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MINIMAL PARTITIONS FOR p-NORMS OF EIGENVALUES

B. BOGOSEL AND V. BONNAILLIE-NOËL

Abstract. In this article we are interested in studying partitions of the square, the
disk and the equilateral triangle which minimize a p-norm of eigenvalues of the Dirichlet-
Laplace operator. The extremal case of the infinity norm, where we minimize the largest
fundamental eigenvalue of each cell, is one of our main interests. We propose three numer-
ical algorithms which approximate the optimal configurations and we obtain tight upper
bounds for the energy, which are better than the ones given by theoretical results. A
thorough comparison of the results obtained by the three methods is given. We also in-
vestigate the behavior of the minimal partitions with respect to p. This allows us to see
when partitions minimizing the 1-norm and the infinity-norm are different.

1. Introduction

1.1. Motivation. In this paper we are interested in determining minimal partitions for
some cost functionals where is involved the p-norm of some spectral quantities (p is a
positive integer or p =∞).

Let Ω be a bounded domain in R2 with piecewise-C1 boundary and k be a positive integer
k ≥ 1. For any domain D ⊂ Ω, (λj(D))j≥1 denotes the eigenvalues of the Laplace operator
on D with Dirichlet boundary conditions, arranged in non decreasing order and repeated
with multiplicity.

We denote by Pk(Ω) the set of k-partitions D = (D1, . . . , Dk) such that

− (Dj)1≤j≤k are connected, open and mutually disjoint subsets of Ω,

− Int(
⋃

1≤j≤kDj) \ ∂Ω = Ω.

For any k-partition D ∈ Pk(Ω), we define the p-energy by

Λk,p(D) =

(
1

k

k∑
i=1

λ1(Di)
p

)1/p

, ∀p ≥ 1. (1.1)

By extension, if we consider the infinite norm, we define the energy of D by

Λk,∞(D) = max
1≤i≤k

λ1(Di). (1.2)

With a little abuse of notation, we notice that

Λk,p(D) =
1

k1/p

∥∥∥(λ1(D1), . . . , λ1(Dk)
)∥∥∥
p
.

The index ∞ is omitted when there is no confusion. The optimal problem we consider is
to determine the infimum of the p-energy (1 ≤ p ≤ ∞) among the partitions of Pk(Ω):

Lk,p(Ω) = inf
D∈Pk(Ω)

Λk,p(D), ∀1 ≤ p ≤ ∞, ∀k ≥ 1. (1.3)

A partition D∗ such that Λk,p(D∗) = Lk,p(Ω) is called a p-minimal k-partition of Ω.
This optimization problem has been a subject of great interest in the last couple of years

[14, 13, 15, 23]. Two cases are especially studied: the sum which corresponds to p = 1 and
the max, corresponding to p =∞. These problems are considered from a theoretical point
of view in [14, 15, 16, 17, 23], where some existence and regularity results are obtained. The
numerical study of this problem is also important in order to exhibit some candidates as
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2 B. BOGOSEL AND V. BONNAILLIE-NOËL

optimal partitions (see [12] for p = 1 and [8, 5, 9, 10, 23] for p =∞). More recently, the link
between these two optimization problems is taken into consideration in [22]. In particular, a
criterion is established to assert that a∞-minimal k-partition is not a 1-minimal k-partition.

We start by stating the following existence result.

Theorem 1.1. For any k ≥ 1 and p ∈ [1,+∞], there exists a regular p-minimal k-partition.

Let us recall that a k-partition D is called regular if its boundary, N(D) = ∪1≤i≤k∂Di, is
locally a regular curve, except at a finite number of singular points, where a finite number
of half-curves meet with equal angles. We say that D satisfies the equal angle meeting
property.

In the case k = 1, if Ω is connected, then the p-minimal 1-partition is Ω itself, for any p.
From now, we will consider k ≥ 2.

Remark 1.2. Note that if we relax the condition Int(
⋃

1≤j≤kDj) \ ∂Ω = Ω and consider
the optimization problem among partitions such that we have only an inclusion

Int(
⋃

1≤j≤k
Dj) \ ∂Ω ⊂ Ω, (1.4)

Theorem 1.1 is still available and any p-minimal k-partitions is strong (this means we have
equality in (1.4)).

