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On the Oseen vortices in dimension N = 2 for the inhomogeneous Navier-Stokes equations for radial initial density

This paper is dedicated to the proof of the existence of Lamb Oseen vortex for the inhomogeneous Navier-Stokes equation when N = 2. We restrict our study to the case of radial initial data ρ 0 which belongs to C α (R 2 ) with 0 < α < 1. To do this we recall the construction of fundamental solution for reaction diffusion equations. We point out that when ρ 0 = 1, our Lamb Oseen solution are not self similar. We prove also that the vorticity of inhomogeneous Navier-Stokes equations (when curlu 0 is radial and in L 1 (R 2 )) converges asymptotically in time to the Oseen solution of Navier Stokes equation provided that the fluctuation of the initial density is sufficiently small.

Introduction

In this paper, we are concerned with the following model of incompressible viscous fluid with variable density:

         ∂ t ρ + div(ρu) = 0,
∂ t (ρu) + div(ρu ⊗ u) -µ∆u + ∇Π = 0, divu = 0, (ρ, u) /t=0 = (ρ 0 , u 0 ). (1.1) Here u = u(t, x) ∈ R N stands for the velocity field and ρ = ρ(t, x) ∈ R + is the density, Du = 1 2 (∇u + t ∇u) is the strain tensor. We denote by µ the viscosity coefficients of the fluid, which is assumed to satisfy µ > 0. The term ∇Π (namely the gradient of the pressure) may be seen as the Lagrange multiplier associated to the constraint divu = 0. We supplement the problem with initial condition (ρ 0 , u 0 ) and an outer force f . Throughout the paper, we assume that the space variable x ∈ R N or to the periodic box T N a with period a i , in the i-th direction. We restrict ourselves to the case N = 2. The equations (1.1) are invariant under the sealing transformation: ρ(t, x) → ρ(λ 2 t, λx); u(t, x) → λu(λ 2 t, λx) and curlu(t, x) → λ 2 u(λ 2 t, λx), λ > 0.

(1.2)

1
We observe that the vorticity equation can be rewritten as follows:

             ∂ t ρ + div(ρu) = 0, ∂ t curlu + u • ∇curlu -µdiv( 1 ρ ∇curlu) + ∇ ⊥ ( 1 ρ ) • ∇Π = 0, divu = 0,
(ρ, u) /t=0 = (ρ 0 , u 0 ), (1.3) with ∇ ⊥ = (-∂ 2 , ∂ 1 ). Let us recall now some classical results for the Navier-Stokes equations in dimension N = 2.

Classical results of global strong solution for the Navier-Stokes equations

For the Navier Stokes equation, it is well known that there exists global self similar solution when N = 2. In order to obtain such solution, the main difficulty consists in proving the existence of global strong solution for initial vorticity in a functional space X which is invariant for the norm by the scaling of the equation (1.2). In addition X must be sufficiently large such that he admits homogeneous initial velocity of order -1.

A natural candidate is the space M(R 2 ) of all finite measures on R 2 , equipped with the total variation norm. The existence of global solution with initial data was first proved by Cottet [START_REF] Carpio | Asymptotic behavior for the vorticity equations in dimensions two and three[END_REF] and independently by Giga, Miyakawa and Osada [START_REF] Giga | Two-dimensional Navier-Stokes flow with measures as initial vorticity[END_REF]. In [START_REF] Giga | Two-dimensional Navier-Stokes flow with measures as initial vorticity[END_REF], the authors proved also the uniqueness when the atomic part of the initial vorticity is sufficiently small. Let us mention that the Navier-Stokes equations are well-posed for any large initial vorticity when curlu 0 ∈ L 1 (R 2 ) (see [START_REF] Ben-Artzi | Global solutions of two-dimensional Navier-Stokes and Euler equations[END_REF]). All the previous results use in a crucial way the bound of the L 1 norm of the vorticity for t > 0, this is a consequence in some sense of the maximum principle.

