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Abstract 

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable 
tools for assessing and monitoring aquatic biodiversity, especially for rare and secre
tive species, are important for efficient and timely management. Recent advances in 
DNA sequencing have provided a new tool for species detection from DNA present in 
the environment. In this study, we tested whether an environmental DNA (eDNA) 
metabarcoding approach, using water samples, can be used for addressing significant 
questions in ecology and conservation. Two key aquatic vertebrate groups were tar
geted: amphibians and bony fish. The reliability of this method was cautiously vali
dated in silico, in vitro and in situ. When compared with traditional surveys or 
historical data, eDNA metabarcoding showed a much better detection probability over
all. For amphibians, the detection probability with eDNA metabarcoding was 0.97 
(Cl = 0.90 0.99) vs. 0.58 (Cl = 0.50 0.63) for traditional surveys. For fish, in 89% of the 
studied sites, the number of taxa detected using the eDNA metabarcoding approach 
was higher or identical to the number detected using traditional methods. We argue 
that the proposed DNA-based approach has the potential to become the next-genera
tion tool for ecological studies and standardized biodiversity monitoring in a wide 
range of aquatic ecosystems. 

Keywords: amphibian, detection probability, environmental DNA, fish, monitoring, wildlife 
management 
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aquatic environments are still in their infancy, with only

six studies published to date (Thomsen et al. 2012a,b;

Kelly et al. 2014b; Deiner et al. 2015; Evans et al. 2015;

Miya et al. 2015), of which only the ones from Thomsen,

Deiner and Miya were performed in natural environ-

ments. These studies have emphasized the challenges

posed by the method, for example sampling strategy

optimization and markers reliability, but also the great

perspectives yet to be investigated.

The objective of this study was to test whether an

eDNA approach using water samples can be used for

addressing significant questions in ecology and conserva-

tion. More specifically, our goal is to assess the potential

of an integrated eDNA metabarcoding approach for eco-

logical studies and for monitoring aquatic biodiversity,

and to demonstrate its reliability considering two key

aquatic vertebrate groups: amphibians and bony fish.

Characterized by many discrete, rare and recently extinct

species, amphibians (Batrachia) represent one of the most

vulnerable animal groups (Stuart et al. 2004). Their distri-

butions are often poorly known because the detection

probabilities using traditional survey methods can be

very low and may vary because of local environmental

conditions (K�ery & Schmidt 2008; Tanadini & Schmidt

2011). Bony fish (Teleostei) are generally less cryptic and

are often used as indicators of the ecological status of riv-

ers (Roset et al. 2007) and lakes (Argillier et al. 2013) or of

the function of water bodies (Copp et al. 1991). Neverthe-

less, traditional fish inventories show their limits in large

water bodies (e.g. large rivers or lakes) where stratified

sampling methods and invasive fishing gear (e.g. gill

nets) must be used. Furthermore, those methods are usu-

ally species and/or size-selective (Hudy 1985; Hubert

et al. 2012) and suffer from a relatively high proportion of

fish species misidentification, particularly for young

stages (Daan 2001).

The eDNA metabarcoding approach proposed here

was cautiously validated in silico (i.e. bioinformatically),

in vitro (i.e. using DNA extracted from tissue samples)

and in situ, on a wide range of aquatic ecosystems

(including both stagnant and running waters) by com-

paring the eDNA metabarcoding results with traditional

survey data, historical data and results obtained using a

previous eDNA metabarcoding approach (Thomsen

et al. 2012b).

Materials and methods

Design and in silico validation of group-specific
primers

Group-specific primers were designed on mtDNA for

Teleostei and Batrachia using the ECOPRIMERS software

.

Introduction

Global biodiversity loss represents one of the most seri-
ous environmental crises of the 20th and 21st centuries, 
with considerable impact on both ecosystem services 
and the health of our planet (Pimm et al. 2014). An 
overall biodiversity decline of 52% was recorded 
between 1970 and 2010, and this loss was even higher 
for freshwater populations than for marine or terrestrial 
ecosystems (WWF 2014). While scientists are struggling 
to find explanations and to understand the gravity of 
this loss (Monastersky 2014), there is an urgent need to 
improve effectiveness of the strategies employed to halt 
global biodiversity loss and render them more integra-
tive (Beumer & Martens 2013). It is commonly acknowl-

