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Abstract

The standard version of the Fast Fourier Transform (FFT) is applied to problems
of size n = 2k. For this reason, FFT-based evaluation/interpolation schemes often
reduce a problem of size l to a problem of size n, where n is the smallest power
of two with l 6 n. However, this method presents “jumps” in the complexity at
powers of two; and on the other hand, n− l values are computed that are actually
unnecessary for the interpolation. To mitigate this problem, a truncated variant of
the FFT was designed to avoid the computation of these unnecessary values. In
the initial formulation [14], it is assumed that n is a power of two, but some use
cases (for example in finite fields) may require more general values of n. This paper
presents a generalization of the Truncated Fourier Transform (TFT) for arbitrary
orders. This allows to benefit from the advantages of the TFT in the general case.

1 Introduction

Many basic arithmetic operations on polynomials can be performed efficiently using eval-
uation/interpolation techniques. A typical example is the multiplication of polynomials:
let A,B be polynomials in K[X] for a field K, such that deg(AB) < n. The product
AB can be computed by choosing n different values (x1, . . . , xn) ∈ Kn, and evaluating
the A(xi) and B(xi) for all i. Then, a term-by-term multiplication leads to the values
(AB)(xi) for all i, and an interpolation on these values allows to retrieve the polynomial
AB.

The Discrete Fourier Transform (DFT) is a way to perform these evaluations and in-
terpolations on specifically chosen values: let ω be a primitive n-th root of unity and P ∈
K[X] of degree less than n; then the DFT of P is the n-tuple (P (1), P (ω), . . . , P (ωn−1)).
Symmetrically, the inverse DFT computes the coefficients of P from the values
(P (ωi))06i<n. When n is highly composite, the DFT and its inverse can be computed
efficiently using the Fast Fourier Transform (FFT) algorithm. This method was known
to Gauss around 1805 [6], but it received little attention until after its rediscovery by
Cooley and Tukey [3]. For this reason, and because they were the first to use this method
as a systematic computation algorithm, the modern formulation of the FFT is usually
attributed to Cooley and Tukey.

1.1 Jump phenomenon

The standard version of FFT-based multiplication algorithms relies on a primitive n-th
root of unity ω ∈ K, where n is a power of two. This requirement causes the following
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drawback: when a polynomial of degree less than d is considered (or when d evaluation
points are needed) with d slightly larger than 2k, one must perform a FFT of order 2k+1.
This causes a significant overhead since up to twice as many values are computed as what
is actually needed.

This jump phenomenon can be mitigated by allowing a more precise choice of n > d.
For example, instead of requiring n = 2k, one can allow more general products of small
primes such as n = 2k3l5m. FFTs of such sizes reduce to DFTs of sizes 2, 3 and 5,
for which efficient codelets are implemented e.g. in the FFTW3 library [5]. Alterna-
tively, optimized radix-2 methods may be preferred because of their simplicity (fewer
base cases to handle). For example, the FFT pruning [10] aims to reduce the overhead
for a zero-padded sequence. Another example is Crandall and Fagin’s Discrete Weighted
Transform [4], which reduces a problem of size d < 2k to two problems of size 2l and 2m

with d < 2l + 2m < 2k.
Another elegant solution to this jump phenomenon is to use the Truncated Fourier

Transform [14]. The TFT behaves as a usual FFT of order 2k, but it performs a mul-
tipoint evaluation with exactly the desired length, while avoiding the computation of all
intermediate values that are not needed for obtaining the output. Moreover, the interpo-
lation can be performed with the same complexity using the inverse TFT. Improvements
to this algorithm were made to reduce memory usage [9], and improve cache friendli-
ness [8]. Mateer [11, Chapter 6] also proposed a different formulation of the TFT inspired
by Crandall and Fagin’s reduction. He mentions that this alternative formulation can be
used with a few adaptations when n = 3k, or another prime power.

1.2 Goal of this paper

The methods discussed above rely on a choice of n with a very specific form. This requires
the base field K to contain primitive n-th roots of unity for all such n. This is true for
K = C, but in general, the choice of roots of unity is restricted. It is always possible to
add virtual roots of unity (with certain restrictions on their order if the field has non-
zero characteristic) as in the Schönhage-Strassen algorithm [13], but this extension causes
computational overhead.

Assume that the choice of roots of unity is restricted by both our base field K and
practical considerations. Let S ⊂ N denote the set of orders n for the roots of unity
that can be used in FFTs. For example, the use cases mentioned in previous section
assume K = C, and only practical considerations are taken into account. This leads to
sets of the form S = {2k|k ∈ N}, or S = {2k3l5m|k, l,m ∈ N}. In a finite field like F2l ,
there are roots of unity only for specific orders, so we would have S = {n|n divides 2l−1}.
A remarkable example is F260 because there are efficient ways of computing in this field,
and many roots of unity (with large, highly-composite order) are known [7].

As discussed previously, there is a jump phenomenon at elements of S (more or less
important depending on their distribution). This paper aims to reduce this jump phe-
nomenon through a generalization of the Truncated Fourier Transform to an arbitrary n.

