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On the Oseen vortices in dimension N = 2 for the

inhomogeneous Navier-Stokes equations for radial initial

density

Boris Haspot ∗

Abstract: This paper is dedicated to the proof of the existence of Lamb Oseen vortex
for the inhomogeneous Navier-Stokes equation when N = 2. We restrict our study to
the case of radial initial data ρ0 which belongs to Cα(R2) with 0 < α < 1. To do this
we recall the construction of fundamental solution for reaction diffusion equations. We
point out that when ρ0 6= 1, our Lamb Oseen solution are not self similar. We prove
also that the vorticity of inhomogeneous Navier-Stokes equations (when curlu0 is radial
and in L1(R2)) converges asymptotically in time to the Oseen solution of Navier Stokes
equation provided that the fluctuation of the initial density is sufficiently small.

1 Introduction

In this paper, we are concerned with the following model of incompressible viscous fluid
with variable density:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u+∇Π = 0,

divu = 0,

(ρ, u)/t=0 = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ RN stands for the velocity field and ρ = ρ(t, x) ∈ R+ is the density,
Du = 1

2(∇u +t ∇u) is the strain tensor. We denote by µ the viscosity coefficients
of the fluid, which is assumed to satisfy µ > 0. The term ∇Π (namely the gradient
of the pressure) may be seen as the Lagrange multiplier associated to the constraint
divu = 0. We supplement the problem with initial condition (ρ0, u0) and an outer force
f . Throughout the paper, we assume that the space variable x ∈ RN or to the periodic
box TNa with period ai, in the i-th direction. We restrict ourselves to the case N = 2.
The equations (1.1) are invariant under the sealing transformation:

ρ(t, x)→ ρ(λ2t, λx); u(t, x)→ λu(λ2t, λx) and curlu(t, x)→ λ2u(λ2t, λx), λ > 0.
(1.2)
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We observe that the vorticity equation can be rewritten as follows:

∂tρ+ div(ρu) = 0,

∂tcurlu+ u · ∇curlu− µdiv(
1

ρ
∇curlu) +∇⊥(

1

ρ
) · ∇Π = 0,

divu = 0,

(ρ, u)/t=0 = (ρ0, u0),

(1.3)

with ∇⊥ = (−∂2, ∂1). Let us recall now some classical results for the Navier-Stokes
equations in dimension N = 2.

1.1 Classical results of global strong solution for the Navier-Stokes
equations

For the Navier Stokes equation, it is well known that there exists global self similar
solution when N = 2. In order to obtain such solution, the main difficulty consists in
proving the existence of global strong solution for initial vorticity in a functional space
X which is invariant for the norm by the scaling of the equation (1.2). In addition X
must be sufficiently large such that he admits homogeneous initial velocity of order −1.
A natural candidate is the space M(R2) of all finite measures on R2, equipped with the
total variation norm. The existence of global solution with initial data was first proved
by Cottet [7] and independently by Giga, Miyakawa and Osada [20]. In [20], the authors
proved also the uniqueness when the atomic part of the initial vorticity is sufficiently
small. Let us mention that the Navier-Stokes equations are well-posed for any large
initial vorticity when curlu0 ∈ L1(R2) (see [4]). All the previous results use in a crucial
way the bound of the L1 norm of the vorticity for t > 0, this is a consequence in some
sense of the maximum principle.
In the particular case where µ = αδ0 for α ∈ R and (ρ = 1 the Navier Stokes equation)
there exists a particular self similar solution, the so called Lamb-Oseen vortex given by:

curlu(t, x) =
α

t
G(

x√
t
), u(t, x) =

α√
t
vG(

x√
t
), x ∈ R2, t > 0, (1.4)

where:

G(ξ) =
1

4π
e−
|ξ|2
4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(1− e−

|ξ|2
4 ), ξ ∈ R2.

In [16], Gallay and Wayne showed the uniqueness of the Lamb-Oseen solution by rewriting
the system in self similar variables and using Lyapounov functions for the Fokker-Planck
equations combined with the so called log Sobolev inequalities and Csiszár-Kullback
inequalities (see [26]). We refer also to [15] for an another proof using symetrization
techniques for parabolic equations The uniqueness for any curlu0 ∈ M(R2) is proved in
[14], it allows to obtain the existence and the uniqueness of global self similar solution
when N = 2.