edged that biodiversity is threatened by a variety of 
anthropogenic factors (Barnosky et al. 2011); however, 
the most critical issue is the sheer lack of efficient and 
reliable tools to document the remaining species and to 
assess biodiversity trends. Indeed, to monitor certain 
taxonomic groups, the existing methods appear to be 
inefficient, selective, destructive or strictly dependent 
on a declining taxonomic expertise (Wheeler et al. 2004). 
Recent technological advances have provided an alter-
native tool for species detection using DNA present in 
aquatic or terrestrial environments (environmental 
DNA or eDNA; Taberlet et al. 2012). Taxonomical 
inventories and assessment of geographical distribution 
of species based on eDNA analysis may help to improve 
environmental monitoring and influence management 
and policy decisions (Kelly et al. 2014a; Thomsen & 
Willerslev 2015). In contrast to conventional survey 
methods, eDNA offers the advantages of being nonin-
vasive (no macroorganisms are caught, disturbed or 
killed during monitoring) and reduces the risk of unin-
tentional secondary dispersal of alien species and dis-
eases. Overall, eDNA methods used for species 
detection demonstrated higher detection capability and 
cost-effectiveness compared to traditional methods (e.g. 
Darling & Mahon 2011; Dejean et al. 2012). Two main 
approaches using eDNA have been proposed: eDNA 
barcoding (or species-specific approach), which aims at 
detecting a single species in the environment, and 
eDNA metabarcoding (or multispecific approach), 
which simultaneously identifies several taxa from an 
environmental sample without ‘a priori’ knowledge of 
the species likely to be present in the sampled ecosys-
tem (Taberlet et al. 2012). The latter method is based on 
the use of primers specific for a given taxonomic group 
(thereafter referred as group-specific primers) coupled 
with next-generation sequencing (NGS). It has been lar-
gely applied in terrestrial ecosystems and for diet analy-
sis (e.g. Pompanon et al. 2012; Yoccoz et al. 2012). 
However, applications of eDNA metabarcoding in



(Riaz et al. 2011) which identifies barcode markers and

their associated primers, considering several constraints,

such as (i) the target taxonomic group, (ii) the mini-

mum and maximum length of the amplicons, (iii) the

maximum number of mismatches between the primers

and their target sequences and (iv) the number of

nucleotides with a perfect match on the 30 end of the

primers. Because DNA is susceptible to degradation in

the environment, metabarcodes of <100 bp were tar-

geted (Taberlet et al. 2012). ECOPRIMERS optimizes both

the versatility of the primers for the target group and

the taxonomic resolution of the amplified region. The

designed primers were then tested by in silico PCR

(ECOPCR program; Bellemain et al. 2010; Ficetola et al.

2010) against the entire set of DNA sequences available

from the EMBL-European Nucleotide Archive (release

117, standard sequences). This step allowed the evalua-

tion of the match between the designed primers and all

potentially amplifiable sequences. The primers were

then manually optimized, when necessary, by degener-

ating some nucleotide positions within the primers to

better match the desired target group and by adding a

few nucleotides on the 50 end to homogenize the

annealing temperatures of both the forward and reverse

primers.

The designed primers were then extensively tested in

silico using the ECOPCR program on: (i) a collection of all

mitochondrial DNA sequences, and (ii) all the publicly

available DNA sequences. Both data sets were based on

release 117 (standard sequences) of the EMBL database.

First, for each primer, a sequence logo was generated

(Crooks et al. 2004) based on the in silico PCR results

for the target group without enforcing a perfect match

at the 30-end nucleotides and with a maximum of three

mismatches in the entire primer sequence. This logo

illustrates the match between the primer and its target

sequence within the target taxonomic group. Second, a

mismatch analysis was performed, both for the target

taxonomic group and for the nontarget group (maxi-

mum of three mismatches allowed, excluding the last

two nucleotides on the 30 end) to assess the specificity

of the primer pairs. Finally, the length distribution of

the amplified sequences (excluding primers) was anal-

ysed using the OBITOOLS package (http://metabarcod-

ing.org/obitools; Boyer et al. 2015).

Additionally, the Teleostei primer performance was

evaluated by comparison with the alternative primer

pairs recently proposed by Kelly et al. (2014b) and by

Thomsen et al. (2012b).

Reference database

Fifty-three amphibian and 86 fish species (64 European

freshwater fish species and 22 marine fish species

present in Danish coastal waters) were collected by

experienced herpetologists and ichthyologists and used

to construct the reference database (Tables S1 and S2,

Supporting information, respectively). DNA was

extracted from 10 mg of tissue sampled from 1 to 13

individuals per species, taken from hind leg muscles of

amphibians and from dorsal or caudal fins of fish,

using DNeasy Blood & Tissue kit (Qiagen GmbH, Hil-

den, Germany), following the manufacturer’s instruc-

tions, in a room dedicated to DNA extraction from

tissues. DNA amplifications were performed in a final

volume of 25 lL, using 3 lL of DNA extract as tem-

plate (ranging from 1 to 30 ng/lL). The amplification

mixture contained 1 U of AmpliTaq Gold DNA Poly-

merase (Applied Biosystems, Foster City, CA, USA),

10 mM of Tris-HCl, 50 mM of KCl, 2.5 mM of MgCl2,

0.2 mM of each dNTP, 0.2 lM of each group-specific pri-

mer designed in this study (Table 1), 4 lM of human

blocking primers (i.e. a DNA oligo that preferentially

binds to human DNA and that is modified to impede

its amplification; Table 1) and 0.2 lg/lL of bovine

serum albumin (Roche Diagnostic, Basel, Switzerland).

For both taxonomic groups, the PCR mixture was dena-

tured at 95 °C for 10 min, followed by 35 cycles of 30 s

at 95 °C, 30 s at 55 °C and 1 min at 72 °C, followed by

a final elongation at 72 °C for 7 min, in a room dedi-

cated to amplified DNA, with negative air pressure and

physically separated from the DNA extraction rooms.