At first, we give a brief reminder of the Fast Fourier Transform in the general case,
and some useful notations are introduced. In section 3 and 4, we present algorithms
to compute the Truncated Fourier Transform and its inverse for any n. Finally, the
complexity of the TFT is discussed and compared with the ordinary FFT.
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2 The Cooley-Tukey FFT

Let A = (Ai)06i<n be a vector in Kn, and let ω be a primitive n-th root of unity. The
Discrete Fourier Transform (DFT) of A with respect to ω is the vector Â = (Âi)06i<n

where

Âi =
n−1∑
j=0

Aj · ωij . (2.1)

Equivalently, if PA is the polynomial A0 +A1X+ · · ·+An−1X
n−1, then Âi = PA(ωi). The

Fast Fourier Transform (FFT) describes an algorithm to compute the DFT efficiently.

2.1 Fundamentals of the FFT algorithm

The Cooley-Tukey algorithm [3] relies on the following remark: assuming that n = n1n2

is composite, the following holds for all k1 < n1 and k2 < n2

Âk1+n1k2 =

n2−1∑
i=0

n1−1∑
j=0

Ai+n2j · ω(i+n2j)(k1+n1k2) ,

that is:

Âk1+n1k2 =

n2−1∑
i=0

ωik1 ·

(
n1−1∑
j=0

Ai+n2j · (ωn2)jk1

)
· (ωn1)ik2 . (2.2)

Using formula (2.2), a Discrete Fourier Transform of length n = n1n2 can be decomposed
into n2 DFTs of length n1 (inner DFTs) followed by n1 DFTs of length n2 (outer DFTs).
These smaller DFTs can be computed recursively using the same method as long as their
size not prime. In the special case where n = 2k, this leads to the well-known complexity
bound O(n lg n).

Remark 2.1. Each inner DFT is applied to a subvector of the input (with offset i < n1

and stride n2). Instead, it can be preferable to reindex the working array before the inner
DFTs, and once again before the outer DFTs. The main purpose of this reindexing is
to perform the recursive calls on contiguous memory blocks. This approach may lead to
more efficient implementation because of cache effects: sparing frequent data exchanges
with the RAM during the inner DFT compensates for the cost of the reindexing.

2.2 Generalized bitwise mirror

In an in-place implementation of the Cooley-Tukey FFT, it is convenient to order the
output differently (see for example [7, Section 2.1]). The purpose of this different order
is to ensure that the result of the full FFT is simply the concatenation of the outputs
from the outer DFTs. As a consequence, it spares a matrix transposition at the end of
the algorithm, and therefore also at each recursion step. The v-mirror noted [i]v defined
in this section is a notation for this new indexation: FFT(A)i = Â[i]v

Let the vector v = (p0, . . . , pd−1) be a decomposition of n (n =
∏d−1

j=0 pj); with not
necessarily prime pj’s. Then, any index i < n can be uniquely written under the form:

i = i0 · p1 · · · pd−1 + i1 · p2 · · · pd−1 + · · ·+ id−2 · pd−1 + id−1 , where for all j, ij < pj.

With these notations, the v-mirror of i is defined as

[i]v = i0 + i1 · p0 + i2 · p0p1 + · · ·+ id−1 · p0 · · · pd−2 .
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When all pj’s are 2, this definition coincides with the bitwise mirror introduced for the

radix-2 TFT from [14]. Let h 6 d, w1 = (p0, . . . , ph−1), w2 = (ph, . . . , pd−1), n1 =
∏h−1

j=0 pj

and n2 =
∏d−1

j=h pj (so that n = n1n2). It is easy to show the following basic properties of
the v-mirror:

[[i]v]v̄ = i with v̄ = (pd−1, . . . , p0), (2.3)

[i]v = i if d = 1 i.e. v = (n), (2.4)

[I + n2 J ]v = [J ]w1 + n1 [I]w2 for I < n2, J < n1. (2.5)

Remark 2.2. As claimed at the beginning of this subsection, if FFT(A)i = Â[i]v , then
the output of the top-level FFT is indeed the concatenation of the outputs from the outer
FFTs. This comes from properties (2.5) and (2.2) combined, and it will be more formally
discussed in the next subsection, once additional notations have been introduced.

Remark 2.3. As shown in [14] for n = 2k, it is crucial for the functioning of the TFT
algorithm to order the output according to the v-mirror. Actually, using the natural
ordering would require a transposition after the outer FFTs (and also at each recursion
depth). In the case of the TFT, such a transposition would mix the known and unknown
values, while the TFT relies on a contiguous block of known values.

2.3 Further notations for the steps of the FFT algorithm

Now consider an execution of the FFT algorithm as in section 2.1. The recursive calls
of the algorithm define a decomposition n = p0 · · · pd−1 of n, with n1 = p0 · · · ph−1 and
n2 = ph · · · pd−1. We reuse the notations from the previous section: v = (p0, . . . , pd−1),
w1 = (p0, . . . , ph−1) and w2 = (ph, . . . , pd−1). As in [7], we assume the output verifies
FFT(A)i = Â[i]v (that is, the Discrete Fourier Transform that is returned is reordered
according to the v-mirror).