1.2 Results of global strong solution for the non homogenous Navier-
Stokes equations

Compared with the homogeneous Navier-Stokes equation (ρ = 1), to obtain self similar
solutions seems more tricky. Indeed it is not clear due to the term ∇⊥(1ρ) · ∇Π in (1.3)
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that the L1 norm of the vorticity curlu remains bound in L1 norm all along the time.

Similarly if we try to show the existence of global self similar solution with u0 ∈ B
N
p
−1

p,∞
small enough (which corresponds to the results obtained in [6] for the Navier-Stokes

equation) and ρ0−1 ∈ B
N
p
p,∞∩L∞, then it seems difficult to propagate the regularity B

N
p
p,∞

on the density via the mass equation. Indeed the velocity u will be a priori log Lipschitz
and it will involve a loss of derivative on the density (see [21] for more development on
this question, where we prove the existence of global strong solution for initial data small

enough in (B
N
p
+ε

p,∞ ∩ L∞)×B
N
p
−1

p,∞ ).
Danchin in [9] proved the local wellposedness of the system (1.3) if the initial data

(ρ0 − 1, u0) are in the critical Besov space B
N
p

p,1 ×B
N
p
−1

p,1 for 1 ≤ p ≤ N . Furthermore the

solution is global if the initial data are sufficiently small in B
N
p

p,1 ×B
N
p
−1

p,1 . The smallness
assumption for the initial density in [9] the smallness assumption on the fluctuation of
the initial density was removed in [1, 2], and in [10] the authors extends the result of
[9] to the case 1 ≤ p < 2N . In [21], we generalize the result of [6] to the case of the
inhomogeneous Navier-Stokes equation by allowing to the initial velocity to belong to

B
N
p
−1

p,r with 1 ≤ r ≤ +∞ and p well chosen. By opposite we need to require to be
slightly subcritical in terms of regularity for the fluctuateion of the density which must

be in B
N
p
+ε

p,r ∩ L∞ with ε > 0. Danchin and Mucha in [10] introduced the Lagrangian
approach and proved the existence global strong solution for small initial data with

(ρ0 − 1, u0) ∈ M(B
N
p
−1

p,1 ) × B
N
p

p,1 ( M(B
N
p
−1

p,1 ) corresponds here to the multiplier set of

B
N
p
−1

p,1 ). This result is very interesting since it allows to the authors to deal with initial
density which are not necessary continuous. We refer also to [11, 18, 8] for some extensions
of this previous results.
To finish let us recall that (1.1) is globally well-posed in dimension N = 2 (see [3], see also
more recently [8]), the question remains open for general viscosity coefficients depending
on the density.

1.3 Fundamental solution for parabolic system and Parametrix

In the present paper we wish to exhibit Lamb Oseen solution for the non homogeneous
Navier-Stokes equation when N = 2. It means solutions such that the initial vorticity
corresponds to αδ0 with α ∈ R. As we explained previously the term ∇⊥(1ρ) ·∇Π in (1.3)

prevents any L1 control of the voracity all along the time. It is then natural to search
solution such that ∇⊥(1ρ) · ∇Π = 0. To do this, we can assume geometrical condition on
the velocity and the density, more precisely we are going to consider rotationally invariant
initial data of the form:

ρ0(x) = ρ0(|x|) and u0(x) = ∇⊥ψ(|x|), (1.5)

with 1
ρ0
∈ L∞(R2). It is important to observe that this choice of initial density does not

allow to obtain the existence of global self similar solution since ρ0 should be homogeneous
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of degree 0. Let us search now solution of (1.1) verifying the following property:

ρ(t, x) = ρ(t, |x|) and u(t, x) = ∇⊥ψ1(t, |x|) =
x⊥

|x|
ψ′1(t, |x|), (1.6)

with ψ1 a radial function. We observe then at least heuristically that via the mass
equation, the density is stationary and verifies for all t > 0:

ρ(t, |x|) = ρ0(|x|). (1.7)

Furthermore the velocity and the vorticity u and curlu verify:
ρ0∂tu− µ∆u = 0,

divu = 0,

u(0, ·) = u0.