In the particular case where µ = αδ 0 for α ∈ R and (ρ = 1 the Navier Stokes equation) there exists a particular self similar solution, the so called Lamb-Oseen vortex given by:

curlu(t, x) = α t G( x √ t ), u(t, x) = α √ t v G ( x √ t ), x ∈ R 2 , t > 0, (1.4) 
where:

G(ξ) = 1 4π e -|ξ| 2 4 , v G (ξ) = 1 2π ξ ⊥ |ξ| 2 (1 -e -|ξ| 2 4 ), ξ ∈ R 2 .
In [START_REF] Gallay | Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation[END_REF], Gallay and Wayne showed the uniqueness of the Lamb-Oseen solution by rewriting the system in self similar variables and using Lyapounov functions for the Fokker-Planck equations combined with the so called log Sobolev inequalities and Csiszár-Kullback inequalities (see [START_REF] Villani | A review of mathematical topics in collisional kinetic theory In: Handbook of mathematical fluid dynamics[END_REF]). We refer also to [START_REF] Gallagher | On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity[END_REF] for an another proof using symetrization techniques for parabolic equations The uniqueness for any curlu 0 ∈ M(R 2 ) is proved in [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF], it allows to obtain the existence and the uniqueness of global self similar solution when N = 2.

Results of global strong solution for the non homogenous Navier-Stokes equations

Compared with the homogeneous Navier-Stokes equation (ρ = 1), to obtain self similar solutions seems more tricky. Indeed it is not clear due to the term

∇ ⊥ ( 1 ρ ) • ∇Π in (1.3)
that the L 1 norm of the vorticity curlu remains bound in L 1 norm all along the time.

Similarly if we try to show the existence of global self similar solution with

u 0 ∈ B N p -1 p,∞
small enough (which corresponds to the results obtained in [START_REF] Cannone | Solutions auto-similaires des équations de Navier-Stokes. Séminaire sur les équations aux dérivées partielles[END_REF] for the Navier-Stokes equation) and

ρ 0 -1 ∈ B N p
p,∞ ∩L ∞ , then it seems difficult to propagate the regularity

B N p p,∞
on the density via the mass equation. Indeed the velocity u will be a priori log Lipschitz and it will involve a loss of derivative on the density (see [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF] for more development on this question, where we prove the existence of global strong solution for initial data small enough in (B

N p +ε p,∞ ∩ L ∞ ) × B N p -1
p,∞ ). Danchin in [START_REF] Danchin | Density-dependent incompressible viscous uids in critical spaces[END_REF] proved the local wellposedness of the system (1.3) if the initial data

(ρ 0 -1, u 0 ) are in the critical Besov space B N p p,1 × B N p -1 p,1 for 1 ≤ p ≤ N . Furthermore the solution is global if the initial data are sufficiently small in B N p p,1 × B N p -1
p,1 . The smallness assumption for the initial density in [START_REF] Danchin | Density-dependent incompressible viscous uids in critical spaces[END_REF] the smallness assumption on the fluctuation of the initial density was removed in [START_REF] Abidi | On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations[END_REF][START_REF] Abidi | On the wellposedness of 3D inhomogeneous Navier-Stokes equations in the critical spaces[END_REF], and in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] the authors extends the result of [START_REF] Danchin | Density-dependent incompressible viscous uids in critical spaces[END_REF] to the case 1 ≤ p < 2N . In [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF], we generalize the result of [START_REF] Cannone | Solutions auto-similaires des équations de Navier-Stokes. Séminaire sur les équations aux dérivées partielles[END_REF] to the case of the inhomogeneous Navier-Stokes equation by allowing to the initial velocity to belong to

B N p -1 p,r
with 1 ≤ r ≤ +∞ and p well chosen. By opposite we need to require to be slightly subcritical in terms of regularity for the fluctuateion of the density which must be in B N p +ε p,r ∩ L ∞ with ε > 0. Danchin and Mucha in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] introduced the Lagrangian approach and proved the existence global strong solution for small initial data with

(ρ 0 -1, u 0 ) ∈ M(B N p -1 p,1 ) × B N p p,1 ( M(B N p -1 p,1
) corresponds here to the multiplier set of B N p -1 p,1 ). This result is very interesting since it allows to the authors to deal with initial density which are not necessary continuous. We refer also to [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF][START_REF] Germain | Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system[END_REF][START_REF] Chen | Fujita-Kato theorem for the 3d inhomogeneous Navier-Stokes equations[END_REF] for some extensions of this previous results. To finish let us recall that (1.1) is globally well-posed in dimension N = 2 (see [START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF], see also more recently [START_REF] Chen | Fujita-Kato theorem for the 3d inhomogeneous Navier-Stokes equations[END_REF]), the question remains open for general viscosity coefficients depending on the density.

