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ZEROS AT INFINITY FOR INFINITE DIMENSIONAL SYSTEMS 

M. MALABRE,R.RABAH 

Abstract The concept of zeros at infinity is generalized to some particular cases of 
infinite dimensional control systems : those described with bounded operators and 
having a finite number of inputs and outputs. These zeros are characterized with 
the help of four equivalent descriptions. Two geometric characterizations are provided as 
well as a matricial one using some particular Toeplitz matrices. The last one is directly 
deduced from the Structure Algorithm. Finally, for systems having a finite number of 
disturbance inputs, we show that the Disturbance Decoupling Problem with Measurement 
of the Disturbance is solvable if and only if the orders of the zeros at infinity are the same 
for the system with and without the disturbance. Applications to invertibility tests or to 
ideal observability are also given. 

1. Introductjon 

It is now quite well understood that the knowledge of some particular structures is 
fundamental when trying to solve some control problems. For linear finite dimensional 
systems, this is typically the case for the structure of the zeros at infinity (see for instance 
[ 3]). Namely, regular row-by-row or block decoupling is achievable if and only if the set 
of the zeros at infinity of the system equals the union of those of the subsystems ([ 5], 
[ 6] ... ). There is a similar condition for the Disturbance Decoupling Problem with 
measurement of the disturbance, or equivalently for the Model Matching Problem: the 
disturbance can be rejected if and only if the structure of the zeros at infinity is exactly the 
same for the system without the disturbance and for the system with the disturbance 
considered as a generalized input (for the Model Matching see [ 8]). These notions of 
zeros at infinity have been generalized to non linear systems [11] and also described for 
singular linear systems [10]. 

The aim of this article is to show that these structural concepts and results can be 
extended to a new class of systems: those having a finite number of inputs and ouptuts 
but for which the state belongs to some infinite dimensional space. These systems are 
described by : 

{
X (t) = Ax(t) + Bu(t) 
Y (t) = Cx(t) (1) 

where A, Band C are bounded linear operators respectively from X to X, from !Rm to 
X and from X to !RP and X is a Hilbert space. 

We shall first recall some basic properties and definitions for system like (1) 
(Section 2). We shall then generalize the famous Structure Algorithm [12] to this class of 
systems (Section 3). Section 4 will be mainly devoted to the different equivalent 
definitions for the zeros at infinity. Finally, we shall illustrate the key role of this concept 
by providing a new necessary and sufficient condition for the solvability of the 
Disturbance Decoupling Problem with measurement of the disturbance in terms of 
structures at infinity (Section 5). Applications to invertibility tests or to ideal (perfect) 
observability are also given. 
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2 • Basic concepts 

We shall thus consider systems like (1) with bounded operators : 
A E ~ (X), B E ~ (!R m, X) and C E ~ (X, !RP). Since A is bounded, the 
resolvent of A can be developed as : 

,lAb IIAII (2.1) 

Thus, (1) can also be described through its (pxm) transfer matrix: 

T(s) = C(sI· ArlB = CB s·l + CABs-2 + CA2Bs·3 + ... (2.2) 

From a geometric point of view, many concepts like (A,B) or (C,A) invariance have 
known various extensions to infinite dimensional systems. Up to date references and 
main contributions can be found in [15]. 

Because of our particular assumption for A, B and C, we are in a situation where all 
various available definitions are actually equivalent. More precisely, there exists a 
supremal (A,B) invariant subspace in the Kernel of C ,9I'*,which can be obtained from 
the well known algorithm: 

(2.3) 

Each 0/ i is closed and 0/ * satisfies: 0/ * = ~ 9f i (2.4) 
i = 0 

In a similar way, there exists an infimal (C,A) invariant subspace containing 
1mB .3 *, characterized through the following algorithm : 

(2.5) 

Each 3 i is closed and the sequence of associated projectors, Pi (ImPi = 3 i), 

strongly converges towards a projector P* with 3 * = 1m P*. 