∂tcurlu− µdiv(

1

ρ0
∇curlu) = 0

divu = 0,

curlu(0, ·) = curlu0.

(1.8)

We observe in particular that for such initial data curlu verifies a linear heat equation
and conserve the mass L1 at least if curlu0 is positive (it suffices to apply the maximum
principle). More generally we have for all t > 0:

‖curlu(t, ·)‖L1(R2) ≤ ‖curlu0‖L1 . (1.9)

Now we are interested in constructing Lamb Oseen solution which corresponds to the
case where curlu0 = αδ0 with δ0 the Dirac measure.
To do this, we are interested in constructing the fundamental solution associated to the
equations (1.8). We assume now that ρ0 verifies the following conditions:

ρ0(x) = ρ0(|x|) ∀x ∈ R2,

1

ρ0
∈ L∞(R2), ρ0 ∈ L∞,

∃C > 0, ∀(x, y) ∈ R2 | 1

ρ0(x)
− 1

ρ0(y)
| ≤ C|x− y|α with 0 < α < 1,

for i ∈ {1, 2} ∃Ci > 0, ∀(x, y) ∈ R2 |xiρ
′
0(|x|)

ρ20(x)
− yiρ

′
0(|y|)
ρ20(y)

| ≤ Ci|x− y|α

with 0 < α < 1,

(1.10)

We are going now to recall some results due to A. Friedman and Ladyzenskaya et al (see
[12, 24]) on the construction of the fundamental solution for linear parabolic equations.
More precisely we wish to solve the following equation:

∂tZ(x, ξ, t, τ)− µdiv(
1

ρ0
∇Z)(x, ξ, t, τ) = δ(x−ξ)δ(t−τ). (1.11)

with Z the fundamental solution of (1.8). We have in particular for any continuous
function f with compact support:

lim
t→τ

∫
R2

Z(x, ξ, t, τ)f(ξ)dξ = 0. (1.12)
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This implies that the initial data associated to Z(x, ξ, t, 0) is δ0.
We define now a parametric (this method is due to E. E. Levi (see [24]):

Z0(x− ξ, ξ, t, τ) =
ρ0(|ξ|)

4µπ(t− τ)
exp

(
− ρ0(|ξ|)

4µ(t− τ)
|x− ξ|2

)
, (1.13)

with Z0(x− ξ, ξ, t, τ) = 0 when t < τ . We know in particular that:

∂t[Z0(x− ξ, ξ, t, τ)]− µ

ρ0(|ξ|)
∆xZ0(x− ξ, ξ, t, τ) = δ(x− ξ)δ(t− τ). (1.14)

We define now the following kernel:

K(x, ξ, t, τ) = µ(
1

ρ0(|ξ|)
− 1

ρ0(|x|)
)∆xZ0(x− ξ, ξ, t, τ) + L1(x, t,

∂

∂x
)Z0(x− ξ, ξ, t, τ),

(1.15)
with:

L1(x, t,
∂

∂x
)Z0(x− ξ, ξ, t, τ) = −µ∇(

1

ρ0
)(x, t) · ∇xZ0(x− ξ, ξ, t, τ). (1.16)

We deduce that:

∂t[Z0(x−ξ, ξ, t, τ)]−µdivx(
1

ρ0
∇x[Z0(x−ξ, ξ, t, τ)]) = δ(x−ξ)δ(t−τ)+K(x, ξ, t, τ). (1.17)

We search now a solution Z(x, ξ, t, τ) of (1.11) under the following form:

Z(x, ξ, t, τ) = Z0(x− ξ, ξ, t, τ) +

∫ t

τ
dλ

∫
R2

Z0(x− y, y, t, λ)Q(y, ξ, λ, τ)dy. (1.18)

Assume that Q is a function satisfying a Hölder condition in (y, λ) then we have when
we set Z ′(x, ξ, t, τ) =

∫ t
τ dλ

∫
R2 Z0(x− y, y, t, λ)Q(y, ξ, λ, τ)dy:

∂t[Z
′(x, ξ, t, τ)]−µdivx(

1

ρ0
∇xZ ′(x, ξ, t, τ)) = Q(x, ξ, t, τ)+

∫ t

τ
dλ

∫
R2

K(x, y, t, λ)Q(y, ξ, λ, τ)dy.