Fundamental solution for parabolic system and Parametrix

In the present paper we wish to exhibit Lamb Oseen solution for the non homogeneous Navier-Stokes equation when N = 2. It means solutions such that the initial vorticity corresponds to αδ 0 with α ∈ R. As we explained previously the term

∇ ⊥ ( 1 ρ ) • ∇Π in (1.
3) prevents any L 1 control of the voracity all along the time. It is then natural to search solution such that ∇ ⊥ ( 1 ρ ) • ∇Π = 0. To do this, we can assume geometrical condition on the velocity and the density, more precisely we are going to consider rotationally invariant initial data of the form:

ρ 0 (x) = ρ 0 (|x|) and u 0 (x) = ∇ ⊥ ψ(|x|), (1.5 
)

with 1 ρ 0 ∈ L ∞ (R 2 ).
It is important to observe that this choice of initial density does not allow to obtain the existence of global self similar solution since ρ 0 should be homogeneous of degree 0. Let us search now solution of (1.1) verifying the following property:

ρ(t, x) = ρ(t, |x|) and u(t, x) = ∇ ⊥ ψ 1 (t, |x|) = x ⊥ |x| ψ 1 (t, |x|), (1.6) 
with ψ 1 a radial function. We observe then at least heuristically that via the mass equation, the density is stationary and verifies for all t > 0:

ρ(t, |x|) = ρ 0 (|x|). (1.7)
Furthermore the velocity and the vorticity u and curlu verify:

     ρ 0 ∂ t u -µ∆u = 0, divu = 0, u(0, •) = u 0 .        ∂ t curlu -µdiv( 1 ρ 0 ∇curlu) = 0 divu = 0, curlu(0, •) = curlu 0 . (1.8)
We observe in particular that for such initial data curlu verifies a linear heat equation and conserve the mass L 1 at least if curlu 0 is positive (it suffices to apply the maximum principle). More generally we have for all t > 0:

curlu(t, •) L 1 (R 2 ) ≤ curlu 0 L 1 . (1.9) 
Now we are interested in constructing Lamb Oseen solution which corresponds to the case where curlu 0 = αδ 0 with δ 0 the Dirac measure.

To do this, we are interested in constructing the fundamental solution associated to the equations (1.8). We assume now that ρ 0 verifies the following conditions:

                         ρ 0 (x) = ρ 0 (|x|) ∀x ∈ R 2 , 1 ρ 0 ∈ L ∞ (R 2 ), ρ 0 ∈ L ∞ , ∃C > 0, ∀(x, y) ∈ R 2 | 1 ρ 0 (x) - 1 ρ 0 (y) | ≤ C|x -y| α with 0 < α < 1, for i ∈ {1, 2} ∃C i > 0, ∀(x, y) ∈ R 2 | x i ρ 0 (|x|) ρ 2 0 (x) - y i ρ 0 (|y|) ρ 2 0 (y) | ≤ C i |x -y| α with 0 < α < 1, (1.10) 
We are going now to recall some results due to A. Friedman and Ladyzenskaya et al (see [START_REF] Friedman | Partial differential equations of parabolic type[END_REF][START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF]) on the construction of the fundamental solution for linear parabolic equations. More precisely we wish to solve the following equation:

∂ t Z(x, ξ, t, τ ) -µdiv( 1 ρ 0 ∇Z)(x, ξ, t, τ ) = δ (x-ξ) δ (t-τ ) . (1.11)
with Z the fundamental solution of (1.8). We have in particular for any continuous function f with compact support:

lim t→τ R 2 Z(x, ξ, t, τ )f (ξ)dξ = 0. (1.12)
This implies that the initial data associated to Z(x, ξ, t, 0) is δ 0 .

We define now a parametric (this method is due to E. E. Levi (see [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF]):

Z 0 (x -ξ, ξ, t, τ ) = ρ 0 (|ξ|) 4µπ(t -τ ) exp - ρ 0 (|ξ|) 4µ(t -τ ) |x -ξ| 2 , (1.13) 
with Z 0 (x -ξ, ξ, t, τ ) = 0 when t < τ . We know in particular that:

∂ t [Z 0 (x -ξ, ξ, t, τ )] - µ ρ 0 (|ξ|) ∆ x Z 0 (x -ξ, ξ, t, τ ) = δ(x -ξ)δ(t -τ ). (1.14)
We define now the following kernel:

K(x, ξ, t, τ ) = µ( 1 ρ 0 (|ξ|) - 1 ρ 0 (|x|) )∆ x Z 0 (x -ξ, ξ, t, τ ) + L 1 (x, t, ∂ ∂x )Z 0 (x -ξ, ξ, t, τ ),
(1.15) with:

L 1 (x, t, ∂ ∂x )Z 0 (x -ξ, ξ, t, τ ) = -µ∇( 1 ρ 0 )(x, t) • ∇ x Z 0 (x -ξ, ξ, t, τ ). (1.16)
We deduce that:

