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Some results on Sobolev spaces with respect to a measure and
applications to a new transport problem

Jean Louet∗

February 19, 2013

Abstract

We recall some known and present several new results about Sobolev spaces defined with respect
to a measure µ, in particular a precise pointwise description of the tangent space to µ in dimension 1.
This allows to obtain an interesting, original compactness result which stays open in Rd, d > 1, and
can be applied to a new transport problem, with gradient penalization.

Introduction
Let us consider variational problems, consisting in the minimization of

J : u 7→
∫

Ω

L(x, u(x),∇u(x)) dµ(x)

where the usual Lebesgue measure is replaced by a generic Borel measure µ, under possible µ-a.e. or
boundary constraints. In calculus of variations, the direct method consists in extracting a converging
subsequence (in a suitable sense) from a minimizing sequence, thanks to a compactness result on the set
of admissible functions, and to conclude by semi-continuity of the functional J . For our functional, two
problems appear:

• which functional space should we consider in order to give a sense to the gradient ∇u? More
precisely, if µ is the Lebesgue measure or has a density f bounded from above and below, we can
work in the classical Sobolev space H1(Ω) (which is exactly the set of functions u ∈ L2

µ having weak
derivatives in L2

µ), but it is not so clear if this assumption on f does not hold or if µ has a singular
part.

• does there exist a compactness result which allows to extract from a minimizing sequence a sub-
sequence converging, in a suitable sense, to an admissible function? For instance, in the classical
Sobolev space H1(Ω), the Rellich theorem allows to extract from any bounded sequence a strongly-
convergent subsequence in L2(Ω) which is a.e. convergent on Ω.

Let us fix more precisely the notations. Let Ω be a bounded open set of Rd and f a measurable and
a.e. positive function on Ω. If we assume f to be bounded from below and above, it is obvious that the
set

{u ∈ L2
µ(Ω) : ∇u exists in the weak sense and belongs to L2

µ(Ω)d}

is exactly the classical Sobolev space H1(Ω), since the L2
µ-norm is equivalent to the usual L2-norm on Ω.

If f is only assumed to be positive, for u ∈ L2(Ω), the Cauchy-Schwarz inequality gives∫
Ω

|u(x)| dx =

∫
Ω

(
|u(x)|

√
f(x)

) dx√
f(x)

≤
(∫

Ω

|u(x)|2f(x)dx
)1/2 (∫

Ω

dx
f(x)

)1/2

thus, under the assumption
1/f ∈ L1(Ω) (1)
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we have the continuous embedding

L2
f (Ω) :=

{
u :

∫
Ω

|u(x)|2f(x)dx < +∞
}
↪→ L1(Ω).

In this case, any function f ∈ L2
f (Ω) has a gradient ∇u in the weak sense, since it is locally integrable

on Ω, and we can define the weighted Sobolev space with respect to f

H1
f (Ω) =

{
u ∈ L2

f (Ω) : ∇u ∈ L2
f (Ω)

}
.

More generally, if p ∈ ]1,+∞[ , the assumption

(1/f)1/(p−1) ∈ L1
loc(Ω)

is a well-known sufficient condition to define the weighted Sobolev space W 1,p(Ω) with respect to f
(see [10] for more details). For our problem, if the Lagrangian functional is quadratic with respect to the
gradient, for instance

J(u) =

∫
Ω

|∇u|2 dµ,

it means that the set of admissible functions is well-defined if µ has a density f such that 1/f is integrable:
it is the set of the elements of the weighted Sobolev space H1

f satisfying the constraints.
If µ is absolutely continuous with density f , the weighted Lebesgue space with respect to f is exactly

the space Lpµ, so that the space H1
f can be seen as a Sobolev space with respect to the measure µ. A

natural generalization consists in defining the Sobolev space with respect to the measure µ, without
condition on its density or when µ is not anymore assumed to be absolutely continuous with respect
to Ld. There exists some general definitions of the Sobolev space in a generic metric measure space
(X, d, µ) (see [8]), but we will not enter to the details of this notions in this paper and we prefer to focus
on the case of an open set of Rd.

We begin this paper by an overview of the definitions and already known results about this Sobolev
spaces [2, 5, 6, 12, 15, 16], and present several new results: in particular, we give a precise description of
the tangent space to any measure µ on the real line. As a corollary of this result, we show a compactness
result in H1

µ, which states precisely that any bounded sequence admits a pointwise µ-a.e. convergent
subsequence on the set of points where the tangent space is not null (this result is already known in any
dimension under strong conditions on the measure µ, when the compact embedding of the Sobolev space
W 1,p
µ with respect to µ into the Lebesgue space Lpµ still holds; see [3, 9]).
This is applied to a variational problem coming from optimal transportation: we consider the mini-

mization of the functional
J(T ) =

∫
Ω

L(x, T (x), DµT (x)) dµ(x)

among all the maps T : Ω 7→ Rd which admit a Jacobian matrix DµT with respect to µ and under
a constraint on the image measure T#µ (it corresponds to the classical Monge-Kantorovich optimal
transportation problem [14] if L does not depend on its third variable, and is linked to minimization
problems under volume-preservation or area-preservation constraints [1]). In the one-dimensional case,
we get the existence of a solution for any measure µ (the optimal map is known if µ is assumed to be
the uniform measure on the interval, see [11] for details). However, we are not able to give a precise
description of the tangent space and to obtain the existence of solution to this transport problem in the
most general case in any dimension.