1.2. Main results and organisation of the paper. In Section 2 we present the iterative
algorithm for the optimization of the p-norm based on the results of [12]. The implemen-
tation produces different behaviors when we consider the minimization problem for p = 1
or p = ∞. In Section 3 we recall some theoretical aspects needed in order to analyze our
numerical results and also to propose more efficient algorithms.

Next, in Section 4 we concentrate on the case of the ∞-minimal partitions. We describe
a new iterative method based on a penalization of the difference of the eigenvalues and
the mixed Dirichlet-Neumann approach where we restrict ourselves to nodal partitions of
a mixed problem. Here we compare the three methods and exhibit better upper bounds
for Lk,∞(Ω). At the end of this section, we prove that almost all of the candidates to be
∞-minimal k-partition can not be optimal for the sum, in coherence with theoretical results
of [22].

In Section 5 we analyze the behavior of the optimal partitions for the p-norm with respect
to p by looking at the evolution of the associated energies and the partitions. More precisely,
when 2 ≤ k ≤ 10, numerical simulations for the square, the disk or the equilateral triangle
suggest that the energy Lk,p(Ω) is strictly increasing with p except in the following cases:

Conjecture 1.3. The energy Lk,p(Ω) is constant with respect to p when

− Ω is a disk and k ∈ {2, 3, 4, 5},
− Ω is a square and k ∈ {2, 4},
− Ω is an equilateral triangle and k is a triangular number, that is to say of the form
n(n+ 1)/2 with n ≥ 2.

In these cases, there exists a k-partition which is p-minimal for any p ∈ [1,+∞].

− For the disk, this partition is composed of k angular sectors of opening 2π/k (see Fig-
ure 2).

− A minimal 2-partition for the square is given by two equal rectangles or two equal triangles
with right angle (see Figure 4(a)). For the square and k = 4 the minimal partition is
composed of 4 squares (see Figure 4(b)).

− For the equilateral triangle the minimal k-partition seems to consist of 3 equal quadri-
laterals, 3(n− 2) pentagons and (n− 2)(n− 3)/2 regular hexagons (see Figures 6(a) and
21).
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2. Numerical iterative algorithm

2.1. Numerical method for the sum. The problem of minimizing numerically the sum
of the first eigenvalues of the Dirichlet-Laplace operator corresponding to a partition of a
planar domain Ω has been studied numerically by Bourdin, Bucur and Oudet in [12]. In
order to simplify the computation and the representation of the partition they represented
each cell of the partition as a discrete function on a fixed finite differences grid. It is possible
to compute the first eigenvalue of a subset D of Ω by using a relaxed formulation of the
problem based on [19]. If ϕ is a function which approximates χD, the characteristic function
of D, then we consider the problem

−∆u+ C(1− ϕ)u = λj(C,ϕ)u in Ω, (2.1)

with C � 1. In the case where ϕ = χD it is proved that λj(C,ϕ) → λj(D) as C → ∞.
Moreover, in [4] the following quantitative estimation of the rate of convergence is given: if
ϕ = χD then

|λj(D)− λj(C,ϕ)|
λj(D)

= O(C−1/6).

From now on, we only deal with the first eigenvalue. As a consequence of the quantitative
estimation given above, it is desirable to have a penalization constant C as large as possible
in our computations, in order to obtain a good approximation of the eigenvalues. The
discretization of the problem (2.1) is straightforward if we consider a finite differences grid.
We consider a square bounding box containing the domain Ω. On this box we construct a
N×N uniform grid and we approximate the Laplacian of u using centered finite differences.
This allows us to write a discrete version of problem (2.1) in the following matrix form

(A+ diag(C(1− ϕ̃))ũ = λ1(C, ϕ̃)ũ, (2.2)

where the matrix A is the discrete Laplacian on the finite differences grid and ũ a column
vector. The matrices involved in the discrete form of the problem (2.2) are sparse and thus
the problem can be solved efficiently in Matlab using eigs. We note here that the domain
Ω does not need to fill the whole bounding box and that imposing that the functions ϕ are
zero on the nodes outside Ω automatically adds a penalization factor on these nodes. In
this way we can study various geometries, like the disk and the equilateral triangle, while
still working on a finite-difference grid on a square bounding box.

