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K Y B E R N E T I K A — V O L U M E 3 0 ( 1 9 9 4 ) , N U M B E R 6, P A G E S 6 4 5 - 6 5 8 

THE PARTIAL NON INTERACTING PROBLEM: 
STRUCTURAL AND GEOMETRIC SOLUTIONS 

JUAN CARLOS MARTI'NEZ GARCIA, MICHEL MALABRE AND RABAH RABAH 

The aim of this paper is to propose a new contribution in the domain of the famous 
Decoupling Problem for Linear Time-Invariant systems: we introduce here and solve the 
so-called fcth-order Partial Non Interacting Problem (PNIP(fc)), which amounts to diag-
onalizing the first fc Markov parameters of the compensated plant. This contribution is 
based on classical results on exact decoupling and the partial treatment is inspired from a 
similar control problem, namely the partial model matching problem. 

1. INTRODUCTION 

The Decoupling Problem (also sometimes called Non Interacting Problem) is certain
ly one of the most famous problems in Control Theory which amounts to reducing 
the control of a "complex" multivariable process to that of several single-input, 
single-output ones. Some intensive treatment of this problem can be found in [17]. 
However, the structural requirements for that problem to be solvable may be quite 
demanding (see for instance [4], [3], and recently [13]). This is the reason v/hy a 
partial version of this problem is introduced here, which amounts to obtaining non 
interaction only through the first k Markov parameters of the compensated plant. 
We present here the geometic and structural solutions for this problem. 

2. NOTATION AND BASIC CONCEPTS 

Throughout the paper we shall essentially follow the notational conventions of [17]. 
Script capital (X,y,...) denote finite-dimensional vector spaces over the field of 
real numbers JR, and dim(A')I dim(>"), . . . , denote their dimensions. The notation 
X ~ IV means dim(A") = &im(y). If V C X, then XjV denotes the quotient space 
X modulo V. 

Italic capitals (A, B,...) denote interchangeably linear maps and their matrix 
representations in particular bases. The ith row of a matrix C is denoted by c,-. We 
shall use d to denote the matrix C without the ,'th row c,. The image of a map 
B is written as I m 5 and its kernel as Ker B. The identity map on a n-dimensional 
space is denoted by In. 

The set of positive integer numbers is denoted by N. 
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Given the maps A:X -+ X, B:U -+ X, C:X -» y (dim(^) = n, dim(u) = m, 
dim(3^) = p), associated with the linear time-invariant system: 

x{t) = Ax{t) + Bu{t) t > 0, 
y{t) = Cx{t) ť > 0 , (1) 

that we shall denote by {A,B,C), it will be assumed here that the reader is fa
miliarized with the concepts of (A, 5)-invariant, (C, A)-invariant and controllability 
subspaces [17] (see also [1]). We shall mainly use the following. 

Let B = ImB and C = K e r C A subspace W C X is said to be (j4,£5)-invariant 
if there exists a map F:X -* U satisfying {A+BF)W C W. 

A subspace W C X is said to be (C, A)-invariant if there exists a map K.y —* X 
satisfying {A+KC)W C W. 

Given any subspace K C X, the supremal {A, B)-invariant subspace included in 
K is given as the limit, say V*(K), of the Invariant Subspace Algorithm (ISA): 

V° := X 
V := Kf\A-l(VfL-1 + B), / J > 1 . (2) 

When K = ker C the limit of ISA is noted as V*. 
When K = ker c; the /ith step of ISA is noted as Vf and its limit is noted as V*. 
When K = ker Ci the /ith step of ISA is noted as W? and its limit is noted as VV*. 

Given any subspace K C X, the infimal (/C,yl)-invariant subspace containing B 
is given as the limit of the Conditioned Invariant Subspace Algorithm (CISA): 

S° := 0 
S" := B + A (K n 5"- 1 ) , fi>\. ^ 

When K = ker C the limit of CISA is noted as S*. 
When K = ker c, the /ith step of CISA is noted as sf and its limit is noted as S*. 
When K = ker d the /ith step of CISA is noted as S{ and its limit is noted as S{. 

Given any subspace K C X, the maximal (yl,B)-controllability subspace con
tained in K is given as the limit of the Controllability Subspace Algorithm (CSA): 

U° := 0 ( 

K" := V* {K) n (An"-1 + B) , p.>\. ( ) 

When AC = ker C the limit of CSA is noted as 11*, which is equal to V* n S*. 
When K = ker c,- the /ith step of CSA is noted as Vf{ and its limit is noted as 11*, 
which is equal to Vt* n S* 

When K = ker C,- the /ith step of CSA is noted as T? and its limit is noted as T*, 

which is equal to W* n s,-. 