Table 1 Group specific mitochondrial 12S primers and human blocking primers for Batrachia and Teleostei. The code corresponds to

the position of the 30 nucleotide on the Rana nigromaculata mitochondrial genome (Accession no.: NC 002805) for the batra F and

batra R primers and on the Cyprinus carpio mitochondrial genome (Accession no.: NC 001606) for teleo F and teleo R primers

Name Code Sequence (50 30) Suggested annealing temperature

batra F L3541 ACACCGCCCGTCACCCT 55 °C
batra R H3596 GTAYACTTACCATGTTACGACTT

batra blk TCACCCTCCTCAAGTATACTTCAAAGGCA SPC3I

teleo F L1848 ACACCGCCCGTCACTCT 55 °C
teleo R H1913 CTTCCGGTACACTTACCATG

teleo blk ACCCTCCTCAAGTATACTTCAAAGGAC SPC3I



original data set in several files using OBISPLIT. After this

step, each sample was analysed individually before

merging the taxon list for the final ecological analysis.

Strictly identical sequences were clustered together

using OBIUNIQ. Sequences shorter than 20 bp, or with

occurrence lower than 10 were excluded using the OBI-

GREP program. The OBICLEAN program was then run to

assign the status of ‘head’, ‘internal’ or ‘singleton’ to

each sequence, within a PCR product. All sequences

labelled ‘internal’ that correspond most likely to PCR

substitutions and indel errors were discarded. The taxo-

nomic assignment of MOTUs was performed using the

program ECOTAG, with both the local reference database

of Batrachia and Teleostei built for this study and the

sequences extracted from the release 118 (standard

sequences) of the EMBL database using the ECOPCR pro-

gram (Bellemain et al. 2010; Ficetola et al. 2010). MOTUs

showing <98% similarity with either the local or the

EMBL reference databases were removed. Taxa were

preferentially assigned based on the local reference

database, except if the similarity was higher for the EMBL

reference database. Finally, to take into account bad

assignation of a few numbers of sequences to the wrong

sample (Schnell et al. 2015), all sequences with a fre-

quency of occurrence below 0.001 per taxon and per

run for amphibians and below 0.003 per taxon and per

run for fish were discarded. These threshold were

empirically determined to clear the controls included in

our global data production procedure (De Barba et al.

2014).

In situ validation of the eDNA metabarcoding
approach

To assess the efficiency and reliability of this proposed

eDNA metabarcoding approach, a comparative study

was performed on 62 sites corresponding to a wide

range of aquatic ecosystems (Tables S3 and S4, Support-

ing information). The eDNA sampling for all sites was

conducted on the same day as the traditional method

with some exceptions (see Tables S3 and S4, Supporting

information). At each site, the list of species obtained

using eDNA was compared to that from traditional sur-

veys (n 57) or historical data (n 4). Six sites were

chosen to test the presence of false positives: two small

channels in a saltwater marsh along the Mediterranean

Sea in 2012 because they were unsuitable for amphibian

life (sites 18 and 19, Table S3, Supporting information),

and four mountain lakes, two without fish (Sites 1 and

2, Table S4, Supporting information) and two where the

brown trout Salmo trutta was the only species present

(sites 3 and 4, Table S4, Supporting information). To

evaluate the performance of the metabarcoding

approach proposed here (primers, sequencing device

The PCR products were purified and sequenced 
(forward and reverse) using Sanger technology at the 
Eurofins MWG Operon sequencing facilities (Ebersberg, 
Germany). Sequences were aligned and primers were 
trimmed using GENEIOUS v6.0 (Biomatters, Auckland, 
New Zealand, http://www.geneious.com/).

In vitro validation of the designed primers

To validate the universality of the designed markers for 
the studied taxonomic groups, we assessed whether all 
target species used in the reference database could be 
amplified with these primers. For this purpose, two 
pools of DNA extracted from tissue samples were pre-
pared, one for each taxonomic group (Batrachia and 
freshwater Teleostei) by mixing 3 lL of DNA from each 
species. The group-specific primers were 50 labelled 
with a unique seven-nucleotide tag (with at least three 
differences between tags) allowing the assignment of 
sequences to the respective samples during the 
sequence analysis. Tags for forward and reverse pri-
mers were identical for each sample. A negative control 
(ultrapure water) was added during the PCR step. After 
amplification, the two samples were titrated using 
capillary electrophoresis (QIAxcel; Qiagen GmbH) and 
purified using a MinElute PCR purification kit (Qiagen 
GmbH). Before sequencing, purified DNA was titrated 
again using capillary electrophoresis. Several purified 
PCR products were pooled in equal volumes, to achieve 
an expected sequencing depth of 100 000 reads per 
amphibian DNA sample and 300 000 reads per fish 
DNA sample. Library preparation and sequencing were 
performed at Fasteris facilities (Geneva, Switzerland). 
Libraries were prepared using TruSeq Nano DNA geno-
mic kit (Illumina, San Diego, CA, USA) and a pair-end 
sequencing (2 9 100 bp) was carried out using an 
Illumina MiSeq sequencer (Illumina) using the Pair-end 
MiSeq Reagent Kit V2 (Illumina) following the manu-

facturer’s instructions. In total, eight MiSeq runs were 
performed.