Remark 2.4. Between the inner and outer DFTs, intermediates values are multiplied by
a power of ω, more precisely ωi·k1 as in formula (2.2). This factor is usually called the
twiddle factor. With an indexation of the output according to the v-mirror, the twiddle
factor must be ωi[k1]w1

For clarity, we will introduce different input and output vectors. These vectors are
actually just names to represent specific parts of the working vector at different steps of
the algorithm, but no duplication of data should occur. Let A and B (size n) be the input
and output vectors of the algorithm. Let αi and βi (i < n2, each vector has size n1) be
the input and output vectors of the i-th inner DFT (recursive call of the FFT algorithm).
Let γj and δj (j < n1, each vector has size n2) be the input and output vectors of the
j-th outer DFT. These notations are illustrated in Figure 1. By definition, we have the
following properties for all i, j:

(αi)j = Ai+n2j , (2.6)

(βi)j = FFT(αi)j = (α̂i)[j]w1
, (2.7)

(γj)i = ωi[j]w1 · (βi)j , (2.8)

(δj)i = FFT(γj)i = (γ̂j)[i]w2
, (2.9)

(δj)i = Bi+n2j = Â[i+n2j]v . (2.10)

4



0 mod 5 1 mod 5 2 mod 5 3 mod 5 4 mod 5

Transposition

Inner DFTs

Reverse transposition

Outer DFTs

Figure 1: Notations and steps of the FFT

Remark 2.5. These properties can be seen as an implementation of the Cooley-Tukey
FFT algorithm. As a proof, we can rewrite these equations with different indexes for
consistency with section 2.1. Let K1, k1 < n1 and K2, k2 < N2 such that k1 = [K1]w1

and k2 = [K2]w2 . Then, using the property (2.5) of the v-mirror in relation (2.10),
we get: (αi)j = Ai+n2j, (βi)K1 = (α̂i)k1 , (γK1)i = ωik1 · (βi)K1 (δK1)K2 = (γ̂K1)k2 and

(δK1)K2 = Âk1+n1k2 . This proves the correctness of the algorithm using formula (2.2).

2.4 Specification of the FFT algorithm and its inverse

This section formalizes FFT and inverse FFT as blackboxes to be used in TFT algorithms.
In particular, assumptions on the input and the output are precised.

Because of Remark 2.3, we assume the output is ordered according to the v-mirror.
Hence, the FFT algorithm can be described as follows:

Algorithm 2.1. FFT

• INPUT: an integer n ∈ N, a vector A = (ai)i<n, a vector v = (p0, . . . , pd−1)
such that n =

∏d−1
i=0 pi, and a primitive n-th root of unity ω

• OUTPUT: the vector T = (Â[i]v)i<n

Symmetrically, the inverse transformation is computed by the IFFT (inverse FFT)
algorithm:

Algorithm 2.2. IFFT (inverse FFT)

• INPUT: an integer n ∈ N, a vector B = (bi)i<n, a vector v = (p0, . . . , pd−1)
such that n =

∏d−1
i=0 pi, and a primitive n-th root of unity ω

• OUTPUT: the vector A = (ai)i<n such that ∀i < n, bi = Â[i]v

Remark 2.6. The inverse FFT can be computed by reversing the FFT algorithm. Al-
ternatively, using FFT as a blackbox, the following formula (and reordering of the in-
put/output) can be used:

DFTω−1 (DFTω(A))k =
n−1∑
i=0

n−1∑
j=0

ai · ω(i−k)j = nak

then,

(DFTω)−1 =
1

n
DFTω−1 . (2.11)
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3 The Truncated Fourier Transform for arbitrary

orders

This section generalizes the Truncated Fourier Transform (TFT) [14] for an arbitrary order
n = p0p1 · · · pd−1. Given a vector A of length n, the TFT computes l 6 n well chosen
values of the Discrete Fourier Transform of A; that is the vector T = (T0, . . . , Tl−1) =
(Âi0 , . . . , Âil−1

). Note that these are not necessarily the first l values of Â. The algorithm
presented in this section aims to perform less computation than by simply computing the
DFT of A and discarding the unused values.

3.1 Atomic transforms

At first we consider the following base case: given (a0, . . . , ap−1) for p prime or reasonably

small, we want to compute directly the TFT (Â0, . . . , Âl−1). To do so, one can naively
apply Horner’s rule for each value as in formula (2.1), which is especially efficient for
small p (principle of a specialized codelet). For larger p, it becomes more interesting to
compute the full DFT, then discard unused values. A full DFT of a such size can be
computed using efficient transformations such as Rader’s algorithm [12] and Bluestein’s
transform [1].

We assume that these considerations translate into the following algorithm:

Algorithm 3.1. atomicTFT

• INPUT: integers n ∈ N and l < n, a vector A = (a0, . . . , an−1) and and a
primitive n-th root of unity ω

• OUTPUT: the vector T = (Â0, . . . , Âl−1)

Remark 3.1. In the base case, we do not use the indexation according to the v-mirror
because of property (2.3).

3.2 General idea

Assume only l 6 n values of the output are actually needed. The plain FFT algorithm
can be modified to avoid computation of irrelevant intermediate values. As stated in
Remark 2.3, the output of the DFT must be ordered according to the v-mirror.

If we want to return the tuple (Â[i]v)06i<l, then according to relation (2.10), the
vectors δj need to be computed only for j < m = dl/n2e. This means by definition (2.9)
that only the γj with j < m are needed. From formula (2.8), we conclude that for every
i < n2, only the first m values of βi need to be computed.

Moreover, if q = (l quo n2) < m, only the r = (l rem n2) first values of δq are needed
(where quo and rem represent the quotient and remainder operations in the euclidean
division). Figure 2 gives a visual representation of which values are actually needed.