1 Sobolev spaces with respect to a measure
This section is devoted to an overview of the definitions and already known results about tangent spaces
to a generic Borel measure µ and Sobolev spaces associated to this measure. First, let us recall that there
exist some notions of Sobolev spaces in arbitrary metric measure spaces (X, d, µ), for instance in the
papers by Shanmugalingam [13], Hajłasz [7] or Hajłasz and Koskela [9] (see [8] for a global summary of
this notions). In our case, a usual method consists in defining the tangent space to µ (which is a function
defined µ-a.e. on Rd and taking values in the set of linear subspaces of Rd), and the gradient with respect
to µ for a regular function u through

∇µu(x) = pTµ(x)(∇u(x)) for µ-a.e. x ∈ Rd,
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where pTµ(x) is the orthogonal projection on Tµ(x) in Rd. Then we consider for the Sobolev space H1
µ

the closure of C∞
(
Ω
)
for the norm

u ∈ C∞
(
Ω
)
7→ ||u||Lpµ + ||∇µu||Lpµ .

There exist several ways to define the tangent space of a generic measure µ. Preiss [12] gives a method
based on the idea of blow-up: a k-dimensional subspace Pµ is said to be an approximate tangent space
of µ at x if we have, for some θ > 0, the following convergence in the vague topology of measure when
ρ goes to 0:

µ(x+ ρ · ) ⇀ θHk|Pµ .
In order to examine variational problems, Bouchitté et al. [2] have introduced a dual-formulation of the
tangent space: it is the µ-ess. union (see [4] or later) x 7→ Qµ(x) of the tangent fields, i.e. the vector
fields belonging to

Xp′

µ = {ϕ ∈ (Lp
′

µ )d : div(µϕ) ∈ Lp
′

µ },
where the operator div(µv) is defined in the distributional sense. Fragalà and Mantegazza [6] have noticed
that, with this notation, we have the inclusion Qµ(x) ⊆ Pµ(x) for µ-a.e. of Rd (see the PhD. thesis [5]
for a complete overview and more details about these definitions).

We are interested in another way to define tangent and Sobolev spaces, introduced by Zhikov [15, 16].
Let Ω be a bounded open set of Rd and µ a finite positive measure on Ω We will say that u ∈ L2

µ belongs
to the space H1

µ if it can be approximated by a sequence of regular functions whose gradients have a limit
in the space L2

µ:

u ∈ H1
µ ⇐⇒ ∃(un)n ∈ C∞(Ω), v ∈ (L2

µ)d :

{
un → u
vn → v

for the L2
µ-norm.

The set of these limits v is denoted by Γ(u), and its elements are called gradients of u. In general, u
can have many gradients (see below the example of a measure supported on a segment of R2), and it is
obvious that Γ(u) is a closed affine subspace of (L2

µ)d with direction Γ(0). The projection of 0 onto this
subspace (in the Hilbert space (L2

µ)d) is thus the unique element of Γ(u) with minimal L2
µ-norm: we call

it tangential gradient of u with respect to µ.
Pointwise description of ∇µu and tangent space to µ. We define the tangent space to µ as follows:
the space Γ(0) can be seen as the set of vector-valued functions which are pointwise orthogonal to the
measure µ. Let us denote by (e1, . . . , ed) the canonical basis of Rd, and set

ξi = pΓ(0)(ei)

where the projection is taken in the Hilbert space L2
µ (here ei is seen as a constant function on Ω). For

x ∈ Ω, we denote by
Tµ(x) = (Vect(ξ1(x), . . . , ξd(x)))

⊥

and call Tµ(x) (which is defined for µ-a.e. x ∈ Ω) the tangent space to µ at x. Then, the following
equivalence holds:

v ∈ Γ(0) ⇐⇒ for µ-a.e. x ∈ Ω, v(x) ⊥ Tµ(x).

This result, combined to the orthogonality property of ∇µu in L2
µ, implies a pointwise description of the

tangential gradient:

Proposition 1.1. Let u ∈ H1
µ. Then, for v ∈ Γ(0), the function

x ∈ Ω 7→ pTµ(x)(v(x))

is independent of the function v and only depends on u, and we have

∇µu(x) = pTµ(x) for µ-a.e. x ∈ Ω.

Some natural examples. We can see that the words “tangential gradients” are quite natural in the
following cases:

• if µ is the Lebesgue measure L1 concentrated on the segment I = [0, 1]× {0} × · · · × {0}, then Tµ
is the line R× {0} × · · · × {0} a.e. on I and

H1
µ =

{
u ∈ L2

µ :
∂u

∂x1
∈ L2

µ

}
and ∇µu =

(
∂u

∂x1
, 0, . . . , 0

)
;
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• more generally, if µ is the uniform Hausdorff measure supported on a k-dimensional manifold M ,
then Tµ is the tangent space to M in the sense of the differential geometry.

Let us remark that, if v is a tangent field as defined above, i.e. the operator div(ϕµ) is continuous for
the L2

µ-norm on D(Ω), we have for any sequence (un)n of smooth functions having 0 for limit in L2
µ:∣∣∣∣∫

Ω

∇un · ϕ dµ
∣∣∣∣ ≤ C ||un||L2

µ
→ 0.