∂ t [Z 0 (x-ξ, ξ, t, τ )]-µdiv x ( 1 ρ 0 ∇ x [Z 0 (x-ξ, ξ, t, τ )]) = δ(x-ξ)δ(t-τ )+K(x, ξ, t, τ ). (1.17)
We search now a solution Z(x, ξ, t, τ ) of (1.11) under the following form:

Z(x, ξ, t, τ ) = Z 0 (x -ξ, ξ, t, τ ) + t τ dλ R 2 Z 0 (x -y, y, t, λ)Q(y, ξ, λ, τ )dy. (1.18)
Assume that Q is a function satisfying a Hölder condition in (y, λ) then we have when we set Z (x, ξ, t, τ ) = t τ dλ R 2 Z 0 (x -y, y, t, λ)Q(y, ξ, λ, τ )dy:

∂ t [Z (x, ξ, t, τ )]-µdiv x ( 1 ρ 0 ∇ x Z (x, ξ, t, τ )) = Q(x, ξ, t, τ )+ t τ dλ R 2
K(x, y, t, λ)Q(y, ξ, λ, τ )dy.

(1.19) From (1.17), (1.18), (1.19) we deduce that (1.11) is verified if Q is solution of the following Volterra equation:

Q(x, ξ, t, τ ) + t τ dλ R 2 K(x, y, t, λ)Q(y, ξ, λ, τ )dy + K(x, ξ, t, τ ) = 0.
(1.20)

Proposition 1.1 There exists a solution Q of (1.20) with:

Q(x, ξ, t, τ ) = +∞ m=1 (-1) m K m (x, ξ, t, τ ), (1.21) 
where K m is defined as follows:

K m (x, ξ, t, τ ) = t τ dλ R 2 K(x, y, t, λ)K m-1 (y, ξ, λ, τ )dy. (1.22)
In addition there exists c, C > 0 such that for any (x, ξ, t, τ ): .23) proof: We refer to [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF], where the authors prove that there exists c, C > 0 such that for any m ≥ 1:

|Q(x, ξ, t, τ )| ≤ c(t -τ ) -4-α 2 exp(-C |x -ξ| 2 t -τ ). ( 1 
|K m (x, ξ, t, τ )| ≤ c m ( π C ) m-1 Γ m ( α 2 ) Γ( mα 2 ) (t -τ ) mα-4 2 exp(-C |x -ξ| 2 t -τ ).
(1.24)

The series in (1.21) is then uniformly convergent and we obtain (1.1).

Let us now consider the Oseen solution u α,ρ 0 of (1.8) which verifies the heat equation:

   ∂ t curlu α,ρ 0 -µdiv( 1 ρ 0 ∇curlu α,ρ 0 ) = 0 curlu(0, •) = αδ 0 .
(1.25)

This solution corresponds to the Oseen tourbillon for the non homogeneous Navier Stokes equation with initial density ρ 0 (|x|) and initial tourbillon αδ 0 . We recover u by using the Biot Savart law.

We observe with the previous notation that for any t > 0:

curlu α,ρ 0 (t, •) = Z(x, 0, t, 0). (1.26)
We have the following property (see [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF]).

Proposition 1.2 We have:

• |D r t D s x curlu α,ρ 0 (t, x)| ≤ Ct -N +2r+s 2 exp(-C 1 |x| 2 t ) (1.27)
where 2r + s ≤ 2, t > τ .

• |D r t D s x curlu α,ρ 0 (t, x) -D r t D s x curlu α,ρ 0 (x , t)| ≤ C |x -x | γ t -N +2+γ 2 + |x -x | β t -N +2-α+β 2 exp(-C 1 |x| 2 t ), (1.28) 
where 2r + s = 2 (i.e r = 0, s = 2 and r = 1, s = 0), 0 ≤ γ, 0 ≤ β ≤ α, t > 0.

• |D r t D s x curlu α,ρ 0 (t, x) -D r t D s x curlu α,ρ 0 (t , x)| ≤ C (t -t )(t ) -N +2r+s+2 2 + (t -t ) 2-2r-s+α 2 (t ) -N +2 2 exp(-C 1 |x| 2 t ), (1.29) 
where 2r + s = 1, 2 and t > t > 0.

To simplify the notation we assume now that µ = 1. Let us state our main result.