3.3 Presentation of the algorithm

The previous discussion suggest that a TFT of order n = n1n2 can be decomposed into n2

TFTs of order n1 followed by m TFTs of order n2 (as for the usual FFT). If the top-level
TFT has length l, then the inner TFTs have length m = dl/n2e. Most of the outer TFTs
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l

Figure 2: Example of Truncated Fourier Transform (TFT)

are actually usual FFTs; only the last one may be a TFT of length r = (l rem n2) (unless
r = 0). This leads to the following recursive algorithm:

Algorithm 3.2. TFT

• INPUT: integers n ∈ N, l ∈ {1, . . . , n}, a vector A = (ai)i<n, a vector v =
(p0, . . . , pd−1) such that n =

∏d−1
i=0 pi, and a primitive n-th root of unity ω

• OUTPUT: the vector T = (Â[i]v)i<l

if d = 1 then return atomicTFT(n, l, A, ω) . Algorithm 3.1
else if l = n then return FFT(n,A, v, ω) . Ordinary FFT (Algorithm 2.1)
else

choose h ∈ {1, . . . , d− 1}; define n1, n2, w1, w2 as in section 2.3
m← dl/n2e; q ← l quo n2; r ← l rem n2

for 0 6 i < n2 do . n2 TFTs of size n1

(αi)j ← Ai+n2j for all j < n1

βi ← TFT(n1,m, αi, w1, ω
n2)

(γj)i ← ωi[j]w1 · (βi)j for all j < m
end for
T ← ∅
for 0 6 j < m do . n1 TFTs of size n2

if j < q then
δj ← FFT(n2, γj, w2, ω

n1) . Ordinary FFT (Algorithm 2.1)
else

δj ← TFT(n2, r, γj, w2, ω
n1)

end if
T ← (T, δj)

end for
return T

end if

Theorem 3.1. Assuming correct implementations of Algorithms 2.1 and 3.1, the Algo-
rithm 3.2 is correct.

Proof. Case l = n corresponds to a full FFT, then Algorithm 2.1 returns the expected
result. If d = 1 (typically when n is prime), the Discrete Fourier Transform is computed
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directly. Then, unnecessary outputs are discarded. The results are ordered as expected
because of property (2.4). In the other cases, the algorithm is called recursively, and its
correctness results by induction from the discussion in section 3.2.

Remark 3.2. As for the in-place Cooley-Tukey FFT presented in [7], the result depends
on the vector v, but not on the choice of h.

4 The inverse TFT for arbitrary orders

The formula (2.11) for the usual FFT cannot be used in the case of the TFT because not
all values of the transform are known. As for the standard TFT (n = 2k) [14], we revert
the algorithm computing the TFT instead.

The inversion of a TFT is to be understood as follows: assume that the values (Bi)06i<l

of the output, and (Ai)l6i<n of the input are known. Then, the goal is to retrieve the
missing values (Ai)06i<l of the input. Typically, the values Ai (for i > l) are known to be
0 because of a simple analysis regarding the degree, but the coefficients of highest degree
of a polynomial can also be deduced from a limit analysis.

At first, we provide a method to solve the base case of size p by direct computation
(here p is not necessarily prime, but it should be reasonably small, so the problem can
be solved without further decomposition). Then, we present a recursive algorithm that
reduces the TFT inversion to such a base case.

4.1 Atomic inverse transforms

In this section, we consider the following skew butterfly problem: given Â0, . . . , Âl−1 and
al, . . . , ap−1, how can we compute the missing values Âl, . . . , Âp−1 and a0, . . . , al−1?

The Discrete Fourier Transform is given by the following matrix-vector product:
Â0

Â1
...

Âp−1

 =


1 1 · · · 1
1 ω · · · ωp−1

...
...

. . .
...

1 ωp−1 · · · ω(p−1)(p−1)




a0

a1
...

ap−1

 ,

or, in a more compact form,
Â = Vω · A

For any m 6 p, we define the submatrices

Vω,m = (ωij)06i,j<m ,

Ṽω,m = (ω(i+m)(j+m)06i,j<p−m ,

and Wω,m = (ωi(j+m))i<m ; j<p−m .

Note that Vω,m has size m ×m, Ṽω,m has size (p −m) × (p −m) and Wω,m has size
m× (p−m). In other words:

Vω =

(
Vω,m Wω,m

W>
ω,m Ṽω,m

)
(4.1)

The considered skew butterfly problem is equivalent to the resolution of the following
matrix equation with parameters A2, B1 and unknowns A1 and B2:(

B1

B2

)
=

(
Vω,l Wω,l

W>
ω,l Ṽω,l

)
·
(
A1

A2

)
(4.2)
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Vω,l is a general Vandermonde matrix of determinant
∏

06i<j<l(ω
i − ωj) 6= 0, hence it

is invertible. Therefore,
A1 = (Vω,l)

−1(B1 −Wω,l · A2) . (4.3)

Once A1 is known, it is easy to compute B2 as

B2 = W>
ω,l · A1 + Ṽω,l · A2 . (4.4)

Remark 4.1. In the case l = 1, p = 2, we get the equations a1 = b1−a2, then b2 = b1−2a2,
which corresponds to the inversion of the usual butterfly of size 2 as encountered when
n = 2k [14].