Then, if v ∈ Γ(0), we have v ·ϕ in L2
µ for any element ϕ ∈ X2

µ. We deduce that, with the above notations,
the space Qµ(x) is pointwise orthogonal to Fµ(x): it means that, up to a µ-negligible set, we have the
inclusion between tangent spaces

Qµ(x) ⊆ Tµ(x).

We are not able for the moment to prove the inverse inclusion, but the equality between this linear spaces
holds for all the examples that we have studied.

2 Precise description and compactness result in one dimension

2.1 The main results
Let us now give a precise pointwise description of the tangent space Tµ(x) when d = 1 and Ω is a bounded
interval of R (which we denote by I). In this case, there are only two options for Tµ(x) which are of
course {0} and R, and the definitions of the tangent space give the following characterizations:
Fact. Let B ⊆ I be a Borel set with µ(B) > 0. We have the following implications:

1. if any v ∈ Γ(0) is µ-a.e. null on B, then Tµ = R µ-a.e. on B;

2. if, for any u ∈ H1
µ, there exists a gradient of u which is µ-a.e. null on B, then Tµ = 0 µ-a.e. on B;

3. if there exists a gradient of 0 which is positive µ-a.e. on B, then Tµ = 0 µ-a.e. on B.

Notations. We denote by:

• µ = µa + µs , where µa and µs are respectively the absolutely continuous and the singular part of
µ with respect to the Lebesgue measure;

• A a Lebesgue-negligible set on which is concentrated µs;

• f the density of µa, and

M =

{
x ∈ I : ∀ε > 0,

∫
I∩B(x,ε)

dt
f(t)

= +∞

}

which is a closed set of I verifying 1/f ∈ L1
loc(I \M).

Notice that if µ is absolutely continuous with respect to L1, the Sobolev space with respect to µ (thus,
to f) is well-defined exactly “outside of the set M ”. In our case, we find an analogous result:

Theorem 2.1. For µ-a.e. x ∈ I, the tangent space is given by

Tµ(x) =

{
{0} if x ∈M ∪A
R otherwise.

Let us give a short comment of this result. Saying that the tangent space is R on a set B means
exactly that, if u ∈ H1

µ is given, all the gradients of u are equals on B. In our case, let us denote by
V = I \ (M ∪ A) and U = I \M . Notice that U is an open subset of I coinciding with V up to the L1-
negligible set A. Let us fix u ∈ H1

µ. We will prove that the distributional derivative of u|U is well-defined,
belongs to L2

f and that, if v ∈ Γ(u), u′ = v µ-a.e. on V ; therefore, u′|V is the only gradient of u on the
set V .

First, let us recall that if u is an element of L2
µ, its restriction to U belongs to L2

f (U), which is included
into L1

loc(U) by definition of M . The weak derivative of u|U is thus well-defined. If ϕ is a test function
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with support in U and (un)n a sequence of regular functions such that (un, u
′
n) → (u, v) in L2

µ, testing
v − u′ against ϕ gives

| < v − u′, ϕ >D′(U),D(U) | = lim
n→+∞

∣∣∣∣∫
I

(un − u)ϕ′
∣∣∣∣ ≤ ||un − u||L2

f

(∫
I

(ϕ′)2

f

)1/2

where the last inequality comes from the Hö lder inequality, and the last term is finite since ϕ′ is bounded
and 1/f integrable on the support of ϕ. This proves that u′n → v in the sense of distributions on U .
Then v|U is the weak derivative of u on this set, and we know that v|U ∈ L2

f (U).
Finally, any element u ∈ H1

µ gives by restriction an element of the weighted Sobolev space H1
f (U)

and, on U , ∇µu and u′ are coinciding a.e. for the regular part f Ld of µ. To summarize, we have just
proved the following:

Proposition 2.1. We denote by V = I \ (M ∪ A). Let us recall that A is Lebesgue-negligible and that
V ∪ A is open; we still denote by H1

f (V ) the weighted Sobolev space H1
f (V ∪ A). Then, a measurable

function u belongs to the Sobolev space H1
µ(I) if and only if the two following conditions are satisfied:

u ∈ L2
µ(I) and u|V ∈ H1

f (V )

and in this case, its µ-Sobolev norm is given by

||u||2H1
µ(I) = ||u||2L2

µ(I) + ||u′||2L2
f (V )

where u′ is the weak derivative of u|V .

Compactness result in H1
µ(I). In order to examine variational problems in this Sobolev spaces, the

following compactness result is useful (it is already known in the case of the Lebesgue measure, as a
consequence of the Rellich theorem):

Proposition 2.2. Let (un)n be a bounded sequence of H1
µ(I). Then there exists a subsequence (unk)k

which admits a pointwise limit u on µ-a.e. every point on which Tµ is R.

Proof. We know that V is exactly (up to a µ-negligible set) the set of points where Tµ is R. We still
denote by U = I \M . U is an open set and we have U = V ∪ A. We will show that (un)n admits
a subsequence which is pointwise convergent on L1-a.e. any point of U : it will be enough to conclude
that this subsequence is µ-a.e. convergent on V , since µ|V is absolutely continuous with respect to the
Lebesgue measure.