Infinite Zero S truc ture 

Given any system {A, B,C) described by (1) or equivalently by its strictly proper 
p x m transfer function matrix T{s) := C{sln - A)~XB, its structure at infinity is 
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described by the multiplicity orders of its zeros at infinity. From an algebraic point 
of view, this structure can be derived from the so-called Smith-McMillan Form at 
infinity of T(s), say AQO, which is a canonical form under right and left biproper 
transformations (see for instance [15]). Indeed, there exist biproper matrices, B\(s) 
and B2(s), such that: 

5 l ( S ) T ( S ) ß 2 ( * ) = Лoo = 

" Aoo 0 

0 0 

where A^o = diag{s~"i, s _ n 2, . . . , s~nr}, r := rank(T(s)). 
The non increasing list of integers {m, n2,..-,nr} is the list of the orders of 

the zeros at infinity of the system. This list is frequently called global structure at 
infinity of (A, B, C). From a geometric point of view, various equivalent definitions 
have been given for this structure. The original one, due to [2], is: 

m = c a r d { j ^ > i } , V i e {1, 2, . . . , r}, (5) 

where card stands for cardinal (number of elements in the set) and with: 

P, == d Ц ^ Й ^ r ) , V„>1. (6) 

Other geometric characterizations have been given in [10]. A particularly interesting 
one is given by: 

: = d i m ( B r y £ - z . . V » > 1 . (7) Pß Bnv* 
For the system (A,B,Ci), which denotes the ith row of the transfer function 

matrix T(s), the order of its zero at infinity is noted as n\ and is given by: 

n\ = dim(£+Д (8) 

This list {n\, n'2, . . . , n'p} is called the row structure at infinity of (A,B,C). 
The elements of this list are also given by: 

: miní j : аAІ-^B ф 0, j = 1,2,...}, Vi Є {1, 2, . . . , (9) 

3. PROBLEM STATEMENT 

The fcth-order Partial Non Interact ing Problem (PNIP(fc)) 

Definition 1. (PNIP(fc)) Given a system (A, B,C) and a positive integer k, the 
fcth-order Partial Non Interacting Problem has a solution if and only if there exists 
a static state feedback control law: 

u(ť) = Fx(t) + Gv(t) (10) 
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with G non singular, such that the first k Markov parameters of the closed-loop 
system have all their non-diagonal elements equal to zero, i.e.: 

C(A + BF)jBG - {diagonal matrix}, V j G {0, 1, . . . , k-1}. (11) 

Note that some diagonal elements of the corresponding matrices may be zero. 
Moreover, we do not require any full rank property for the considered system. 

4. MATRIX AND STRUCTURAL SOLUTION OF PNIP(fc) 

First of all, let us present here an easy-to-verify property of a system (A, B, C). This 
property will be used to establish the necessary and sufficient solvability condition 
of PNIP(Ar) in matrix terms. 

P r o p e r t y 1. [6] Given a system (A,B,C) and from the definition (9) of n\ we 
have that: 

c. (A + BF)j = dA', V j G {0, 1, . . . nj. - 1} 

and: 

d(A + BF)j = CiAn'i-l(A + BF)j-n'i+1 , Vj£{rii,rii + 1, ...}. 

In what follows we shall consider that the outputs of (A,B,C) have been re
ordered in such a way that: 

" i < « 2 < ••• < n'p-

For the problem of interest (non interaction) this is obviously an unrestrictive as
sumption. 

Let us now present our: 

T h e o r e m 1. Given a system (A,B,C) and a positive integer k, the following 

statements are equivalent: 

i) PNIP(Jfe) is solvable, 

ii) The matrix D^is epic, where: 

A. := 

cxA
n\~xB 

(12) 

with n'i < k, for all i G {1, 2, . . . , / } . 
iii) The set of all the elements of the global structure at infinity of (A, B, C) which 

are less than or equal to k is equal to the set of all the elements of the row 
structure at infinity of (A, B, C) which are less than or equal to k. 
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P r o o f , ii) = > i): Assuming that Dk is epic, it is claimed that the static state 
feedback control law: 

u(t) = F*x(t) + G*v(t) 

with: 
F* := -G*A*, (13) 

and: 
G* := [ D+ | A', ] , (14) 

where: 

ciA"!-1 

c2A
n2-1 

A* := c,Ani l 

Q(m-0X« 

DkD
+ = /., 

Kk is a basis of Ker Dk, 

solves PNIP(fc). 
From the very definition of nj's we have that: 

c, (A + BF*)j BG = 0, V j < n'i - 1. 