The sequence reads were analysed using the 
programs implemented in the OBITOOLS package (http://
metabarcoding.org/obitools; Boyer et al. 2015) as 
described in De Barba et al. (2014). Program ILLUMINA-

PAIREDEND was used to assemble forward and reverse 
reads corresponding to a single molecule. No special 
threshold was applied after the alignment step, the bad 
alignments being removed implicitly during the follow-

ing filtration steps. Subsequently, NGSFILTER identified 
primers and tags and assigned the sequences to each 
sample. This program was used with its default 
parameters tolerating two mismatches for each of the 
two primers and no mismatch for the tags. A separate 
data set was created for each sample by splitting the



For ponds, ditches and mountain lake samples, DNA

extraction was performed following the method

described in Tr�eguier et al. (2014) in a room dedicated to

the analysis of ‘rare DNA’ samples, with the same

requirements as the ‘DNA-free’ room. For the other sites,

the filtration capsules were transported at 4 °C to the

DNA extraction room and then stored at 20 °C. Later,
they were rinsed with 125 mL of resuspension buffer

(50 mM Tris, 10 mM EDTA) and shaken by hand for

5 min. The buffer was emptied into three 50-mL tubes,

and the procedure was repeated once. In total, 250 mL

was retrieved in five tubes and was centrifuged at

15 000 g for 15 min, and the supernatant was removed

with a sterile pipette, leaving 15 mL of liquid at the bot-

tom of the tube. Subsequently, 33 mL of ethanol and

1.5 mL of 3 M sodium acetate were added to each tube.

After manual shaking, the tube was immediately placed

at 20 °C overnight. The remaining DNA extraction

steps were performed following the protocol described

in Tr�eguier et al. (2014). Negative extraction controls

were performed at each DNA extraction session (2 for

amphibian and 6 for fish samples). Those controls were

amplified and sequenced in the same way and in parallel

to the samples to monitor possible contaminations.

DNA amplification, sequencing and analysis of NGS

results were performed following the protocol described

in the ‘In vitro validation of the designed primers’

section, using 12 PCR replicates per DNA sample and

50 PCR cycles instead of 35. PCR-negative controls

(with 12 replicates as well) were performed and

sequenced to detect potential contamination. DNA from

each filter capsule was extracted, amplified and

sequenced separately, but sequencing results were

pooled for each site. The three DNA extracts used by

Thomsen et al. (2012b) were also pooled before the

amplification, and then, they were amplified and

analysed as described above.

The results of the traditional surveys were compared

with those from the eDNA metabarcoding approach.

For this purpose, a unit was considered as an identified

taxon (family, genus or species) for eDNA metabarcod-

ing and as a species for traditional surveys.

Site occupancy analysis

Detection probabilities were calculated for each amphib-

ian species and both methods using site occupancy

models (MacKenzie et al. 2002). All statistical analyses

were performed using R.3.0.2 (R Core Team 2014) and

the package ‘UNMARKED’ (Fiske & Chandler 2011). Site

occupancy models were performed for the 39 amphibian

sites sampled in 2012 2013 (Table S3, Supporting infor-

mation) with the two approaches (traditional, eDNA

metabarcoding) considered as temporal replicates and

and analysis of NGS data) without the effect of 
sampling or extraction protocol, the same DNA extracts 
used by Thomsen et al. (2012b; sea samples) were also 
analysed.

Traditional field survey. For the comparative study, 39 
sites were surveyed for amphibian species in 2012 (16 
sites) and 2013 (23 sites), consisting of cattle ponds, 
ditches and natural field depressions (i.e. temporary 
ponds). During the day, a visual encounter survey was 
performed on the borders of each pond. Amphibians 
(larvae and adults) were also caught using a 4-mm 
mesh hand-net. Sampling duration varied from 10 to 
30 min depending on pond area. From approximately 
10:00 pm (sunset) to 12:00 pm, the ponds were visited 
again and a calling survey was performed. The ponds 
were approached quietly to a distance of approximately 
20 m and, after waiting for 5 min, a 10-min auditory 
survey was conducted. Depending on the site typology, 
sometimes dip netting and visual survey with a 340-
lumens torch was also performed to detect newts. All 
these methods were grouped as ‘traditional survey 
methods’ in the following analysis.
Fish surveys were performed from 2012 to 2014 by 

experienced fish biologists in different aquatic ecosys-
tems (ponds, ditches, streams, lakes and rivers) in 
France and in the Netherlands. According to the 
ecosystem and the Water Framework Directive 
(European Council 2000), recommendations for fish 
monitoring, electrofishing and/or netting protocols 
(fyke, seine, gill) were implemented (Table S4, 
Supporting information).

eDNA metabarcoding survey. For small still-water ecosys-
tems (ponds, ditches and mountain lakes), sampling 
was performed following the protocol described in 
Biggs et al. (2015). For running water (streams and riv-
ers) or large ecosystems (lakes) where DNA is diluted 
in large water volumes, a new sampling strategy was 
tested. This strategy is based on the filtration of up to 
100 L of water on site, using a filtration capsule (Envi-
rochek HV 1 lm; Pall Corporation, Ann Arbor, MI, 
USA), sterile tubing and a peristaltic pump (1.67 L/
min) for each sample. The number of filtrations per site 
depended on the size of the water ecosystem (Table S4, 
Supporting information).