The sequence (un) is bounded in H1
µ(I), thus the sequence (un|U )n is bounded in the weighted

Sobolev space H1
f . But since U is exactly the set of points around which 1/f is integrable, we know

that L2
f (U) ↪→ L1

loc(U); this implies that the sequence of the weak derivatives of un (which are functions
of L2

f (U)) is bounded in L1
loc(U). Then (un)n is bounded in the Sobolev space W 1,1

loc (U), and admits a
subsequence which is strongly convergent in L1(K), for any compact subset K of I. We can again extract
a subsequence which is pointwise convergent on µ-a.e. point of I; the proof is complete.

2.2 First part of the proof: the regular part, outside of the critical set
First, let us prove that Tµ = R outside of M ∪ A. Using the first characterization of the tangent space,
we take an element g of Γ(0) and we want to show that g = 0 µ-a.e. outside of M ∪ A; by definition
of A, it is enough to show that g = 0 L1-a.e. on U . As in the above remark, taking a sequence of regular
functions un → 0 with u′n → g and a test function ϕ such that 1/f is integrable on the support of ϕ,
we obtain ∣∣∣∣∫

U

u′nϕ

∣∣∣∣ =

∣∣∣∣∫
U

unϕ
′
∣∣∣∣ ≤ ∫

U

∣∣∣un√f ∣∣∣ ∣∣∣∣ ϕ′√f
∣∣∣∣ ≤ (∫

U

u2
nf

) 1
2
(∫

U

ϕ′2

f

) 1
2

which goes to 0 as n→ +∞. The same computation gives
∫
U
u′nϕ→

∫
U
gϕ. We deduce that g = 0 L1-a.e.

2.3 Second part: the singular part of the measure
Second, we prove that Tµ = {0} for the singular part of µ. We use the third characterization of the
tangent space and build a sequence of C1 functions (un)n such that

un → 0 and u′n → 1A in L2
µ.
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where 1A is the characteristic function of the set A; this will prove that 1A ∈ Γ(0) and imply the result.
For n ∈ N, let Ωn be an open set such that A ⊆ Ωn and µ(Ωn \A)+L1(Ωn) ≤ 1/n. By Lusin theorem,

there exists a continuous function vn with 0 ≤ vn ≤ 1 on I and

(µ+ L1)({x ∈ I : vn(x) 6= 1Ωn(x)}) ≤ 1/n

Let us consider u(x) =
∫ x
a
vn(x)dx, where a is the lower bound of I. Then we have:

• for any x ∈ I,

|un(x)| ≤
∫
I

(|vn − 1Ωn |(t) + 1Ωn(t)) dt ≤ L1({vn 6= 1Ωn}) + L1(Ωn) ≤ 2/n

thus (un)n goes to 0 uniformly, and also in the space L2
µ;

• on the other hand, since u′n = vn coincides with 1A outside of a set En such that µ(En) ≤ 1/n,
we have ∫

I

|u′n(x)− 1A(x)|2 dµ(x) ≤ ||vn − 1A||2∞ µ(En) ≤ 4/n

thus u′n → 1A in L2
µ(I).

We obtain that 1A ∈ Γ(0), which guarantees that Tµ = 0 on A.

2.4 Third part: the critical set
This part is more difficult. Given a function u ∈ C1

(
I
)
, we build a sequence (un)n of regular functions

(say, C1) such that un → u and u′n → v for the L2
µ-norm, with v = 0 onM . The strategy is the following:

• given a set Ωn which is “almost” M , we start from a function un which coincides with u outside of
Ωn and is piecewise constant on Ωn (so that its derivative is null on M);

• then, using the fact that the discontinuity points of un belong to M , we regularize un around this
points so that its derivative stays small for the L2

µ-norm.

First, we build our set Ωn:

Lemma 2.1. Let us denote by (xn)n a sequence containing all the atoms of µ. For n ∈ N, there exists
a set Ωn such that:

• Ωn =
pn⋃
i=1

]ai, bi[ , with bi < ai+1 for each i, and ]ai, bi[∩M 6= ∅;

• Ωn ⊇M \ {x1, . . . , xn};

• µ(Ωn \ (M \ {x1, . . . , xn})) ≤ 1/n.

Proof. Let Un be an open set such that M ⊆ Ωn and µ(Un \M) ≤ 1/n (such a set exists since µ is
regular from above); Un is a union of open intervals, and since M is compact we can assume this union
to be finite. We denote by Ωn = Un \ {x1, . . . , xn}. It is still a finite union of open intervals, containing
M \ {x1, . . . , xn} and with µ(Ωn \ (M \ {x1, . . . , xn})) ≤ 1/n. Moreover, we may assume that all these
intervals contain an element ofM : it is enough to remove from Ωn the intervals which do not contain any
element of M (if after that we obtain Ωn = ∅, it means that M ⊆ A and we already know that Tµ = {0}
on A, so there is nothing to prove).

Let us thus take a sequence (gn)n of piecewise constant functions such that gn → u in L2
µ (it is possible

since u is continuous, thus can be approximated uniformly on I by a sequence of piecewise functions) and
||gn||∞ ≤ C, where C only depends on u; we replace gn by u outside of the set Ωn (the new function will
still be called gn), so that we have now

• gn → u in L2
µ;

• gn coincides with u outside of Ωn;

• gn coincides on Ωn with a piecewise constant function.