Remark 2.1. Finite element formulations are also possible and we refer to [4] for a brief
presentation. One drawback is that if we consider finite elements then the discrete problem
analogue to (2.2) is a generalized eigenvalue problem. The computational cost in this case
is higher and this prevents us from being able to work with fine discretizations.

In our numerical study of optimal partitioning problems in connection to spectral quan-
tities we use the approach described above to represent the cells and to compute the eigen-
values. We replace each set Dj by a discrete density function ϕ̃j : Ω → [0, 1] and use the
formulation (2.1) and its discrete form (2.2) to compute an approximation of λ1(Dj). The
condition that the sets (Dj)1≤j≤k form a partition of the domain Ω can be implemented by
imposing that the densities ϕ̃j associated to Dj have sum equal to one:

k∑
j=1

ϕ̃j = 1.

In order to have an efficient optimization algorithm we use a gradient based approach. For
this we compute the gradient of λ1(C, ϕ̃) with respect to each node of the grid and, as in
[12], we get

∂iλ1(C, ϕ̃) = −Cũ2
i , i, j = 1, . . . , N.
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2.2. Adaptation for the p-norm. As we see in Introduction, we are not only interesting
in the optimization problem for the sum (see (1.1) with p = 1) but also for any p-norm and
one of our objectives is to study numerically the minimizers of the quantity

max
1≤j≤k

λ1(Dj). (2.3)

This functional is non-smooth and therefore we cannot minimize it directly. One way
to approach minimizers of (2.3) has been proposed in [10] and it consists in minimizing
instead the p-norms Λk,p(D) defined in (1.1), for large p: It is clear that as p → ∞ these
p-norms Λk,p(D) converge to the largest eigenvalue among {λ1(Dj), 1 ≤ j ≤ k}. In order
to optimize Λk,p(D) we modify the expression of the gradient in the algorithm presented in
[12] by adding a factor corresponding to the derivative of the p-norm

∂iΛk,p(D) =
1

pk

1

k

k∑
j=1

λ1(C, ϕ̃j)
p

1/p−1

×

 k∑
j=1

∂iλ1(C, ϕ̃j)

 .

2.3. Grid restriction procedure. We perform the optimization starting from random
admissible densities on a 60× 60 grid on the square bounding box. In order to have a more
precise description of the contours we perform a few successive refinements by doubling the
number of discretization points in both horizontal and vertical directions, until we reach a
480×480 grid. More precisely, given a grid size, we apply a gradient descent algorithm using
the expression of the gradient of the eigenvalue given in the previous subsection. At each
iteration, after the update of the functions ϕ̃j we project them on the constraint condition

by replacing each function ϕ̃j by |ϕ̃j |/(
∑k

i=1 |ϕ̃i|). This projection algorithm is the same
as the one suggested in [12]. We stop when the value of the p-norm does not decrease
when considering a step length of at least 10−6. Once we obtain a numerical solution on
a given grid we use an interpolation procedure to pass to a denser grid. Then we restart
the gradient descent algorithm on this new grid starting from the interpolated partition.
We stop when we reach a grid of the desired size, in our case 480 × 480. We notice that
on the 480 × 480 grid we cannot use a penalization parameter C which is greater than
104, since the matrix A+ diag(C(1− ϕ̃)) becomes ill conditioned. Indeed, we can see that
a large part of the grid is not really used in the computation of the eigenvalue, since, in
most cases, roughly N2/k of the points of the grid are covered by the support of ϕ̃j (which
should converge to some subdomain Dj of a minimal k-partition). In order to surpass this
problem and to be able to increase the parameter C we propose the following modification
of the algorithm used in [12].

The initial densities are chosen randomly and projected onto the constraint like shown
in [12]. At each iteration of the gradient method, we look for the points of the grid which
satisfy ϕ̃j > 0.01 (represented with dark blue in Figure 1) and then we compute the smallest
rectangular region of the grid which contains these points (represented with red in Figure 1).
As you can see in Figure 1 the first two situations correspond to cases where the cell function
ϕ̃j is not localized. On the other hand, from the moment when the cell is concentrated
on only one part of the partitioned region Ω the rectangular neighborhood is much smaller
and the amount of points where we need to impose the penalization is diminished. The
points where the penalization is imposed are represented with cyan in Figure 1. Note that
in order to allow the cells to interact we extend the rectangular neighborhood with at least
5 rows/columns (if contained in Ω). In order to keep the advantage of working on a fixed
computation grid, we set the cell’s discrete values and gradient equal to zero on the points
outside the local rectangular grid. This is natural, since cells which are far away do not
have great impact on the dynamic of the current cell. Note that this procedure does not
restrict the movement of the cells since these rectangular neighborhoods are dynamically
computed at each iteration. Since the number of points on which we impose the penalization
is significantly decreased the discrete problem remains well posed even for larger values of
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C of order 107. Figure 1 represents the evolution of the set {ϕ̃7 > 0.01} and so of the local
grid after 1, 10, 25, 45 and 85 iterations of the gradient method when we implement the
algorithm with k = 10 and p = 1. Here, we have not yet done any refinment of the grid.