All sampling kits were prepared in a dedicated 
‘DNA-free’ room. This laboratory was equipped with 
positive air pressure, UV treatment and frequent air 
renewal. Laboratory personnel wore full protective 
clothing (disposable coveralls, hood, mask, laboratory-
specific shoes, overshoes and two pair of gloves) that 
was put on in an airlock foyer before entering the 
processing room.



hereafter referred as ‘batra’ and ‘teleo’ (Table 1). They

both amplify a short fragment of the 12S rRNA region.

For each primer pair, Fig. 1 shows (i) sequence logos

illustrating the match between the different primers

and their target sequences for the considered target

group, (ii) statistics about the mismatches for the target

and nontarget groups and (iii) the length of the ampli-

fied fragment (excluding primers). The in silico analysis

demonstrates that the designed primers show a high

taxonomical coverage (i.e. the proportion of species

amplified in the target group; 0.9928 for Batrachia and

0.9855 for Teleostei) and high taxonomical discrimina-

tion (Table S5, Supporting information). Furthermore,

the ‘teleo’ primers perform better concerning taxonomi-

cal coverage and discrimination than the alternative pri-

mer pairs recently proposed in other metabarcoding

studies (Thomsen et al. 2012b; Kelly et al. 2014b). For

comparing the different primer pairs, both the Bc index

and the taxonomic discrimination have to be consid-

ered. For example, despite having a better taxonomic

discrimination (4295 different sequences for 3811 spe-

cies) when compared to the ‘teleo’ primers, the primers

‘Thomsen2’ have a low coverage (Bc) leading to the

nonamplification of more than half of the target fish

sequences. The comparison between the ‘Kelly’ and the

‘teleo’ primers is also interesting: the ‘teleo’ primers not

only have a slightly higher coverage, but also show a

better taxonomic discrimination, despite amplifying a

shorter fragment (Table S5, Supporting information).

The in vitro validation demonstrated that the two pri-

mer pairs successfully amplified the DNA of all

amphibian and fish species in the pooled samples, con-

firming their universality for the studied taxonomic

group. Species-level identification was possible for all

analysed amphibians except for species of the genus

Pelophylax, which are well known to hybridize (e.g.

Pl€otner et al. 2008). For freshwater fish species, 81%

were unambiguously identified to species level, 14% to

genus level (i.e. Carassius, Cottus, Leuciscus, Salvelinus)

and 5% to family level (i.e. Chondrostoma nasus, Chon-

drostoma toxostoma and Telestes souffia). A taxon (species,

genus or family) was ‘unambiguously identified’ if all

the sequences associated with this taxon were not found

in any other taxon. For marine fish species analysed,

68% were identified to species level and 32% to family

level (i.e. Hippoglossoides platessoides, Limanda limanda,

Platichthys flesus, Pleuronectes platessa, Ammodytes mari-

nus, Ammodytes tobianus, Hyperoplus lanceolatus).

In situ validation of the eDNA metabarcoding
approach

Sequencing data analysis. In total, 20 211 018 reads

were obtained (7 655 154 for amphibian samples and

the 39 water bodies as spatial replicates. Analyses were 
performed for all species merged into a single data set 
and for each species separately to assess whether or not 
the relative performance of each method differed among 
species and for all species combined. Models that sys-
tematically included differences in occupancy probabil-
ity between species (‘species’ effect on occupancy 
probability in the model) were fitted. On the detection 
probability, four different models were fitted (constant, 
differences between species, differences between species 
and methods in addition, differences between species 
and methods in interaction). The relative performance of 
these five models was compared using Akaike informa-

tion criteria (Burnham & Anderson 2004).
The number of sites per ecosystem type included in 

the fish survey was found to be insufficient; therefore, 
these data were excluded from this site occupancy 
analysis.

Historical data. To confirm the amphibian detectability 
observed in this study using conventional survey meth-

ods (one visit only), historical survey data for this group 
were examined (55 sites). From 1983 to 2013, in the 
Languedoc-Roussillon region, 983 water bodies were 
submitted to repeated amphibian inventories (at least 
one visit in two different years or two visits during the 
same year) using traditional methods (e.g. diurnal or noc-
turnal visual encounters, dip netting and calling surveys, 
with any combination of these methods). All data are 
stored in a regional database ‘MALPOLON’ hosted at CEFE 
UMR 5175, Biogeography and Vertebrate Ecology team, 
in Montpellier (France) and used for the regional atlas 
(e.g. Geniez & Cheylan 2012). Among these 983 invento-
ried water bodies, 55 sites were selected near the 30 water 
bodies surveyed in 2012 2013 for the comparative study 
(Site 1 30, Table S3, Supporting information). Those 55 
sites were visited at least 10 times since 1995, and at least 
two amphibian species were detected per site. A classical 
site occupancy data set was constructed in which each 
visit was considered to be a temporal replicate and each 
water body/year as a spatial replicate. The data set was 
analysed for all species separately and constructed only 
using the constant model on occupancy and detection 
probability. Once the detection probability was obtained, 
the number of visits required to detect each species with 
a 95% probability was calculated.