We shall also use in the sequel the following Toeplitz matrices ri (which are 
(Lp x Lm» associated with (1) or equivalently deduced from (2.2) : 

[
CB 0 .. 0] CAB CB 0 . 0 

ri= . . . 
. .. CB 0 

CAi-lB CAi-2B. . CB 

(2.6) 

3 • Structure (Inyersion) AIKorithm 

The Structure Algorithm, as initially introduced by Silvennan [12], is well known 
as being a very perfonnant tool for the characterization of some geometric or structural 
properties of the system. This has been the case for the zeros at infinity: [13] for linear 
systems, [11] for affine non linear systems and [10] for singular linear systems. 

We shall here generalize this kind of algonthm to systems described by (1) with 
A E ~ (X), B E ~ (!Rm, X) and C E ~ (X, !RP). 

The key idea behind this algorithm is to try to recover as much infonnation as 
possible on the input u(t) (possibly u(t) itself) starting from y(t) and from some of its 
derivatives. This is, of course, connected to inversion problems. This algorithm works as 
follows : the output y = Cx has no explicit tenn with u and has thus to be derived. After 
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derivation, one has y = CAx + CBu. Let PI be the projector on the image of CB. Then, 
let us denote: 

[ I ~lpJ [CA CB] =: [ ~; ~2 ] (3.1) 

The second stripe of this equation (Y2 = (;2 x) has no u - term and must be derived: 

Y2 = C2Ax + C2Bu, and the algorithm goes on ; P2 being defined as the projector on 

Irnage[~~l we have: 

[ P2 ][ C2 D2] [C3 D3] 
I - P2 ~2A ~2B =: C.3 0 (3.2) 

These steps can also be written as follows (let Co = C, DO = 0 and Co = 0) : 

At each step k, choose Sk = [ I ~kp k] ,with Pk the projector on Image [~~ J. such that: 

S [ Ck Dk ] _. [Ck+I Dk+l] 
k ~kA!4B -. ~k+ 1 0 (3.3) 

and with Dk+ I of maximal full row rank fk+ I. 

We shall see in the sequel (Section 4) that, if the system (1) is of maximal rank, 
(that is rank = inf (m,p», the computation (from this algorithm) of the orders of the zeros 
at infinity will always be possible in a finite number of steps (this number being nJ, the 
supremal order of the infinite zeros). Note that, if (I) is not of maximal rank, we can 
always get rid of redundant inputs and outputs and restrict our attention to the part of the 
system which is of maximal rank. Hence, there is no loss of generality when assuming 
that (I) has rank equal to inf(m,p) and, in the same way, that B is monic and C is epic. 

4 - Equiyalent characterizations for the structyre at infinity 

We shall here generalize some definitions of the zeros at infinity which are available 
in the case X = [Rn ([13], [ 3]). Let card {.} denote the number of elements in {.}. 

Theorem 1 : Systems Cl) of maximal rank r = infCm,p) have r infinite zeros, the orders 
of which nl, n2, ... , nr are given by ni =: card{Pj ~ i}and where the integers Pi's satisfy: 

Pi+I = dim((ImBnqri)/(ImBnqr*)} ,Vi ~O (4.1) 

dim(C3 * / C3 i) , V i ~ 0 (4.2) 

(Xmax - CXj , V i ~ 0 (4.3) 

Pmax - Pi+l , V i ~ 0 (4.4) 

where: 
(Xi = : rank (Ii) - rank (Ii-I) (4.5) 

Pj = : rank (Dj) , (4.6) 

with aO = 0, fO = 0, fi defined through (2.6) and Di extracted from the Structure 
Algorithm (see (3.3». 

Remark: According to (2.2) and to finite dimensionality of the output and input spaces, 
the orders nj's are finite integers. Note also that Pi = card{nj ~ i). 