Figure 1. Evolution of the local grid for a cell for iterations 1, 10, 25, 45, 85.
This computation corresponds to k = 10 and p = 1.

The optimization procedure described above uses a relaxed formulation. Let us now
describe how this allows to construct a partition Dk,p of Ω whose energy will be computed
with a finite element method.

− For each i ∈ {1, . . . , k} we look for the grid points where ϕ̃i ≥ ϕ̃j for every j 6= i.
− We use Matlab’s contour function to find the contour associated to these points.

This approach, as opposed to looking directly at some level sets of ϕ̃, has the advantage
that the contours we obtain form a strong partition Dk,p of the domain Ω. Then we
compute the first Dirichlet-Laplacian eigenvalue on each subdomain of the partition by
using a finite element method : either each cell is then triangulated using the free software
Triangle [27] and its Dirichlet-Laplacian eigenvalues are computed using the finite elements
library Mélina [25], or we use FreeFEM++ [20]. In cases where both Mélina and
FreeFEM++ are used we recover the same results.

2.4. Numerical results. We denote by Dk,p the partition obtained by the iterative nu-
merical method. We study three particular geometries of Ω: a square � of sidelength 1, a
disk # of radius 1 and an equilateral triangle 4 of sidelength 1. We perform computations
up to p = 50 and we hope that the partitions obtained numerically for p = 50 are good
candidates to approximate the ∞-minimal k-partition.

Let us first consider the case of the disk. When k = 2, 3, 4, 5, the algorithm gives the same
partition for the two optimization problems (the sum p = 1 and the max p = ∞). These
partitions, given in Figure 2, are composed of k similar angular sectors of opening 2π/k
and then, the first eigenvalues on each cell are equal. Some comments about the relation to
the notion of equipartition will be addressed in the next section. It is conjectured that the
“Mercedes partition” is minimal for the max, but this result is not yet proved (see [21, 6]).
These simulations reinforce this conjecture.

k = 2 k = 3 k = 4 k = 5

Figure 2. Candidates for p-minimal k-partitions of the disk for p = 1 and 50.

We illustrate in Figure 3 the results obtained for p = 1, 50 and k ∈ {2, 3, 4, 5} in the
case of the equilateral triangle. Note that except for k = 4, partitions do not change much
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their structure. The case k = 4 for the equilateral triangle is one of the few cases where
the topology of the partition changes significantly with p, approaching the partition into
4 equal triangles as p is increasing. In Table 1, we analyze the energies of the numerical

k = 2 k = 3 k = 4 k = 5

p = 1

p = 50

Figure 3. Candidates for p-minimal k-partitions of the equilateral triangle
when p = 1 and 50.

p-minimal k-partitions for p = 1, 50. For each partition, we give the energy Λk,p(Dk,p)
(which corresponds to the energy for which Dk,p should be optimal) and the largest first
eigenvalue on the cells of Dk,p, that is to say Λk,∞(Dk,p). We can observe that the minimizer
for p = 1 has a larger maximal eigenvalue than the one obtained for p = 50. This indicates
that partitions Dk,1 which minimize Λk,1 are not necessarily good candidates for minimizing

Λk,∞ and that the candidatesDk,50 give better upper bound for Lk,∞(Ω) than the candidates

Dk,1. Indeed, we observe that

Λk,∞(Dk,50) ≤ Λk,∞(Dk,1), 2 ≤ k ≤ 5.

Furthermore, by definition of Lk,∞(4), we have Lk,∞(4) ≤ Λk,∞(Dk,50) for any k. In the
case p = 50, the energies Λk,50 and Λk,∞ are rather close, which leads one to believe that
the numerical p-minimal k-partition with p = 50 is a rather good candidate to minimize
the maximum of the first eigenvalues Λk,∞.

