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Abstract

We study a one-parameter generalization of the symmetric simple exclusion process on
a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with
equal rates to the left or to the right with an exclusion constraint), annihilation and creation of
pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries.

In this setting the model is still integrable: it is related to the open XXZ spin chain through
a gauge transformation. This allows us to compute the full spectrum of the Markov matrix
using Bethe equations.

We also show that the stationary state can be expressed in a matrix product form permit-
ting to compute the multi-points correlation functions as well as the mean value of the lattice
and the creation-annihilation currents.

Finally the variance of the lattice current is computed for a finite size system. In the ther-
modynamic limit, it matches the value obtained from the associated macroscopic fluctuation
theory.
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Introduction

In the context of biology (going from the microscopic size describing molecular dynamics in the
cell to the macroscopic one for the evolution of different populations in competition), chemistry,
physics and mathematics, the reaction-diffusion models have been intensively studied. To un-
derstand the nature of the stationary state of such models, driven lattice gas models have been
proposed [1, 2, 3, 4] and then their generalisation with dissipation [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
For particular choices of the parameters, one-dimensional diffusive gas with dissipation can be
mapped equivalently to a free fermions problem which can be solved easily [15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27].

Recently [28] we have introduced a new one-dimensional integrable stochastic model. Most of
the known integrable stochastic models are derived starting with representations of quotients of
the Hecke [29] or Brauer [30] algebras. The new integrable stochastic model is of a different kind.
It was pointed out to us by Pyatov [31] that in fact one deals with a special representation of a
quotient of the Birman-Murakami-Wentzel algebra. This is new and it is still an open question
how to generalize this model. It is the aim of this paper to understand what are the physical
properties of the model having in mind possible generalizations. This task is simplified by the
observation [28] that the probability distribution function in the stationary state can be written
in terms of the matrix product Ansatz. The dynamics of the model can be obtained using as
usual, the Bethe Ansatz or, as shown in the paper, the Macroscopic Fluctuation Theory (MFT)
[32, 33].

The model is a one-parameter deformation of Symmetric Simple Exclusion Process (SSEP)
model, allowing pairs of particles to be generated or get annihilated with equal rates. These rates
are fixed by the parameter. We call the model DiSSEP where Di stands for dissipative. Similarly
to SSEP one can add sources and sinks at the end of the system keeping the integrability of the
model. What can we expect to be the physics of the model? Since hopping takes place in a
symmetric way, in the thermodynamic limit one can have only weakly correlation functions (the
correlators see only the boundaries and not the distance between the particles). Finite-size effects,
however, can be new since one can make the parameter dependent on the size of the system.

The stationary state is expressed using a matrix product ansatz, which allows us to compute
the correlation functions and the mean value of the currents. A new feature is that we have two
currents: one of them given by particles crossing the bonds and a second one given by particles
leaving the system. A new feature appears also here in comparison to the SSEP with sinks
and sources: the values of these currents are not homogenecous and depend on the site where
we measure them. We describe in details the different behaviors of these physical quantities
depending on the boundary parameters in the thermodynamic limit.

Using recursive relations between the correlation functions, we succeed in giving a closed
analytical relation for the variance of the lattice current. This variance depends also on the site
of the lattice which makes it more involved in comparison to the SSEP. A by-product of our
research was the check of the applicability of the MFT to stochastic processes with creation and
annihilation of particles. We have have shown that in a particular case when the dynamics is
of diffusive kind the results obtained from lattice calculations and MFT coincide. This result is
relevant since up to now the validity of MFT developed in [34, 35, 36] was confirmed only in
purely diffusive models such as SSEP [37].

Finally, using Bethe ansatz approach, the spectrum of the associated Markow matrix is



completely characterized by Bethe equations. Comparing with the exact diagonalisation of the
Markov matrix for small lattices, we can determine the Bethe state allowing us to compute the
greatest non vanishing eigenvalue. In this way, we can compute the spectral gap for large lattices
(up to 150 sites) and we conjecture its thermodynamic limit by extrapolation.

The plan of the paper is as follows. In section 1, we describe precisely the DiSSEP, its
symmetries and its associated Markov matrix. Then, in section 2, we remark that for a particular
choice of this parameter the eigenvectors and the eigenvalues become simpler and can be all
computed explicitly. This allows us to infer the gap and the large deviation function for the
current entering in the system from one of the reservoirs. Then, we start the study of the general
case. In section 3, we present the computation of the stationary state using the matrix product
ansatz method that provides us analytical expressions for correlation functions. We compute also
exactly the variance of the lattice current (that depends on the site where it is measured). We
take the thermodynamic limit of the model in section 4: we show that the additional parameter
must be rescaled with the length in order to have a competition between the hopping and the
evaporation. We deduce from the previous microscopic computations the exact expressions for
the densities, the currents and the variance of the lattice current. In section 5, we show that
the latter is in agreement with the results obtained from macroscopic fluctuation theory. Finally,
we relate in section 6 the Markov matrix of the DiSSEP to the Hamiltonian of the XXZ spin
chain with triangular boundaries [38]. The eigenvalues of this Hamiltonian have been computed
previously using Bethe ansatz methods. We present the associated Bethe equations and we solve
them to get the spectral gap. In Section 7 we summarize our results and give an outlook for
further research.

1 A one parameter deformation of the SSEP

1.1 Description of the model

We present here the stochastic process, DiISSEP. It describes particles evolving on a one-dimensional
lattice composed of L sites and connected with two reservoirs at different densities on its extrem-
ities. There is a Fermi-like exclusion principle: there is at most one particle per site. Hence a
configuration C of the system can be formally denoted by an L-tuple (ny,...,ny) where n; = 0 if
there is no particle at site ¢ and n; = 1 if the site is occupied. During each infinitesimal time dt,
a particle in the bulk can jump to the left or to the right neighboring site with probability dt if it
is unoccupied. A pair of neighbor particles can also be annihilated with probability A\? x dt and
be created on unoccupied neighbor sites with probability A? x dt (see figure 1). Let us mention
that there is a slight change of notation in comparison to [28] in order to make the limit to the
SSEP easier. At the two extremities of the lattice the dynamics is modified to take in account
the interaction with the reservoirs: at the first site (connected with the left reservoir), during
time dt, a particle is injected with probability « x dt if the site is empty and extracted with
probability v x dt if it is occupied. The dynamics is similar at last site (connected with the right
reservoir) with injection rate ¢ and extraction rate 8. The dynamical rules can be summarized in
the following table where 0 stands for vacancy and 1 stands for a particle. The transition rates



between the configurations are written above the arrows.

Left Bulk Right

025 1]01 101250 (1.1)

2
12500005110 251

We choose the coefficient of condensation and evaporation to be A\? and not \ for later convenience.
Let us remark that the SSEP is recovered when the creation/annihilation rate A\? vanishes. The
limit A2 — oo provides a model with only condensation and evaporation.