6



We begin by regularizing gn around the endpoints of the intervals forming Ωn. Let εn > 0 be small
enough so that:

• ai + εn < bi − εn, for each i (we will set a′i = ai + εn and b′i = bi − εn);

• ]a′i, b
′
i[ contains at least an element of M , for each i;

• on ]ai, bi[ , gn has not any discontinuity point outside ]a′i, b
′
i[ ;

• if we denote by Ω′n the union of the intervals ]a′i, b
′
i[ , we have µ(Ωn \ Ω′n) ≤ 1/n.

Lemma 2.2. There exists a function wn coinciding with gn outside of Ωn \ Ω′n, and such that, on each
interval ]ai, a

′
i[ and ]b′i, bi[ ,

• wn and w′n are bounded by constants depending only on u and u′;

• wn(ai) = u(ai), w′n(ai) = u′(ai) and w′n = 0 on a (small) open interval having a′i for upper bound;

• wn(bi) = u(bi), w′n(bi) = u′(bi) and w′n = 0 on a (small) open interval having b′i for lower bound.

Proof. It is enough to replace gn on the interval ]ai, ai + εn[ by the function x 7→ Q(ai + x) where

Q(t) = −u
′(ai)

2εn
t2 + u′(ai)t+ u(ai)

(so that Q(0) = u(ai), Q′(0) = Q′(ai) and Q′(εn) = 0), to scale the new function on the interval ]ai, a
′
i[

by replacing it by

x 7→
{
wn(ai + 2(x− ai)) if ai ≤ x ≤ ai + εn/2

wn(a′i
−

) otherwise

and to make a similar construction on the interval ]bi − εn, bi[.

Since gn and wn are bounded uniformly in n and coincide outside of the set Ωn \Ω′n, whose measure
is at most 1/n, the sequence (wn)n still converges to u in L2

µ; moreover, we have

||w′n||L2
µ(Ωn\Ω′

n) ≤ (2/n)||u′||∞

and for any discontinuity point y of wn, wn is piecewise constant on a (small) neighborhood of y. We
now have to regularize wn around its discontinuity points, which belong to Ω′n; this is possible with a
small cost only if these points belong to the set M . For this reason we are interested by the following
“displacement” procedure of the discontinuity points:

Lemma 2.3. For any n, there exists a function vn such that

• vn = wn outside of Ω′n;

• vn is still piecewise constant on Ω′n;

• any discontinuity point of vn belongs to M ;

• vn → u in L2
µ.

Proof. We have to modify wn only on each interval ]a′i, b
′
i[ . On this interval, the number of discontinuity

points of wn is finite; we denote these points by a′i ≤ x1 < · · · < xn = b′i. We make the following
construction:

• Let m = inf([a′i, b
′
i] ∩ M). We define vn on the interval [a′i,m[ (if it is nonempty) by setting

vn = wn(a′i
+

).

• Then we reiterate the construction starting from m:

– if ]m, b′i[∩M = ∅, we set vn = wn(b′i
−

) on this interval, and we are done;

– otherwise, let m′ = inf( ]m, b′i[∩M). We have naturally m′ ≥ m. If m ≥ xn, then we set
vn = wn(b′i

−
) on ]m′, b′i[ ,wn on [m,m′[ and we are done;

– if m = m′ < xn, then we denote by j the smallest index such that xj > m, we set vn = wn on
[m,xj [ and we reiterate this construction starting from xj ;
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– finally, if m < m′ < xn, we set vn = wn on [m,m′[ and we reiterate this construction starting
from m′.

With this construction, wn−vn 6= 0 only on Ω′n and outside of the setM . Since µ(Ω′n \M) ≤ 1/n and
wn, vn are uniformly bounded, we get ||vn −wn||L2

µ
≤ C/n, and we thus still have vn → u. Moreover, by

construction, vn is still piecewise constant on the set Ω′n and all its discontinuity points belong to M .

To finish, we have to modify vn around each discontinuity point, so that the new function un is regular
and admits a derivative which is small for the L2

µ-norm. This is possible thanks to the following result
about embeddings between functional spaces:

Lemma 2.4. Let J a bounded interval of R, and µ a finite measure on J with density f > 0. The
following assertions are equivalent:

1. The function 1/f belongs to L1(J)

2. The space L2
µ(J) is continuously embedded into L1(J)

Proof. The direct implication is obvious and comes directly from the Cauchy-Schwarz inequality. For the
converse one, let us assume that

∫
J

1/f = +∞ and set

En =

{
t ∈ J :

1

n+ 1
≤ f(t) <

1

n

}
and ln = L1(En).

We know that
∑
n
ln < +∞ (it is the length of J) and

∑
n

nln =
∑
n

∫
J

n1{n−1≤1/f≤n} ≥
∑
n

∫
J

1

f
1{n−1≤1/f≤n} ≥

∫
J

1

f
= +∞

thus
∑
n
nln = +∞. We will build a function U which is constant on each set En, belongs to L2

µ and does

not belong to L1. If we denote by un the value of U on En, it is equivalent to find a sequence (un)n
verifying ∑

n

u2
n (nln) < +∞ and

∑
n

|un| ln = +∞

To summarize, we want to prove the following statement: for any sequence (ln)n of positive numbers
such that

∑
n
nln = +∞ and

∑
n
ln < +∞, there exists a sequence (un)n of positive numbers such that∑

n
u2
n(nln) < +∞ and

∑
n
nun = +∞. By contraposition, it is equivalent to the following: for any

sequence (ln)n of positive numbers such that
∑
n
ln < +∞, if the following implication holds:

(∑
n

u2
n (nln) < +∞

)
⇒

(∑
n

ln|un| < +∞

)

then we have
∑
n
nln < +∞. This result can be seen as a corollary of the Banach-Steinhaus theorem.