Dk,1 Dk,50

k Λk,1 Λk,∞ Λk,50 Λk,∞
2 106.62 136.11 123.25 123.38
3 143.05 143.07 143.06 143.07
4 206.15 229.44 209.86 211.71
5 249.62 273.69 251.06 252.68

Table 1. Smallest and largest eigenvalues for the equilateral triangle when
p = 1 and p = 50.

In these two examples, the situation appears to be very different. Thus we recall in the
following section some theoretical results regarding properties of the partitions minimizing
Λk,∞ as well as criteria allowing to decide whether a partition optimal for the max are not
optimal for the sum.

3. Theoretical results

In this section, let us recall some theoretical results about the p-minimal k-partitions.
With these theoretical results we can comment on the implementation done in the previous
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section. This is also useful to propose some new adaption of the algorithm in the next
section.

3.1. Monotonicity. First of all, let us recall a monotonicity result.

Theorem 3.1. Let k ≥ 1 and 1 ≤ p ≤ q <∞. We have monotonicity

− with respect to the domain

Ω ⊂ Ω̃ ⇒ Lk,p(Ω̃) ≤ Lk,p(Ω);

− with respect to the number k of domains of the partition

Lk,p(Ω) < Lk+1,p(Ω);

− with respect to the p-norm

1

k1/p
Lk,∞(Ω) ≤ Lk,p(Ω) ≤ Lk,q(Ω) ≤ Lk,∞(Ω), ∀1 ≤ p ≤ q <∞. (3.1)

The proof of the third point is based on the monotonicity for the p-norm. Indeed, for
any partition D ∈ Pk(Ω) and for any 1 ≤ p ≤ q <∞, we have

1

k1/p
Λk,∞(D) ≤ Λk,p(D) ≤ Λk,p(D) ≤ Λk,∞(D). (3.2)

We notice that the results of Table 1 are coherent with (3.1) since Λk,p(Dk,p) should be

close to Lk,p(4) and we observe that Λk,1(Dk,1) ≤ Λk,50(Dk,50).

3.2. Equipartition. We say that D = (D1, . . . , Dk) is an equipartition if the first eigen-
value on each subdomain λ1(Dj) are equal. The equipartitions play an important rule in
these optimization problems. Indeed, as soon as the p-minimal k-partition is an equiparti-
tion, it is minimal for any larger q. Furthermore any ∞-minimal k-partition is an equipar-
tition (see[24, Chap. 10]):

Proposition 3.2.

− If D∗ = (Di)1≤i≤k is a ∞-minimal k-partition, then D∗ is an equipartition:

λ1(Di) = Lk,∞(Ω) , for any 1 ≤ i ≤ k.
− Let p ≥ 1 and D∗ a p-minimal k-partition. If D∗ is an equipartition, then

Lk,q(Ω) = Lk,p(Ω), for any q ≥ p.

Consequently, it is natural to set

p∞(Ω, k) = inf{p ≥ 1,Lk,p(Ω) = Lk,∞(Ω)}. (3.3)

Let us apply this result in the case of the disk, see Figure 2. If we can prove that the
p-minimal k-partition for the norm p = 1 and 2 ≤ k ≤ 5, is the equipartition with k
angular sectors, then according to Proposition 3.2, this partition is minimal for any p ≥ 1
and p∞(#, k) = 1. In the case of the equilateral triangle, Table 1 makes us think that the
p-minimal k-partition is not an equipartition when k = 2, 4, 5 and thus p∞(4, k) ≥ 50 in
that case.

3.3. Nodal partition. When we are interested in optimization problem on partitions
whose functional implies spectral quantities it is quite natural to consider nodal parti-
tions. These partitions give, at least, some upper bounds of the optimal energies. Let us
recall the definition of a nodal partition.

Definition 3.3. Let u be an eigenfunction of the Dirichlet-Laplacian on Ω. The nodal sets
of u are the components of

Ω \N(u) with N(u) = {x ∈ Ω|u(x) = 0}.
The partition composed by the nodal sets is called nodal partition.
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Nevertheless, to be useful, it is important to have informations about the number of
components of the nodal partitions. According Courant’s theorem, any eigenfunction u
associated with λk(Ω) has at most k nodal domains. An eigenfunction is said Courant
sharp if it has exactly k nodal domains. The following result, proved by Helffer-Hoffmann–
Ostenhof-Terracini [23] gives some bounds using the eigenvalues of the Dirichlet-Laplacian
on the whole domain Ω and explicit the cases when we can determine a ∞-minimal k-
partition.