The system is driven out of equilibrium by the boundaries. As shown in section 3, there are
particle currents in the stationary state for generic boundary rates «, 5, v and §. We will see
below (4.7) that these choices of rates describe particle reservoirs with densities

a d 1)
, an = —.
ot =515

Pa = (12)

Remark: The system will reach a thermodynamic equilibrium if and only if both the densities of
the reservoirs are equal to 1/2, that is &« = v and § = §. Indeed, the detailed balance is only
satisfied in this case.

| N
I)\Z ——
a 1 1 2\2 B
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[ | | I.I | I.I.I | | | | | |
J U
Y 0

Figure 1: Dynamical rules of the model.

Symmetries of the model

We can make the following observations:

e Since we chose the evaporation/condensation rate to be A2, all the results shall be invariant
under the transformation A — —A.

e The left/right symmetry of the chain is given by the transformations « <+ 0, v <> 8 and a
change of numbering of the sites ¢ —» L + 1 — 4.

e The vacancy-particle symmetry translates into « <> v and § < .



1.2 Markov matrix

We denote by P,(C) the probability for the system to be in configuration C at time ¢. P;(C) obeys
the master equation

PUE) _ S~ me,epie) - 3 MEOR©) = S MECRE),  (13)

dt C'#C C'#C c

where M (C, (') is the transition rate from the configuration C’ to the configuration C. The second
equality is obtained by setting M(C,C) = — ZC’#C M(C’,C). This equation can be recast in a
compact way: let us set

Py =| PC0,-..01,00) 1= N B((n...onp)) [na..on) (1.4)
Pt((l,....,l,l,l))

with [n1...nz) =|n) ® - @ |ng), |0) = ( (1) ) and |1) = < (1) ) In this formalism, each site

of the lattice corresponds to one copy of C? in the tensorial space (C2)®L. The master equation
(1.3) is then rewritten as

d|P)

=M |P). 1.5
= MR (15)
The Markov matrix M corresponding to the dynamical rules (1.1) can be expressed as
L1
M = B + Z Wi k1 + B, (1.6)
k=1

where the local jump operators B, B and w are given by

22 0 0 )\

[ —a v L 0o -1 1 0 = (-6 B
s (o) e O (8w
A0 0 =\

The subscripts in (1.5) indicate on which sites the local operators are acting.

2 Study of the particular case A =1

Before studying the general model, we focus on the case A = 1, where the calculations simplify
drastically: it corresponds to the free fermion point of the model we introduced.



2.1 Eigenvectors and relaxation rate

For A = 1, all the eigenvalues and the eigenvectors can be computed easily. Indeed, for L > 3,
the 2 eigenvectors are characterized by the set € = (e1, €2, ..., €r) with ¢; = +1 and are given by

€2 €3

Qe) = v(er, e2,0,7) ® (1> ® (1) ® - ® <6L1_1> ®uv(er.er—1,0,0) (2.1)

e +v

!/ —
where v(e, €, p, v) = <1 +u+ fle,é,u+v)

eigenvalues are

) and f(e,€,7) = €€ =1—F(1—¢). The corresponding

L—2
A(E) = f(61762)a + 7) + Z(EjejJrl - 1) + f(EL,ﬁLfl,(S +/B) . (22)

Jj=2

Let us remark that the ASEP on a ring with Langmuir kinetics has been treated similarly in [39].
From the previous results, we deduce that the stationary state is

1 QL—-2
okt =7 ((11)e(l) e (i1)) 2.)

where Z;, = 2L72(2+ a++)(2+ B+ ) is the normalisation such that the entries be probabilities.
From this stationary state, we can compute the mean value of the injected current by the left
reservoir (resp. by the right reservoir)

=8
24648

a—7

DNett = m

(resp. Jright = ). (2.4)
We see that the current has the sign of o — v (resp. 6 — ). As expected, it goes to the left when
extraction is promoted, and to the right when injection is proeminent. It vanishes for « = ~. The
lattice current in the bulk vanishes.

We can also compute easily the first excited state whose eigenvalue provides the relaxation

rate. Indeed, the greatest non vanishing eigenvalue is

G=-4 fa+vy>2 and B+6>2
G=-2-08-9¢ ifa+y>2 and [f+0<2 (2.5)
G=-2—a—v ifa+y<2 and B+6§>2 '

G=—-a—v—-0—-6 fa+y<2 and [f+I<2

These results shall be generalized in section 6.2 for any A using the Bethe equations. The general
result displayed on Figure 6 matches the above values of the gap for A =1 (¢ = 0).

2.2 Current large deviation function

For this particular choice of ), it is also possible to get the generating function of the cumulants
of the current entering in the system from the left reservoir (the same result is also obtained by
symmetry for the right reservoir). For general A, one obtains the variance in section 3.3. It is



well established that this generating function is the greatest eigenvalue of the following deformed

Markov matrix [40]
-1

M = Bi(s) + Y _ wips1 + BL, (2.6)
k=1

where the local jump operator B(s) is deformed as follows

B= ( —a e ) : (2.7)

ae® —y

One can show that the greatest ecigenvalue is given by

2+a+ 1
E(s) = —% + 5\/4 +daes +4dye s + (a+7)? (2.8)
with the eigenvector
L—2
B 1+ ~ye™® I 1+
Q(s) = (1 s E(S)> ® (1> @\14s) (2.9)

The rate-function G(j) associated to the current is the Legendre transformation of this gen-
erating function of the cumulants:

GU)=s"~B() . SEE)|_ = (2.10)

s=5*

Then its explicit form is given by

G(j) = 1+a;r7\/1+A(j)+ (O‘Tﬂ)zﬂ‘ln A2<j) +é\/1+A(j)+ (a;7>2 (2.11)

[e%

where

A(f) =252 + /Aoy + 52+ ) + 2 +7)2 . (2.12)

Let us stress that (2.11) represents an exact result on the large deviation function of the current
on the left boundary. The function G(j) is convex and vanishes when j is equal to the mean
value of the current on the left boundary given by (2.4) as expected, see figure 2. Note that it is
not Gaussian.

3 Stationary state and physical observables

We now turn to the general case (i.e. for generic ). Although one cannot perform all the
calculation presented in the A = 1 case, one can still obtain interesting analytical results, in
particular when focusing on the stationary state.



Figure 2: Example of large deviation function G(j) (on the plot a = 2,~v = 0.5).

3.1 Matrix product anstatz

The integrability of the model reflects in the simple structure of its stationary state which can be
built in a matrix product form. The power of this technique was revealed in a pioneering work [41],
where the phase diagram of the totally asymmetric simple exclusion process (TASEP) was com-
puted analytically, using a matrix product expression of the steady state wave function. It has led
to numerous works and generalizations, among them can be mentioned the multi-species TASEP
[42, 43, 44] and more complicated reaction-diffusion processes [26, 45]. A review of these results
can be found in [46]. In the framework of integrable Markov matrix, the stationary state can
be expressed through a matrix product ansatz which take a simple form: the complete algebraic
structure can be determined thanks to the Zamolodchikov-Faddeev and Ghoshal-Zamolodchikov
relation as it was first seen in [47]. A systematic construction of the Matrix product ansatz for
integrable systems can be found in [28].
It was shown in [28] that the steady state |S) of the present model can be built as follows

1 B\
= — '1
)=z ( 5 ) W, (3.1)
where Zj, is the normalization factor
Zr = (W|(E + D)X V). (3.2)

The algebraic elements £ and D belongs to an algebra composed of three generators £, D and
H. The commutation relations between these generators are given by

