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Abstract

Approximate Numerical Expressions (ANEs) are linguistic expressions in-

volving numerical values and referring to imprecise ranges of values, illustrated

by examples such as “about 100 ”. In this paper, a general principle is proposed

to interpret uncontextualised ANEs as intervals of denoted values. It is based on

an empirically justified combination of characteristics of numerical values, both

arithmetical and cognitive, and in particular, taking into account the cognitive

salience of numbers. This general principle is instantiated in two computational

models that can be extended so as to take into account the applicative context.

An empirical study is conducted to assess the performances of the two models,

comparing them to state-of-the-art methods, on real interpretations collected

through an on-line questionnaire. Results validate the proposed characteristics

used to build the models and show that they offer the best performances in es-

timating the median interval chosen as representative of the collected intervals.
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marie-jeanne.lesot@lip6.fr (Marie-Jeanne Lesot), ezibetti@univ-paris8.fr
(Elisabetta Zibetti), tijus@univ-paris8.fr (Charles Tijus), marcin.detyniecki@lip6.fr
(Marcin Detyniecki)

Preprint submitted to Elsevier December 15, 2016



1. Introduction

Approximate numerical expressions (ANEs) are vague linguistic expressions

of the general form “about x” where x is a number. They are used in daily life

to denote an imprecise range of values, for instance to give imprecise pieces of

knowledge regarding space (e.g., Berlin is located at about 900km from Paris),

time (e.g., the meeting will last around 2 hours) or any numerical evaluation

(e.g., the cost will be about 200 euros; the audience gathered around 200 partic-

ipants). In the field of Human-Computer Interfaces and approximate reasoning,

ANEs raise the issue of their interpretation.

Indeed, as intelligent systems whose interaction mode rely on natural lan-

guage become more and more present in daily life, interpreting such vague ex-

pressions is a relevant task. Application domains include database querying,

such as Geographic Information Systems [? ? ] (e.g., looking for an area

whose surface is about 100m2) or more generally flexible queries or expert sys-

tems, such as medical expert systems [? ] (e.g., interpreting the information of

patient saying he has fever since approximately 48 hours).

In the general domain of vague expressions, beyond the ones involving nu-

merical values, Lasersohn [? ] introduces the notion of pragmatic halo as a

formalisation of vagueness. While the denotation of precise expressions corre-

sponds to the entity that is explicitly given, the denotation of vague expressions

also includes entities of the same semantic type, that are implicitly conveyed by

the expression. The pragmatic halo of an expression is defined as the union of

the entities explicitly denoted and the implicit ones. For instance, in the sen-

tence “I left home at 7:56am”, the precise expression “7:56am” exactly denotes

7:56 and no other moment (e.g., 7:57 or 7:58). On the contrary, in the sentence

“I will be there at around 6pm”, the expression “around 6pm” is vague and not

only denotes 6:00pm exactly, but also an implicit range of moments around 6pm

(e.g., [5:45, 6:15]).

From a logical perspective, it is considered [? ] that a proposition involving

a vague expression is satisfied (i.e., its truth value equals true) if the actual
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entity belongs to the expression pragmatic halo. Therefore, if I actually arrive

at 5:49pm, the proposition “I will be there at around 6pm” is true because

5:49pm is included in the pragmatic halo of the expression “around 6pm”. In

this theoretical framework, interpreting an ANE is equivalent to determining

the range of values that makes a proposition including this ANE true, i.e., the

range of values explicitly and implicitly denoted by the ANE. For instance, the

task of determining the range of distances that should be considered for the

query of a hotel located at about 100km.

Three approaches have been proposed to represent the interpretation of

ANEs: as fuzzy numbers (see e.g., [? ? ]); as probability distributions of

possible intervals, as suggested by Ferson et al. [? ]; as intervals (see e.g., [? ? ?

]). This paper belongs to the latter framework and proposes a general principle

instantiated in two computational models to interpret ANEs as intervals.

Approximate Numerical Expressions (ANEs) are a specific kind of vague

expressions related to numerical expressions, named imprecise expressions by

Solt [? ]. Three parts can be distinguished in an ANE: its semantic and prag-

matic contexts, and the reference value. To illustrate them, let us consider the

example of a car seller saying “this car is worth about 10,000 euros”: the seman-

tic context corresponds to what is evaluated, the car, and to what is counted,

money. The pragmatic context is the car seller trying to sell a car. Another

pragmatic context might be the buyer trying to negotiate the price. In these

two cases, the interpretation of the ANE “about 10,000 euros” may be differ-

ent. Finally, the reference value, or nominal value, of the ANE is the number

itself: 10,000. Although contexts of ANEs affect their interpretation [? ? ?

], i.e., the intervals they denote, the models proposed in this paper are only

based on their reference value and do not consider the factors related to their

contexts. The aim here is to provide core models based on context-independent

factors, i.e., the numerical properties of the expression, that can be extended to

be instantiated in specific contexts.

The aim of this paper is to model the intervals of denoted values, correspond-

ing to pragmatic halos, of ANEs. More specifically, the goal is to determine the
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values of the endpoints of the intervals I(x) = [x−, x+] denoted by ANEs of the

form “about x”, where x is a non-zero natural number, i.e., x ∈ N∗ = N\{0}, in

an uncontextualised framework, i.e., not considering factors related to semantic

and pragmatic contexts.

This paper proposes two computational models, the Log-Linear Model (LLM)

and the Rank Model (RKM), based on an original and empirically justified com-

bination of characteristics of numerical values. Both models rely on a general

principle whose first originality is to take into account a cognitive characteristic

of ANEs, besides the arithmetical ones, capturing the notion of number salience.

A second one comes from the proposed combination method, based on Pareto

frontiers. A third one is the performed experimental validation, comparing the

estimation performances of both proposed models to the ones of the models from

the literature, obtained on real data collected from an on-line questionnaire.

The paper is structured as follows: Section 2 is dedicated to the description of

related works and existing models. The general principle and the two proposed

models are presented in Section 3. The experimental setup is described in

Section 4. Section 5 presents the results of the experimental study. Finally,

conclusions and future works are discussed in Section 6.

2. Related works

This section first presents the cognitive bases of number representations in

human beings as it is exposed in the cognitive psychology literature. Three

computational models from the literature are then presented: the ratio model

(RM) [? ], the scale-based model (SBM) [? ? ], and the regression model

(REGM) [? ].

2.1. Cognitive number representation in human beings

Insofar as ANEs involve numbers, it is first relevant to examine the litera-

ture dedicated to the way the human cognitive system encodes and represents

numbers and quantities.
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Based on clinical evidences, Dehaene and Cohen [? ] propose a triple code

functional model of numerical cognition. They argue that three categories of

mental representations are used to manipulate numbers, depending of the task:

the visual Arabic form, involving strings of digits (e.g., 36), the verbal word

frame, involving sequences of words (e.g., thirty-six), and the analogical magni-

tude representation, corresponding to the numerical value. In healthy persons,

all three categories of representations can be transcoded to any other [? ].

The type of representation used depends on the nature of the executed task.

Those involving arithmetic facts (e.g., 242+34) rely more heavily on the verbal

representation, while rounding or approximation tasks involve the analogical

magnitude representation [? ].

The authors also argue that the visual and verbal forms are not semantic, the

meaning of numbers derive from the the analogical magnitude representation,

through a mapping process. This observation implies that putting two numbers

in relation, for instance in comparison tasks, can only occur at the analogical

magnitude representation.

Further, the analogical magnitude representation can be represented as a

logarithmically compressed mental line, where quantities are encoded according

to the Weber-Fechner law [? ]. Formally, two quantities x1 and x2 ∈ N are

distinguished if their difference is greater than a fraction c, called Weber fraction,

of the larger of both, i.e., if:

|x1 − x2|
max(x1, x2)

> c (1)

The indistinguishability between close quantities results in imprecision when

estimations are performed. The value of the Weber fraction c varies from one

individual to another and with age [? ]. The average value of the Weber fraction

would be around 0.11 [? ] or 0.12 [? ].