(15) 

(16) 

(17) 

(18) 

By Property 1: 

CІ(A + BF*)r = аAni-\ Viє{l, 2, ...,/}. 

Thus: 

d(A + BF*)ni-lBG* = c.Ani_1

JBo* = c ^ " . - 1 ^ [ D+ \ Kk ]. 

But CiAni~1B, for all i in {1,2, , . . , /}, is the ith row of Dk and so it follows that: 

d(A + BF*)n'i-lBG* = [7il 7i2 . . . Jim] ( 1 9 ) 

1, for j = i 
with: 

Ъi := 0, for i ^ i 
, V j Є { l , 2 , . . . , m } . 

Both equations (18) and (19) let us conclude that u(t) = F*x(t) + G*v(t) solves 
PNIP(fc), as was claimed. 

i) = > iii): Suppose that PNIP(&) is solvable, i.e. there exists a static state 
feedback control law u(t) = Fx(t) + Gv(t), with G non singular, such that the first 
k Markov parameters of the closed-loop system, i.e. (A + BF, BG, C), have all 
their non-diagonal elements equal to zero. 
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Let us now write the transfer function matrix of (A + BF, BG, C) as follows: 

TFG(s) := C(sIn-(A + BF)y1BG 

with: 

and: 

= T(s)C(s) 

T(s) := C(sln-A)' 

C(s) := (lm - F (sln - A)' B) G. 

Since G is a non singular matrix, C *(s) = G 1 (Im — F (sln —A) Bj exists 
and is biproper. Hence, the global structure at infinity is the same for T(s) and 
TFG(S)- This is also the same for the row structure at infinity of T(s) and TFG(S). 
Indeed, the order of the zero at infinity of the ith-row of TFG(S), i.e. TpGj(s) : = : 

Ci (sln — (A + BF))~ BG, is equal to n{, the order of the zero at infinity of the 
row-system (A,B,a). Let us now define: 

An<(s) := diag{s-"i, s~n2, . 

Then we can factorize TFG(S) as follows: 

TFG(S) = An<(s)TFG(s), 

n í , s n '+ i , . . . , s~nP}. (20) 

where TFG(S) is such that its first / rows are independent (recall that the outputs of 
the original system have been re-ordered in such a way that n[ < n'2 < . . . < n'p), 
since C (A + BF)j BG = {diagonal matrix} , Vj € {0, 1, . . . , k-1}. Thus, the 
algorithm which derives the global structure at infinity of a rational matrix from 
Laurent expansions (see [16] and [9]), let us affirm that {n[, n'2) . . . , n'J is a subset 
of the global structure at infinity of TFG(S), and since the global structure at infinity 
of TFG(S) and T(s) is the same, this establishes iii). 

iii) = > ii): Suppose that the set of all the elements of the global structure at 
infinity of (A,B,C) which are less than or equal to k is equal to the set of all the 
elements of the row structure at infinity of (A, B, C) which are less than or equal to 
k, and let us factorize the transfer function matrix of system (A,B, C) as follows: 

T(s) = Дn<(s) 

ciAni~ 

c2A
n2-

ClA
n'rlB 

c , + i A n ' + i _ 1 5 

+ ['Is'1 + [-Is'2 + (21) 

\ L CpA^-'B 

where [ • ] stands for a constant matrix and with An<(s) as defined in (20). As above, 
the algorithm which derives the global structure at infinity of a rational matrix from 
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Laurent expansions let us conclude about the independence of at least the first / 
rows of the leading coefficient matrix of the right hand side of (21). This implies 
that Dk is epic, which concludes the proof. • 

Let us remark that the results established in Theorem 1 are also valid when the 
outputs of the system are not re-ordered in a particular way. Re-ordering has just 
been used to prove the theorem in an easy-to-present way. In the sequel we do not 
assume any special re-ordering of the outputs of the system. 

The exact row decoupling problem amounts to solving PNIP(fc) for any possible 
value of k G IV. Thanks to the previous structural condition, this gives: 

Corollary 1. The exact row decoupling problem is solvable if and only if {n,} = 

{".}• 
Note that this requires that the system be of full row rank p, since {n'{} is always 

formed with p integers. 