[D,E]= FH+ HD, and [H,E]=[H,D]=\(D?-E?). (3.3)



These relations are equivalent to the very useful telescopic relation

(5)(5)-(5)e(H)-(F)e(5)

Notice here that, in contrast with the SSEP case (see subsection 3.4) where H is a scalar, the
commutation relations between H and F, D are not trivial. The action of the generators E, D
and H on the boundary vectors (W[ and |V)) is given by

(W|(aE —~vD)=(W|H, and (0E—3D)|V))=—H|V). (3.5)

It is equivalent to

wis(p ) =ovi( ). wa B( 5 m=-( 5 ). eo

It is straightforward to see using (3.4) and (3.6) that M|S) = 0 with M defined by (1.6) and
|S) defined by (3.1). Indeed, we get a telescopic sum. We showed also in [28] that the algebra
is consistent with the boundary equations by giving an explicit representation of the generators
E, D, H and of the boundary vectors |V)) and (IW|. We have tried, without success, to get the
probability distribution function for the stationary state in the case of the asymmetric hopping
rates. This would have been very interesting. It is surprising since our matrix product ansatz is
close to the one used to solve the symmetric simple exclusion process. Our failure is probably
due to the non-integrability of the system in this case.
Assuming that A is non vanishing, we make a change of basis from the generators E, D and

H to Gy, G2 and G35 as follows

E =G+ Gy +Gs,

D =Gy — Gy —Gs, (3.7)

H =2\G3 — Gy).
This change of basis will simplify the calculation, morcover it is natural in the general framework
developed in [28]. The commutation relations between E, D and H (3.3) are equivalent to

1—
[G17G3] =0, G3G1=¢ G1G2, and G3G2 = ¢ GoG3, with ¢ = H—i (3.8)
The relations on the boundaries become
. 2A—a—v S
<<W|<G1—CG2—CLG3):O, . _2/\—}—044—’)/7 _2)\+a—|—’y’
with (3.9)
(G3—bGi—dGs) V) =0 po A=0-F __B-9
IAN+o+p3’ 20+ 6+ 87

We can now give the main result of this paper. Indeed, in this new basis, it is possible to
compute a closed expression for any word, for p,q,7 =0,1,2,...,

p—1 r—1
[Tt o™= +ad g7+ JL(d o777 + be grver
((IV|G’1’p(J¥r%i3!V>> _ =0 S n=0 , (3.10)
(wiGE™ v "
[T -abs™)
k=q

9



—1
where by convention H() = 1. Let us mention that this formula is not valid if ab¢* = 1 which

n=0
occurs for A = 0 (SSEP case) or A — co. However these limits can be performed for the physical

quantities (see section 3.4).

Proof of the formula (3.10). In order to compute (W|G/GiG5|V)), we use a change of
generators defined as follows

; G
Li=—Y —aG3¢', and Ry = qj—,f — bG . (3.11)
This is built so that L; and Ry, fulfill the following relations (derived straightforwardly from (3.8)
and (3.9))
GLL; = LoGYy, RpGh = GERy, [Li,G1] = [Li, G3] = [Ri, G1] = [Ry, G3] =0 (3.12)
and (W|Ly = (W Ry|V)) = dGa|V')). (3.13)

The change of generators (3.11) can be inverted to get

G = % (ik +ag¢’ Rk) and  Gs = T— 55 f:;(w) <b¢’“Li + %) . (3.14)
We can now begin the computation
OVIGIAGHVY = =i (W1 (50 + Ry ) 763G V)
= T (WG GAGHV) + o (WIGE GG ads1Gal V)
- g,

The first equality is obtained using (3.14) with ¢ = 0 and k = ¢ to transform the leftmost G.
The second equality relies on the relations (3.12) and (3.13). We get the last one using (3.8).
This relation is a recursive relation between (W|GEGGE|VY) and (W|GE'GYT G4V that we
can iterate to obtain

ﬁ cgP~1 7! + adgrtat!

(WIGLGHGIV) = ( D )<<W|G3+Pag|v>>. (3.15)

=0

Performing similar computations with G3 we obtain the following recursive relation

q+p e q+p r—1 Ro
(WG "Gsv) = TW«W'GZ Gy \Plamr + V)
""" + beg™t? +pl -1
m<<W\Gg TGV,
to get
r—1
d¢r—1—n + bc¢q+p+n
q+p p+q+r
(WIGEPGEIVY) = (HO g ) (WIGETTIV), (3.16)

10



Recombining (3.15) and (3.16) together, the desired result (3.10) is proved.

Let us stress that since G1, G2, G3 form a basis, the knowledge of all words built on them
allows us to reconstruct all words built on E and D using the two first relations of (3.7). In
particular, we are able to compute exactly physical observables, as it is illustrated below.

3.2 Calculation of physical observables: correlation functions, currents

As usual the matrix product ansatz permits to compute the physical observables (see [41]). For
example, the one point correlation function (or density) is expressed as follows in terms of the
matrix product ansatz
(ng) = (wic—'pct|v
" (wictvy
where we have used the usual notation C' = E + D. Let us remark that, in our basis C = 2Gbs.
It is well-known that similar expressions exist also for all the correlations or the currents (see
below).
Thanks to expression (3.10) of any words, it is now possible to compute physical observables
for DIiSSEP. In particular, we can compute the one point correlation function

(3.17)

i—1, _ L—i
() 1(WIGy (=Gi+ GLQ G3)Gy 'V (3.18)
2 (wiGz V)
B 1 B c¢i—1 +ad¢L+i—2 4 d¢L—i _|_bc¢2L—i—1 (3 19)
2 2(1 — abg?L-2) ’ '
the connected two-point correlation function, for 1 <t < j <L
(ninj)e = (ning) — (ni)(n;) (3.20)
| (WICHIDCTDCEY)  (WICTIDOMY) (WICTLDOR W)
(WicHv) (WicHv) (wicHv) '
_ M g0 b0 4 ag ) begh e adgt )
- 4(1 — ab¢2(L_1))2(1 _ ab¢2(L—2)) ’ )
and the connected three-point correlation function, for 1 <i< j<k <L
(ninjni)e = (ningnk) — (na)(njng) — (nj)(nink) — (nk) (ning) + 2(ng)(nz) (ng) (3.23)

_¢L+k7i75(1 _ ¢2>2(1 + bd)Z(L—k))(l + a¢2(z’—1))(d + bCQSL—l)(CJr ad¢L71)
8(1 — abp>(L-1)3(1 — abg?L=2))(1 — abp?(L-3))
(6779 (d+ bed™ %) (1 + 2a6°0~ Y + abg®“ 1) (3.24)
+¢7 (e + adg" ) (1 + 206*ED) 4 abp* (L D)].