From this triple code functional model of numerical cognition, two ANE

interpretation perspectives can be postulated. Firstly, interpreting an ANE

consists in intuitively estimating the imprecision implied by its analogical mag-
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nitude representation. This perspective leads to consider the reference value of

the ANE as the relevant factor since it defines the analogical magnitude repre-

sentation. Secondly, as linguistic numerical expressions, ANEs involve the verbal

or the visual Arabic representations, depending on the presentation modality.

This perspective leads to consider the ANE interpretation issue as a formal

problem as in the case of the Scale-Based Model [? ? ] (see Section 2.3).

For instance in the case of “about 8150”, the imprecision related to the

analogical magnitude representation of 8150 might be high, close to the one

of 8000, leading to a wide interval of denoted values. One the contrary, with

regards to the verbal or the visual representations and as a numerical fact,

8150 is a more precise description of what is counted or evaluated than 8000.

Therefore, the imprecision corresponding to about 8150 might be lower than

the one corresponding to about 8000, leading to a narrower interval of denoted

values. Because interpreting an ANE involves both the analogical magnitude

and the verbal representation, it is reasonable to think that the interval of

denoted depends on a compromise between the outputs of these representations.

The two perspectives of ANE interpretation are supported by the findings

of Ferson et al. [? ]. Indeed, they showed that the order of magnitude, as a

function of the ANE reference value, and the roundness, related to the number

of zeros at the right of the last significant digit, are good predictors of the

intervals corresponding to ANEs (see Section 2.4).

2.2. Ratio model (RM)

The first approach in modelling the interpretation of ANEs as intervals con-

sists in defining the width of the interval of an ANE as a fixed percentage of its

value [? , p. 116]. Denoting s the considered percentage, it is formally defined

as:

IRM (x) = [x− x · s, x+ x · s] (2)

For instance, using s = 10%, “around 300 ” is interpreted as [270, 330].
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The ratio model (RM) is derived from the Weber-Fechner law involved in

the human number cognition (see Section 2.1). Indeed, as a consequence of this

law, for a given reference value x, all values whose difference to x is lower than

s · x, i.e., v such that |v − x| ≤ s · x, where s is related to the Weber fraction c,

are indistinguishable from x.

It can be observed that the ratio model is solely based on the reference value

of the ANE. Therefore, it can provide counter-intuitive results for numbers with

multiple significant digits. For instance, in the case of x = 8150, with s = 10%,

one gets IRM (8150) = [7335, 8965]: the width of this interval (1630) can be

considered as too high with respect to the relative magnitude of x (50). This

issue, that does not occur for numbers with a single significant digit, is due

to the fact that the information conveyed by numbers with multiple significant

digits is more precise. The scale-based model, presented in the next subsection,

addresses this issue.

2.3. Scale-based models (SBM)

The scale-based model [? ? ? ] depends on defined levels of granular-

ity through the use of a scale system S = {s1, . . . , sn}, where si are gran-

ularity levels such that si < si+1. S can be complex, when the factor be-

tween two granularities is not constant, such as the time scale-system (e.g.,

S = {1′, 5′, 1/4h, 1/2h, 1h, . . .}) or simple, such as the decimal system (S =

{1, 10, 100, . . .}), where si+1 = 10 · si.

The scale system represents different granularity levels for the interpretation

of a numerical expression. For instance, in the decimal system, the numerical

expression “1000 ” can be interpreted at the 1, 10, 100 or 1000 granularity levels.

At the 1 granularity level, the expression is precise, “1000 ” exactly denotes 1000,

whereas at the 1000 granularity level, “1000 ” denotes a larger range of values

(e.g., [500, 1500]).

The relevant granularity level for interpreting an ANE is context-dependent

and is linguistically expressed using approximators [? ]. For instance, the

approximator “exactly” refers to the lowest granularity level, usually the unit,
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while “about” refers to the largest granularity level the expression belongs to

(e.g., the level of thousands for “about 2000 ”). The latter, denoted GranC(x),

is defined as:

GranC(x) = sup
{si∈S|x mod si=0}

si (3)

The values denoted by an ANE about x are the ones that are closer to the

reference value x than to any other number on the largest granularity level

of the ANE. For instance, the granularity level of 2000 in the decimal system

is 1000. The values denoted by “about 2000 ” thus range from 1500 to 2500.

Consequently, the width of the interval equals the largest granularity level the

ANE belongs to, GranC(x). Because this model consider intervals centered

around the ANE reference value, the corresponding interval is defined as:

ISBM (x) =

[
x− GranC(x)

2
, x+

GranC(x)

2

]
(4)

For instance, ISBM (300) = [250, 350] and ISBM (8150) = [8145, 8155]. This

approach has the advantage of taking into account the granularity of the ANE

through a set of scales. However, it does not address the issue of the value of

the last significant digit: all ANEs at the same granularity level result in the

same interval width. Yet, one may expect that the interval of “about 100 ”, for

instance, would be narrower than the interval of “about 800 ”.

2.4. Regression model (REGM)

The two previous models are theoretical and have not been, to the best of

our knowledge, experimentally tested for the approximator “about”. Unlike this

theoretical approach, the empirical one proposed by Ferson et al. [? ] relies on

data collected using Amazon Mechanical Turk. Participants of this study have

been asked to evaluate the endpoints of intervals corresponding to semantically

contextualised ANEs (e.g., “Bats make up about 20% of all classified mammal

species globally.”). The aim of the authors is to test the relevance of predictors of

the interval width. Several approximators, all analysed through the same model,
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are considered, including “about”. The intervals are estimated according to the

following equation:

IREGM (x) =

[
x− 10L(x)

2
, x+

10L(x)

2

]
(5)

where L(x) is computed as:

L(x) = ω1 + ω2 ·Om(x) + ω3 ·R(x) + ω4 · f(x)

+ ω5 ·Om(x) ·R(x) + ω6 ·Om(x) · f(x) + ω7 ·R(x) · f(x)

+ ω8 ·Om(x) ·R(x) · f(x) (6)

where ω1 to ω8 are parameters empirically set by performing a linear regression

on the collected dataset. Om(x) is the ANE order of magnitude (Om(x) =

log10(x)), R(x) its roundness, i.e., the decimal place of the last significant digit

(e.g., R(13) = 1 and R(130) = 2), and f(x) ∈ {0, 1} its “fiveness”. A number

has the fiveness property if its last significant digit is 5.

The three variables Om(x), R(x) and f(x) have been empirically selected

as the variables that make the linear regression statistically significant with the

collected data [? ].

According to the authors, the regression model REGM can also be applied

to test the relevance of the predictors regarding the endpoints of intervals and

not only their width, although they do not report the results [? ].

This model presents the advantage of allowing the adaptation to different

contexts by learning parameters on a dataset. However, it can be noted that

in the conducted experiments, the semantic context is not controlled. Indeed,

several semantic contexts are mixed, which may result in interactions between

the factors related to the context and the ones related to the ANE reference

number.
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3. Proposed model

This section first describes the proposed general principle that provides a

pool of candidates for the interval endpoint values. Its originality is twofold.

Firstly, we propose to anchor the choice of the ANE characteristics to take into

account, introduced in Section 3.1, on a cognitive ground and to introduce a

numerical measure of number complexity to capture the notion of number cog-

nitive salience. Secondly, the aggregation consists in a compromise between the

selected characteristics, based on Pareto frontiers, as described in Section 3.2.