Proof of Theorem I : i) : Consider (4.1) <=> (4.3) : It is easy to show, from the very 
defmitions of qri and lj , that for all ~o : 
1m B n Cjf' i = (B 0 ... 0] Kef Ii . 

Since B is monic, and because of the form of Ii's, (recall (2.6», we have: 
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dim(lm B n 'V' i) = dim( Ker ri) - dim (Ker ri-I ). Thus: 
dim(lm B n 'V' i) = (im - rank ri) - «i-I)m - rank ri-I) = m- Uj. This implies: 
(lmax = m - inf (dim (1m B n 'V' i)} = m - dim (lm B n 'V' *) and, finally: 
dim((Im B n 'V' i) / (lm B n 'V' *») = <Xmax - Uj , \f i ~ o. 

ii) : Consider (4.2) <=> (4.3) : Starting from the very definition of 
3 i 's (see (2.5)), it is quite easy to show that (see for instance [ 9]) : 

\f i ~ 2 (4.7) 

This implies: dim(C3 i)= dim (Ker[I'i_1 : 0]) - dim (Ker [I'i-I :0] n Ker [CAi-IB: ...... : CAB : CB]), 

which, in view of the definition of ri 'S (see (2.6)), amounts to, for all i ~ 2 : 

dim(C3 i) = dim(Ker[I'i_l: 0]) - dim(Ker ri) = m + dim(Ker (ri-I» - dim(Ker ri) 

= rank ri - rank ri-I=: Uj. 

Since this is also obviously true for i = 0 and i = 1, one has: 
dim(C3 i) = Uj , \fi ~ 0 

hence dim(C3 *) = <Xmax' which immediately proves the equality 
dim(C3 * / C3 i) = <Xmax - Uj , \fi ~ o. 

(4.8) 

iii) (4.3) <=> (4.4) For this, it is sufficient to prove that (li = Pi+l, 

\fi ~ o. This, in tum, is equivalent to : j~ (lj = j1 Pj+ I ' \fi ~ 0, otherwise written: 

i 
rankri = j~d Pj+1 ,\fi ~ 0 (4.9) 

This can be proved by induction. We shall only sketch here the first steps. (For this 
recall in particular (2.6) and (3.3) and remember that Dk is epic for all k ~ 1) : 

* rank (rO) = 0 = PI 

* rank (rl) =: rank (CB) = rank (D2) = P2 + PI 

[ CB 0 ] [S1 0] [ CB 
* rank (r2) =: rank CAB CB = rank ( 0 S 1· CAB 

= rank [ ~~ ] + rank (D2) ( since D2 is epic ) 

= rank (D3) + rank (D2> = P3 + P2 + PI ... 

This ends the proof of Theorem 1 • 

It is also possible, from the Structure Algorithm, to generalize a very interesting 
geometric result stated by Silverman [12] and extended in [7] to singular linear systems: 

Proposition 1 : The steps qri of algorithm (2.3) satisfy: 

o/i.K~ [~] V1>O (4.10) 

The proof can easily be done by induction. We shall only sketch here the first steps. 
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• 0/0= X =KerCo since Co =0 

• 0/ 1= KerC=Kerl:l=Ker[~J ,since!:.l =C 

• 0/ 2 =: Ker Cn A-l(lmB + 0/ I ) 

i) first show that 0/ 2c Ker ~1 n Ker ~2 : 
Since 0/ 2c Ker C = Ker ~1 , this amounts to 0/ 2c Ker ~2' Now, recall that (see 

(3.1» : ~2 =: (I - PI) ~IA = (I - Pl)CA. 
Thus : ~20/ 2 c (I - PI) CA A-I (1mB +0/ 1) c (I - PI) C(lmB+o/ 1)= 0, 

since Co/ 1 = ° and (I - PI) CB = ° (see (3.1). 

ii) Let us now show the reverse inclusion: 
Let x E Ker CI n Ker ~2 ' that is : 
XE KerC (4.11) 

and (I - PI) CAx = ° (4.12) 
This implies: CAx E Ker (I - PA) = 1m CB. That is Ax E 1mB + KerC , which, when 

combined with (4.11), gives x E Ker C n A-I(lmB + Ker C) =: 0/ 2 ... This ends the sketch 
of the proof of the Proposition 1 •. 