Remark 4.2. Often, it is not necessary to compute B2 entirely, but only specific values.
In this case, equation (4.4) reduces to a much smaller computation. For example, when
composing atomic transforms for the inverse TFT, returning the first value of B2 is actu-
ally sufficient. For our usage, we assume that the results from this section translate into
the following algorithm:

Algorithm 4.1. atomicITFT (atomic inverse TFT)

• INPUT: integers n ∈ N and l < n, vectors A2 = (ai)l6i<n and B1 = (bi)i<l, and
a primitive n-th root of unity ω

• OUTPUT: the vector A1 = (ai)i<l and the value bl such that ∀i 6 l, bi = Âi
where
A = (A1, A2) = (ai)i<n

4.2 Recursive algorithm

In a similar way as in the case n = 2k [14], intermediate results are not always computed
in an order corresponding to the recursion depth. In a usual FFT, all outer FFTs are
inverted, then the inner FFTs are inverted. On the contrary for the TFT, some of the
inner TFTs must be inverted, and these inversions provide additional values that allow
the outer TFT to be inverted. This behavior is illustrated in Figure 3). Therefore, the
algorithm will return some of the missing output values (bi)l6i<n in addition to the desired
input values (ai)06i<l. It turns out that the outer TFT needs only one value from each

IFFT

ITFT ITFT

ITFT

ITFT* ITFT* ITFT*

Figure 3: Example of inverse TFT. Black (resp. white) dots represent known (resp.
unknown) values, ITFT* do not return additional output values
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inner TFT before it can be inverted, so returning bl is actually sufficient for the functioning
of the recursive algorithm.

We assume that we have at our disposal an algorithm (Algorithm 2.2) to reverse a
full FFT (case l = n). We also assume having another algorithm to reverse atomic
TFTs (Algorithm 4.1). The design from previous paragraph translates into the following
algorithm:

Algorithm 4.2. ITFT (inverse TFT)

• INPUT: integers n ∈ N and l < n, vectors A2 = (ai)l6i<n and B1 = (bi)i<l,
a vector v = (p1, . . . , pd) such that n =

∏d
i=1 pi, and a primitive n-th root of

unity ω

• OUTPUT: the vector A1 = (ai)i<l and the value bl such that:

∀i 6 l, bi =
(
Â[i]v

)
where A = (A1, A2) = (ai)i<n

if l = 0 then
return ∅,

∑n−1
i=0 ai

else if d = 1 then
return atomicITFT(n, l, A2, B1, ω) . Algorithm 4.1

else
choose h ∈ {1, . . . , d− 1}; define n1, n2, w1, w2 as in section 2.3
q ← l quo n2, r ← l rem n2

for j < q do . “Step 1”
(δj)i ← (B1)i+n2j for all i < n1

γj ← IFFT(n2, δj, w2, ω
n1) . Algorithm 2.2

(βi,1)j ← ω−i[j]w1 · (γj)i for all i < n1

end for
for r 6 i < n2 do . “Step 2”

(αi,2)j ← ai+n2j for all j > q . i+ n2j > l
(αi,1), (βi)q ← ITFT(n1, q, αi,2, βi,1, w1, ω

n2) . q < n1 since l < n
(γq)i ← ωi[q]w1 · (βi)q
(A1)i+n2j ← (αi,1)j for all j < q

end for

∆1 ← ((B1)i+n2q)i<r . “Step 3”
Γ2 ← ((γq)i)r6i<n2

Γ1, (δq)r ← ITFT(n2, r,∆1,Γ2, w2, ω
n1)

for i < r do . “Step 4”
(βi,1)q ← ω−i[q]w1 · (Γ1)i
if q + 1 < n1 then

(αi,2)j ← ai+n2j for all j > q . i+ n2j > l
(αi,1), dummy← ITFT(n1, q + 1, αi,2, βi,1, w1, ω

n2)
else

(αi,1)← IFFT(n1, βi,1, w1, ω
n2) . Algorithm 2.2

end if
(A1)i+n2j ← (αi,1)j for all j 6 q

end for
return A1, (δq)r

end if
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Theorem 4.1. Assuming correct implementations of Algorithms 2.2 and 4.1, the Algo-
rithm 4.2 is correct.

Proof. We proceed by induction over d. The case l = 0 is clearly correct. For d = 1, the
result is computed directly using Algorithm 4.1, which is supposed to be correct. As for
Algorithm 3.2, the result is ordered as expected because of property (2.4) of the v-mirror.

In Step 1, the γj are computed for all j < q using a full reverse FFT. This means γj
and δj verify equation (2.9) for j < q. Then, the first part of every vector βi is computed
according to equation (2.8).

At this point, the vectors αi and βi are partially known. More precisely, we know the
values with j > q of αi and the values j < q of βi. Moreover, (αi)q is known for i > r (by
definition, l = n2 q + r). In Step 2, a recursive call computes the missing part of αi for
these i, as well as the value (βi)q. This means αi and ((βi)j)j6q verify equation (2.7) for
all i > r (the recursive call is correct by the induction hypothesis).

At the end of Step 2, the second part of (γq)i (for i > r) is computed according to
equation (2.8). It is noted Γ2 in the algorithm. The first part ∆1 of (δq)i (for i < r)
is also known from the input. In Step 3, the missing part Γ1 of γq (that is the (γq)i for
i < r) is computed as well as (δq)r through a recursive call. Then, γq and ((δq)i)i6r verify
equation (2.9).