Two models are then proposed to select, among the candidate values pro-

vided by the general principle, the endpoints of the intervals denoted by ANEs:

a discretised log-linear model, presented in Section 3.3, and a rank model, de-

scribed in Section 3.4. Both models are designed to be extended so as to adapt

to specific semantic and pragmatic contexts.

3.1. Characteristics of ANEs

The ANEs considered in this study are of the form “about x”, where x ∈ N∗.

The aim is to estimate I(x) = [x−∆−(x), x+∆+(x)], the interval corresponding

to about x, which is the range of values denoted by about x. The width of I(x)

is therefore defined as |I(x)| = ∆−(x) + ∆+(x).

3.1.1. Arithmetical characteristics

In the decimal system, x can be written as x =
∑q

i=0 ai·10i, where ai ∈ J0, 9K.

Several arithmetical characteristics can be attached to a positive integer, as

defined in Table 1. The magnitude is the actual value of x; its number of

significant digits is noted NSD(x). The way the human analogical magnitude

representation encodes quantities (see Section 2.1) leads to consider the notion

of magnitude as a key factor in ANE interpretation.

The granularity Gran(x) is the order of magnitude of x, i.e., the power of

ten x belongs to. This definition of granularity can be compared to the one

from the scale-based model, GranC(x) (see Section 2.3). Indeed, GranC(x) =

Gran(x) when the selected scale system is the decimal one. The granularity as
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Characteristic Formal definition Example

Magnitude x 8150

Granularity Gran(x) = 10i
∗

where 10

i∗ = min{i|ai 6= 0}

Last significant digit LSD(x) = ai∗ 5

Relative magnitude RelMag(x) = ai∗ · 10i
∗

50

Number of significant digits NSD(x) = q − i∗ + 1 3

Complexity Cpx(x) = NSD(x)−B(x) 2.5

Table 1: Characteristics of a positive natural number x =
∑q

i=0 ai · 10i, illustrated in the

case of x = 8150 in the last column. B(x), used in the definition of complexity, is defined in

Eq. (7).

we define it is also related to the notion of roundness proposed by [? ] in the

regression model (see Section 2.2): Gran(x) = 10i
∗

and R(x) = i∗ (see Table 1).

The value of the last significant digit of x is noted LSD(x). The relative

magnitude RelMag(x) is the product of granularity and the value of the last

significant digit. It is meant to reflect the relevant part of x for ANE inter-

pretation from the point of view of the verbal representation of numbers (see

Section 2.1). Indeed, one may expect that the width of the interval of “about

30.000.050 ” is comparable to that of “about 150 ”, 50 being the common part.

3.1.2. Cognitive characteristic

Beyond arithmetical characteristics, we propose to introduce a complexity

measure, Cpx(x), to capture the cognitive salience of numbers, i.e., the fact that

some numbers are more easily evoked than others. Indeed, it has been observed

from corpus analyses than some numbers occur more frequently than others [?

? ].

In the Arabic number form, two characteristics of numbers influence their

frequency of occurrence. Firstly, the more significant digits a number has, the

more complex it is to generate and the less frequently it occurs. Indeed, from

a cognitive perspective, frequent numbers would rely on lexically stored infor-
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mation, while infrequent numbers would require a step-by-step generation [? ].

Therefore, at constant number of digits, the frequency of round natural numbers

is observed to be higher than the frequency of non-round natural numbers [?

]. Secondly, numbers whose last significant digit is 5 and, to a lower extent, 2,

occur more frequently [? ].

Taking into account these observations, we propose to define a complex-

ity measure, a posteriori justified by the experimental results reported in Sec-

tion 5, for natural numbers expressed in the decimal scale system, depending

on the number of significant digits NSD(x) and the value of the last significant

digit LSD(x), to capture the salience of numbers. We propose to formalise

the complexity of a natural number as its number of significant digits minus a

bonus if its last significant digit is 2 or 5 and its number of significant digits

is at least 2. Therefore, the complexity of all natural numbers with a single

significant digit is the same and equal to one.

For symmetry reasons around multiples of 10, we propose to consider the

case where the last significant digit is 8 the same way as the case where the last

significant digit is 2: any number whose last significant digit is 2 is of the form

(10 · k+ 2) · 10i
∗

(e.g., 320 = (30 + 2) · 10); we propose to stress its symmetrical

with respect to (10 · k) · 10i
∗
, i.e.,the numbers whose last significant digit is 8

(10 · k − 2) · 10i
∗

(e.g., 280 = (30 − 2) · 10). This symmetry argument applied

to a number whose last significant digit is 5 does not require special care as

LSD((10 · k− 5) · 10i
∗
) = LSD((10 · k+ 5) · 10i

∗
) = 5. The experimental results

described in Section 5 a posteriori justify this proposition.

The bonus function thus distinguishes three categories, depending on the

value of the last significant digit LSD(x) and respecting the order of frequency of

appearance: B(x1) > B(x2) > B(x3), for x1, x2, x3 ∈ N∗ such that LSD(x1) =

5, LSD(x2) ∈ {2, 8} and LSD(x3) /∈ {2, 5, 8}. Because the proposed exploita-

tion of complexity measure is ordinal (see Section 3.2), the chosen values are

only constrained by the induced order. We arbitrarily propose to set these

values at 0.5, 0.25 and 0. The bonus function is therefore formalised as:
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B(x) =


0.5 if LSD(x) = 5 and NSD(x) > 1

0.25 if LSD(x) = 2 or LSD(x) = 8 and NSD(x) > 1

0 otherwise

(7)

Figure 1 illustrates the complexity value Cpx(x) for all integers between 500

and 600 as pluses. We consider a number as more salient than another if its com-

plexity is lower. For instance, 500 is more salient than 501 because Cpx(500) = 1

and Cpx(501) = 3.

3.2. The Pareto frontiers based principle

This subsection presents the general principle on which the two proposed

models, described in the next subsections, are based. Its aim is to provide a

pool of relevant candidate values to be the endpoints of the interval denoted by

an ANE.

3.2.1. Principle

The rationale of the proposed model is that a good interval endpoint can-

didate simultaneously satisfies two constraints that can be contradictory: they

must be both salient (i.e., have a low complexity) and close to the ANE reference

value. The possible incompatibility of these requirements can be, for instance,

illustrated in the case of “about 500”: 499 is closer to 500 than 450, but it is

less salient (Cpx(499) = 3 and Cpx(450) = 1.5).

Therefore, optimising both distance and salience at the same time is not

achievable and a trade-off must be considered: the general principle we pro-

pose relies on the assumption that when interpreting and ANE “around x”,

a compromise is made between the salience of the endpoint values and their

distance to x. This assumption implies that for a given distance, the salience

of the endpoint values is maximised; similarly, at a given salience, the distance

of the endpoint value is minimised. For instance, given the ANE “about 500 ”,

intervals such as [499, 501], [490, 510] or [450, 550] are good candidates because
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their endpoints are the closest to the reference value x = 500 when the consid-

ered complexity of the candidates is respectively 3, 2 and 1.5. On the contrary,

[497, 503] or [460, 540] are not considered as good candidates because they are

dominated by other intervals, i.e., intervals that represent better compromises

between distance and salience of endpoint values. For instance, [497, 503] is

dominated by [499, 501] whose endpoints are as salient as the former but closer

to the reference value 500. For the same reason, [460, 540] is dominated by

[490, 510], whose endpoints are as salient, but closer to the reference value.

The values that optimise the compromise between salience and distance to

the reference value, i.e., that are not dominated by other values, are better

candidates to be the endpoint values. To select these good candidates, two

Pareto frontiers, P−(x) related to the left endpoint, and P+(x) related to the

right endpoint, are built [? ], as detailed below.