We are now able to show the deep interest of this concept of zeros at infinity, in 
generalizing to this class of infinite dimensional systems results available for X = [Rn. 

5 • New jnsichts into Disturbance PecouplinC Problem. InyertjbjJjty and 
Ideal Obseryabmty 

The Disturbance Decoupling Problem is undoubtedly the most famous example 
showing the interest of the so-called geometric approach ([ 1], [14]). This problem has 
also been analyzed within its different versions for infinite dimensional systems (see [ 4], 
[15]). We shall consider here the Disturbance Decoupling Problem with Measurement of 
the Disturbance; more precisely, the setting is the following: 

consider an infinite dimensional system with bounded operators and having a finite 
number of inputs (u), disturbances (q) and outputs (y) described by : 

{
X (t) = Ax(t) + Bu(t)+ E q(t) 
y (t) = Cx(t) (5.1) 

with A E.;e, (X ), BE.;e, ([Rm, X ), E E.;e, ([R q, X) and C E.;e, (X, [R P) and where 

X is a Hilbert space. 

Find conditions under which there exists a state/eedback law, u = Fx + Gq, such 
that,for the closed loop system, the disturbance q has no action at all on the output y. 

This problem has been given a solution by Curtain [ 4], and, in our very particular 
situation, its solvability can be expressed as follows: 

Proposition 2 [ 4] : Systems like (5.1) can be disturbance decoupled with measurement 
of the disturbance if and only if : 

1m E c 1m B + 0/ * (5.2) 

with, as before, 0/ * given by (2.4) and being the supremal (A,B) invariant subspace in 
Ker C. 
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We are now able to provide an equivalent structural condition in tenns of zeros at 
infmity which is an extension of a similar result obtained for the Model Matching Problem 
[8] when X =IR n. 

For that, let us introduce some notation. 3 i and 3 ~ will be described by the 
following algorithms (see (2.5» : 

, with associated limit 3 * (5.3) 

and similary : 
o i+l. i.... * 

3 e = 0, 3 e = 1m [B: EJ + A (Ker C n 3 e) ,With assocIated hmlt 3 e (5.4) 

The structure of the zeros at infinity we shall deal with are those of system 
(C, A, B) and (C, A, [B : ED, respectively denoted by : 

Pi+ 1 = dim(CS' * I C3 i) 

Pe i+ 1 = dim(C3 :1 C3 ~) 
,Vi <: 0 

,Vi <: 0 

(5.5) 

(5.6) 

Theorem 2 : Systems like (5.2) can be disturbance decoupled with measurement of the 
disturbance if and only if : 

Pi+ 1 = Pe i+ 1 ,Vi <: 0 (5.7) 

* 00 • Proof: Remark fIrst that, because 'V = i,;o 'V 1 , condition (5.2) : 

1m E C 1m B +'V * is equivalent to : 

ImEc ImB+'V i ,Vi <: 0 (5.8) 

i) Necessity: Assume that (5.2) is satisfied. We shall prove by induction that: 
i . 

CS' e = CS' 1 , Vi <: 0 (5.9) 

First remark that the following is obvious : 
. i 

S' 1 C S' e ' Vi <: 0 (5.10) 

To prove (5.9), we shall thus show by induction, that: 
i * . S' e c 'V + S' 1 ,Vi <: 0 (5.11) 

Indeed: 
i+l. i . * 

3 e =Im[B: EJ+A(KerCnS'e)c ImB+lmE+A(KerCn3 1 +'V ) 

c ImB+ImE+A(KerCn3 i )+'V* 

c 1mB + 'V * + A ( KerC n 3 i) , because of (5.2) 
='V*+S'i, 

which ends the necessity part of the proofO. 

ii) Sufficiency The easiest way to establish sufficiency is to use the structure algorithm 
and the fact that Pi's and Pe i 's have other equivalent characterizations (see Theorem 1) 
and more precisely that given by (4.4). 