Theorem 1.1 Let N = 2, assume that ρ 0 verifies the assumptions (1.10) and u 0 (x) = ∇ ⊥ ψ(|x|) with curlu 0 ∈ L 1 (R 2 ). Then there exists a unique global strong solution curlu for the system (1.8) and furthermore for any p ∈ [1, +∞] there exists C p > 0 such that for all t > 0:

curlu(t, •) L p ≤ C p t 1-1 p curlu 0 L 1 ∀t > 0.
(1.30) Furthermore (ρ 0 , curlu(t, •)) is the unique solution for the non homogeneous Navier Stokes equation (1.3) in the sense of the mild solution.

Let us assume now in addition that 1 ρ 0 -1 ∈ L 2 (R 2 ) and that there exists ε > 0 sufficiently small and C > 0 such that for t 0 > 0:

R 2 |curlu 0 (x)| 2 exp( |x -x 0 | 2 4t 0 )dx ≤ C. (1.31)
and:

1 ρ 0 -1 L ∞ ≤ ε. (1.32)
Then for any α ∈ R If R 2 curlu o (x)dx = α then we have for a constant γ with 0 < γ < 1 2 and some constant C p depending only on p ∈ [1, +∞]:

(t + t 0 ) 1-1 p curlu(t) - α t + t 0 G( x -x 0 √ t + t 0 ) L p ≤ C p 1 (1 + t t 0 ) γ .
(1.33)

In addition there exists Lamb Oseen solution of (1.3) for initial data (ρ(0, •), curlu(0, •)) = (ρ 0 , αδ 0 ) with α ∈ R and (ρ(t, •), curlu(t, •)) = (ρ 0 , Z(•, 0, t, 0)) with Z defined by (1.26).

Remark 1

The uniqueness (for the equation (1.1) of the Lamb Oseen solution is true if α is small enough and if (ρ 0 -1) ∈ B 2+α 1,∞ , this is provided from [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF]. However the uniqueness of the Lamb Oseen solution for large α remains open. Let us also mention that in [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF], the existence of strong solution in finite time is proved

for initial data u 0 ∈ C ∞ c ∩ B 1 1,∞ B 1
1,∞ , it does not cover the case of vorticity curlu 0 which are finite measure. In this sense the existence of Oseen vortices extend the results of [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF]. The uniqueness (for (1.1 with (ρ 0 -1) ∈ B 2+α 1,∞ ) of the solution for curlu 0 ∈ L 1 (R 2 ) with the condition of the previous theorem provides of [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF] 

since C ∞ c ∩ B 0 ∞,1 B 0 1,∞ is embedded in L 1 (R 2 )
and the the uniqueness is a local problem.

Remark 2

The problem concerning the existence or not of self similar solution with ρ 0 = 1 remains actually open.

Remark 3 We would like to point out that a vorticity in L 1 (R 2 ) does not imply a velocity field in R 2 . Indeed if u 0 ∈ L 2 (R 2 ) and curlu 0 ∈ L 1 (R 2 ) then we can verify that R 2 curlu 0 (x)dx = 0. Since the integral of curlu is conserved, it implies that if R 2 curlu 0 (x)dx = 0 then curlu 0 will be never in L 2 (R 2 ).

Remark 4

In [START_REF] Gallay | Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation[END_REF][START_REF] Gallay | Sur le temps de vie de la turbulence bidimensionnelle[END_REF] the authors estimate the time asymptotic rate of convergence to 0 of curlu(t)

-α t G( • √ t ) L 1 when R 2 w 0 (x)dx = α and w 0 ∈ L 1 (R 2 )
for the Navier-Stokes equations. We extend this result to the case of non homogeneous Navier-Stokes equation, indeed it is easy to observe that (1.33) implies that curlu(t) -α t G( • √ t ) L 1 converges to 0 when t goes to +∞. In particular we generalize the results of [START_REF] Rodrigues | Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid[END_REF] since we do not assume any smallness assumption on curlu(1, •) -αG L 1 .

We wish now to weaken the conditions (1.10) on the initial density ρ 0 . Indeed in the previous theorem, we need to assume that ∇ 1 ρ 0 belongs to C α (R 2 ) for 0 < α < 1. This is essentially due to the fact that we consider the solution of the equation (1.3) on curlu. Let us deal now with the equation (1.1), we have then the following result. Theorem 1.2 Let N = 2, assume that ρ 0 is radial and 1 ρ 0 belongs to C α (R 2 ) with 0 < α < 1. In addition we have 0 < c < ρ 0 ≤ M < +∞ and u 0 (x) = ∇ ⊥ ψ(|x|) with u 0 ∈ L 2,∞ (R 2 ). Then there exists a unique global strong solution u for the system (1.8). Furthermore (ρ 0 , u) is solution for the system (1.1) in the sense of the mild solution.