Finally in Step 4, the (βi)q are computed for i < r. The (αi)j being given on input
for j > q, and the (βi)j being known from Step 1, the missing (αi)j (j 6 q) can be
computed using a recursive call. Since this call is correct by the induction hypothesis, αi
and ((βi)j)j6q verify equation (2.7) for i < r (hence for all i because of Step 2.

All in all, the vectors (some truncated) αi, ((βi)j)j6q, γj (j 6 q), δj (j < q) and
((δq)i)i6r verify equations (2.6) to (2.10). This is sufficient to prove correctness as seen in
section 3 (where l is replaced by l′ = l + 1)

4.3 Practical remarks

Remark 4.3. Algorithm 4.2 can be used to compute the unique polynomial P of degree
less than n such that l evaluation points are given by the vector B1 and the coefficients of
degree at least l are given by A2: ∀i < l, P (ω[i]v) = bi and ∀i > l, Pi = ai. In particular, it
can be used to interpolate a polynomial of degree less than l by setting A2 = (0, . . . , 0).

Remark 4.4. In section 4.1, the order p may be composite (which can happen if an
element of the vector v from Algorithm 4.2 is composite), but the resolution of equa-
tion (4.3) is not efficient if p is large. Algorithm 4.2 shows that the problem can be
reduced to smaller sizes as long as its order is composite. However, it seems difficult to
solve a skew butterfly problem if its size is a large prime.

For example, in F260 , we have primitive roots of unity of order 260− 1 = 32 · 52 · 7 · 11 ·
13 · 31 · 41 · 61 · 151 · 331 · 1321. It is feasible to perform the inversion using linear algebra
for size up to 13 efficiently, but direct computation may become too costly for p = 331 or
1321 for example.

Remark 4.5. An inverse TFT of length 0 is actually very simple: it reduces to the com-
putation of b0. For this reason, if (l rem n2) = 0, then the recursive call in Algorithm 4.2
at Step 3 becomes trivial. This partially solves the problem mentioned in the previous
remark: assume the prime factors of n are sorted in the vector v (in increasing order).
If for example an inversion by direct computation is possible for p0, . . . , pk−1 but not for
pk, . . . , pd−1 (because these primes are too large), then a TFT of length l can still be
reverted if ñ = pk × · · · × pd−1 divides l.
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Remark 4.6. It is important that the recursive calls in Step 2 return the additional
output value (βi)q. However, it is not necessary that Algorithm 4.2 always returns the
additional output value bl. For example, this value is simply discarded in the recursive calls
from Step 4. Another typical case where this value is not needed is for the interpolation
a polynomial of degree less than l from the l values (Â[i]v)i<l. It is possible to adapt
Algorithm 4.2 to avoid this unnecessary computation when the value bl is not needed.

4.4 A remarkable duality for atomic inverse transforms

Direct resolution of the skew butterfly problem from section 4.1 requires the inversion of
the matrix Vω,l of size l × l, which becomes expensive if l is large. In this section, we
present a dual problem that can be solved through the inversion of matrix Vω−1,p−l, that
has size (p− l)× (p− l). This duality ensures that the skew butterfly problem can always
be solved through the inversion of a matrix Vφ,m (and a few matrix-vector products),
where m 6 p/2 and φ is either ω or ω−1.

Property (2.11) gives the inverse matrix (Vω)−1 = (1/p) · Vω−1 . Then, with a decom-
position of Vω−1 as in formula (4.1), equation (4.2) can be rewritten as follows:(

A1

A2

)
=

1

p
·
(

Vω−1,l Wω−1,l

W>
ω−1,l Ṽω−1,l

)(
B1

B2

)
.

We want to solve the equation above with parameters A2, B1 and unknowns A1, B2. We
have

B2 = (Ṽω−1,l)
−1 · (pA2 −W>

ω−1,lB1) . (4.5)

Once B2 is known, it is easy to compute A1 since

A1 =
1

p
(Vω−1,lB1 +Wω−1,lB2) . (4.6)

Except for the factor 1/p, these formulas are symmetric to the formulas (4.3) and (4.4).
This shows the duality between these two problems.

The initial claim was that the problem could be solved through the inversion of Vω−1,p−l,

but equation (4.5) involves the matrix Ṽω−1,l. Actually, it appears that Ṽω−1,l deduces from
Vω−1,p−l by multiplication with diagonal matrices. To reduce notations, let φ = ω−1. We

introduce the diagonal matrices Dφ,l = Diag
(
(φl(l+i))i<p−l

)
and D̃φ,l = Diag

(
(φli)i<p−l

)
of size (p− l)× (p− l). We have the following property:

(Ṽφ,l)i,j = φ(l+i)(l+j) = φl(l+j) · φij · φli for all i, j ,

hence,
Ṽφ,l = Dφ,l · Vφ,p−l · D̃φ,l . (4.7)

Remark 4.7. The matrix Vω−1 deduces from Vω by a simple row (or column) permu-
tation. For this reason, the dual problem presented here is equivalent (in terms of field
operations) to the direct problem from section 4.1 up to scalar-vector multiplications and
multiplication by diagonal matrices.