X

Remark that for generic 4, j, k, the two- and three-point correlation functions satisfy both a set
of closed linear relations:

(1= ) ((rimanghe + (nisanghe + (ming-1)e + (ningin)e) = 40+ M) {mnge,  (3.25)
(1—X?) ((ni_mjnk)c + (nisinng)e + (ninj—1nk)e + (Ninj1ne)e + (Ninjne—1)e

Hmingngsn)e) = 6(1+ X2) (ninjng)e (3.26)

11



We can also compute the particle currents. There are two different currents: the lattice
current which stands for the number of particles going through the bond between site ¢ and ¢ + 1
per unit of time and the evaporation-condensation current which stands for the number of particle
evaporating or condensing at sites 7 and ¢ + 1 per unit of time. The lattice current is given by

(W|C*=Y (DE — ED) Ct==11v)

lat _
(Ji%i) = (WICEV) (3.27)
1— ¢ bc(f)QL—z'—Q 4 d¢L—i—1 _ ad¢L+i—2 _ C¢z’—1
5 T ab . (3.28)

Counting positively the pairs of particles which condensate on the lattice and negatively the pairs
which evaporate, we get for the evaporation-condensation current

<<W|Ci—1)\2 (E2 _ DZ) CL—i—1|V>>

(WicHV)
(1 _ ¢)2 bc¢2L—i—2 + d¢L—i—1 + ad¢L+i—2 + Cd)i—l
2(1+ ¢) 1 — abg2l—2 '

< cand>

iit1 (3.29)

(3.30)

Note that the above expressions behave as expected under the three symmetries:

1. The symmetry A — —\, that translates into ¢ — 1/¢, a — 1/a, ¢ - —c/a, b — 1/b and
d — —d/b, leaves them invariant.

2. The left/right symmetry, that becomes a <+ b, ¢ «» d and i — L 4+ 1 — i, changes the sign
of the lattice current, keeps the condensation current and the density invariant.

3. The particle-hole symmetry, which reads a — a, b - b, ¢ = —c and d — —d, changes the
sign of both currents and transforms (n;) into 1 — (n;).

The physical quantities computed above are not all independent. The particle conservation
law at site ¢ reads
l l d d
(i) = (Ji%) + (JE0D + (JE9) =0, (3.31)

which can be seen on the matrix product ansatz using relations (3.3). From the identity [D, E] =
[D, C] one then deduces

(Ji%i01) = (na) — (niga), (3.32)
and using E? — D? = C?2 — CD — DC one gets
(gt = 3% (1= ) = (i) (3.33)

From these three relations, one obtains

(Jed) = ey + 02 (1) + (i) ) = 0 (3.34)
(nim1) + (i) = 20m) +7A2(2 = (nic) = (nisa) = 2(ni)) = 0. (3.35)

12



3.3 Fluctuations of the currents

As mentioned previously, there are closed linear relations between the two- and three-point cor-
relation functions which allow one to compute the cumulant of the currents. In this section, we
present the computations of the second cumulant of the lattice current between sites ¢ and ¢ + 1.
Let us note that it depends on the site, because of the evaporation-condensation process. As
usual for such a purpose [40], we use the deformed Markovian matrix defined as follows:

22 0 0 )

i—1 -1
_ . 0 -1 ¢ 0
M® = B1+; wk,k+1+w;i+l+k;1wk,k+1+BL with w®=| o O T |- (3:30)
- - A0 0 A2
Let |v®) be the eigenstate of M? with highest eigenvalue
M?v®) = p(s) |[v®) . (3.37)

wu(s) is the generating function for the cumulants of the lattice current between sites i and i + 1.
We introduce the following notation for vectors

) ®(j-1) &(L—j)
WH = (ol+a) ™ e e (o + ) (3.38)
, ®(j-1) ®(k—j~1) B(L—F)
Wikl = (Or+al) e are (o + ) @ (1e ((o+a) " (339)
In words, ({j1,jo, .., jm }| represents configurations with one particle at site ji, jo, ..., jau, and

anything else on the other sites. Remark that this definition applies whatever the order on
J1s - jMm, and thus extends the one given in the above equations. By extension, we note ()| =
(0] + <1|)®L. Then, we define the components:

{d}v°) ({4, k}Ho*) ({J, &, 1}[v®)
Ti(s) =T, = —— ; U, =Ujp = ——F7— d V; =Vip = ———.
=D gy 3O == Ty and Vule) =V = g
(3.40)
Note that by construction, U and V' are symmetric, e.g. Uj, = Uy;. Now, projecting equation

(3.37) on (@], we get

/J,(S) = (6_3 — 1)(Ti+1 — Ui,i—H) + (68 — 1)<TZ — Uiﬂj_H). (3.41)
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We also project equation (3.37) on ({j}|forj=1,1<j<iandi+1<j<L,j=14,j=1+1,
and j = L. We get respectively:

p()Ty = a(l=T) —yTi+ N1 -T, —T))+ T — T}

+(e* = 1) (Urig1 — Viigr) + (€ = 1)(Uri — Vigiv1) (3.42)
p(s) Ty = N@=2T;—Tj — Ty 1) + Ty — 2T+ Tj

+(e™* = D(Ujit1 — Viai+1) + (€ = 1)(Uji = Viiv1) s (3.43)
w(s)T; = N(2—=2T— Ty — Tim1) + Tipr — 205+ Tiy

+(e™ = D)(Tir1 — Uiit1) (3.44)

w(s)Tipr = N@2—=2T1 — Ty —T) + Tiyo — 2T + T,

+(€® = I)(T; = Uisit1) (3.45)
p(s)Ty, = 6(1—Ty) =BT+ N1 =T —Tp1)+Tp1 — Tt

+(e™* = D)(Uis1,L = Vigyr,L) + (e = 1)UL = Viig1,n) - (3.46)

These equations are solved iteratively, expanding all quantities as series in s. We set

2

S
n(s) = pO+sp®+ S p® +o(s?),
Ti(s) = T +sT +o(s),

Ujr(s) = U;Ok) +s Uﬁ) + o(s).

In the above expansions, ;(?) = 0 is the greatest eigenvalue of the undeformed Markov matrix
and pM) = (Jlt, 41) is the mean value of the lattice current measured between the site 7 and
i+ 1, where the deformation occurs. We recall that (J/“!;, ;) has been computed in (3.28). The

value of Tj(o) = (n;) has also been already calculated, see (3.19). Similarly, U 7(32 is linked to the
two-points correlation function, see (3.22).

We wish to compute p(s) up to order 2, which corresponds to the variance of the lattice
current. We get it through the expansion of (3.41) up to order 2:

p = 7O 7O (3.47)
u® = o1 - 1) + 10 + 1) - 200, (3.48)

Equation (3.47) just reproduces the relation (3.32) between the mean values of the lattice current
and of the density.

To get Tj(l), one considers equations (3.42)-(3.46) at first order in s. They only involve T](I),

T](O) and U;g), and can be solved recursively in Tj(l) . We get

b¢L—1ﬁ—1 _|_¢11+1—L a¢7ﬁ +¢—i

Y e P P Zic (00! + 07! i
1 - 1— 2L—2 L—i i—L i—1 1—4 i _
70 abg bol i + ¢ ag' = + ¢ A (N I
2 —1 2 —1
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with

:U'(l) TZ(O) T(O) _ Uz((z)i—l 7 for j =i

1 2
I = % < OO —TO Ly =it (3.49)
’u(l) T].(O) 4 Uj(g) 1 UJ(S) , otherwise

Plugging these values into (3.48), we get the analytical expression of the variance of the lattice
current:

2 ¢z(b¢2L72q,—1 _ oy izl , . P (agp? 1 — L—i—1 ,
+1 ) { 1 — abp?l—2 g(mﬁ + ¢ )1 — - ab¢2L—2 % (bp" + d) V¢

Using the explicit form of I}, one can compute the sums in (3.50) to perform the thermodynamic
limit for ,u(Q), see section 4. Let us conclude this subsection by mentioning that the higher
cumulants may be computed in principle by similar methods. However, the computations become
much harder and are beyond the scope of this paper.