Remark 5 The uniqueness of the solution u for the equation ( 1

.1) is true if u 0 is small enough in B N p -1 p,∞ with suitable p such that 1 ≤ p ≤ 2, this is provided from [21] (if in addition (ρ 0 -1) ∈ B N p p,∞ ). In particular we can choose u 0 = α x ⊥ |x| 2 which is in B 1 ∞,∞ ∩L 2
,∞ and such that curlu 0 = αδ. Indeed we can observe that u 0 (x) = ∇ ⊥ ln(|x|) and we have (since the Fourier transform of ln(|x|) is -C |x| 2 with C > 0 a universal constant:

F∆ l u(0)(ξ) = 1 |ξ| 2 ϕ( ξ 2 l ),
we refer to [START_REF] Haspot | Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity[END_REF] for the definition of Littlewood-Paley theory with ϕ ∈ C ∞ (R 2 ) and suppϕ ∈ C( 14 , 3 4 ). We deduce than using the inverse Fourier transform that:

∆ l u 0 (x) = Fψ(-2 l x) with ψ(z) = ϕ(z) |z| 2 .
We conclude that ln(|x|) ∈ B 2 1,∞ .

Let us give an other direct consequence of the form that take the solution u of (1.8) which is simply an heat equation.

Corollary 1 Let N = 2, assume that ρ 0 is radial and 0 < c < ρ 0 ≤ M < +∞.

Furthermore let us consider u

0 (x) = ∇ ⊥ ψ(|x|) with u 0 ∈ B N p -1
p,∞ with 1 ≤ p < +∞. Assume that there exists ε > 0 sufficiently small such that:

1 ρ 0 -1 M(B N p -1 p,∞ ) ≤ ε,
then there exists a unique solution u of (1.8). (ρ 0 , u) is solution of (1.1).

Remark 6

The proof follows the same idea than in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] and in your case is a simple fixed pointed for the solution of (1.8). It is a priori not clear to know if (ρ 0 , u) is the unique solution of (1.1) even for small initial velocity. Indeed the initial data is completely critical for the initial density and the velocity.

2 Proof of the theorem 1.1 and 1.2

The existence part of the theorem is a direct consequence of the construction of a fundamental solution for the equation (1.8). Indeed the solution reads as follows:

curlu(t, x) = R 2 Z(x, t, ξ, 0)curlu 0 (ξ)dξ. (2.34) 
We observe now that since curlu 0 is radial curlu(t, •) is also radial for any t > 0. Indeed it provides from the fact that curlu(t, •) is a convolution between curlu 0 with a kernel K(x -ξ, t) = Z(x, ξ, t, 0) which is radial. The convolution preserves the radial property.

Using Biot Savart formula we deduce that u is solution of the non homogeneous Navier-Stokes equation since ρ 0 u • ∇u is a gradient of a radial function. Indeed we have for t > 0:

u(t, x) = 1 2π ∇ ⊥ x R 2
ln(|x -y|)curlu(t, y)dy, and we have that the initial data is verified in the sense that for any

ϕ ∈ C ∞ c (R 2 )
It implies that there exists a radial function F such that ρ 0 u • ∇u = ∇F (t, |x|). It shows in particular that u is solution of the equation (1.3). The proof of (1.30) is a direct consequence of (2.34) and (1.27).

Let us now prove the asymptotic time decay estimate (1.33). Following [START_REF] Gallay | Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation[END_REF][START_REF] Gallay | Sur le temps de vie de la turbulence bidimensionnelle[END_REF], we define the rescaled vorticity w 1 (τ, ξ) = curlu 1 (τ, ξ) and the density ρ 1 (τ, ξ) by:

w(t, x) = 1 (t + t 0 ) w 1 ( x -x 0 √ t + t 0 , log(1 + t t 0 )) and ρ(t, x) = ρ 1 ( x -x 0 √ t + t 0 , log(1 + t t 0 )), with ξ = x -x 0 √ t + t 0 and τ = log(1 + t t 0 ) ∈ [0, +∞[.
(2.35) Here we have defined w as follows w = curlu. We have in particular: w 1 (τ, ξ) = t 0 e τ w(t 0 (e τ -1), √ t 0 e τ 2 ξ + x 0 ) and ρ 1 (τ, ξ) = ρ(t 0 (e τ -1),