Remark 4.8. Assume that we have an efficient method to compute the function
X → Vφ · X. For large p, this can be done using Rader’s [12] or Bluestein’s [1] al-
gorithm. Then, the required matrix-vector products (for example W>

ω−1,l · B1) can be
computed efficiently using the relation(

dummy
W>
ω−1,l ·B1

)
= Vω−1 ·

(
B1

0

)
.
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Figure 4: Successive transforms in the FFT/TFT algorithm after complete development
of the recursive calls

5 Complexity analysis

This section aims to evaluate the field operation count for a TFT of size n and length l 6 n,
and to compare it with the cost for a full FFT of size n. In the following, we note these
costs T(l, n) and F(n) respectively. Asymptotic bounds involve the field operation count
for common arithmetic operations on polynomials of degree n: M(n) for the multiplication
and C(n) for the cyclic convolution (multiplication modulo Xn − 1).

Let n = p0 · · · pd−1 be the size of the Discrete Fourier Transform (FFT or TFT) that
is considered. If we develop completely the recursive calls of the FFT algorithm as in
section 2.1, the execution decomposes into d successive transformations of a vector of
length n (see Figure 4). At each row, the working vector is transformed using n/pi
independent DFTs of size pi, which are computed directly.

5.1 Complexity of a full FFT

In a full FFT, all n/pi atomic DFTs are computed at each row. If we note f(p) = F(p)/p
the normalized operation count (per intermediate value), then each of the atomic DFTs
has an operation count of pif(pi). Summing for all i, we get the following result:

Theorem 5.1 (Complexity of the usual Cooley-Tukey FFT). We have

F(n) = n · (f(p0) + f(p1) + · · ·+ f(pd−1)) +O(nd) . (5.1)

Remark 5.1. The termO(nd) is the cost for the operations between rows of atomic DFTs,
that is the multiplications by twiddle factors. The multiplicative constant is actually
small; in fact, with a precomputed table of twiddle factors, this represents n(d − 1)
multiplications, and even less if we take into account that some of the twiddle factors are
equal to 1.

Remark 5.2. For small p, it is most efficient to compute the atomic DFTs using spe-
cialized codelets that perform naive matrix-vector products. This yields F(p) ∼ p2, or
f(p) ∼ p. For larger p, methods like Rader’s or Bluestein’s algorithms are more efficient.
In this case, F(p) ∼ p log p, or f(p) ∼ log p (with a larger constant factor than for the
naive method).
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5.2 Complexity of atomic TFTs

As discussed in section 3.1, there are two simple methods to compute an atomic TFT:

• for very small l, one can naively compute the l first values of the Fourier transform
using Horner’s rule (p additions and p multiplications for each evaluation point).
This method has a cost of T(l, p) = 2lp.

• for l near p, it is interesting to compute the full atomic DFT and discard the last
p− l values, at a cost of T(l, p) = F(p).

Efficient methods for intermediate values of l are more complex. As an example, we sketch
briefly here a method that is adapted for p = O(l). This method is based on the following
result from Bostan and Schost’s work [2]:

Lemma 5.2. Let (1, ω, . . . , ωl−1) be a geometric progression such that the points ωi are
pairwise distinct. Then, a polynomial of degree less than l can be evaluated on these points
in M(l) +O(l) field operations.

In our case, the points ωi are indeed pairwise distinct because l 6 p where p is the
order of the root ω. Then, to evaluate the polynomial P of degree p, we write

P (X) = P0(X) +X lP1(X) + · · ·+XqlPq(X) with degPi < l for all i, and q = p quo l .

Then, the multipoint evaluation of P can be done by evaluating (p quo l) polynomials of
degree less than l, followed by operations on vectors of size l (addition and multiplication
by diagonal matrices) This method to compute atomic TFTs has an operation cost of

T(l, p) =
p

l
M(l) +O(p) .

As in the previous subsection, we normalize the operation count per intermediate value:
t(l, p) = T(l, p)/l. We introduce the overhead for the atomic TFT as k(l, p) = t(l, p)/f(p).
Since k(l, p) decreases with l, it is meaningful to also introduce

K(p) = sup
l6p

l · k(l, p) .

By definition, we have:

t(l, p) = k(l, p)f(p) ,

T(l, p) = l · t(l, p) 6 K(p)f(p) .
(5.2)

Remark 5.3. Because t(l, p) and f(p) are normalized costs per evaluation point, it is
clear that t(l, p) > f(p), which means k(l, p) > 1. The simple methods discussed before
give upper bounds k(l, p) 6 2p/f(p) (using the naive method) and k(l, p) 6 p/l (compute
the full DFT and discard unused values). This gives

k(l, p) 6
p

max(f(p)/2, l)
.

In particular, l k(l, p) 6 p, which gives K(p) 6 p.

Remark 5.4. Actually, the case l = p corresponds to a full atomic DFT, so T(p, p) =
F(p) = p f(p). Combined with the upper bound from the previous remark, we get K(p) = p.
However, we keep the notation K(p) to respect the symmetry with the inverse TFT.
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5.3 Complexity of atomic inverse TFTs

Similarly, we introduce the corresponding costs for the inverse TFT: let T∗(l, p) be the cost
for the inverse TFT, and t∗(l, p) = T∗(l, p)/l is the normalized cost. The corresponding
overhead is k∗(l, p) = t∗(l, p)/f(p) and K∗(p) = supl6p l · k∗(l, p).