3.4 Comparison with SSEP

As mentioned previously the DiSSEP is a deformation of the SSEP which can be easily recovered
when taking A = 0. This limit already reveals at the level of the matrix product ansatz algebra:
the commutation relations between E, D and H (3.3) become simpler when A = 0. We have
indeed [H, E| = [H, D] = 0. Hence H can be chosen equal to the identity. In this case we recover
the well known relation [D, E] = D + E, relevant in the construction of the steady state of the
SSEP. Remark that the generators Gj, G2 and G3 in contrast “diverge” when taking the limit
A — 0 (this can be seen by inverting the change of basis (3.7)).

We can also take the limit A — 0 at the level of the physical observables. For the one and
two points correlation function we get
po (L+B—i)+py (i —1+A) , 1 1

th A= B=—
y W1 ()5—|—")/, B+(5

Jin, (i) = L+A+B-1

and

- (=14 A)B+L—j)(pa—pp)’

lim (nnj)e = — 5 ,

A—0 (L+A+B-1)"(L+A+B-2)
which are in agreement with the known expressions for the SSEP [48, 49]. For the lattice and
evaporation-condensation currents we get

hm (

o Jii) = =t and ,l\lm <Jc?ﬁ> 0,

L+A+B-1 !

also in agreement with the SSEP results.
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We can also take carefully the limit of the expression (3.50) to recover the variance of the
lattice current for the SSEP model [48]

ot (A—3A2+2A%3+ B—-3B%+2B%)(ps — p)?
H2SSEP = T A+ B -1 3L+A+B_13(L+A+B—2)
(pa — pb)° pat pi 2(pa + papy + P})

T3L+A+B-1P(LiA+B-2) L+tATB-OL+A+B-2 3L+A+B-2)

4 Thermodynamic limit

In this section, we study the thermodynamic limit of the previous model when there exists a
competition between the diffusion of particles and the evaporation/condensation of pairs.

4.1 Scaling of the parameters

In order to maintain the competition in the continuous limit, we have to scale properly the
parameters of the model. In other words, the mean time for a particle to go through the lattice
by diffusion must be comparable to the time for it to be evaporated.

Let us write the time evolution of the one point correlation function for 1 < i < L

d(n;)
dt

= (ni-1(1 = ng)) + (1 = ng)nit1) — (1 = ni—1)ni) — (ni(1 — nita))
A2 ({1 = mima) (1 =) + (L= na)(1 = ni1)) = (memam) = mini)) - (1)
= (nima) + (i) = 20m) + N2 (2 = (ni1) = (miga) = 2000)). (4.2)

Note that although the two-point correlation functions cancel when going from (4.1) to (4.2), the
mean field approximation is not exact in the sense that the connected two-point function does
not vanish, see (3.22).

Remark: The one point correlation function verifies a closed set of equation as for the SSEP,
in contrast with the ASEP case where the equations couple the one point function and the two
points function. This property remains valid for the higher order correlation functions (3.25),
which allows in principle to compute them. However, for the multi-points correlation functions,
solving this set of equation can be very hard. This points out the usefulness of the matrix product
ansatz which makes the calculations much easier.

We want to take the large L limit in equation (4.2). We set ¢ = Lz with z € [0, 1] and
(n;) = p(x). We get

% (@) = 23(6""(@) + (1)) + 20°(1 ~ 2p(z) + o(1) 4

We see on the previous equation that we have to take A = A\g/L in order to have a balance
between diffusion and creation-annihilation. After a rescaling of the time ¢ — L?t, we obtain

op %
il vl 2X3(1 — 2p) (4.4)
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with the boundary conditions p(0) = p, and p(1) = pp. This equation shows that the correlation
length for this scaling is finite. Indeed, the stationary density obtained in equation 4.7 decays
as p(z) — 1/2 ~ exp(—2Xoz) for x far from the boundaries. The correlation length can thus be
defined as 1/(2\¢).

Without rescaling A and the time w.r.t L (or for A = \g/L* with g < 1 and rescaling the
time ¢t — L2t ), the diffusive term drops out and the density satisfies

op 2
— =2X(1-2p) . 4.5
5 (1-2p) (4.5)
In the case where A = \o/L* for 1 > 1 with the rescaling of the time t — L?t, the system becomes
a pure diffusive model for large L and one gets for the density
op  %p

a —_ @ . (4.6)

4.2 Thermodynamic limit of the observables

From (3.18), we can compute the expression of the one point correlation function in the continuous
limit (¢ = Lz and A = X\p/L)

1 1
o) = 1 1 —2ho(z—1/2) 2o(z—1/2) n
ple) = fim (ie) = 5+ 5 Ganan, (e e ) (4.7
where
@1 = (pa + pp — 1) sinh(Xg) — (pp — pa) cosh(Ao), (4.8)
and
g2 = (pa + pp — 1) sinh(Xg) + (pp — pa) cosh(No) . (4.9)

It is easy to check that it satisfies the stationary version of (4.4).
We can also compute the two point correlation function in this limit. One can see that it
scales as %, i.e. it has weak corrclations. We get:

2X0 4142

(Sinh 20)? sinh 2X\p(1 — y) sinh 2z . (4.10)

CQ(«T,Z/) = lim L X <annLy>c -
L—oco
For Ay << 1, this two-point correlation function behaves algebraically w.r.t. = and y whereas it
behaves exponentially and is short range for \g >> 1.
The limit of the particle currents are given by

. : Ao —9x(z— _
5 @) = lim Lo (T ) = os (qre2ol@=172) — ge2ole=1/2)) (4.11)
and
—\2
cond : d —2\o(z— Ao (z—
J (@) = lim L2 x (Ji'fap1) = m ((he Pol@=1/2) 4 gpe?hole 1/2)) : (4.12)

Remark that these expressions are consistent with the fact that when the system reaches a
thermodynamic equilibrium, that is for p, = pp = 1/2 (or equivalently ¢ = g2 = 0), both
currents vanish.
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The particle conservation law (3.31) becomes in the thermodynamic limit

djlat

dx

() + 2" (x) = 0,

which is satisfied by the expressions above. In the same way, relations (3.32) and (3.33) become
in the thermodynamic limit:

g(x) —|—jlat($) -0, jcond(x) = )\% (1 — 2ﬁ(a:)> (4-13)

Behavior of the density and the currents

Depending on the values of ¢; and g2 defined in (4.8) and (4.9), the behavior of the density may
change:

e the density is not monotonic when e=2% < % < €2 which implies that ¢; and go have

the same sign. In that case, it possesses an extremum at T satisfying e*0(@-1/2) — Z_;' The
lattice current vanishes at this point.