√ t 0 e τ 2 ξ + x 0 ) (2.
36) The equation verified by w 1 (τ, ξ) reads:

∂ τ w 1 -div( 1 ρ 1 ∇w 1 ) - 1 2 ξ • ∇w 1 -w 1 = 0.
(2.37)

We now define L as follows:

Lf = ∆f + 1 2 ξ • ∇f + f,
which is the so called Fokker-Planck operator. We observe that KerL = Vect G with G defined as follows:

G(ξ) = 1 4π e -|ξ| 2 4 .
G in kinetic theory is called the Maxwellian. We are going now to estimate w = w 1 -αG which satisfies:

∂ τ w -∆ w - 1 2 ξ • ∇ w -w = div(( 1 ρ 1 -1)∇w 1 ). (2.38)
The idea is classical now for the Fokker Planck equations, we are going to estimate the time asymptotic convergence of a solution w 1 of (2.37) to the Maxwellian G. To do this, the idea consists (see also [START_REF] Rodrigues | Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid[END_REF]) in multiplying the equation (2.38) by G -1 w and estimate the norm | w| G,2 with:

| w| G,2 = G -1 2 w L 2 (R 2 ) .
(2.39)

The idea is to observe that if

L = G -1 2 LG 1 2 then L = -∆ + |ξ| 2 16 -1
2 is a harmonic oscillator with spectrum {0, 1 2 , 1, 3 2 , • • • } ( see [START_REF] Rodrigues | Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid[END_REF]). Moreover 0 is a simple eigenvalue with eigenvector G

1 2 . In particular if f is in the domain of L with R 2 G 1 2 f = f, G 1 2 = 0, then: R 2 f Lf dx ≥ 1 2 f 2 L 2 .
(2.40)

Coming back to L, we obtain if G -1 2 w belongs to the domain of L with R 2 wdx = 0, then for any 0 < γ < 1 2 taking w = G 1 2 f we have:

R 2 G -1 wL w = -(1 -γ) R 2 f Lf + γ R 2 G -1 wL w ≤ - 1 2 (1 -γ)| w| 2 G,2 + γ R 2 G -1 wL w
Now using integration by parts on the formula of L, we have:

R 2 G -1 wL w ≤ - 1 2 (1 -2γ)| w| 2 G,2 -γ( ∇(G -1 2 w) 2 L 2 + | |ξ| 4 w| 2 G,2 ).
From Young inequality we obtain:

R 2 G -1 wL w ≤ - 1 2 (1 -2γ)| w| 2 G,2 -γ( 1 3 |∇ w| 2 G,2 + 1 2 | |ξ| 4 w| 2 G,2 ).
Next we have:

R 2 div(( 1 ρ 1 -1)∇w 1 ) w G -1 dξ = R 2 div(( 1 ρ 1 -1)∇ w) w G -1 dξ + α R 2 div(( 1 ρ 1 -1)∇G) w G -1 dξ = - R 2 ( 1 ρ 1 -1)|∇ w| 2 G -1 dξ - 1 2 R 2 ( 1 ρ 1 -1)∇ w • ξG -1 wdξ + α 2 R 2 ( 1 ρ 1 -1)ξ • ∇ wdξ + α 4 R 2 ( 1 ρ 1 -1) w|ξ| 2 dξ
Multiplying the momentum equation (2.38) by G -1 w and combining all the previous estimates, we obtain:

1 2 d dt | w| 2 G,2 + 1 2 (1 -2γ)| w| 2 G,2 + γ( 1 3 |∇ w| 2 G,2 + 1 2 | |ξ| 4 w| 2 G,2 ) ≤ - R 2 ( 1 ρ 1 -1)|∇ w| 2 G -1 dξ - 1 2 R 2 ( 1 ρ 1 -1)∇ w • ξG -1 wdξ + α 2 R 2 ( 1 ρ 1 -1)ξ • ∇ wdξ + α 4 R 2 ( 1 ρ 1 -1) w|ξ| 2 dξ.
(2.41)

Using Young inequality we have:

1 2 d dt | w| 2 G,2 + 1 2 (1 -2γ)| w| 2 G,2 + γ( 1 3 |∇ w| 2 G,2 + 1 2 | |ξ| 4 w| 2 G,2 ) ≤ 1 ρ 1 -1 L ∞ |∇ w| 2 G,2 + ε 4 1 ρ 1 -1 L ∞ |∇ w| 2 G,2 + 1 4ε 1 ρ 1 -1 L ∞ ||ξ| 2 w| 2 G,2 + |α| 2 ( 1 ρ 1 -1)G 1 2 L 2 |∇ w| G,2 + |α| 4 ( 1 ρ 1 -1)G 1 2 L 2 ||ξ| w| G,2 .
(2.42)