(1.19)
From (1.17), (1.18), (1.19) we deduce that (1.11) is verified if Q is solution of the following
Volterra equation:

Q(x, ξ, t, τ) +

∫ t

τ
dλ

∫
R2

K(x, y, t, λ)Q(y, ξ, λ, τ)dy +K(x, ξ, t, τ) = 0. (1.20)

Proposition 1.1 There exists a solution Q of (1.20) with:

Q(x, ξ, t, τ) =

+∞∑
m=1

(−1)mKm(x, ξ, t, τ), (1.21)

where Km is defined as follows:

Km(x, ξ, t, τ) =

∫ t

τ
dλ

∫
R2

K(x, y, t, λ)Km−1(y, ξ, λ, τ)dy. (1.22)

In addition there exists c, C > 0 such that for any (x, ξ, t, τ):

|Q(x, ξ, t, τ)| ≤ c(t− τ)−
4−α
2 exp(−C |x− ξ|

2

t− τ
). (1.23)
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proof: We refer to [24], where the authors prove that there exists c, C > 0 such that for
any m ≥ 1:

|Km(x, ξ, t, τ)| ≤ cm(
π

C
)m−1

Γm(α2 )

Γ(mα2 )
(t− τ)

mα−4
2 exp(−C |x− ξ|

2

t− τ
). (1.24)

The series in (1.21) is then uniformly convergent and we obtain (1.1). �

Let us now consider the Oseen solution uα,ρ0 of (1.8) which verifies the heat equation: ∂tcurluα,ρ0 − µdiv(
1

ρ0
∇curluα,ρ0) = 0

curlu(0, ·) = αδ0.
(1.25)

This solution corresponds to the Oseen tourbillon for the non homogeneous Navier Stokes
equation with initial density ρ0(|x|) and initial tourbillon αδ0. We recover u by using the
Biot Savart law.
We observe with the previous notation that for any t > 0:

curluα,ρ0(t, ·) = Z(x, 0, t, 0). (1.26)

We have the following property (see [24]).

Proposition 1.2 We have:

•
|Dr

tD
s
xcurluα,ρ0(t, x)| ≤ Ct−

N+2r+s
2 exp(−C1

|x|2

t
) (1.27)

where 2r + s ≤ 2, t > τ .

•
|Dr

tD
s
xcurluα,ρ0(t, x)−Dr

tD
s
x′curluα,ρ0(x′, t)| ≤

C
[
|x− x′|γt−

N+2+γ
2 + |x− x′|βt−

N+2−α+β
2

]
exp(−C1

|x|2

t
),

(1.28)

where 2r + s = 2 (i.e r = 0, s = 2 and r = 1, s = 0), 0 ≤ γ, 0 ≤ β ≤ α, t > 0.

•
|Dr

tD
s
xcurluα,ρ0(t, x)−Dr

t′D
s
xcurluα,ρ0(t′, x)| ≤

C
[
(t− t′)(t′)−

N+2r+s+2
2 + (t− t′)

2−2r−s+α
2 (t′)−

N+2
2
]

exp(−C1
|x|2

t
),

(1.29)

where 2r + s = 1, 2 and t > t′ > 0.

To simplify the notation we assume now that µ = 1. Let us state our main result.

Theorem 1.1 Let N = 2, assume that ρ0 verifies the assumptions (1.10) and u0(x) =
∇⊥ψ(|x|) with curlu0 ∈ L1(R2). Then there exists a unique global strong solution curlu
for the system (1.8) and furthermore for any p ∈ [1,+∞] there exists Cp > 0 such that
for all t > 0:

‖curlu(t, ·)‖Lp ≤
Cp

t
1− 1

p

‖curlu0‖L1 ∀t > 0. (1.30)
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Furthermore (ρ0, curlu(t, ·)) is the unique solution for the non homogeneous Navier Stokes
equation (1.3) in the sense of the mild solution.