3.2.2. Building the Pareto frontiers

To build one Pareto frontier, we consider as candidates all values v ∈

V e(x) ⊂ N, with e ∈ {−,+} and V −(x) = [1, x) and V +(x) = (x,+∞). These

values are compared on two criteria: (i) their absolute distance from the ANE

reference value: dx(v) = |v − x|; (ii) their complexity Cpx(v), capturing their

salience.

The selected values are the ones that are not dominated by any other value.

The notion of dominance is a partial order: formally v′ dominates v (denoted

v′ ≺ v) iff dx(v′) < dx(v) ∧ Cpx(v′) ≤ Cpx(v).

They constitute the Pareto frontier, formally defined as P e(x) = {v ∈

V e(x)/∀v′ ∈ V e(x) v′ ⊀ v}. The Pareto frontier P e(x) = [y1, . . . , yn], with

e ∈ {−,+}, is a list ordered by increasing distance to the reference value x,

∀idx(yi) < dx(yi+1). Note that P e(x) is a finite set because the complexity

of the candidate values cannot be below 1, when they have a single significant

digit, and cannot be above the number of significant digits of the ANE reference

value. For instance, in the case of “about 560 ”, as illustrated on Figure 1, the

minimum complexity of candidates is 1 (e.g., 500 or 600) and the maximum is 3
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(e.g., 559 or 561). Although there exists an infinite number of candidates with

these complexity values, only one of them, the nearest to x, is selected because

it dominates all the others.

Figure 1 illustrates the two Pareto frontiers corresponding to the ANE

“about 560”: the black plus signs represent the distribution of (v, Cpx(v)) cou-

ples for all values v in the interval [500, 600] (indeed, values lower than 500 or

greater than 600 are not relevant as they are all dominated, by 500 and 600

respectively). Note that the horizontal axis representing the candidates v also

indirectly represents their distance dx(v): the latter increases linearly from the

vertical green line representing x = 560. Thus, the part to the right of the

vertical line can also be seen as showing the distribution of (dx(v) +x,Cpx(v));

the part to the left shows the the distribution of (x − dx(v), Cpx(v)) P−(560)

and P+(560) are represented by the connected points circled in red, respec-

tively below and above 560, denoted by the green vertical line. As a result,

P−(560) = [559, 558, 555, 550, 500] and P+(560) = [561, 562, 565, 570, 580, 600].

The values in the left Pareto frontier are in decreasing order because they

are ordered according to their distance to the reference value.

In the case of x = 560, 540 is not considered as a good left endpoint candidate

because it is dominated by 550, a value which is both closer and more salient

than 540: 550 represents a better compromise between distance and salience.

One can notice that this model, taking into account the complexity of

numbers, naturally captures the asymmetry experimentally observed (see Sec-

tion 5.1). Indeed, in the case where x have several significant digits, salient

numbers are not symmetrically distributed around x. This is illustrated on

Figure 1 for x = 560, where 500 is farther from 560 than 600.

The two models described in the next subsections exploit the values from the

Pareto frontiers as candidates to estimate the endpoint values of the denoted

interval.
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Figure 1: Complexities Cpx(v) (pluses) for integers between 500 and 600, and Pareto frontiers

(red lines) for left (left from vertical green line) and right (right from vertical green line)

endpoints of the ANE “about 560”: P−(x)(560) = [559, 558, 555, 550, 500] and P+(x)(560) =

[561, 562, 565, 570, 580, 600].

3.3. Log-linear model (LLM)

Like the regression model REGM [? ] (see Section 2.4), the proposed log-

linear model (LLM) is based on a linear regression. Its originality lies in the use

of a final discretisation step which maps the estimations provided by a regression

function to integer values, using the previous Pareto frontiers P−(x) and P+(x).

In contrast to the scale-based models (see Section 2.3), and like REGM,

this empirical model is adaptable to different semantic contexts because the

coefficients of the regression are learned from collected intervals. The principle

of the model is first introduced, before the learning phase is presented.

3.3.1. Principle

The model estimates the interval endpoint values by means of a regression

function. As suggested in Section 3.1 and in Section 2, the relative magnitude
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RelMag(x) and the magnitude x of an ANE are involved in its interpretation.

We propose to use the logarithms of these dimensions as variables in the re-

gression function. The obtained real values are then discretised to the nearest

integer on the Pareto frontiers corresponding to the considered ANE.

The real value is provided by a regression function that represents the esti-

mation of the absolute distance of the interval endpoints from the ANE reference

value x, noted ∆C(x) and computed as:

∆C(x) = exp(α1 · log(RelMag(x)) + α2 · log(x) + β) (8)

where α1, α2 and β are regression parameters. Their learning phase is described

in the next subsection.

At this stage, a symmetrical interval whose endpoints are real values can be

constructed as I = [x−R, x
+
R] = [x−∆C(x), x+∆C(x)]. Because salient endpoints

are more relevant than real ones, we propose to discretise them to the closest

values in the Pareto frontiers, according to the following function:

D(v) = arg min
yi∈P (x)

|v − yi| (9)

where P (x) is the union of the two Pareto frontiers P (x) = P−(x) ∪ P+(x).

The final interval corresponding to the ANE about x is then:

ILLM (x) = [D(x−R), D(x+R)] (10)

where x−R = x−∆C(x) and x+R = x+ ∆C(x).

Note that the resulting interval ILLM (x) maybe asymmetric because the dis-

tribution of the values on the Pareto frontiers may be different when considering

the right or the left endpoint (see Figure 1).

3.3.2. Regression parameters

The regression parameters α1, α2, and β are learned from an experimen-

tally collected database of intervals corresponding to ANEs, e.g., as the one

described in Section 4.1. The data are first transformed to a set of training
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triples (x,RelMag(x); ∆e(x)), where e ∈ {−,+}. So as to distinguish be-

tween the left and right endpoints, we define two training triples per ANE,

(x,RelMag(x); ∆−(x)) and (x,RelMag(x); ∆+(x)), where ∆−(x) is distance

between the ANE reference value x and the representative of the left endpoints

of its corresponding interval and ∆+(x) the distance between x and the repre-

sentative of the right endpoints. These two triples per ANE are obtained by

aggregating all the learning intervals corresponding to the considered ANE. The

choice of the aggregation operator is specified in Section 4.5.

In a second step, a linear regression according to the least square algorithm

is performed to find optimal values of α1, α2, and β, adjusting for the function

deriving from Equation (8):

log(∆e(x)) = α1 · log(RelMag(x)) + α2 · log(x) + β (11)

3.4. Rank model (RKM)

The second model, RKM, exploits the Pareto frontiers values in a different

way: it consists in estimating directly the position of the endpoint values on the

Pareto frontiers. To that aim, it selects yrP (x) ∈ P e(x) = [y1, . . . , yn] endpoint

value and the issue is to estimate the relevant rank rP (x). The latter depends on

the relative magnitude RelMag(x) and the number of significant digits NSD(x)

of the considered ANE about x. The use of the number of significant digits in

Equation (12) relies on the observation that, in the collected data, the interval

width increases with the number of significant digits (e.g., |I(8150)| > |I(50)|

and NSD(8150) > NSD(50), see Section 5.1).

The position of the selected endpoint is computed according to the following

equation:

rP (x) = round

log(RelMag(x))− 1 +

NSD(x)∑
k=1

k

 (12)

The estimation of the interval corresponding to the ANE is then IRKM (x) =

[y−rP (x), y
+
rP (x)]. rP (x) is limited in [1, ne], i.e., rP (x) = min(max(1, rP (x)), ne),
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with e ∈ {−,+}, where n− and n+ respectively are the length of P−(x) and

P+(x), in the case where rP (x) < 1 or rP (x) > ne.

4. Experimental settings

An empirical study has been conducted to collect experimental data in the

form of intervals corresponding to ANEs. The latter allow to: (i) validate the

relevance of the characteristics of ANEs used in both proposed models; (ii)

assess, through an experimental study, the performances of the two models

proposed in this paper, and to compare them to the models from the literature.