— the density presents a maximum

(@) = + - VI (4.14)

~ 2 sinh(2)\)

when g1,q2 < 0. Let us remark that in this case, the density is everywhere smaller
than 1/2. Example of such behavior can be seen on figure 3.

The lattice current changes direction at the point Z, as expected since the lattice
current goes from high density to low density. At this point, the condensation current
is minimal but positive, since the density is smaller than 1/2, so that condensation is
promoted.

— It presents a minimum

v/ 4192 (4.15)

PE =3+
PRE= 5 Sinh(2)h0)

when ¢1, g2 > 0. In this case, the density is everywhere greater than 1/2.

The condensation current is negative but maximal, so that the evaporation is minimal.
As previously, the lattice current changes sign at T, still going from high density to
low density. Example of such behavior can be seen on figure 4.

e The density is monotonic from p, to pp when g—; < e 20 or &L > 22, In this case, the

lattice current never vanishes. Example of such behavior can be seen on figure 5.

The condensation current follows the same pattern, due to the relation (4.13). The lattice current
behaves as follows:

e it is not monotonic when e=2% < —% < €22 which implies that ¢; and gy have opposite

No(@-1/2) — _@
q2

sign. There is an extremum at T satisfying e . The condensation current

vanishes at this point.
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— When ¢; < 0, the lattice current presents a maximum

2\
dat =\ 0 —
7@ = Snh(2ng) Y e (4.16)

— When ¢; > 0, it presents a minimum (see figure 5)

2

@) = Gy Y "0 (4.17)

e The lattice current is monotonic when —g—; < e 2 or —g—; > M see figures 3 and 4.

1 3
08
2]
0.6
1
041
0.2
0
0 ; ; ; ; ,
0 02 0.4 0.6 0.8 1
X
(a) Density (b) Mean value (—) and variance (---) of the

lattice current

Figure 3: Plot of the density and of the lattice current for p, = 0.35, pp = 0.2 and \g = 3.

Variance of the lattice current

The thermodynamic limit of the variance of the lattice current, computed exactly in (3.50) for
any size, takes the form:

pa(r) = 2192\ {(2:1: _p)Sind (220 (22 —1))  cosh(2Xo) cosh (29 (22 —1)) +1 }

(sinh(2 Ag))? (sinh(2 Ag))*
B 2/\ edrow + e—4Xo (1—z) _ edXo (22-1) +3 B etXo (1—x) + e—4doz _ g4 (1-2x) +3
4270 4 (sinh(2 Xo))° o 4 (sinh(2 \o))°
Ao cosh (2 \g x) cosh (2 (1 — 2)) ' (4.18)
sinh(2 \o)

As all physical quantities of the model, the variance is invariant under the transformation ¢; < ¢
and x — 1 — x, which is the left-right symmetry. The particle-hole symmetry amounts to change
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Figure 4: Plot of the density and of the lattice current for p, = 1, p, = 0.65 and Xy = 3.
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Figure 5: Plot of the density and of the lattice current for p, = 1, p, = 0.2 and Ay = 3.
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q1 — —q1 and g2 — —qo: it leaves po invariant, transforms p(z) into 1 — p(z) and changes the
sign of the currents. The symmetry A — —X reads A\g — —Xg and ¢1 <> (—¢2) and leaves all
quantities invariant.

SSEP limit

Finally, by taking the limit Ag — 0 in the previous quantities, we recover the well-known SSEP
expressions [48]:

psspp(®) =pa(l1— )+ ppz,  c2s5mp(®,y) = —2(1 —y)(pa — p)°, (4.19)
. 2
7% p(2) = pa — pos pi2,555P () = pa + pp — g(pi + papp+ 7). (4.20)

5 Comparison with Macroscopic fluctuation theory

5.1 Presentation of the Macroscopic fluctuation theory

The model presented in this paper belongs to a larger class of models describing lattice gas with
diffusive dynamics and evaporation-condensation in the bulk which are driven out of equilibrium
by two reservoirs at different densities. In the thermodynamic limit, the dynamics of these models
can be understood (under proper assumptions) through the so-called Macroscopic Fluctuation
Theory (MFT). More precisely the large deviation functional for the density profile and the
particle currents has been computed in [32, 33] based on the pioneering works for diffusive models
[34, 35, 36]. The aim of this section is to extract from this general framework the local variance
of the current on the lattice for the DiISSEP model and check its exact agreement with the value
of pa(x) computed previously, see eq. (4.18) from the microscopic point of view.

Let us start by briefly presenting the key ingredients of the MFT related to our model. A
detailed presentation can be found in [32, 33]. It has been shown that the microscopic behavior of
the system can be averaged in the thermodynamic limit and can be described at the macroscopic
level by a small number of relevant parameters: D(p), o(p), A(p) and C(p). These parameters
depend on the microscopic dynamics of the model and have to be computed for each different
model. The two first are related to the diffusive dynamics on the lattice: D(p) is the diffusion
coefficient and o(p) is the conductivity. For the DiSSEP, the diffusive dynamics is the same as
for the SSEP and hence these coeflicients take the values D(p) = 1 and o(p) = 2p(1 — p). The
two other parameters A(p) and C(p) are related to the creation-annihilation dynamics. A(p) can
be understood intuitively as the mean number of particles annihilated per site and per unit of
time when the density profile is identically flat and equal to p in the system whereas C'(p) stands
for the mean number of particles created. A rigorous definition of these parameters can be found
in [32]. For the DiSSEP, we have A(p) = 2A3p? and C(p) = 2A3(1 — p)2. When the number of
sites L goes to infinity, the probability of observing a given history of the density profile p, of the
lattice current @ and of the creation-annihilation current K during the time interval [0,T]°, can
by written as

P ({0 @ K}) ~ exp [~ LTom(p, Q. K)) (5.1)

"We keep here all the notations used in [32]. The link with the quantities previously computed is given by the
fact that in the stationary state the mean value of Q(z) is j'**(x) and the mean value of K (z) is 2j°°"%(z).
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with the large deviation functional

Z, l’ , T, 2 .
Tom (5, O K) = / dt/ {(Q( t) +£((p((x,?)>)amp( ) +‘I><p(x,t),K(x,t)>}, 52)

where

\/K2 +4A(p)C(p) + K
2C(p)

B(p, K) :% Alp) + C(p) = \/ K2 + 4A(p)C(p) + K In (5.3)

The factor 1/2 in the definition of ® is a slight modification in comparison to [32] due to the fact
that we consider here creation-annihilation of pairs of particles instead of creation-annihilation
of single particles.

The quantities p, Q and K are related through the conservation equation

dip(x,t) = —0,Q(x,t) + K (x, 1), (5.4)

and the value of p is fixed on the boundaries p(0,t) = pg, p(1,t) = pp. The minimum of the large
deviation functional Zjg 7 is achieved when the particle currents take their typical values, that is
Q(x,t) = —D(p(x,1))0pp(x,t) and K (x,t) = C(p(x,t)) — A(p(z,t)). The typical evolution of the
density profile is hence given by

Oyp(x,t) = 0z (D(p(x, 1)) 0zp(x, 1)) + Clp(x, 1)) — A(p(x,1)) (5.5)
which matches (4.4) for the DiSSEP.