Let us assume now in addition that 1
ρ0
− 1 ∈ L2(R2) and that there exists ε > 0 suf-

ficiently small and C > 0 such that for t0 > 0:∫
R2

|curlu0(x)|2 exp(
|x− x0|2

4t0
)dx ≤ C. (1.31)

and:

‖ 1

ρ0
− 1‖L∞ ≤ ε. (1.32)

Then for any α ∈ R If
∫
R2 curluo(x)dx = α then we have for a constant γ with 0 < γ < 1

2
and some constant Cp depending only on p ∈ [1,+∞]:

(t+ t0)
1− 1

p ‖curlu(t)− α

t+ t0
G(

x− x0√
t+ t0

)‖Lp ≤ Cp
1

(1 + t
t0

)γ
. (1.33)

In addition there exists Lamb Oseen solution of (1.3) for initial data (ρ(0, ·), curlu(0, ·)) =
(ρ0, αδ0) with α ∈ R and (ρ(t, ·), curlu(t, ·)) = (ρ0, Z(·, 0, t, 0)) with Z defined by (1.26).

Remark 1 The uniqueness (for the equation (1.1) of the Lamb Oseen solution is true
if α is small enough and if (ρ0 − 1) ∈ B2+α

1,∞ , this is provided from [21]. However the
uniqueness of the Lamb Oseen solution for large α remains open.
Let us also mention that in [21], the existence of strong solution in finite time is proved

for initial data u0 ∈ C∞c ∩B1
1,∞

B1
1,∞, it does not cover the case of vorticity curlu0 which

are finite measure. In this sense the existence of Oseen vortices extend the results of [21].
The uniqueness (for (1.1 with (ρ0 − 1) ∈ B2+α

1,∞ ) of the solution for curlu0 ∈ L1(R2) with

the condition of the previous theorem provides of [21] since C∞c ∩B0
∞,1

B0
1,∞ is embedded

in L1(R2) and the the uniqueness is a local problem.

Remark 2 The problem concerning the existence or not of self similar solution with
ρ0 6= 1 remains actually open.

Remark 3 We would like to point out that a vorticity in L1(R2) does not imply a ve-
locity field in R2. Indeed if u0 ∈ L2(R2) and curlu0 ∈ L1(R2) then we can verify
that

∫
R2 curlu0(x)dx = 0. Since the integral of curlu is conserved, it implies that if∫

R2 curlu0(x)dx 6= 0 then curlu0 will be never in L2(R2).

Remark 4 In [16, 17] the authors estimate the time asymptotic rate of convergence to 0
of ‖curlu(t)− α

tG( ·√
t
)‖L1 when

∫
R2 w0(x)dx = α and w0 ∈ L1(R2) for the Navier-Stokes

equations. We extend this result to the case of non homogeneous Navier-Stokes equation,
indeed it is easy to observe that (1.33) implies that ‖curlu(t)− α

tG( ·√
t
)‖L1 converges to 0

when t goes to +∞. In particular we generalize the results of [25] since we do not assume
any smallness assumption on ‖curlu(1, ·)− αG‖L1.
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We wish now to weaken the conditions (1.10) on the initial density ρ0. Indeed in the
previous theorem, we need to assume that ∇ 1

ρ0
belongs to Cα(R2) for 0 < α < 1. This

is essentially due to the fact that we consider the solution of the equation (1.3) on curlu.
Let us deal now with the equation (1.1), we have then the following result.

Theorem 1.2 Let N = 2, assume that ρ0 is radial and 1
ρ0

belongs to Cα(R2) with

0 < α < 1. In addition we have 0 < c < ρ0 ≤ M < +∞ and u0(x) = ∇⊥ψ(|x|) with
u0 ∈ L2,∞(R2). Then there exists a unique global strong solution u for the system (1.8).
Furthermore (ρ0, u) is solution for the system (1.1) in the sense of the mild solution.

Remark 5 The uniqueness of the solution u for the equation (1.1) is true if u0 is small

enough in B
N
p
−1

p,∞ with suitable p such that 1 ≤ p ≤ 2, this is provided from [21] (if in

addition (ρ0−1) ∈ B
N
p
p,∞). In particular we can choose u0 = α x⊥

|x|2 which is in B1
∞,∞∩L2,∞

and such that curlu0 = αδ. Indeed we can observe that u0(x) = ∇⊥ ln(|x|) and we have
(since the Fourier transform of ln(|x|) is − C

|x|2 with C > 0 a universal constant:

F∆lu(0)(ξ) =
1

|ξ|2
ϕ(

ξ

2l
),

we refer to [21] for the definition of Littlewood-Paley theory with ϕ ∈ C∞(R2) and
suppϕ ∈ C(14 ,

3
4). We deduce than using the inverse Fourier transform that:

∆lu0(x) = Fψ(−2lx) with ψ(z) =
ϕ(z)

|z|2
.