Although the content of the questionnaire is different from the one used by [?

] to collect intervals, the collection methods is similar. Indeed, ANEs are

presented to the participants, who explicitly give the endpoints values of the

corresponding intervals.

The first subsection presents the material and methods used to collect and

process the data. The next two subsections discuss the proposed quality crite-

ria: endpoint prediction accuracy, relative distance, median prediction accuracy

and score of median error. The last two subsections are dedicated to the exper-

imental procedure designed to compare the models and their parameterisation.

4.1. Data collection and analysis

Material. 24 ANEs, whose reference values are listed in Table 2, are considered

in the study. Their reference values are selected in order to cover different com-

binations of characteristics, to avoid biases towards a specific one: several values

of the last significant digit at a granularity level (e.g., 20/30/40/50/80), several

granularity levels at a same last significant digit (e.g., 80/800/8000), several

numbers of significant digits at the same relative magnitude (e.g., 50/150/8150).

ANEs are not semantically contextualised, no cues are given to participants

as to what is measured or counted.

An online questionnaire that includes the 24 selected ANEs has been de-

signed to collect data. Instructions, given in French to the participants, are
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“Selon vous, entre quelles valeurs (MINIMALE-MAXIMALE) se trouve ‘envi-

ron x’?”, which can be translated as “In your opinion, what are the MINIMUM

and MAXIMUM values associated with ‘about x’?”. Each participant fills the

24 items corresponding to the 24 ANEs. The order in which they are presented

is randomly set for each participant.

Finally, each participant is asked to answer the two following questions,

meant to control inter-individual variability:

• Use of mathematics: to examine whether a daily use of mathematics at

works or in the studies may affect interpretation of ANEs, participants

are asked if their work or study involves mathematical skills.

• Subjective level of mental arithmetic skills: as complementary information

to the previous question, participants are asked to auto-evaluate, on a five-

point Likert scale, whether they think they are good at mental arithmetic.

Population. Participants were recruited through an announcement diffused on

mailing-lists. 146 adults volunteered to freely take part in the study, 102 women

and 44 men, aged 20 to 70 (mean= 38.6; standard deviation= 14.2). All were

native French speakers.

Data preprocessing. The answer given by participant p for the ANE “about x”

is noted Ip(x) = [I−p (x), I+p (x)]. The answers are used to compute two absolute

distances ∆P e
p (x) between the ANE reference value x and the endpoints e ∈

{−,+} of the interval: ∆P e
p (x) = |Iep(x) − x|. Consequently, Ip(x) = [x −

∆P−p (x), x+ ∆P+
p (x)] and |Ip(x)| = ∆P−p (x) + ∆P+

p (x).

The analyses reported in the following sections are based on the absolute

distances. This variable is more relevant than the interval width, because it

allows to compare intervals together, without losing the symmetry information.

Indeed, two widths may be equal although the values of the endpoints are dif-

ferent (e.g., |[95, 110]| = |[90, 105]|).
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x Gran(x) LSD(x) RelMag(x) NSD(x)

20 10 2 20 1

30 10 3 30 1

40 10 4 40 1

50 10 5 50 1

80 10 8 80 1

100 100 1 100 1

110 10 1 10 2

150 10 5 50 2

200 100 2 200 1

400 100 4 400 1

440 10 4 40 2

500 100 5 500 1

560 10 6 60 2

600 100 6 600 1

800 100 8 800 1

1000 1000 1 1000 1

1100 100 1 100 2

1500 100 5 500 2

2000 1000 2 2000 1

4700 100 7 700 2

4730 10 3 30 3

6000 1000 6 6000 1

8000 1000 8 8000 1

8150 10 5 50 3

Table 2: Reference values of ANEs used in the questionnaire (see Section 4.1) and their charac-

teristics: magnitude (x), granularity (Gran), value of the last significant digit (LSD), relative

magnitude (RelMag) and number of significant digits (NSD), as defined in Section 3.1.
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Data cleaning. In order to exclude outlier pairs (minimum and maximum) from

the set, data are processed according to the following three steps procedure:

Step 1. 84 intervals are considered as outliers because either:

• they are inadequate ([0, infinity])

• the right endpoint is below the reference value or the left endpoint

is above the reference value, formally: I+p (x) < x or I−p (x) > x

(e.g., I(800) = [700, 750] or I(800) = [810, 850])

• an endpoint is greater than ten times or lesser than one tenth

the reference value, formally I+p (x) > 10 · x or I−p (x) < x
10 (e.g.,

I(100) = [9, 1101])

Step 2. For both endpoints of each ANE, the mean and standard deviation

of the data remaining after step 1 are computed. Any endpoint value

beyond three standard deviations of the mean is considered as an outlier.

This step leads to exclude 180 intervals.

Step 3. 10 participants are considered as untrustworthy and are excluded be-

cause more than 70% of their interval endpoints are missing values or

outliers.

From 3504 intervals Ip in the original corpus, 3177 (91%) are used as dataset

for the experimental validation of the two proposed models, LLM and RKM.

The next subsections describe the quality criteria we propose to perform this

validation.

4.2. Endpoint prediction criteria

We propose two quality criteria to assess whether the intervals estimated by

interpretation models fit the data provided by the participants of the empirical

study: endpoint prediction accuracy (PA) and relative distance (RD).

X represents the set of considered ANEs and P(x) the set of participants

whose interval is taken into account (i.e., not considered as an outlier) for ANE

“about x”. We note ∆Mede(x) the median of the distances ∆P e
p (x) over all
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participants p ∈ P(x) and ∆Me
m(x) the absolute distance of the endpoint value

(for e ∈ {−,+}) from the ANE reference value x, estimated by a model m.

4.2.1. Endpoint prediction accuracy

The endpoint prediction accuracy is a criterion designed to assess how well

a model correctly estimates the participants’ answers.

A good prediction occurs when the estimated absolute distance from the

ANE reference value is equal to the one from the participant: ∆Me
m(x) =

∆P e
p (x). A relative error is not penalised. Two rates of relative error were

tested: 10% and 5%. We observed that a rate of 5% leads to a heavy penalisation

of the models that produce real numbers as estimations: the ratio model and

the regression model. Therefore, we propose to set the rate of relative error

at 10%.

Formally, for model m, and endpoint e of the ANE about x, the prediction

accuracy, to be maximised, is defined as:

PA(m,x, e) =
1

|P(x)|
·
∣∣∣∣{p ∈ P(x)

∣∣∣∣ |∆Me
m(x)−∆P e

p (x)|
min(∆Me

m(x),∆P e
p (x))

≤ 0.1

}∣∣∣∣ (13)

Because the models considered in this paper produce a single estimation per

endpoint, the maximum score a model can reach corresponds to the relative

frequency of the endpoint values mode over the participants.

The global score of model m, to be maximised, is obtained by averaging PA

over the two endpoints e ∈ {−,+} of all ANEs about x ∈ X :

PA(m) =
1

2 · |X |
·
∑
x∈X

∑
e∈{−,+}

PA(m,x, e) (14)

4.2.2. Relative distance

A distance measure is proposed as another way to assess the proximity of

the estimated endpoint values with the ones given by the participants.

To take into account the error with regards to the characteristics of the

ANE, we propose to define this distance as relative to its relative magnitude
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RelMag(x). Indeed, an error of 10 units, for instance, appears as more signif-

icant for x = 100 than for x = 1000. On the other hand, the same error is

considered to be as significant for 8150 as for 50. This implies that the normali-

sation factor should not depend on the magnitude but on the relative magnitude

of the considered ANE, leading to consider |∆Me
m(x)−∆P e

p (x)|/RelMag(x).

