced, fewer degree distributions, out
of our 100 runs, are power law-shaped; also, the average p-values returned by GoF
tests are lower than those of the control group. Running t-tests of the null hypothesis
that the average p-value in the control group is equal to the average p-values in the
treatment group results in a strong rejection for any combination of ν1 and ν2.

We now turn to the question of the role played by ν1 and ν2 within the treatment
group. Figure 3 (a, b) shows the cumulated density functions of the p-values in the
control and treatment groups as ν1 and ν2 vary. Increasing onboarding effectiveness
ν1 pushes average p-values of the GoF tests down, making it less likely that Hypoth-
esis 1 would be rejected. Increasing community responsiveness ν2 seems not to play
any role at all. This is somewhat surprising. Recall that we modeled onboarding as
the command-and-control creation of an extra edge at each step, targeting newcomers
to the online community. This has a strong negative effect on the p-value returned by
the GoF test (compare any p-value in Table 2 with the p-value of the control group
with no onboarding). When a responsive community adds a second edge, however,
there is no additional effect on the p-value. This result is confirmed by regression
analysis (not shown here).

When k≥ kmin, the effect of introducing onboarding on the GoF disappears. Over
99% of the networks in the treatment group give rise to distributions that turn out
to be a good fit for a power-law model when kmin is chosen so as to minimize D
between the degree distributions themselves and their best-fit power-law models. We
conclude that Hypothesis 2 cannot be rejected, regardless of whether onboarding is
present or not.
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(a) (b)

(c) (d)

Fig. 3: (a,b): CDF of p-values returned by GoF tests to the (best-fit) power-law
models for in-degree distributions of the interaction networks in the control and
treatment groups. 20% of the networks evolved without onboarding (dark blue) have
degree distributions that test negatively for H1. When onboarding is introduced, it
rises to between 50 and 90%. (a,c) the treatment group interaction networks have
been grouped according to the value taken by ν1. (b,d) they have been grouped
according to the value taken by ν2. (c,d) CDF of the average value of kmin that
minimizes D between the in-degree distribution of each interaction network and its
best-fit power-law model.

4.2 Lower bounds
We find a limited, albeit statistically significant, effect of onboarding on the value of
kmin, the value of k that minimizes D between the data generated by the computer
simulation and the best-fit power-law model. Figure 3(c,d) shows that over 60% of
the in-degree distributions from interaction networks in the control group, vis-a-vis
only 30 to 40% of those in the treatment group, fit a power-law model best for
kmin ≤ 3. Within the treatment group, some variability is associated to the increase
of ν1, whereas ν2 does not seem to play a significant role. Regression analysis (not
shown here) shows that, once we control for the presence of onboarding, neither
parameter is significant.
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Table 3: Average values of the power-law model’s exponent α in the control group
and in the treatment group by values of ν1 and ν2, computed over the whole support
k≥ 1 (top) and k≥ kmin (bottom). The number in parenthesis is the p-value associated
to a t-test that α(treatment) = α(control); they were omitted for k ≥ kmin as they
are all smaller than 0.001.

k ≥ 1 Control group: 1.752
ν1 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00)
ν1 = 0.2 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00)
ν1 = 0.4 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00)
ν1 = 0.6 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00)
ν1 = 0.8 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00)
ν1 = 1 1.75 (0.21) 1.75 (0.20) 1.75 (0.26) 1.75 (0.43) 1.75 (0.24) 1.75 (0.19)

k ≥ kmin Control group: 2.419
ν2 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 2.985 2.989 2.868 3.000 3.004 3.015
ν1 = 0.2 2.855 2.852 2.868 2.834 2.821 2.854
ν1 = 0.4 2.746 2.727 2.735 2.725 2.739 2.749
ν1 = 0.6 2.661 2.655 2.632 2.650 2.656 2.623
ν1 = 0.8 2.562 2.602 2.571 2.553 2.554 2.553
ν1 = 1 2.496 2.527 2.518 2.514 2.514 2.499

4.3 Exponents
Introducing onboarding to an online community has a positive and significant effect
on the value of the exponent of the best-fit power-law model for the in-degree
distribution of its interaction network. This is consistent with previous studies ([10]).
This result holds when the best-fit power-law models is computed over k ≥ kmin,
where kmin is the value of k that minimizes D between the simulated in-degree
distribution and its best-fit power-law model. When it is computed over the whole
support of the in-degree distribution (k ≥ 1), it also holds, except for ν1 = 1. Table 3
illustrate the average value of the scaling parameter α , and the p-value of a t-test on
the null hypothesis that such value is the same as the corresponding statistics in the
control group, against the alternative hypothesis that the former is greater than the
latter.