Denoting by `2nln the space of sequences (un)n such that
∑
n
u2
n (nln) < +∞, the operator

TN : u ∈ `2nln 7−→
N∑
n=0

lnun

is linear continuous with norm
(

N∑
n=0

nln

)1/2

and the assumption about (ln)n is equivalent to

∀u ∈ `2nln sup
N∈N
|TN (u)| < +∞.

By Banach-Steinhaus theorem, we get sup
N∈N
||TN || < +∞ and

∑
n∈N

nln < +∞; the proof is complete.
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End of the proof of Theorem 2.1. Thanks to the two last lemmas, we are now able to transform the
function wn into a C1 function un, which will provide us our approximation of u. Let us recall that vn
coincides with u outside Ωn, is piecewise constant on Ω′n, all its discontinuity points are located inM and
each of this points admits a neighborhood where v′n is null. Denoting by y1 < · · · < yp the discontinuity
points of vn, we find εn such that, for each j, vn is constant on ]yj − εn, yj [ and ]yj , yj + εn[ . Moreover,
we have:

p∑
j=1

µ( ]yj − εn, yj + εn[ ) ≤ 2pεn +

p∑
j=1

µ({yj}).

We take εn small enough so that 2pεn ≤ 1/n. On the other hand, since each yj does not belong to the
set {x1, . . . , xn} of the “big atoms” of µ, we have

p∑
j=1

µ({yj}) ≤
∑
k≥n

µ({xk}).

Therefore,

µ

 p⋃
j=1

]yj − εn, yj + εn[

 −−−−−→
n→+∞

0.

On the interval ]yj − εn, yj + εn[ , thanks to Lemma 2.4, L2
µ is not embedded into L1, thus we can find a

regular function gj such that∫ yj+εn

yj−εn
gj = vn(y+

j )− vn(y−j ) and
∫ yj+εn

yj−εn
g2
j dµ ≤

1

nq
.

Then, we set

un(x) =

{
ṽn(yj − εn) +

∫ x
yj−εn gj if yj − εn ≤ x ≤ yj + εn

vn(x) otherwise.

This functions un form our desired approximation of u:

Proposition 2.3. This sequence (un)n satisfies un → u and u′n → v in the space L2
µ, where

v(x) =

{
u′(x) if x /∈M or is an atom of µ
0 otherwise.

Consequently, Tµ = {0} µ-a.e. on M .

Proof. We know that vn → u, thus un → u in the space L2
µ outside of the intervals ]yj − εn, yj + εn[ .

But since the total mass of these intervals goes to 0 and (un)n is uniformly bounded, we get un → u. For
the derivative, since un = u outside of Ωn, we have

||u′n − v||2L2
µ

= ||u′n − v||2L2
µ(Ωn) = ||u′n − v||2L2

µ(Ωn\M) + ||u′n − v||2L2
µ(M\{x1,...,xn})

where the first term goes to 0 (since (un)n is uniformly bounded and µ(Ωn \M) goes to 0); for the second
one, we have v = 0 onM , thus it is enough to prove that u′n goes to 0 for the L2

µ-norm onM \{x1, . . . , xn};
this term is bounded by

||u′n||2L2
µ(Ω′

n\{y1,...,yp}) +

p∑
j=1

u′n(yj)µ({yj}).

Since (u′n)n is uniformly bounded, we know that the second term goes to 0, and since un is constant
outside of the intervals ]yj − εn, yj + εn[ the first one is equal to

p∑
j=1

∫ yj+εn

yj−εn
g2
jdµ

which, by definition of gj , is smaller than 1/n. This completes the proof.
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3 Application to a transport problem with gradient penalization

3.1 Problem statement, and the easiest case
We investigate the following problem, which is somehow intermediate between optimal transportation
and elasticity theory:

inf

{∫
Ω

(|T (x)− x|2 + |∇T (x)|2)dµ(x)

}
,

where the infimum is taken among all maps T : Ω → Rd with prescribed image measure T#µ = ν
and admitting a Jacobian matrix ∇T in a suitable sense. Contrary to the Monge-Kantorovich optimal
transport problem, if µ has a density f bounded from above and below, then the existence of a solution
is obvious and comes from the direct method of the calculus of variations; more precisely:

Proposition 3.1. Let f : Ω → Rd a measurable function such that 0 < c < f < C < +∞ for some
constants c, C > 0. Let ν ∈ P(Rd). We assume that there exists at least one Sobolev transport map
between dµ = f · dLd and ν. Then the problem

inf

{∫
Ω

(|T (x)− x|2 + |∇T (x)|2)f(x) dx : T ∈ H1(Ω), T#µ = ν

}
admits at least one solution.