Averaging over the two endpoints e ∈ {−,+} and all participants p ∈ P(x),

as for PA, we propose to define RD for model m, to be minimised, as:

RD(m) =
1

2 · |X |
·
∑
x∈X

∑
e∈{−,+}

1

|P(x)|
·
∑

p∈P(x)

|∆Me
m(x)−∆P e

p (x)|
RelMag(x)

(15)

4.3. Median prediction criteria

As detailed in Section 5.1, the empirical study shows that no consensus can

be observed regarding the interpretation of ANEs, and that a high variability

occurs in the collected intervals. It is thus relevant to discuss the definition of

the interval an ANE interpretation model should aim at. The first subsection

details the motivation of the proposed approach, that focuses on the median of

the observed endpoint values. The next two subsections introduce the quality

criteria designed to assess whether this goal is reached.

4.3.1. Rationale of the median interval

As vague expressions, the interval denoted by an ANE has no sharp end-

points: the transition between acceptable intervals and unacceptable ones is

progressive and might be variable.

One can distinguish between objective and subjective aspects of variability in

endpoints. Firstly, from an objective point of view, variability in interpretation

across participants can be observed (see Section 5.1): one participant may set

endpoint values to [90, 110] while another one may set them at [80, 120] or

[95, 105].

Secondly, from a subjective point of view, variability in interpretation within

participants, called tolerance by Wright [? ], appears: one participant might
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set endpoint values of “about 100 ” at [90, 110]. However, it might be the case

that for him/her [89, 111] or [88, 112] are admissible as well. Therefore, when

a participant gives intervals corresponding to ANEs, the endpoints should be

considered as indications because close values may also be good candidates.

To overcome these issues, we propose to model the endpoints of the interval

corresponding to an ANE as a statistical distribution. However, the quantity of

training data to learn relevant models of this type might be huge. Therefore,

we propose to estimate parameters of this distribution, such as the mean or the

median.

Estimating the median interval appears to be relevant in both aspects of

progressiveness and variability: indeed, it corresponds to a value given by one

or several participants and is therefore not an arbitrary value. As observed in the

empirical study (see Section 5.1), participants tend to give salient numbers as

endpoint values: estimating the median leads to naturally produce such values

that make sense to the users. Moreover, the median is a robust parameter with

regards to extreme values. On the contrary, the mean may result in precise

values, less natural to human users, while being less robust with regards to

extreme values.

The next subsections present the quality criteria we propose to assess whether

the estimations provided by interpretation models fit the observed medians.

4.3.2. Median prediction accuracy

We first propose to use the accuracy score of the median prediction as a

quality criterion of media estimation.

We consider a median estimation ∆Me
m(x) of model m for endpoint e ∈

{−,+} of ANE “about x” as correct if the error, as for PA, does not exceed

10% of the actual median. This quality criterion, to be maximised, can be

formalised as:

MA(m) =
1

2 · |X |
∑
x∈X

∣∣∣∣{e ∈ {−,+} ∣∣∣∣ |∆Me
m(x)−∆Mede(x)|

∆Mede(x)
≤ 0.1

}∣∣∣∣ (16)
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4.3.3. Score of median error

In case of incorrect median estimation, one should be able to evaluate the

degree of error, i.e., the distance between the prediction and the actual median.

To address this issue, we propose a criterion that assesses the balance between

participants’ answers that are above and below the estimated endpoint value.

These quantities can be formally defined as

N+(x, e) = |{p ∈ P(x)|∆P e
p (x) > ∆Me

m(x)}|

and

N−(x, e) = |{p ∈ P(x)|∆P e
p (x) < ∆Me

m(x)}|.

The model m should be such that N+(x, e) = N−(x, e) for all x, e.

However, because participants’ intervals endpoints are not uniformly dis-

tributed, but rather distributed on few values, a perfect balance may not be

possible. For instance let’s consider the case of the ANE “about 100 ”, the dis-

tribution, over 60 intervals, of the left endpoint values might be 20 times 40, 30

times 45 and 10 times 48. The median of this distribution is ∆Med−(100) = 45.

Even if the model correctly predicts this median value, a perfect balance is not

achieved because 20 endpoint values are below and 10 are above. The score

would therefore not reflect the fact that the median is actually correctly esti-

mated. To overcome this issue, we propose that the balance score of estimation

takes into account the balance of the actual median, i.e., the two quantities

N∗+(x, e) = |{p ∈ P(x)|∆P e
p (x) > ∆Mede(x)}|

and

N∗−(x, e) = |{p ∈ P(x)|∆P e
p (x) < ∆Mede(x)}|.

The score of the model then depends on the absolute difference between N+

and N∗+ and the absolute difference between N− and N∗−. Averaging over the

two endpoints and all considered ANEs, the median error, to be minimised, can

be defined as:
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MErr(m) =
1

2 · |X |
·
∑
x∈X

∑
e∈{−,+}

|N+(x, e)−N∗+(x, e)|+ |N−(x, e)−N∗−(x, e)|
|P(x)|

(17)

4.4. Experimental procedure

Using the four quality criteria PA, RD, MA and MErr described above

and the empirically collected intervals as data, we compare the performances of

the two models using the Pareto frontier principle we propose (see Section 3):

the log-linear model (LLM) and the rank model (RKM), to the ones of the three

models from the literature discussed in Section 2: the ratio model (RM) [? ],

the scale-based model (SBM) [? ? ] and the regression model (REGM) [? ].

A cross-validation procedure is performed on benchmarks consisting in 1000

runs of learning and test steps, where all models, whether they require a learning

step or not, are evaluated against the same test dataset:

1. Participant: the learning step of REGM and LLM is performed on the

intervals given by 75% of randomly selected participants, the intervals

from the remaining 25% constitute the test dataset. This benchmark is

meant to assess whether the models that need a learning step are able to

generalise across participants.

2. ANE: the learning step of REGM and LLM is performed on the inter-

vals given by all participants on 17 (66.7%) randomly selected the ANEs.

The intervals of all participants corresponding to the 7 remaining ANEs

are used as test dataset. This benchmark is designed to measure the ro-

bustness of the log-linear model because the regression parameters are

estimated on only 17 · 2 = 34 points. It is also designed to evaluate the

generalisation ability of models that need learning across ANEs.

The ratio model takes into account only the magnitude of the ANEs, one

can expect that it deals betters with numbers with a single significant digit, for

which RelMag(x) = x (e.g., x = 8000, RelMag(8000) = 8000), than numbers
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with multiple significant digits, for which RelMag(x) 6= x (e.g., x = 8150,

RelMag(x) = 50). Similarly, scale-based model uses the relative magnitude

but not the magnitude. One can therefore expect that this model better deals

with multiple significant digits than with a single significant digits. To avoid

biases towards models that are advantaged by reference values with a single

significant digit only, or reference values with multiple significant digits only, a

constraint is included in the random selection: the learning and test sets must

include a mix of both types.

In order to determine which model shows the best performances in each

benchmark, statistical analyses using ANOVA tests with model as factor, and

Tukey’s HSD post-hoc tests [? ] are performed. The significance threshold is

set at p = .01.

4.5. Parameterisation of considered models

Several combinations of parameters are tested for the parameterised models.

The results reported in Section 5 are the ones obtained with the parameters

that give the best scores on the four criteria. Indeed, it has been observed that

changing the parameters of a model results in a change in the same direction

for all four scores.

RM gives the best performances with parameter s = 5%. For SBM, the

decimal system S = {1, 10, 100, . . .} is the one that better fits the data.

REGM only provides the size of the intervals and no information about their

locations or symmetry around the ANEs. We make the assumption that they

are centered around the considered ANEs.