Results

Design, in silico and in vitro validation of group-
specific primers

Given the defined constraints, a single primer pair was 
identified by ECOPRIMERS for Batrachia and Teleostei,
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Fig. 1 Results of the in silico validation of the 'batra' and 'teleo' primer pairs. (A) sequence logo of the primer illustrating the quality 
of the match between the primer and its target sequence; (B) combined mismatch analysis of the forward and reverse primers (target 
group in green, nontarget group in red); and (C) length of the amplified fragment (excluding primers). 

12 369 765 for fish samples), corresponding to an 
average of 253 626 per sample. After filtering, 
11 994 052 sequences were retrieved (3 300 203 for 
amphibian samples and 8 527 193 for fish samples). 
After the filtering, all extraction and PCR controls 
analysed were negative. The raw number of reads 
obtained per sample, the number of reads retrieved 
after bioinformatics filtering per sample as well as the 
associated run number are shown in Table S6 
(Supporting information). 

Amphibians. Amphibian species were detected in all 
studied water bodies using the eDNA metabarcoding 
approach and in 89.2% (33/37) using traditional survey 
methods (Table S3, Supporting information). The eDNA 
approach missed the detection of two species (Triturus 
marmoratus and Pelophylax sp.) identified using the tra
ditional survey, in one and two ponds, respectively. By 
contrast, in 64 cases, the traditional method missed the 
detection of species identified using eDNA (all species 
and water bodies together). The detection probability 
for each species using site occupancy models was 
always 1.00 using the eDNA metabarcoding approach 

(Fig. 2 and Table S7, Supporting information), except 
for Pelophylax sp. (P 0.89) and T. marmoratus 
(P 0.91). The detection probability for the traditional 
method was highly variable among species (P 0.20 
1.00). Both methods show the same detection probabil
ity (P 1.00) for Alytes obstetricans and Discoglossus 
pictus, two species inhabiting a single water body. For 
the remaining nine species, the detection probability 
using the eDNA metabarcoding method was always 
higher (P 0.00013, Student's t-test). When all species 
were considered together, the best fitted model 
included the sampling method covariate in addition to 
the species effect. This additive effect demonstrates 
that, considering all sites, eDNA metabarcoding 
improves the detection of all species. Overall, the detec
tion probability with eDNA metabarcoding was 0.97 
(Cl 0.90 0.99) vs. 0.58 (0 0.50 0.63) for traditional 
surveys. Thus, four successive visits at a water body 
are required using traditional methods to achieve the 
same detection probability obtained with a single visit 
using the eDNA metabarcoding approach (1 (1 

0.58)4
) . The analysis of historical data using occupancy 

models demonstrated that the detection probabilities 
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for each species during a single visit varied between 
0.25 and 0.65 (Table S7, Supporting information). When 
the species detection probability is 0.25, 11 visits are 
required to reach a 95% chance of detection, whereas 
four visits are required when the species detection 
probability reaches 0.65. No amphibian species were 
detected using the eDNA metabarcoding and tradi
tional approaches in the ponds that were not suitable 
for amphibians. 

Fish. In 89% of the studied sites, the number of fish 
taxa detected using the eDNA metabarcoding 
approach was higher (-47% of the sites) or identical 
(-42% of the sites) to the number species detected 
using traditional methods. When a taxon was not 
detected using the genetic approach, only a few indi
viduals of this taxon were generally retrieved using 
the traditional survey. However, on many occasions, 
eDNA detected the presence of the taxon even when 
it was present at low effectives (-66% when n < 6). 
Sometimes, the combination of the two methods led to 
a higher number of taxa detected (Fig. 3 and Tables 
S8 SlS, Supporting information). When comparing our 
results with the ones from (Thomsen et al. 2012b), 
using the same DNA samples, 24 taxa were identified 
vs. 15, respectively (Fig. 4 and Table SlS, Supporting 
information). 

In the fishless mountain lakes, no fish species were 
detected using eDNA, and only Salmo trutta was 
detected in the two other control sites. Therefore, no 

Bufobufo 

Bufo calamita 

Hy/a metidiona/is 

Pe/obates cu/fripes 

Pe/odytes punctatus 

Pe/ophylax sp. 

Rana da/ma~na 

Ussottiton he/ve~cus 

Sa/amandra sa/amandra 

Ttiturus mar moratus 

ALL SPECIES 

Fig. 2 Detection probabilities using the 
traditional survey (blue) and eDNA 
metabarcoding approach (green) for each 
amphibian species and for all species 
combined. Error bars represent the confi 
dence intervals of the analyses, and n 
represents the number of detections for 
each method and for each species or all 
species combined. 

false-positive records were generated using the eDNA 
metabarcoding approach. 