We conclude that ln(|x|) ∈ B2
1,∞.

Let us give an other direct consequence of the form that take the solution u of (1.8) which
is simply an heat equation.

Corollary 1 Let N = 2, assume that ρ0 is radial and 0 < c < ρ0 ≤ M < +∞.

Furthermore let us consider u0(x) = ∇⊥ψ(|x|) with u0 ∈ B
N
p
−1

p,∞ with 1 ≤ p < +∞.
Assume that there exists ε > 0 sufficiently small such that:

‖ 1

ρ0
− 1‖

M(B
N
p −1

p,∞ )
≤ ε,

then there exists a unique solution u of (1.8). (ρ0, u) is solution of (1.1).

Remark 6 The proof follows the same idea than in [10] and in your case is a simple
fixed pointed for the solution of (1.8). It is a priori not clear to know if (ρ0, u) is the
unique solution of (1.1) even for small initial velocity. Indeed the initial data is completely
critical for the initial density and the velocity.
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2 Proof of the theorem 1.1 and 1.2

The existence part of the theorem is a direct consequence of the construction of a fun-
damental solution for the equation (1.8). Indeed the solution reads as follows:

curlu(t, x) =

∫
R2

Z(x, t, ξ, 0)curlu0(ξ)dξ. (2.34)

We observe now that since curlu0 is radial curlu(t, ·) is also radial for any t > 0. Indeed
it provides from the fact that curlu(t, ·) is a convolution between curlu0 with a kernel
K(x− ξ, t) = Z(x, ξ, t, 0) which is radial. The convolution preserves the radial property.
Using Biot Savart formula we deduce that u is solution of the non homogeneous Navier-
Stokes equation since ρ0u · ∇u is a gradient of a radial function. Indeed we have for
t > 0:

u(t, x) =
1

2π
∇⊥x

∫
R2

ln(|x− y|)curlu(t, y)dy,

and we have that the initial data is verified in the sense that for any ϕ ∈ C∞c (R2)

It implies that there exists a radial function F such that ρ0u · ∇u = ∇F (t, |x|). It shows
in particular that u is solution of the equation (1.3). The proof of (1.30) is a direct
consequence of (2.34) and (1.27).

Let us now prove the asymptotic time decay estimate (1.33). Following [16, 17], we
define the rescaled vorticity w1(τ, ξ) = curlu1(τ, ξ) and the density ρ1(τ, ξ) by:

w(t, x) =
1

(t+ t0)
w1(

x− x0√
t+ t0

, log(1 +
t

t0
)) and ρ(t, x) = ρ1(

x− x0√
t+ t0

, log(1 +
t

t0
)),

with ξ =
x− x0√
t+ t0

and τ = log(1 +
t

t0
) ∈ [0,+∞[.

(2.35)
Here we have defined w as follows w = curlu. We have in particular:

w1(τ, ξ) = t0e
τw(t0(e

τ − 1),
√
t0e

τ
2 ξ + x0) and ρ1(τ, ξ) = ρ(t0(e

τ − 1),
√
t0e

τ
2 ξ + x0)

(2.36)
The equation verified by w1(τ, ξ) reads:

∂τw1 − div(
1

ρ1
∇w1)−

1

2
ξ · ∇w1 − w1 = 0. (2.37)

We now define L as follows:

Lf = ∆f +
1

2
ξ · ∇f + f,

which is the so called Fokker-Planck operator. We observe that KerL = Vect G with G
defined as follows:

G(ξ) =
1

4π
e
−|ξ|2

4 .
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G in kinetic theory is called the Maxwellian. We are going now to estimate w̃ = w1−αG
which satisfies:

∂τ w̃ −∆w̃ − 1

2
ξ · ∇w̃ − w̃ = div((

1

ρ1
− 1)∇w1). (2.38)