In the learning step, LLM requires the choice of a representative of the inter-

vals corresponding to an ANE. In order to account for the variability observed

in the collected intervals (see Section 5.1), we propose use the median as ag-

gregation operator of the intervals to constitute the training triples used be the

proposed Log-Linear Model (see Section 3.3).
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Parameter Reported by [? ] Obtained on collected data

ω1 -0.208 0.375

ω2 0.428 0.220

ω3 0.281 -0.00485

ω4 0.0940 0.977

ω5 0.0147 0.0807

ω6 -0.0640 -0.244

ω7 -0.0102 -0.496

ω8 0.0404 0.138

Table 3: Coefficients of the REGM linear regression (see Eq.(6), Section 2.4), reported by

Ferson et al. [? ], and obtained on the collected data. Bold values are the significant ones in

the regression performed on the collected data.

4.6. Preliminary validation of the regression model

As a preliminary validation of REGM, the linear regression proposed by [?

] (see Eq.(6), Section 2.4) was performed on the overall set of the collected

data. Table 3 presents the coefficients obtained and the ones reported by the

authors [? ]. Four variables of the regression on seven appear to be statisti-

cally significant on the considered data: order of magnitude (Om(x), associated

to ω2), roundness (R(x), associated to ω3), product of order of magnitude by

roundness (Om(x) · R(x), associated to ω5), and product of roundness by five-

ness (R(x) · f(x), associated to ω7). The coefficient of determination is much

lower on the collected data (R2 = 0.272) than the one reported by the authors

(R2 = 0.741). These results suggest that the REGM proposed by [? ] does not

fit well the data. This may be due to the difference in the contexts or in the

language used to collect the data. Indeed, while Ferson et al. [? ] embed ANEs

in several semantic contexts, the ANEs of this study are not contextualised.

Moreover, the participants of this study are native French speakers while the

workers of the Ferson et al. [? ] study are English speakers.

Further, some random selections in the ANE benchmark result in aberrant
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linear regression coefficients for REGM. This can be explained by the fiveness

variable f(x), a property which only occurs five times in the collected corpus:

some learning sets do not offer enough ANEs with this property to correctly

estimate coefficients related to this variable. Runs in which such aberrant coef-

ficients are observed, resulting in estimated interval endpoints located at at least

10.000 units from the ANE reference value, are not included in the analyses. On

1000 runs, 88 lead to aberrant fiveness coefficients. Therefore, the means and

standard deviations of REGM performances in the ANE benchmark are based

on 912 runs.

5. Experimental results

This section presents the results of the experimental study. The first sub-

section briefly introduces the analyses performed on the collected data in order

to test the hypotheses concerning the relevant characteristics of ANEs and the

distributions of the intervals endpoints. The next subsection deals with the

results of the performance assessment of the five interpretation models.

5.1. Data description and analyses

Statistical analyses were performed on the data in order to check whether

the hypotheses on which the two proposed models are designed are relevant.

The main conclusions are reported here.

Characteristics of ANEs. Results of statistical analyses, not detailed here for

space reasons, show that the magnitude, the granularity, the value of the last

significant digit and the number of significant digits influence the width of the

intervals. More specifically, the greater the magnitude, the granularity, the

value of the last significant digit or the number of significant digits of an ANE

reference value, the wider its interval.

Variability in the intervals. It is observed that participants tend not to agree

on the intervals denoted by ANEs: on average, the 136 respondents give 15.4
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different answers per endpoint. The number of different values for each endpoint

ranges from 9 (“about 20 ” for left endpoint) to 22 (“about 8150 ” for right

endpoint).

Symmetry of intervals. The symmetry of the collected intervals largely depends

on the considered ANE. Indeed, even if on the whole dataset, 74.2% of the inter-

vals are centered around the reference number, intervals of some ANEs, such as

440 or 4730, are significantly less often symmetric (63% and 50% respectively).

This observation can be explained by the fact that these ANEs are less round,

i.e., have more significant digits, than others (e.g., 500, 8000) and do not satisfy

the fiveness property. Indeed, the collected data show that participants tend to

give salient numbers whose complexity is low (e.g., 400 and 450 for 440; 4700

and 4750 for 4730), as endpoint values. Because these salient numbers may be

at different distances from the ANE reference value, the resulting intervals may

be asymmetric.

However, most endpoint values (84.4%) are included in the Pareto frontiers

as defined in Section 3.4, providing an empirical validation of our general prin-

ciple.

Summary. The results empirically support our choices concerning the charac-

teristics of the ANEs used in the Pareto frontiers model and the two estimators

LLM and RKM. Indeed, relative magnitude, as a combination of granularity

and the value of the last significant digit, and the number of significant digits

appear to be key factors in the interpretation of uncontextualised ANEs. The

notion of complexity seems relevant as participants tend to minimise the com-

plexity of the numbers corresponding to the endpoint values they give. Finally,

the variability observed in the data suggests that a single interval per ANE

cannot satisfy all participants. This variability therefore supports the view of a

distribution representation approach of intervals endpoints and the relevance of

estimating the median interval as a meaningful parameter of the distribution.
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Scores on Participant benchmark

Endpoint Relative Median Median

accuracy distance accuracy error

Model PA (%) RD MA (%) MErr

RM 8.9 (1.1) 0.78 (0.05) 18.4 (7.2) 0.76 (0.11)

SBM 19.5 (2.4) 0.43 (0.08) 28.0 (6.9) 0.76 (0.08)

REGM 7.9 (1.7) 0.39 (0.09) 20.0 (7.2) 0.67 (0.18)

LLM 22.4 (2.6) 0.38 (0.08) 54.1 (9.6) 0.38 (0.11)

RKM 22.2 (2.6) 0.39 (0.08) 58.3 (8.9) 0.35 (0.12)

Table 4: Score means and standard deviations in parentheses of the four criteria for each

model on the Participant benchmark. Bold scores are statistically the best ones according to

the ANOVA tests. Several scores are bold if no significant difference is revealed by post-hoc

analyses.

5.2. Results on the benchmarks

Tables 4 and 5 present the performances of the five models, Figures 2 and 3

graphically illustrate them. Results are similar in both the Participant and the

ANE benchmarks, in which the proposed RKM offers the best performances.

The next subsections discuss the results of each criterion in turn.

Endpoint prediction accuracy. The scores obtained by LLM and RKM are the

best ones and do not statistically differ from each other according to the ANOVA

tests performed. These scores can be compared to the baseline, which is cal-

culated as the mean relative frequency of the endpoint values mode (see Sec-

tion 4.2): 28.1% (σ = 6.9). The high scores of LLM and RKM can be due to

the fact that the intervals they provide can be asymmetric while the three other

models provide intervals centered around the ANE reference value.

RM and REGM perform poorly on endpoint prediction accuracy. This can

be explained by the fact that they tend to make real-numbered estimations

while participants tend to give integers as interval endpoints. Moreover, RM

is well suited for numbers with a single significant digit only, resulting in poor
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Figure 2: Mean scores of models in Participant benchmark: endpoint prediction accuracy PA

(top, left), relative distance RD (top, right), median prediction accuracy MA (bottom, left),

and median error MErr (bottom, right). It can be observed that the two proposed models,

RKM and LLM, show the best performances while the Ratio model (RM) offers the worst, in

each criterion.

performances concerning numbers with multiple significant digits.

Relative distance. The ANOVA tests reveal a significant effect of the model

factor on the RD scores. More precisely, post-hoc analyses show that this

difference is due to RM and that scores of other models do not differ significantly.