For that, imagine that you are performing the structure algorithm both on (C,A,B) 
and on (C,A, [B: ED. This will induce particular matrices Di and Dei (see (3.3» and 
denoting: 

Pi = rank (Di) 

Pei = rank (Dei) 

,Vi <: 0 

,Vi <: 0 

(5.12) 

(5.13) 
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we immediately see that our hypothesis, that is: 

Pi+l =Pe i+l ,'Vi;:>: 0 

is equivalent to : 

Pi = Pei ,'Vi;:>: 0 (5.14) 

On the other hand, because of Proposition 1, the desired result (S.8) is equivalent to : 
1m [<pilB : El) =Im [<Pi B) ,'Vi;:>: 0 (5.15) 

.im wi' [~] ,Vi> 0 

Thus, we have to show that (S.14) implies (S.lS). This can also be sketched 
through the fIrst steps of the algorithms. 

Consider the operator :[ CIA : leI B: ClE]]. Since Cl B is a sub-matrix of [CI B : 
Cl El and due to (S.14) (for i = 2), the row compression on leI B : Cl El say Se1 (see 
(3.3» must be equal to Sl. Otherwise said, ClE cannot bring more independent rows than 
CIB because of (S.14). This means that necessarily: 

[ C2: 02 : 0'21 
$1 [CIA: lel B : ClEll= C2: 0 : 0 J 

and hence: 

(5.16) 

(5.17) 

The situation is the same for the next step. Using (S.14) for i = 3, we necessarily 
have: 

[ C2 : 02 : 0'21 [C3 :03 :0'31 
$2 C2A:C2B :C2EJ = C3: 0 : 0 J 

wich implies: 

[
CtlB:El] [CIB] 

1m . =Im C2B ' 
C2[B:El 

(5.18) 

This is true at any step (since (S.14) holds for any i ~ 0) and thus (S.lS) is 
established : 

1m [<PilB : El ) = 1m (<Pi B) ,Vi;:>: 0 ,which ends the proof of Theorem 2 •. 

Other interesting results can also be established with the help of this concept of 
zeros at infinity. 

Proposition 3 For any system like (1), the rank r (r:::; inf (p,m» satisfies: 
r = dim { 1m B I (lm B n qt * ) ) = dim (C3 *) (5.19) 

This is obvious from the fact that r is the number of zeros at infinity, that is r = PI 

in Theorem 1.· 

Proposition 4 System like (1) with p < m (more inputs (m) than outputs (p» is never 
ideally observable. 

Proof: Ideal observability is equivalent to qt * = 0 (see [ 2] for definition and 
details). Ifp < m, then the system is not left invertible and thus cannot be observable with 
unknown input. Indeed, from Proposition 3, r = p < m implies 1m B n qt *;t 0 and thus 
qt *;t o .• 
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This is a generalization of a pathology enhanced in [ 2]. 

6. Conclusion 

We have shown that structural concepts like zeros at infinity can be extended to 
some classes of infinite dimensional systems (Theorem 1) and used to solve some control 
problems (Theorem 2). Of course our hypothesis are somewhat restrictive: A is bounded 
and the number of inputs, outputs and disturbances is finite. This extension must be 
viewed as a first attempt to illustrate the importance of structural knowledge also in the 
case of infinite dimensional systems. These assumptions have to be weakened and we 
have many reasons to hope that some concepts and results will still be available in the 
same form. This comes from the fact that this particular structure must be, in some sense, 
independent on the way we describe a system through a model (linear or non linear, 
explicit or implicit, finite dimensional or not). 

Aknowledgement : We would like to thank the anonymous referee who suggested the 
simpler present proof for the necessity part of Theorem 2. 
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