5.2 Computation of the variance of the lattice current

Using the previous formalism and following [32], it is possible to compute the local variance of
the lattice current @ in the stationary regime. Due to the fact that the dynamics of the model
does not conserve the number of particle, this current and its fluctuations depend on the position
in the system. Hence, given a function 7(z), we want to compute the generating function of the
cumulants of the integrated current fOT dt fol dx 7(x) Q(z,t) for T going to infinity.

Flir}) = Jim i~ By (exp ( / dt / dor(x ))) (5.6)

The previous expression can be simplified using (5.1) and a saddle point method. It reduces to
maximize a functional over the time dependent fields p, Qand K. Assuming that the extrema of
this functional is achieved for time independent profiles, we end up with the following expression
(the reader is invited to refer to [32] for the details)

Fir) = sy ( [ der@ide - I(p,@) (5.7)
with
7(0.0) - /0 ((Q($)+2DU((p((x))))amP( z))? +c1>(p(a:),3xQ(x)>). (5.8)
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To compute the local variance of the lattice current Q at the point y, it is enough to take
7(z) = §(x — y) and expand F({er}) up to order €2. For a small perturbation ¢, the fields are
expected to be close to their typical value

Q(z) = =D(p(x))dxp(x) + eq() (5.9)

with the constraint f(0) = f(1) = 0 due to the boundaries. We then obtain

F({er}) = —eD(3(y)0:y) + F12(y) (5.10)

with the variance of the lattice current at the point y

o [ (G@EFE) | @@ U@ @)
) =2 o - [ (U0« 00 ey ) | O

and U(x) = W = 4)\%. We make the following change of variables to solve this

optimization problem

_q(@) + f(z) o= 4@+ U@ f(z)
AO=T5Gww)  YT qAG) + @) (512
so that the Euler-Lagrange equations become for the DiSSEP:
{w:@:) = w(f) —d(z —y) (513)
¢ () = 4Xg9 ().

Note that there are slight modifications in expressions (5.10) and (5.12) with respect to [32], in
accordance with the modification of ® (see discussion after (5.3)).
These equations can be solved analytically and we get

_ 0(z < y)sinh(2Xx) cosh(2Ao(1 — ) + O(2z > y) sinh(2Xo(2 — 1)) cosh(2Aoy)

V(@) = sinh 2\g
() = 2X0 [0(z < y) cosh(2Xgz) cosh(2Xo(1 — y)) + 6(x > y) cosh(2Ag(x — 1)) cosh(2Agy)]
N sinh 2\g '

(5.14)
The function g(x) can be also computed analytically by solving

¢"(z) — 4X5a(x) = 0:(2(A(p(2)) + C(p(x))¥(x)) — 4AGo (p(x))(2) . (5.15)

Note that it depends on y, see for instance the expressions (5.14). It allows us to deduce the
expression of ¢(x) at the special point y (as needed in (5.10))

1
q(y) = /O dz [o(p(2))e(x)? + 2(A(p(2)) + C(p()))(x)] (5.16)
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with ¢ and 1) are given above. Hence for the DiSSEP, the variance of the current lattice computed
from MFT is

1
p2(y) = /0 dz [o(p(x))p(x)? + 2(A(B(x)) + C(p(2)))(x)?]
2 1
B sini;\(;)\o [COShZ 220(1 — ) /O dz (o(p(x)) + sinh? 2\ox)

1
+ cosh? 2/\0y/ dz (o(p(x)) + sinh? 2\ (1 — )| -
0

Using the explicit form for o, we show that this result obtained from MFT matches perfectly the
previous result (4.18) computed exactly from a microscopic description of the model.

Let us remark that a similar comparison between MFT for diffusive model [34, 35, 36] and
microscopic exact computations has been performed in [37] for the SSEP. The result obtained here
is a confirmation of the MFT developed in [32, 33] for a system with diffusion and dissipation.

6 Spectrum of the Markov matrix

6.1 Link with the XXZ spin chain, integrability and Bethe equations

The model introduced above (DiSSEP) possesses the distinctive feature of being integrable, i.e.
the Markov matrix M governing the process belongs to a set of commuting operators. Let us recall
briefly, the main objects to get this set. The detailed construction for this particular model can
be found in [28]. This set is constructed through a generating operator depending on a spectral
parameter, the so-called transfer matrix ¢(x). The building blocks of this transfer matrix are the
R-matrix, obeying the Yang-Baxter equation, and the boundary matrices K and K satisfying
respectively the reflection equation and the dual reflection equation. These equations ensures the
commutation of the transfer matrix for different value of the spectral parameter as it was shown
in [50]: [t(z),t(y)] = 0. The Markov matrix is then obtained as the first moment of the transfer
matrix: M oc t'(1).

The integrability of this model is also revealed through its unexpected connexion with the
XXZ model. To be more precise, let us introduce the following Hamiltonian H

o+ b+
H = (a=yof ==52(0i+1) + (6= Bof - (07 +1)
2o A +1
D (g;ga;gﬂ + ooty — S5 i 1)) (6.1)
k=1

where 0%¥*%~ are the Pauli matrices. It corresponds to the open XXZ spin chain with upper
triangular boundaries. This Hamiltonian H is conjugated to the Markov matrix M defined in
(1.6). Namely, one has

H=0Q1Q>...Q:MQ'Qy"...Q;" where Q= (11 1) . (6.2)

Let us also mention that the XXZ Model for particular choices of boundaries is conjugated to the
Markov matrix of the open ASEP. However, for the boundaries present in (6.1), the conjugation
provides non-Markovian boundaries.
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We deduce from (6.2) that the spectrum of M is identical to the one of H. Moreover, the
eigenvalues (but not the eigenvectors) of XXZ spin chain with upper triangular boundaries are
the same that the ones for diagonal boundaries and one can use the results of [51, 52, 50]. Let us
mention that equality between the spectrums of two different models has been used previously
to study models with only evaporation [24]. Note also that for A = 1, the bulk Hamiltonian
becomes diagonal, and the full Hamiltonian triangular, allowing to get its spectrum easily without
Bethe ansatz, in accordance with the results of section 2.

The eigenvalues of H with diagonal boundaries can be parametrized in two different ways
depending on the choice of the pseudo-vacuum:

e For the pseudo-vacuum with all the spins up and in the notations of the present paper, the
eigenvalues of H are given by

E=—-a—B—y—58+4(¢—1)2 i

N
— (ui — ¢*)(u; — 1)

(6.3)

where N = 0,1,..., L and u; are the Bethe roots. The Bethe roots must satisfy the following
Bethe equations

u; +ag?  u; + bg? ((;S(uZ - 1))2L _ N 62 (6% — uj)(uuj — 1) (6.4)
dlau; +1) ¢(bu; +1) \ u; — ¢? 1 (ws = @Puy) (wiuj — ¢*)
i
where i =1,2,..., N and a and b are defined in (3.9).
e For the pseudo-vacuum with all the spins down, the eigenvalues of H are given by
N v
E=4(¢—1) : 6.5
SR ID D v ey (65)
where v; satisfy the following Bethe equations
avi + ¢*  bu; + ¢? (qb(vi — 1)>2L B N ?(¢%v; — v;)(viv; — 1) (6.6)
o(vi+a) ¢p(vi +b) \ vi— ¢? (vi — ¢?v;)(viv; — @) .