Let us now write a structural solvability condition of PNIP(k) which will play a 
key role in the obtention of the geometric solvability condition of this problem. 

Due to the correspondence (5) between both list {n,} and list {p,}, which char
acterizes geometrically the global structure at infinity of system (A, B, C), it is quite 
obvious that: 

r„ •= Pi - P», VA.G{1,2, . . . , i» i} (22) 

is the number of the zeros at infinity of (A, B, C) which order is strictly less than p., 
for all i G {1, 2, . . ., n\}. In particular, for the row-system (A,B,Ci) let: 

<» : = - - P . M . V / i > l (23) 

with : fBnv»~l\ 

** = d i m ( ^ t r ) (by(7))- (24) 

Then r[ is equal to 1 for all p. > n\ + 1 and is equal to zero if p is strictly less than 
n\ + 1. Consequently, given an integer p £ {1, 2, ..., k + I}: 

is equal to the total number of all the elements of the row structure at infinity of 
(A, B, C) which order is strictly less than [i. 

We can now present: 

Corollary 2. Let the positive integer k and system (A, B, C) be given. Then 
PNIP(Jfc) is solvable if and only if: 

T„ = rr V M G{1 ,2 , . . . , * + ! } . (26) 
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P r o o f . To prove this corollary, it suffices to establish the equivalence between 
(26) and iii) in Theorem 1. 

It is evident that the equality between the less than or equal to k elements of 
both global and row structures at infinity of system (A,B,C) implies (26). 

Conversely, using combinatorial arguments, we can easily prove that the list of 
non-decreasing positive integers {r^}, V/z G{1,2, ..., k + 1} ({T1^}, V/U 6 {1, 2, . . . 
. . . , k + 1}), characterizes an unique list of also non-decreasing Tk+i (T^+I) positive 
integers: the subset of the less than or equal to k elements of the global structure 
at infinity (row structure at infinity). Thus, (26) implies iii) in Theorem 1. • 

5. GEOMETRIC SOLUTION OF PNIP(fc) 

In this section we shall present an alternative solvability condition of PNIP(fc), 
established in geometric terms. To do it, we shall need two preliminary lemmas 
that we present here without proof in order to avoid unnecessary extension of this 
paper. In fact, these lemmas are some quite generalization of results given in [4] 
concerning the Block Decoupling Problem. 

L e m m a 1. Consider a system (A, B, C) and a positive integer k be given, if for a 
a given positive integer fi < k the following conditions hold: 

B = Y,BnTf ( 2 7 ) 

,=i 

V = f | V f (28) 
x " = l 

V = f ) V/, ViG {1,2, ...,P}, (29) 

,e{l, 2,..., p},jjii 
then (27) and (28) imply: 

V + 1 = p j Vf+1 (30) 

and (27) and (29) imply: 

Tf+1 = f | Vf+1- V i G { l , 2 , . . . , p } . (31) 
;e{l,2,...,p},i-w 

L e m m a 2. Consider a system (A,B,C) and a positive integer k be given, if for a 
a given positive integer p < k the following conditions hold: 

v 

W = pjVf (32) 
І=I 

T? : f ] Vi' ViG {1,2, ...,p}, (33) 

;e{l,2,...,p},;*; }( 
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then: 

^ d i m ( S n T / J ) = d imf^BnT, . " j + (m - 1) • dim(£n V), fi<k. 

V.=i J (34) 

We can now present: 

T h e o r e m 2. Let the positive integer k and system (A,B,C) be given. Then 
PNIP(Jb) is solvable if and only if: 

p 

B = Y,BnT/'> V A I G { 1 , 2 , . . . , * } . (35) 

P r o o f . To prove this theorem, we shall follow in essence the procedure used in 
[4] to solve the block decoupling problem via regular static state feedback. 