The idea is classical now for the Fokker Planck equations, we are going to estimate the
time asymptotic convergence of a solution w1 of (2.37) to the Maxwellian G. To do this,
the idea consists (see also [25]) in multiplying the equation (2.38) by G−1w̃ and estimate
the norm |w̃|G,2 with:

|w̃|G,2 = ‖G−
1
2 w̃‖L2(R2). (2.39)

The idea is to observe that if L = G−
1
2LG

1
2 then L = −∆ + |ξ|2

16 −
1
2 is a harmonic

oscillator with spectrum {0, 12 , 1,
3
2 , · · · } ( see [25]). Moreover 0 is a simple eigenvalue

with eigenvector G
1
2 . In particular if f is in the domain of L with

∫
R2 G

1
2 f = 〈f,G

1
2 〉 = 0,

then: ∫
R2

fLfdx ≥ 1

2
‖f‖2L2 . (2.40)

Coming back to L, we obtain if G−
1
2 w̃ belongs to the domain of L with

∫
R2 w̃dx = 0,

then for any 0 < γ < 1
2 taking w̃ = G

1
2 f we have:∫

R2

G−1w̃Lw̃ = −(1− γ)

∫
R2

fLf + γ

∫
R2

G−1w̃Lw̃

≤ −1

2
(1− γ)|w̃|2G,2 + γ

∫
R2

G−1w̃Lw̃

Now using integration by parts on the formula of L, we have:∫
R2

G−1w̃Lw̃ ≤ −1

2
(1− 2γ)|w̃|2G,2 − γ(‖∇(G−

1
2 w̃)‖2L2 + | |ξ|

4
w̃|2G,2).

From Young inequality we obtain:∫
R2

G−1w̃Lw̃ ≤ −1

2
(1− 2γ)|w̃|2G,2 − γ(

1

3
|∇w̃|2G,2 +

1

2
| |ξ|

4
w̃|2G,2).

Next we have:∫
R2

div((
1

ρ1
− 1)∇w1)w̃ G

−1dξ =

∫
R2

div((
1

ρ1
− 1)∇w̃)w̃ G−1dξ + α

∫
R2

div((
1

ρ1
− 1)∇G)w̃ G−1dξ

= −
∫
R2

(
1

ρ1
− 1)|∇w̃|2G−1dξ − 1

2

∫
R2

(
1

ρ1
− 1)∇w̃ · ξG−1w̃dξ

+
α

2

∫
R2

(
1

ρ1
− 1)ξ · ∇w̃dξ +

α

4

∫
R2

(
1

ρ1
− 1)w̃|ξ|2dξ

Multiplying the momentum equation (2.38) by G−1w̃ and combining all the previous
estimates, we obtain:

1

2

d

dt
|w̃|2G,2 +

1

2
(1− 2γ)|w̃|2G,2 + γ(

1

3
|∇w̃|2G,2 +

1

2
| |ξ|

4
w̃|2G,2) ≤ −

∫
R2

(
1

ρ1
− 1)|∇w̃|2G−1dξ

− 1

2

∫
R2

(
1

ρ1
− 1)∇w̃ · ξG−1w̃dξ +

α

2

∫
R2

(
1

ρ1
− 1)ξ · ∇w̃dξ +

α

4

∫
R2

(
1

ρ1
− 1)w̃|ξ|2dξ.

(2.41)
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Using Young inequality we have:

1

2

d

dt
|w̃|2G,2 +

1

2
(1− 2γ)|w̃|2G,2 + γ(

1

3
|∇w̃|2G,2 +

1

2
| |ξ|

4
w̃|2G,2)

≤ ‖ 1

ρ1
− 1‖L∞ |∇w̃|2G,2 +

ε

4
‖ 1

ρ1
− 1‖L∞ |∇w̃|2G,2 +

1

4ε
‖ 1

ρ1
− 1‖L∞ ||ξ|2w̃|2G,2

+
|α|
2
‖( 1

ρ1
− 1)G

1
2 ‖L2 |∇w̃|G,2 +

|α|
4
‖( 1

ρ1
− 1)G

1
2 ‖L2 ||ξ|w̃|G,2.