Discussion 

Biodiversity assessments are at the basis of numerous 
ecology and conservation issues. In the present study, a 
novel eDNA metabarcoding approach was tested for 
bony fish and amphibian monitoring in a variety of 
water systems. The reliability and efficiency of this new 
method was assessed using in silico, in vitro and in situ 
validations, which emphasized its strengths and 
limitations. 

A powerful tool for aquatic species detection 

Several advantages of the eDNA metabarcoding 
approach proposed here make it a powerful tool for 
ecological studies and aquatic biodiversity monitoring. 
First, species detectability was shown to be superior to 
traditional surveys: the number of species detected per 
site using eDNA was identical or higher than conven
tional survey methods in all cases for amphibians and 
in 89% of the cases for fish . Second, the monitoring 
effort required to infer the amphibian and fish commu
nities is lower using the eDNA approach, allowing an 
increased monitoring efficiency. For instance, the fish 
sampling effort required to reach an identical number 
of detected species in lakes was 3 days using 88 gill 
nets vs. 4 h using the eDNA metabarcoding approach 
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Fig. 3 Number of fish species detected in the seven freshwater ecosystems using historical data (sites 1 4) and traditional surveys 
data (sites 5 22) in blue and environmental DNA metabarcoding approach in green. Gray bars show the total number of species 
detected with the combination of both approaches. 

(three water-filtration samples). For amphibian monitor
ing in Mediterranean ponds, four visits would be 
necessary to obtain similar detectability than with a sin
gle eDNA analysis. Third, this approach causes no dis
turbance to the ecosystem or to the target species, a top 
concern regarding conservation or restoration measures 
and for social and ethic valuation of scientific surveys 
of biodiversity. This noninvasive method, using sterile 
and disposable sampling material, also limits the risk of 
translocations of invasive alien species and pathogens 
during the field step. Fourth, it allows the detection of 
virtually all species of a target taxonomic group without 
a priori knowledge of their presence in the water body. 

This emphasizes the role of eDNA metabarcoding for 
environmental monitoring, including the early detection 
of alien species. Fifth, eDNA metabarcoding can also 
prove very advantageous in habitats where traditional 
methods cannot be implemented because of logistic 
constraints (e.g. low accessibility to the aquatic site) or 
have limited effectiveness (e.g. electric fishing cannot be 
performed in low conductivity waters; Allard et al. 
2014). Sixth, as the primers designed in this study are 
universal for all amphibians and all bony fish species in 
the world, they can be used for global biodiversity 
assessment, allowing the large-scale temporal and 
spatial standardization of the method. 
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Fig. 4 Mean number of fish species in the marine coastal 
ecosystem recorded by nine different conventional survey 
methods in 2009, 2010 and 2011 (Thomsen et al. 2012b) and 
two environmental DNA metabarcoding methods (Thomsen 
et al. 2012b and this study). Error bars represent the standard 
deviation. Figure modified from Thomsen et al. (2012b). 

Importance of the choice of eDNA metabarcoding 
markers 

The importance of marker choice in eDNA metabarcod
ing has recently been emphasized (Coissac et al. 2012; 
Deagle et al. 2014). Because there is no ideal universal 
metabarcode (Riaz et al. 2011), marker choice should be 
specific to the target taxonomic group, and validation is 
required before application of the metabarcoding analy
sis in situ (Deagle et al. 2014). Mitochondrial rRNA 
genes have been recommended for animal identification 
because they have a similar taxonomic resolution as the 
COI marker and they present conserved regions that 
flank variable regions, which allows the design of pri
mers with high-resolution power for the target taxo
nomic group (Deagle et al. 2014). 

The comparison of results obtained using different 
metabarcodes (this study) also underlines the impor
tance of selecting an appropriate marker. For example, 
the primers proposed by Kelly et al. (2014b) or Thomsen 
et al. (2012b) show a lower taxonomic coverage and res
olution compared to the 'teleo' primer pair (Table 5.5, 
Supporting information). However, it should be noted 
that the Thomsen primers were specifically designed to 
estimate local biodiversity in Danish coastal waters. 
Recently, Miya et al. (2015) proposed an alternative 

universal primer pair for the amplification of fish 
species. The amplified fragment, located in the 125 
gene, is nearly twice the size of the amplified fragment 
using 'teleo' primers for only a slightly higher taxo
nomic resolution. We also identified a nearly identical 
universal primer pair using the ECOPRIMERS software dur
ing the course of this study. However, to optimize the 
robustness of the amplification without losing signifi
cant taxonomic resolution, we opted for the shorter 
'teleo' marker, and not for primers similar to those pub
lished by Miya et al. (2015). 

The analysis performed using the same DNA extracts 
from Danish coastal marine fishes as used in Thomsen 
et al. (2012b) detected more fish species than the previ
ous study (24 vs. 15). These results are not simply 
because of the primers used but more generally because 
of a better performance of the metabarcoding approach, 
including the number of PCR replicates (12 vs. 8), the 
sequencing technology used (Illumina Miseq vs. Roche 
454), the sequencing depth (144 851 vs. 20 315 reads) 
and sequence data analysis. 