5 Discussion and conclusion
We started this work in the hope of discovering a simple statistical test that could
be used to assess the presence and effectiveness of online community management
policies, onboarding among them. Enacting onboarding on an online community
leads to a strong rejection of a power-law behaviour hypothesis on its degree dis-
tribution. So, indeed, we can test for the presence of onboarding by looking at the
degree distribution itself, which is much simpler than analysing the network’s whole
topology. However, we did not find a monotonic relationship between onboarding’s
effectiveness and the distance of the resulting degree distribution from a pure power-
law form. So, our simple test cannot tell the analyst how effective these policies
are.
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Our models incorporates two forces: preferential attachment and onboarding. The
former is meant to represent the (emergent) rich-get-richer effect observed in many
real-world social networks; the latter is meant to represent the (command-and-control)
onboarding action of moderators and community managers. The former’s effect is
known to lead to the emergence of an in-degree distribution that approximates a
power-law model. The latter’s effect is more subtle, because it is in turn composed of
two other effects. One consists in the direct action of the moderator, which always
targets the newcomer; the other results of the consequences of a well-executed
onboarding policy.

The direct action of the moderators creates edges pointing to nodes not selected
by preferential attachment: this is definitional of onboarding, and of other online
community management activities. What (non-moderator) participants in the online
community do as a result of moderator activity is not as clear cut. In our simulation
model, fully successful onboarding results in extra edges, some of which point to
nodes selected by preferential attachment, others to nodes selected otherwise.

Also, onboarding only targets newcomers. As many online community manage-
ment policies, it concerns weakly connected participants in the community: mod-
erators have no need to engage with very active, strongly connected participants,
who clearly need no help in getting a conversation going. By engaging weakly con-
nected participants, moderators hope to help some shy newcomers turn into active
community members. Once this process is under way, moderators have no reason
to continue to engage with the same individuals. In terms of our model, this means
that newcomers, after having being onboarded, are going to receive new edges by
preferential attachment only. It is therefore reasonable to expect that the degree dis-
tributions generated by our model display a heavy tail, with the frequency of highly
connected nodes following a reasonable approximation of a power law. The overall
result of onboarding, then, is an in-degree distribution with power-law behavior for
high values of in-degree k and non-power law behavior for low (close to 1) values of
k. This is indeed what we observe.

Non-preferential attachment selection of edge targets leads to a poorer fit of power-
law models to the in-degree distributions where onboarding is present. This effect
takes three forms. The first one is that, fitting a power-law model to the network’s in-
degree distribution and then running goodness-of-fit tests return a lower p-value than
the p-value returned by the same test when onboarding is absent. The second effect
is that the value of k that minimizes D between the best-fit power-law model and
the observed data tends to be higher than without onboarding. The third one is that
the scaling parameter of the best-fit power law tends to be higher with onboarding:
onboarding makes the allocation of incoming edges more equal.

Our specification of the model accounts for an apparent paradox: the deviation of
the observed networks’ degree distributions from power-law behavior is greater when
onboarding is ineffective than when it is effective. Ineffective onboarding only adds
edges directly created by moderators, none of which are allocated across existing
nodes by preferential attachment. As onboarding gets more effective, even more
edges are added; some are allocated by preferential attachment, and drive the degree
distribution back towards a pure power-law behavior. This paradoxical response may
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explain why our community responsiveness parameter ν2 does not appear to impact
the shape of the in-degree distribution.

5.1 Future work
Modeling online community management means accounting for the interplay of
bottom-up forces (like preferential attachment) with top-down ones (like onboarding
policies). This weaving of emergence and design is precisely what we wish to
investigate. There are three obvious directions in which we plan to expand the present
model. The most obvious one is a systematic exploration of the parameter space,
with the goal of assessing our results’ robustness with respect to model specification.

A second direction for further research would be to attempt to make the model
into a more realistic description of a real-world online community. Such an attempt
would draw attention onto how some real-world phenomena, when incorporated in
the model, influence its results. It would also carry the advantage of allowing online
community management professional to more easily interact with the model and
critique it. Several issues that could be investigated in this vein come to mind. For
example, we could relax the assumption that the additional attractiveness parameter
As is identical for all nodes, allowing for different nodes in the network to attract in-
coming edges at different rates (a phenomenon known as multiscaling [4]). Secondly,
we could introduce a relationship between out-degree and in-degree: this would
reflect the fact that, in an online community, reaching out to others (which translates
in increasing one’s own out-degree in the interaction network) is a good way to get
noticed and attract incoming comments (which translates in an increase in one’s
in-degree). Finally, we could work with other community management policies.

A third direction for further research would attempt to gauge the influence of
onboarding and other community management policies on network topology by
indicators other than the shape of its degree distribution, such as the presence of
subcommunities.

Additionally, we wish to obtain and analyse more empirical data from real-world
online communities with and without onboarding policies.
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