Let us first consider that (35) holds. 
From (29) the total number of the set of elements of the row structure at infinity 

of (A, B, C) which order is strictly less than /. G {1, 2, . . . , it + 1} is given by: 

T-; = ^ d i m ^ - ^ d i m ^ n v r 1 ) - (36) 
t=i i=i 

If (35) holds: 

B = BnTf-' + Bnvr1, Vie {1,2, . . . ,p} , /i€ {1, 2, ..., Jfc + l} (37) 

since T/*-1 C Vf_1, for all i, j G {1, 2, . . . , p}, j 7. i, and ft e {1, 2, . . . , k + 1}. 
By substitution of (37) in (36), we obtain that for all ft G {l, 2, . . . , k + 1}: 

p p 

7-; = ^d im^nT , " " 1 ) - ^ T d i m ^ n T / ^ n v r 1 ) - (38) 
1=1 i = l 

Now, from Lemma 1, we have: 

T?-1 = f l V r ' . V j* € {1,2, . . . , * + 1 } . 
ie{l,2,...,p},jVi 

Then the substitution of (39) in (38) results in: 

7-;, = £ dim (fin 7V1-1) - J2 dim [Bf]^' M. 
i=i ,=1 V .=1 ' J 

(39) 

(40) 

But f l Vf -1 = V"-1 , for all ft G {1, 2, . . . , k + 1}, since (28). Then (40) can now 
i = l 

be written as follows: 
P 

T£ = J ^ d i m ^ n T i " - 1 ) -m-d imfSnV"- 1 ) , (41) 



654 J. C. MARTINEZ GARCiA, M. MALABRE AND R. RABAH 

for al l / iG {1,2, . . . . ife + 1}. 
Using Lemma 2 for all p € {1, 2, . . . , k + 1}, and (35), (41) becomes: 

rl = dimlj2BnTi'1~1) ~ dim^nV"-1) 

= dim(B) - d imf t fnV"- 1 ) 

= d i m ( g n ^ / i . 1 ) =: rM, Vf. 6 {1, 2, . • . , k+ 1}\ 

and sufficiency has been proved. 
For necessity we shall prove by induction that, under the assumption iii) in The

orem 1 (or equivalently: assuming that (26) holds), the following relationships hold 
f o r a l l J u € { l , 2, ...,k}: p 

V = f )Vf , (42) 

V = П vj1, 
je{l,2,...,p),jфi 

(43) 

B = B n T , " + BHV?, V t € { l , 2, ...,p}, (44) 

B = X>nT j \ (45) 

These relationships obviously hold for /i = 0. Let us then assume that (42)-(45) 
hold for some fi G {1, 2, . . . , k}. By Lemma 1, (42) and (43) hold for // + 1. In order 
to establish (44) for /i + 1, let us write that for all i 6 {l, 2, . . . , p}: 

d i m ^ n T ^ 1 + 5nvf+1) = dim ( B p | V;+ 1 

\ ie{l,2,...,p}jjii 

(46) 

since (42) and (43) hold for fi + 1. 

+ dim(JBnVf+1) 

-dim(snT/1+1nVf+1), 

While developing dim I B f] Vf+1 J we can write that for all i which 

belongs to {1, 2, . . . , p}: 

. . P P-2 
dim (snT."+1 + BnV?+1) = ^dim(8nV; + 1 ) - 2dim(£j*+1) 

'=1 !=1 

- d i m ( f i n V + 1 ) , 

(47) 
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where £ ? + 1 , for all j € {1, 2, . . . , p - 2}, are included in B. 

Now, by Corollary 2, the solvability of PNIP(fc) amounts to: 
^ = *}., V^{1,2, . . . , 4 + 1}, 

which is to say: 

|>mMr) = d l m ( l * m M ' ^€{1,2 . . . . ,* - !} . 

Thus: 

^ d i m ( t f n V f + 1 ) = ( m - l ) . d i m ( B n V + 1 ) . (48) 

By substitution of (48) in (47) we obtain: 
p-2 

dim^n^""1-1 + 5nVf+1) = (m-l)-dim(6) - ^d im( r ; + 1 ) 

V-i p-2 

= dim(ß) + ^dim(ß) - J2dim(Ci+1) 
t = l 1 = 1 

= d i m ( ß ) + g d i m ^ j 
and so: 

dim (5 n 7;."+1 + #nvf+1) = dim(B), v»e {i, 2, ...,p}, 
which establishes (44) for ^ + 1. 