Limitations of the eDNA metabarcoding approach 

Population structure and size. As with every biodiversity 
assessment technique, the eDNA metabarcoding 
approach proposed here presents some limitations. 
First, the use of this approach does not permit informa
tion of size, developmental stage and sex of the target 
organisms to be obtained. Second, considering that 
mitochondrial DNA is maternally inherited in most 
cases (Giles et al. 1980), it is not possible to distinguish 
hybrids from their maternal species when using this 
eDNA approach. Third, the eDNA approach does not 
easily provide quantitative estimates for the surveyed 
species, whereas density and/or biomass information 
are often required to comply with legal statutes (e.g. 
European Water Framework Directive; European Coun
cil 2000). Some studies have demonstrated a relation
ship between the amount of eDNA and the biomass for 
some species (e.g. Takahara et al. 2012; Thomsen et al. 
2012a), but further studies are required to evaluate this 
relationship in various environments, with a range of 
species densities on different taxonomic groups and 
especially when different life stages excrete DNA to the 
water column simultaneously (juveniles may produce 
more eDNA per biomass than adults because of 
increased metabolism during growth; Klymus et al. 
2015). Therefore, the number of sequences obtained per 
taxon may not be interpreted as quantitative but rather 
as semi-quantitative and can differentiate between 
abundant and rare species (e.g. Pompanon et al. 2012; 
Kelly et al. 2014b). It should be noted, however, that a 
reliable quantification is also difficult using traditional 



group DNA (e.g. fish, amphibians) is most often mini-

mal compared with nontarget DNA (bacteria, phyto-

plankton, etc.). Therefore, to detect rare species in

environmental samples, several millions of reads per

sample would be required. However, even if NGS

becomes more affordable with an ever-increasing num-

ber of produced sequences, the cost of shotgun

sequencing eDNA currently remains too high to be

used routinely in biodiversity monitoring.

Conclusion

This study demonstrated the performance and reliabil-

ity of the novel eDNA metabarcoding approach pro-

posed for ecological studies and for aquatic

biodiversity. It also underlined that eDNA metabar-

coding and traditional approaches can be considered

complementary. If the objective is to obtain a list of

species present in an aquatic ecosystem, including

rare or secretive species, then eDNA metabarcoding is

the most efficient tool. If additional data are required

(development stage, sex, etc.), traditional survey meth-

ods should be used in parallel. In the present study,

the eDNA metabarcoding method was validated for

fish and amphibian surveys, and similar approaches

could be developed for other taxonomic groups. In a

time of global biodiversity loss and substantial envi-

ronmental change, we firmly believe that the pro-

posed approach represents a next-generation tool for

efficient, precise and standardized monitoring of

aquatic biodiversity in various ecosystems. This

approach can therefore deliver key data for address-

ing many fundamental and applied research questions

in ecology.
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methods depending on the studied ecosystem character-
istics because of sampling and identification bias for 
certain species (Miranda & Schramm 2000).

Taxonomic resolution and target group detectability. Taxo-
nomic resolution does not always reach the species 
level. To improve taxonomic resolution, one approach 
is to complement the group-specific primers with one 
or several additional primer pairs specifically designed 
to amplify more discriminant genetic regions for fami-

lies with many closely related species (e.g. Cyprinidae 
or Gadidae).

Additionally, the primers may amplify nontarget 
groups (Fig. 1). To overcome this issue, the use of 
blocking primers for abundant nontarget species (e.g. 
human) is recommended and a high sequencing depth 
is needed to detect rare species of the target group.

Dealing with errors. One of the main challenges associ-
ated with eDNA methods is the risk of false-positive 
and false-negative detections (Darling & Mahon 2011). 
In the present study, precautions were taken in the 
field and in the laboratory to prevent the occurrence 
of such errors (e.g. Dejean et al. 2012; Biggs et al. 
2015), and no false positives were encountered at the 
six control sites. The reliability of the proposed 
method was demonstrated using in silico, in vitro and 
in situ validation tests. Both the set-up of the labora-
tory, which should employ similar rigorous standards 
as those described for ancient DNA laboratories 
(Cooper & Poinar 2000), and the experience of labora-
tory personnel working with rare and degraded DNA 
are key factors that strongly influence the reliability of 
eDNA results.
Another challenge is to properly address errors 

caused by DNA degradation or that are produced 
during the PCR and sequencing steps that can lead to 
taxonomic misidentification. The choice of reliable 
bioinformatics tools (Coissac et al. 2012) is crucial in 
order to deal with this kind of errors. The use of a 
carefully produced local and exhaustive reference 
database for the target group allows avoiding a high 
level of sequencing errors (Harris 2003), mislabelled 
species (Santos & Branco 2012) and a lack of 
sequences for the target genetic region in public 
databases. Additionally, the use of a local reference 
database allows increasing the taxonomic resolution of 
the assigned eDNA sequences (e.g. Taberlet et al. 
2007).

To avoid PCR errors, the amplification step could be 
omitted, and the entire eDNA retrieved from the sam-

ple could be sequenced directly using a shotgun 
approach, as proposed by Mahon et al. (2014). However, 
in natural aquatic ecosystems, the proportion of target
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