We observe now that:

( 1 ρ 1 (τ, •) -1)G 1 2 L 2 ≤ 1 2 √ πt 0 e -τ 2 1 ρ 0 -1 L 2 .
(2.43) From (2.42) and (2.43), we deduce from Young inequality that for ε , ε 1 > 0:

1 2 d dτ | w(τ )| 2 G,2 + 1 2 (1 -2γ)| w(τ )| 2 G,2 + γ( 1 3 |∇ w(τ )| 2 G,2 + 1 2 | |ξ| 4 w(τ )| 2 G,2 ) ≤ |∇ w(τ )| 2 G,2 ( 1 ρ 1 (τ ) -1 L ∞ + ε 4 1 ρ 1 (τ ) -1 L ∞ + |α|ε 8 √ πt 0 1 ρ 0 -1 L 2 ) + |α| 8ε √ πt 0 e -τ 2 1 ρ 0 -1 L 2 e -τ + ||ξ| 2 w(τ )| 2 G,2 ( 1 4ε 1 ρ 1 -1 L ∞ + ε 1 |α| 16 √ πt 0 1 ρ 0 -1 L 2 ) + |α| 16ε 1 √ πt 0 1 ρ 0 -1 L 2 e -τ ≤ |∇ w(τ )| 2 G,2 ( 1 ρ 0 -1 L ∞ + ε 4 1 ρ 0 -1 L ∞ + |α|ε 8 √ πt 0 1 ρ 0 -1 L 2 ) + |α| 8ε √ πt 0 e -τ 2 1 ρ 0 -1 L 2 e -τ + ||ξ| 2 w(τ )| 2 G,2 ( 1 4ε 1 ρ 0 -1 L ∞ + ε 1 |α| 16 √ πt 0 1 ρ 0 -1 L 2 ) + |α| 16ε 1 √ πt 0 1 ρ 0 -1 L 2 e -τ
(2.44) Since 1 ρ 0 -1 L ∞ is sufficiently small, we deduce by bootstrap that there exists 0 < C < 

Proof of the theorem 1.2

It suffices to construct as previously a fundamental solution of the equation:

ρ 0 ∂ t ∆u -∆u = 0.
We have then an explicit solution which is also solution of (1.1).

  +∞, we deduce that there exists C 2 > 0 depending on D such that:| w(τ )| G,2 ≤ C 2 e -Cτ ,(2.47) withe 0 < C < 1 2 . It implies in particular that setting:R 2 |t 0 e τ w(t 0 (e τ -1), √ t 0 e τ 2 ξ + x 0 ) -αG(ξ)| 2 G -1 (ξ)dξ ≤ C 2 2 e -2CτFrom Höder inequality we deduce that for 1 ≤ p ≤ 2 since by definition w = curlu:(t 0 + t)By duality we prove the same estimate for 2 ≤ p ≤ +∞. It concludes the proof of the theorem 1.1.

	and C 1 > 0 such that: From Grönwall lemma, we have for any τ > 0: 1 2 d dτ | w(τ )| 2 G,2 + C| w(τ )| 2 G,2 ≤ C 1 e -τ . | w(τ )| 2 G,2 ≤ e -2Cτ | w(0)| 2 G,2 + 2C 1 e -τ . Now since we have D = R 2 |w 0 (x)| 2 exp( |x -x 0 | 2 4t 0 )dx = R 2 |w 1 (0, ξ)| 2 exp( |ξ| 2 4 |t 0 e τ w(t 0 (e τ -1), z) -αG( z -x 0 √ t 0 e τ 2 )| 2 G -1 ( z -x 0 √ t 0 e τ 2 )dξ ≤ C 2 2 e -2Cτ R 2 |(t 0 + t)w(t, z) -αG( z -x 0 √ t 0 + t )| 2 dξ ≤ C 2 2 1 (1 + t t 0 ) 2C √ t 0 + t w(t, •) -α t + t 0 G( • -x 0 √ t 0 + t ) G -1 ( z -x 0 √ t 0 e τ 2 ) L 2 ≤ C 2 1 (1 + t t 0 ) C )dξ ≤ C < R 2 1-1 p curlu(t, •) -α t + t 0 G( • -x 0 √ t 0 + t L 2 ≤ C 2,p (1 + t t 0 ) C .	1 2 (2.45) (2.46)
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