Jj=1
J#i

Let us stress again that, although the spectrum of the XXZ spin chain is the same for diagonal
or upper boundaries, the cigenvectors are different. For the XXZ spin chains with upper triangular
boundaries, the eigenvectors associated to the parametrization (6.3) and (6.4) of the eigenvalues
were computed only recently by algebraic Bethe ansatz in [53, 38] based on the previous results

for the XXX spin chain [54, 55, 56]. The computation of the eigenvectors associated to the
parametrization (6.5) and (6.6) is still an open problem.

6.2 Computation of the spectral gap

In this section, we want to study the dynamical properties of the model: using the previous Bethe
equations, we study the approach to the stationary state at large times for a large system. We
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must compute the eigenvalue, denoted by G, for the first excited state (i.e. the one with the
greatest non-vanishing eigenvalue).

We start by presenting the main results for the gap then we give the sketch of the numerical
evidences for them.

e In the case when evaporation rate A is independent of the size of the system L, there is a
non-vanishing gap. The values of this gap depends on the boundaries parameters and on
A. We present these different values of the gaps on Figure 6. They are consistent with the
analytical result obtained for A =1 (see section 2).

e If the rate A behaves as L—lﬂ for large system, the model is gapless and we get

1 1
GNﬁ fOI' O<,LL<1 and GNE fOI' /,621 (67)
. e . ) S _ In(GL)—In(Gp_1)
We show in figure 7 numerical evidence for such a behavior. We plot z(L) = —T)—In(L)

as a function of +: as 1 tends to 0, it tends to 2u (resp. 2) for y < 1 (resp. p > 1). The #
behavior of the gap for > 1 is expected since the system becomes in this case a diffusive
model in the thermodynamic limit as discussed in section 4.1.

To prove these result, we must study in detail the Bethe equations (6.4) and (6.6). The
comparison of the eigenvalues obtained by the exact diagonalisation of M or by the numerical
resolutions of the Bethe equations for small system (up to 10 sites), show that the gap is obtained

for N =1 in (6.5) and (6.6) or is equal to G = —a — -7 —0 = —2% (g—;} + %) (which
corresponds to N = 0 in (6.3) and (6.4)). We assume that this behavior holds for any L then
we must solve only (6.4) for N = 1. This Bethe equation can be written as the vanishing of a
polynomial of degree 2L + 2 w.r.t. v;. This polynomial has two obvious roots ¢ and —¢ which
are not physical since they corresponds to a vanishing “eigenvector”. The remaining factor is
a polynomial of degree 2L w.r.t. v; which can be transformed, thanks to (6.5) (and up to a
normalization), to a polynomial of degree L w.r.t. E. Then, the Bethe equation (6.6) for N =1
becomes

L L—p
(14 ¢)* EP p+aq\ (L—q—2 p+q—1\(L-q-1
v el () () re () (50

IR

The L.H.S. of the previous equation is a factor of the characteristic polynomial of the Hamiltonian
H (6.1) or of the Markov matrix M (1.6). It is possible now to find numerically the roots of the
polynomial (6.8) for large system (up to 150 sites) and pick up the largest ones. Performing this
computation for different values of A\ and of the boundary parameters, we obtain the results for
the gap summarized previously, see figure 6.

7 Conclusion

The DiSSEP model (see Fig. 1) was recently introduced in [28]. It was shown that the model is
integrable and that the probability distribution function describing the stationary state can be
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Figure 6: Value of the gap G depending on the parameters a, b and ¢. The equation of the curve
is b = ¢?/a. (This particular figure is drawed for ¢ = 1/4 (A = 0.6) even though similar one is
valid for any ¢).

written using the matrix product Ansatz. In the present paper we discuss in detail the properties
of the model. If one chooses the symmetric hopping rate equal to 1, the physics is dependent
on the parameter A whose square is the common rate for annihilation and creation of pair of
particles.

It can be shown the the Hamiltonian (Markov matrix) has the same spectrum as a XXZ spin
1/2 quantum chain with non-diagonal boundary terms (see Eq. (6.1)). One observes that if A
vanishes, one gets the ferromagnetic XXX model which corresponds to the well known SSEP
model. A natural idea is to study the system in the weak dissipation limit A\ ~ 1/L* where L
is the size of the system. We have studied the effect of this Ansatz on the physics of the model.
We remind the reader that the weak ASEP model [57] is defined in a similar way. The size
dependence enters in the forward-backward hopping asymmetry

As a warm-up exercise we have studied in detail the A = 1 case. In the bulk, the Hamiltonian
is diagonal in this case and the spectrum can be easily be computed. The current large deviation
function on the first bond has been derived. The function is convex and behaves like jIn(j) for
large values of the current j.

The case where A is arbitrary was considered next. Using the matrix product Ansatz, we have
obtained the expression (3.10) for the average value of an arbitrary monomial of the generators of
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Figure 7: Behavior of the gap in the thermodynamic limit when A behaves as 75: plot of 2(L) =

% as a function of 1. The lines represent the values obtained from Bethe ansatz (for

4 < L < 150), while the dots correspond to direct diagonalisation of H (for 4 < L < 10).

the quadratic algebra (3.8) in a specific representation (3.9). This expression allows to compute
any correlator. We give the expressions for the average values of the local density (3.18), of the
two-point and three-point densities correlators (3.22) respectively (3.23). We also show (see Eq.
(3.35)) that to derive the average density profile, the mean-field result is exact. There are two
kinds of currents in our problem. The first one is given by particles crossing a bond between
two sites, the second one is given by the pair of particles which leave or enter the system by the
creation and annihilation processes. Both expressions are given (see Egs. (3.28) and (3.30)). The
variance of the first current was also computed, the result can be found in Eq. (3.50).

In order to study the properties of the model in the large L limit, as mentioned before, we
take A vanishing like L™#. Using Eqgs. (3.18) and (3.22) one sees that the correlation length is
proportional to 1/\ which suggests that the system is gapless for > 0. Using the Bethe Ansatz,
we have shown that this is indeed the case. The energy gap behavior is given in Eq. (6.7). We
could be tempted to look closely at the value y = 1/2 when the gap vanishes like 1/L, suggesting
conformal invariance. This is not the case as one can see from the behavior of the average density
and the two-point correlation function which do not have the expected behavior [58]. We have
decided to consider in detail the case p = 1 which corresponds to a critical dynamic exponent
z = 2 corresponding to diffusive processes. The results are given in Section 4.

We have also compared our results with those which can be obtained using the Macroscopic
Fluctuation Theory [32, 33]. The variance of the current computed using this method coincides
with the lattice calculation described earlier in the text.
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Finally, we would like to point out two generalizations which look to us interesting. The first
one is to consider asymmetric hopping rates. The system will probably be not integrable but
mean-field and Monte Carlo simulations will reveal new physics. The second generalization deals
with the multi-species problem keeping integrability. This implies a generalization of the results
obtained in [28].
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