Proof. Let (Tn)n be a minimizing sequence. We can extract from (Tn)n a sequence having, thanks to the
Rellich theorem, a strong limit T in L2, and we also can assume that Tn → T L1-a.e. on Ω, thus µ-a.e.
on Ω. Then for any function ϕ ∈ Cb(Rd) we have

∀n ∈ N
∫

Ω

ϕ(Tn(x)) dµ(x) =

∫
Rd
ϕ(y) dν(y).

Thanks to the pointwise µ-a.e. convergence of (Tn)n, we can pass to the limit in the left-hand-side of this
equality, which gives

∀ϕ ∈ Cb(Rd)
∫

Ω

ϕ(T (x)) dµ(x) =

∫
Rd
ϕ(y) dν(y)

and T satisfies the constraint on the image measure. Moreover, the functional that we consider is of course
lower semicontinuous with respect to the weak convergence in H1(Ω), and T minimizes our problem.

3.2 The general formulation, and the one-dimensional case
If µ is a generic Borel measure, we replace the term with the jacobian matrix of T by ∇µT , so that our
problem is now written

inf

{∫
Ω

(|T (x)− x|2 + |∇µT (x)|2) dµ(x) : T ∈ H1
µ(Ω)

}
. (2)

The existence of solutions is not clear in general. In the case of the classical Sobolev space H1(Ω), we
have seen that the key point to prove the existence is the following: from any minimizing sequence (Tn)n
we can extract a sequence which converges Ld-a.e. on Ω, and this is enough to obtain that the limit is
admissible. This is not possible in general, since we don’t have any equivalent of Rellich compactness
theorem for the Sobolev spaces with respect to a generic measure µ.

In the one-dimensional case, if µ is the Lebesgue measure, it is known that the monotone transport
map between L1 and ν is optimal for the problem (2) (see [11]). This result does not hold if we do not
make any assumption of µ, but we can get an existence result thanks to the µ-a.e. compactness result of
the second section:

Theorem 3.1. In dimension 1, the problem (2) admits at least one solution.

Proof. Let us begin by rewriting precisely the functional that we consider in this case: we know that
Tµ = {0} on M ∪A and R on V , so that we are now minimizing

J : U ∈ H1
µ(I) 7−→

∫
V

((U(x)− x)2 + U ′(x)2)f(x) dx+

∫
M∪A

(U(x)− x)2 dµ(x).
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Let (Un)n be a minimizing sequence. On the set V , which is exactly the set where Tµ is R, we can extract
from (Un)n a µ-a.e. (which means L1-a.e. wherever f 6= 0) pointwise convergent subsequence, whose limit
is denoted by U ; let us remark that U is the weak limit of (Un)n (up to a subsequence) in the space H1

f ,
and by semicontinuity, we have∫

V

((U(x)− x)2 + U ′(x)2)f(x)dx ≤ lim inf

(∫
V

((Un(x)− x)2 + U ′n(x)2)f(x) dx
)
.

Moreover, let us set, for n ∈ N, νn = (Un)#(µ|M∪A) and Ũn the optimal transport map for the Monge-
Kantorovich quadratic cost between the measures µ|M∪A and νn. It is well-known that Ũn is the unique
nondecreasing transport map between µ|M∪A and νn; because of compactness properties of nondecreasing
maps, we can assume that (Ũn)n admits, for the µ-a.e. convergence, a limit Ũ . For any n, thanks to the
optimality of Ũn, we have∫

M∪A
(Ũn(x)− x)2 dµ(x) ≤

∫
M∪A

(Un(x)− x)2 dµ(x)

and by semicontinuity∫
M∪A

(Ũ(x)− x)2 dµ(x) ≤ lim inf

(∫
M∪A

(Un(x)− x)2 dµ(x)

)
.

Thus, if we denote by

Tn(x) =

{
Un(x) if x ∈ V
Ũn(x) if x ∈M ∪A and T (x) =

{
U(x) if x ∈ V
Ũ(x) if x ∈M ∪A

we have Tn → T µ-a.e. on I, and

J(T ) ≤ lim inf

(∫
V

((Un(x)− x)2 + U ′n(x)2)f(x) d
)

+lim inf

(∫
M∪A

(Un(x)− x)2 dµ(x)

)
= lim inf J(Un)

where (Un)n is a minimizing sequence for J on the set of H1
µ transport maps between µ and ν. Thus,

it is enough to prove that T satisfies the constraint on image measure to conclude. But for each n, by
construction, (Tn)#µ = ν and the µ-a.e. convergence allows to obtain the same for the limit T ; the proof
is complete.

Remark. This result can be generalized to any functional J : U 7→
∫

Ω
(L1(x, U(x))+L2(∇µU(x))) dµ(x),

where L1 and L2 have one of the following forms:

• L1 is a transport cost such that the nondecreasing map is optimal for the Monge-Kantorovich
problem: it is the case if L1(x, u) = h(|x− u|), where h is a convex function. Let us notice that in
particular the statement holds if we study the problem of minimization of the norm of the gradient
among all Sobolev transport maps (this corresponds to L1 = 0). Of course we need to assume that
the class {

U ∈ H1
µ : U#µ = ν and

∫
Ω

L1(x, U(x)) dµ(x) < +∞
}

is nonempty (to guarantee that J 6≡ +∞ on the set of admissible functions). Thanks to the
quadratic structure of H1

µ, this is automatically the case if L1 is the quadratic cost and there exists
a Sobolev transport map.