(2.42)

We observe now that:

‖( 1

ρ1
(τ, ·)− 1)G

1
2 ‖L2 ≤

1

2
√
πt0

e−
τ
2 ‖ 1

ρ0
− 1‖L2 . (2.43)

From (2.42) and (2.43), we deduce from Young inequality that for ε′, ε1 > 0:

1

2

d

dτ
|w̃(τ)|2G,2 +

1

2
(1− 2γ)|w̃(τ)|2G,2 + γ(

1

3
|∇w̃(τ)|2G,2 +

1

2
| |ξ|

4
w̃(τ)|2G,2)

≤ |∇w̃(τ)|2G,2(‖
1

ρ1(τ)
− 1‖L∞ +

ε

4
‖ 1

ρ1(τ)
− 1‖L∞ +

|α|ε′

8
√
πt0
‖ 1

ρ0
− 1‖L2) +

|α|
8ε′
√
πt0

e−
τ
2 ‖ 1

ρ0
− 1‖L2e−τ

+ ||ξ|2w̃(τ)|2G,2(
1

4ε
‖ 1

ρ1
− 1‖L∞ +

ε1|α|
16
√
πt0
‖ 1

ρ0
− 1‖L2) +

|α|
16ε1
√
πt0
‖ 1

ρ0
− 1‖L2e−τ

≤ |∇w̃(τ)|2G,2(‖
1

ρ0
− 1‖L∞ +

ε

4
‖ 1

ρ0
− 1‖L∞ +

|α|ε′

8
√
πt0
‖ 1

ρ0
− 1‖L2) +

|α|
8ε′
√
πt0

e−
τ
2 ‖ 1

ρ0
− 1‖L2e−τ

+ ||ξ|2w̃(τ)|2G,2(
1

4ε
‖ 1

ρ0
− 1‖L∞ +

ε1|α|
16
√
πt0
‖ 1

ρ0
− 1‖L2) +

|α|
16ε1
√
πt0
‖ 1

ρ0
− 1‖L2e−τ

(2.44)
Since ‖ 1

ρ0
−1‖L∞ is sufficiently small, we deduce by bootstrap that there exists 0 < C < 1

2
and C1 > 0 such that:

1

2

d

dτ
|w̃(τ)|2G,2 + C|w̃(τ)|2G,2 ≤ C1e

−τ . (2.45)

From Grönwall lemma, we have for any τ > 0:

|w̃(τ)|2G,2 ≤ e−2Cτ |w̃(0)|2G,2 + 2C1e
−τ . (2.46)

Now since we have

D =

∫
R2

|w0(x)|2 exp(
|x− x0|2

4t0
)dx =

∫
R2

|w1(0, ξ)|2 exp(
|ξ|2

4
)dξ ≤ C < +∞,

we deduce that there exists C2 > 0 depending on D such that:

|w̃(τ)|G,2 ≤ C2e
−Cτ , (2.47)
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withe 0 < C < 1
2 . It implies in particular that setting:∫

R2

|t0eτw(t0(e
τ − 1),

√
t0e

τ
2 ξ + x0)− αG(ξ)|2G−1(ξ)dξ ≤ C2

2e
−2Cτ∫

R2

|t0eτw(t0(e
τ − 1), z)− αG(

z − x0√
t0e

τ
2

)|2G−1(z − x0√
t0e

τ
2

)dξ ≤ C2
2e
−2Cτ∫

R2

|(t0 + t)w(t, z)− αG(
z − x0√
t0 + t

)|2dξ ≤ C2
2

1

(1 + t
t0

)2C

√
t0 + t ‖

(
w(t, ·)− α

t+ t0
G(
· − x0√
t0 + t

)
)
G−1(

z − x0√
t0e

τ
2

)‖L2 ≤ C2
1

(1 + t
t0

)C

From Höder inequality we deduce that for 1 ≤ p ≤ 2 since by definition w = curlu:

(t0 + t)
1− 1

p ‖curlu(t, ·)− α

t+ t0
G(
· − x0√
t0 + t

‖L2 ≤
C2,p

(1 + t
t0

)C
.

By duality we prove the same estimate for 2 ≤ p ≤ +∞. It concludes the proof of the
theorem 1.1. �

2.1 Proof of the theorem 1.2

It suffices to construct as previously a fundamental solution of the equation:

ρ0∂t∆u−∆u = 0.

We have then an explicit solution which is also solution of (1.1).
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