Now, starting from: 

5 = #n7;."+1 + Bnvf+1, Vie{i,2, ...,P} 
and: P 

V+ 1 = f|Vf+1 (49) 
i=i 

we obviously have: 
p 

B = p(finr i"
+1 + Bnv?+l) 

(50) 

= ^ f i n ^ 1 + Bf)v?+1, 

since 5 n 7/"+ 1 CBn vf , for all i, je { 1 , 2 , . . . , p}, j ^ i. And so, when using 
(49), (50) leads to: p 

B = ^ n ^ 1 + gnv + 1 

j^вnтr+1 

1=1 
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since B n V + 1 C BnTf*1, for all ie {1, 2, . . . , p } . 
This shows that (45) also holds for ^ + 1, which completes the proof. • 

6. CONCLUDING REMARKS 

The problem presented here is a weakened version of the famous Decoupling Prob
lem, which corresponds to "infinite order" Partial Non Interaction: indeed, our 
solution brings back to the classical well-known results for that particular case (see 
Corollary 1). When Exact (regular) Decoupling is not solvable, our procedure gives 
more information on this pathology (typically we are able to know from which step 
the inherent couplings of the system cannot be cancelled). 

A similar problem has been introduced in the early 80's [5], related to Partial 
Model Matching, and its geometric and structural solutions considered in [11], with 
also an interesting application in the field of systems with delays [12]: the present 
results will be a starting point for the study of the existence of non-anticipatory 
solutions for the partial decoupling problem of linear systems with delays ; indeed, 
as in [12], we can consider, for these systems, the non interacting problem with fixed 
(finite) horizon k. 

Finally, as is done in [11] for the Partial Model Matching, the structural solvability 
condition of PNIP(&) can also be obtained using algebraic arguments. For that, we 
need to consider a more general version of the problem, related to dynamic soluiions 
and denoted as DPNIP(&) (fcth-order Dynamic Partial Non Interacting Problem). 
This corresponds to control laws of the type: 

u(s) = F(s)x(s) + Gv(s), 

with G invertible. The action of such control law on (1) is equivalent to that of the 
hiproper precompensator (see [8]): 

C(s) = (lm-F(s)(sIn-A)~l BY G. 

DPNIP(ft) can be formulated as follows: 
Let the positive integer k and system (A,B,C) be given. Then DPNIP(k) is 

solvable if and only if there exists a biproper solution, say C(s), to the matrix 
equation 

T(s)C(s) - a-(*+1)p(-) = Td(s), (51) 

where P(s) is any proper rational transfer function matrix and Td(s) is a proper 
diagonal transfer function matrix. 

Equation (51) let us write: 

[ T(s) | _.-(-+->/,, ] 

C(s) 

P(s) 

= Td(s), 
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which translates it into a problem of Exact Decoupling, [ T(s) | —s~(fc+1)/p ] 
stands for the plant and [ CT(s) | PT(s) ] for the precompensator which per
forms the exact decoupling. It is well known (see for instance [4] and [3]) that exact 
decoupling is solvable if and only if both the global and row structures at infinity 
of the plant are the same. In the present case this is true if and only if the set of 
all the elements of the global structure of T(s) which are less than or equal to k is 
equal to the set of all the elements of the row structure at infinity of T(s) which are 
less than or equal to k. Indeed, the set of all the elements of the global structure 
of [ T(s) | — s~(fc+1)/p ] which are strictly greater than k coincides with the set 
of all the elements of the row structure of T(s) which are strictly greater than k, 
since all these elements are equal to k + 1, because of the presence of — s~(h+l^Ip 

in [ T(s) | — s - (* + 1 ) / p ] . As concerns the biproperness of C(s), it can be shown 
that for the particular case where k > supwj (which is the most interesting case in 
practice), the solution [ CT(s) | PT(s) ] can always be chosen such that C(s) is 
biproper (see for instance [7]). 

Moreover, since the transfer function matrix [ T(s) | — s~(*+1)jp ] does not 
have any finite transmission zero, it happens that finite unstable transmission zeros 
of T(s) do not play a role in the dynamic solution of partial non interaction when 
the internal stability of the closed-loop system is required. Remember that this is 
not the case for exact decoupling with stability, as is well known (see for instance 
[13]). In fact, partial non interaction is a particular case of partial model matching 
and it has been shown in [14] that partial model matching solvability, when internal 
stability of the closed-loop system is required, only depends on structure-at-infinity 
information (of course, under the assumption of stabilizability of the system). Finite 
unstable transmission zeros do not play a role here for the search of internally stable 
solutions to DPNIP(fe), namely through dynamic compensations. The existence of 
static state feedback solutions to PNIP(fc) with stability appears to be much more 
difficult to characterize. A simple 2 inputs-2 outputs counter-example is given in [7] 
for which partial dynamic solutions exist with stability for all k > 1, but no static 
ones. 
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