Like for endpoint prediction accuracy, because RM does not take into ac-

count the relative magnitude of the ANE reference value, it shows poor perfor-

mances for ANEs with multiple significant digits. These performances are all

the lower as the difference between the magnitude and the relative magnitude

of an ANE reference value is high. Indeed, the highest relative distances occur

for “about 4730 ” (RD = 6.92) and “about 8150 ” (RD = 7.46), the two ANEs
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Scores on ANE benchmark

Endpoint Relative Median Median

accuracy distance accuracy error

Model PA (%) RD MA (%) MErr

RM 8.7 (3.0) 0.84 (0.65) 24.4 (13.0) 0.70 (0.17)

SBM 19.3 (2.7) 0.44 (0.23) 24.9 (14.5) 0.79 (0.18)

REGM 8.1 (4.1) 0.45 (0.64) 15.7 (13.2) 0.65 (0.14)

LLM 21.9 (3.2) 0.41 (0.25) 56.6 (15.3) 0.32 (0.14)

RKM 22.0 (3.1) 0.40 (0.22) 63.8 (14.0) 0.27 (0.16)

Table 5: Score means and standard deviations in parentheses of the four criteria for each model

on the ANE benchmark. Bold scores are statistically the best ones according to the ANOVA

tests. Several scores are bold if no significant difference is revealed by post-hoc analyses.

with the highest difference between relative magnitude and magnitude, while

the scores for other ANEs range from 0.06 to 0.73.

A twofold explanation can account for the statistically non-significant dif-

ference in the relative distance scores of the four other models. Firstly, REGM

and LLM are regression-based models. Although not based on the same ANE

characteristics, they both aim at minimising the distance between observed data

and the linear regression, leading to estimations that are close to the collected

intervals. Secondly, for SBM and RKM, results reveal differences for specific

ANEs, depending on the characteristics taken into account by the model: SBM

shows poor performances in high relative magnitude and high magnitude ANEs

(e.g., x = 8150), because it does not consider the ANE magnitude. The non

significant difference between the score of this model and the others can thus

be explained by the low number of such ANEs in the corpus.

Median prediction accuracy and median error. Statistical analyses reveal that

RKM shows the best performances, both in median prediction accuracy, and in

median error, providing an empirical validation of our proposed model.

REGM offers a poor prediction score but an average error score. As for
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Figure 3: Mean scores of models in ANE benchmark: endpoint prediction accuracy PA (top,

left), relative distance RD (top, right), median prediction accuracy MA (bottom, left), and

median error MErr (bottom, right). The two proposed models, RKM and LLM, show the

best performances in each criterion.

endpoint prediction accuracy, this can be due to the fact that the model pro-

vides real-numbered estimations while participants tend to give round numbers.

However, the error score reveals that these real-numbered estimations are closer

to the actual medians than the estimations provided by SBM and RM. On the

contrary, SBM performs better than REGM on prediction accuracy while the

prediction errors are more important.

Differences between ANEs with a single and with multiple significant digits. We

performed complementary analyses, not detailed here, to check whether the

global performances of the models presented above are also valid when distin-

guishing between ANEs with a single and multiple signifcant digits: results

reveal very similar scores of LLM, RKM and REGM, for ANEs with a single
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and multiple significant digits in the Participant benchmark.

RM performs well on ANEs with a single significant digit and poorly on

ANEs with multiple significant digits while SBM presents the opposite profile.

These results are consistent with the design of the two models: RM takes into

account only the magnitude of an ANE, while SBM only considers its relative

magnitude.

Concerning the ANE benchmark, one can observe a difference between ANEs

with a single and with multiple significant digits, for all models although the

difference is less marked for RKM. Indeed, they perform more poorly on ANEs

with multiple significant digits than with a single one. Moreover, standard

deviations are higher for ANEs with multiple than with a single significant

digit.

The difference between the Participant and the ANE benchmarks may be

due to the random selection of ANEs in the latter. Indeed, in this benchmark,

the models are evaluated on only 7 randomly selected ANEs. A single error

thus implies a 14% contribution to the score which quickly leads to poor per-

formances.

Moreover, as noted for the Participant benchmarks, RM and SBM are more

or less adapted to reference values with a single or multiple significant digits.

Their scores therefore highly depends on the random draw of ANEs in the test

dataset. Concerning REGM and LLM which require a learning step, the training

dataset is reduced in the ANE benchmark to 34 triples while they learn on 48

triples in the Participant benchmark. The regression parameters may therefore

be less robust in the ANE benchmark.

One can conclude from these results that the generalisation ability of the

models is better across participants than across ANEs. The learning datasets

should be carefully constituted to cover a large combination between dimensions

of ANEs.
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6. Conclusion and future works

To estimate the intervals corresponding to Approximate Numerical Expres-

sions, this paper proposes two computational models, the Log-Linear model and

the Rank model. Both are based on a common underlying general principle that

takes into account the cognitive salience of numbers and exploit Pareto frontiers.

An experimental study is conducted, using real data collected from an online

questionnaire, which supports the proposed general principle: results reveal that

the two models exploiting this principle offer the best performances in the four

quality criteria we propose, especially in median prediction accuracy.

The performed analyses also show that there is no consensus across partic-

ipants with regard to the intervals corresponding to an ANE. The approach

proposed in this paper therefore consists in estimating the median as the tar-

geted statistical parameter of the endpoints distributions rather than a single

interval that should satisfy all participants.

Moreover, the experimental validation of the two proposed models supports

the relevance of the cognitive salience, among arithmetical characteristics of

ANEs, as a key factor in ANE interpretation.

Future work will include extensions of the proposed model, in particular so

as to take into account the two other factors implied by ANE interpretation:

the semantic and pragmatic contexts [? ]. Indeed, the general principle based

on Pareto frontiers can be extended so as to include other variables, related

to the context in the compromises step. For instance, in a business context,

beyond the arithmetical and cognitive dimensions, a third one can be added to

represent the role of the user: seller or buyer. Indeed, the right endpoint of the

interval corresponding to the ANE “about 10.000 euros” should be closer to the

reference value than the left endpoint if the user is a buyer, representing the

fact that he prefers lower prices. Conversely, the right endpoint of the interval

should be farther from the reference value than the left endpoint is the user is a

seller, representing the fact that he prefers higher prices. This can be achieved

by proposing a third criterion to capture this context-dependent dimension, in
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the same way as the complexity dimension that has been proposed to capture

the cognitive characteristic. The Pareto frontiers can then be generalised to

address three-criteria optimisation problems. A second approach concerns more

specifically the Log Linear model: as it relies on a learning step, it can fit to

specific contexts by constituting dedicated learning datasets.

Another possible extension of the Pareto frontiers model consists in gen-

eralising the complexity of numerical expressions so as to take into account

real-numbered ANEs (e.g., “about 3.14 ”) and scales of measurement, such as

time (seconds, minutes, quarters of hours, etc.) or space (centimeters, meters,

kilometers, etc.), to interpret expressions based on more complex scale systems

(e.g., “I will be there in approximately half an hour” or “This rope is approxi-

mately one meter long”).

Two other representations of ANEs should also be investigated to model the

variability in the collected intervals. The first one is proposed by Lakoff [? ] and

consists in using fuzzy numbers as representation of ANEs. From this point of

view, the median of the endpoints distribution is of particular interest because it

corresponds to the 0.5-cut of the fuzzy numbers in the random set view of elicited

membership functions proposed by Bilgiç and Türkşen [? ]. Moreover, values

located on the Pareto frontiers can be used to characterise other α-cuts [? ].

The second approach consists in representing ANEs as probability distributions.

One can either, as suggested by Ferson et al. [? ], model the residual variation by

such distributions, or directly the whole distributions. However, this approach

may need a significant number of ANEs and participants to be able to properly

characterise the factors and the parameters involved in any ANE interpretation.

Finally, in this study, participants were asked to explicitly give the intervals

corresponding to ANEs. It may be that implicit interpretation of ANEs differs

from the explicit one. Future work should address this issue, by collecting

intervals implicitly, and testing the proposed models, to ensure that there is no

bias in collecting data using explicit questionnaires.
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