• L2 is “quadratic”, so that the space where we study the problem is actually the Sobolev space
H1
µ. The natural cases are L2(∇µU) = |∇µU |2 or |∇µU − Id|2, where Id is the identity matrix (in

this last case, we can consider the functional U 7→ ||U − id||H1
µ
, which is a Sobolev version of the

quadratic transport problem where we minimize ||U − id||L2
µ
).

3.3 Difficulties and partial results in any dimension
As we said in the second section of this paper, we don’t have a precise pointwise description of the µ-
Sobolev space H1

µ(Ω) if Ω is an open set of Rd, which was the key point for the compactness result. More
precisely, the following results still hold in any dimension:
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• Outside of the set

M =

{
x ∈ Ω : ∀ε > 0,

∫
Ω∩B(x,ε)

dx
f(x)

= +∞

}
we have Tµ = Rd, a.e. for the regular part of µ. The proof is identical to the one-dimensional case,
based on the Cauchy-Schwarz inequality and the embedding L2

f (Ω \M) ↪→ L1
loc.

• Of course, we don’t have anymore Tµ = 0 for the singular part of µ: for instance, if µ is uniform and
supported on a segment, then µ is singular, and we know that dimTµ = 1 on any point. However,
the tangent space on the atoms of µ is known:

Proposition 3.2. If x0 is an atom of µ, then Tµ(x0) = {0}.

Proof. Let us prove it if x0 = 0. We want to build a sequence of functions (un)n such that

un → 0 and ∇un → e1{0}

where e is an arbitrary unit vector (this shows that any unit vector belongs to the space Tµ(0)⊥,
thus Tµ(0) = {0}). For this goal, let us consider a smooth cutoff function χ such that 0 ≤ χ ≤ 1
and

χn(x) = 1 if 0 ≤ |x| ≤ 1 and χn(x) = 0 if |x| ≥ 2

and we denote by χn(x) = χ(nx). We then set un(x) = 〈x, e〉χn(x) and show that (un)n is the
function that we are looking for. First, noting that un(0) = 0, that un is null outside of B(0, 2/n)
and that 0 ≤ un ≤ 1 for any n, we have

||un||L2
µ

= ||un||L2µ(Ω\x0) ≤ µ(B(0, 2/n))− µ({0})

which goes to 0 as n→ +∞; this gives us un → 0 in L2
µ. Second, for any n, we have

∇un(x) = χn(x) e+ 〈e, x〉∇χn(x) = χn(x) e+ 〈e, x〉n∇χ(nx).

Let us notice that ∇un(0) = e for any n, thus it is enough to prove that ||∇un||L2
µ(Ω\{0}) → 0. But

χn and ∇χn are null outside of B(0, 2/n) and if 0 < |x| ≤ 2/n we have

|∇un(x)| ≤ |e||χ(nx)|+ |〈e, x〉|n|∇χ(x)| ≤ C(1 + n|x|) ≤ 3C

where C is an upper bound of χ and∇χ. Thus, (∇un)n is uniformly bounded by a positive constant,
and ∇un−e1{0} is supported on the set B(0, 2/n)\{0} whose measure µ goes to 0. This completes
the proof.

• Finally, we can prove that there exists absolutely continuous measure µ such that Tµ is neither {0}
nor Rn on any point of Ω. We provide an explicit example:

Proposition 3.3. Let be g : ]0, 1[→ ]0,+∞[ such that
∫
J
g = +∞ for any open interval J ⊆ ]0, 1[ .

Let Ω = ]0, 1[ 2, f : (x, y) ∈ Ω 7→ g(x), and µ the measure with density f . Then the tangent space is
the vertical line R · e2 on µ-a.e. point of Ω.

Proof. We first show that Tµ(x) is at most one-dimensional on µ-a.e. x ∈ Ω. Let be u(x, y) = x.
Since the tangent space of the measure g(x) ·L1 on ]0, 1[ is {0}, we can find a sequence of functions
(wn)n such that ∫ 1

0

|wn(x)− x|2g(x)dx→ 0 and
∫ 1

0

|w′n(x)|2g(x)dx→ 0

and we denote by un(x, y) = wn(x). It is clear that ∇un → 0 and un → u in L2
µ. Then, ∇u = (1, 0)

but ∇µu = (0, 0) µ-a.e. on Ω. This would impossible if Tµ was R2 on a non-negligible set of Ω.
We now have to show that R · e2 is included to Tµ(x) for µ-a.e. x. For this, we prove that any
element v = (v1, v2) of Γ(0) satisfies v2 = 0. Indeed, we have v2 = lim ∂2un with un → 0. For
any test function ϕ, integrating by parts with respect to y (since the density of µ depends only on
x) gives ∫

Ω

∂2unϕ dµ = −
∫

Ω

un∂2ϕdµ

which goes to 0 since un → 0 in L2
µ. This gives

∫
Ω
v2ϕ dµ = 0 for any ϕ ∈ D(Ω), thus v2 = 0, and

the proof is complete.
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This shows that we cannot hope to obtain a compactness result analogous to the one-dimensional
case, where any bounded sequence in H1

µ has a subsequence which converges on µ-a.e. x such
that Tµ(x) 6= {0}: it is enough to take a sequence of functions (un)n depending only on x and
non-compact for the a.e. convergence.
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