We know from sections 4.1 and 4.4 that the resolution of the skew butterfly problem
requires a few matrix-vector products and the inversion of a matrix Vφ,m, where m 6 p/2
and φ is either ω or ω−1. Without loss of generality, we assume that φ = ω and m = l 6
p/2 and we consider the direct method from section 4.1. (If l > p/2, then we reduce to
the dual problem, which causes only O(p) additional operations because of Remark 4.7.)

Actually, it is not necessary to compute (Vω,l)
−1; it is sufficient to compute the function

Y → (Vω,l)
−1Y , which is a polynomial interpolation on the points 1, ω, . . . , ωl−1. The

following result from Bostan and Schost [2, Section 5] gives an upper bound for the cost
of this operation:

Lemma 5.3. Let (1, ω, . . . , ωl−1) be a geometric progression such that the points ωi are
pairwise distinct. Then, the interpolation of a polynomial of degree less than l on these
points can be performed in 2M(l) +O(l) operations.

Since l 6 p/2, a multiplication of size l can be seen as a cyclic convolution of size p,
that is M(l) 6 C(p). Moreover, Bluestein’s transform is an efficient method to compute
the DFT for a large p, which gives F(p) = C(p) + O(p) asymptotically. We are now able
to bound the cost of atomic inverse TFTs:

Lemma 5.4. We have

T∗(l, p) 6 4C(p) +O(p) for large p .

Then,
K∗(p) 6 4p(1 + o(1)) .

Proof. At first, we compute Y = B1 − Wω,lA2. The transformation X → VωX is a
DFT that can be performed in C(p) + O(p) operations (using for example Bluestein’s
transform). Then, using Remark 4.5, the matrix-vector product Wω,lA2 can be computed
using C(p) +O(p).

Then, we compute A1 = (Vω,l)
−1Y , which can be done using 2M(l) + O(l) base field

operations from Lemma 5.3; and we have M(l) 6 C(p) because l 6 p/2.
Finally, the relation B = VωA allows to retrieve B2 in C(p) +O(p) operations.

5.4 Complexity of the TFT

When computing row i + 1 from row i in the TFT, some of the atomic DFTs are not
performed, most of the remaining are full DFTs and only a few are TFTs. More precisely,
we can isolate the i→ i+ 1 transform as follows: using the notations from section 3, we
split the TFT at h = i+ 1, then each of the n2 inner TFTs are split at h′ = i. This shows
that the i → i + 1 transform consists in πibl′/pic full DFTs and πi atomic TFTs, where
πi = pi+1 · · · pd−1(= n2) and l′ = dl/πie. The atomic TFTs have length ri = (l′ rem pi).

As a consequence, the complexity of the complete TFT is given by

T(l, n) =
d−1∑
i=0

(
πi

⌊
dl/πie
pi

⌋
pif(pi) + πirit(ri, pi) +O(πidl/πie)

)
.
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Since bl′/picpi + ri = l′ (euclidean division), this rewrites

T(l, n) 6
d−1∑
i=0

(
πi

⌈
l

πi

⌉
f(pi) +O(πidl/πie)

)
+

d−1∑
i=0

πiri(k(ri, pi)− 1)f(pi) .

We have dl/πie 6 (l/πi) + 1. Moreover, the term O(πidl/πie) = O(l) +O(πi) corresponds
to the multiplication by twiddle factors at each step, as in Theorem 5.1. We then have
the (otherwise abusive) simplification

d−1∑
i=0

(
l f(pi) +O(l)

)
=

l

n
F(n) .

This yields

T(l, n) 6
l

n
F(n) +

d−1∑
i=0

(πif(pi) +O(πi)) +
d−1∑
i=0

πiri(k(ri, pi)− 1)f(pi)

By definition (5.3), we have rik(ri, pi) 6 K(pi), and it is clear that K(pi) > k(1, pi) > 1.
Then, handling the cases ri = 0 and 1 6 ri 6 pi − 1 separately shows easily that
ri(k(ri, pi)− 1) + 1 6 K(pi). Finally, using equation (5.1), we get the bound:

Theorem 5.5 (Complexity of the Truncated Fourier Transform (TFT)). The Truncated
Fourier Transform can be performed using

T(l, n) 6
l

n
F(n) +

d−1∑
i=0

(pi+1 · · · pd−1)
(
K(pi)f(pi) +O(1)

)
(5.3)

field operations.

For the inverse TFT, all atomic inverse TFT (at a given row of atomic transform) do
not necessarily have the same length. However the above reasoning still applies, and we
get the bound:

Theorem 5.6 (Complexity of the Inverse Truncated Fourier Transform (ITFT)). The
Inverse Truncated Fourier Transform can be performed using

T∗(l, n) 6
l

n
F(n) +

d−1∑
i=0

(pi+1 · · · pd−1)
(
K∗(pi)f(pi) +O(1)

)
(5.4)

field operations.

Remark 5.5. The overhead for atomic inverse transforms K∗(p) is larger than for atomic
direct transforms K(p).

Remark 5.6. The bound (5.3) rewrites

T(l, n) 6
l

n
F(n) + n ·

(
d−1∑
i=0

K(pi)f(pi)

p0 · · · pi

)
+O(n) .

Since K(p)f(p) increases with p, this shows that it is best to sort the prime factors of n in
increasing order (p0 6 p1 6 · · · 6 pd−1) to minimize the overhead. Moreover, assuming n
is highly composite, p0 · · · pi grows much faster than K(pi)f(pi), so that the predominant
term in the linear factor is K(p0)f(p0)/p0.
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