Theorem 3.4. For k ≥ 1, Lk(Ω) denotes the smallest eigenvalue (if any) for which there
exists an eigenfunction with k nodal domains. We set Lk(Ω) = +∞ if there is no eigen-
function with k nodal domains. Then we have

λk(Ω) ≤ Lk,∞(Ω) ≤ Lk(Ω). (3.4)

If Lk,∞(Ω) = Lk(Ω) or Lk,∞(Ω) = λk(Ω), then λk(Ω) = Lk,∞(Ω) = Lk(Ω) and then any
Courant sharp eigenfunction associated with λk(Ω) produces a ∞-minimal k-partition.

Consequently, if there exists a Courant sharp eigenfunction associated with the k-th
eigenvalue, then the∞-minimal k-partition is nodal. Otherwise the∞-minimal k-partition
is not nodal. Note that we have always λ2(Ω) = L2(Ω) (since the second eigenfunctions has
exactly two nodal domains), then any ∞-minimal 2-partition is nodal and

L2,∞(Ω) = λ2(Ω). (3.5)

As soon as k ≥ 3, it is not so easy and it is then important to determine for which k we
have equality λk(Ω) = Lk(Ω). Pleijel [26] established that it is impossible for k large:

Theorem 3.5. There exists k0 such that λk(Ω) < Lk(Ω) for k ≥ k0.

Therefore, a ∞-minimal k-partition is never nodal when k > k0. This result proves
the existence of such k0 but is not quantitative. Recently, Bérard-Helffer [3] and van den
Berg-Gittins [28] exhibit an explicit bound for k0.

In some specific geometries, we can determine exactly for which eigenvalue λk(Ω), there
exists an associated Courant sharp eigenfunction. For such k, we thus exhibit a∞-minimal
k-partition whose energy is λk(Ω). The following property gives such result for the disk [23,
Proposition 9.2], the square [1], and the equilateral triangle [2] (see also references therein).

Proposition 3.6. If Ω is a square �, a disk # or an equilateral triangle 4, then

λk(Ω) = Lk,∞(Ω) = Lk(Ω) if and only if k = 1, 2, 4.

Thus the ∞-minimal k-partition is nodal if and only if k = 1, 2, 4.

Figure 4 gives examples of ∞-minimal k-partitions. Note that since λ2(Ω) is double the
∞-minimal 2-partition is generally not unique whereas for k = 4 we do have uniqueness.
We note that for Ω = #,4 and k = 2, 4, we recover the k-partitions obtained numerically
in Figures 2 and 3.

3.4. Bounds with spectral quantities.

3.4.1. Lower bounds. The lower bounds (3.4) can be generalized when considering the p-
norm instead of the ∞-norm and we have (see [23] for p = ∞ and [21] for the general
case) (

1

k

k∑
i=1

λi(Ω)p

)1/p

≤ Lk,p(Ω) ≤ Lk(Ω). (3.6)

When Ω is a square, a disk or an equilateral triangle, the eigenvalues are explicit (see Table 2
where jm,n is the n-th positive zero of the Bessel function of the first kind Jm) and thus
they produce explicit lower and upper bounds. Computing the number of nodal domains
of some eigenfunctions give us a upper bound for Lk(Ω) (see Table 3).
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(a) k = 2

(b) k = 4

Figure 4. Nodal ∞-minimal k-partitions, k = 2, 4

Ω λm,n(Ω) m,n

� π2(m2 + n2) m,n ≥ 1

4 16
9 π

2(m2 +mn+ n2) m,n ≥ 1

# j2
m,n m ≥ 0, n ≥ 1 (multiplicity 2 for m ≥ 1)

Table 2. Eigenvalues for Ω = �, 4, #.

Square Disk Equilateral triangle
k λk(�) µ(uk) λk(#) µ(uk) λk(4) µ(uk)
1 19.739 1 5.7831 1 52.638 1
2 49.348 2 14.6819 2 122.822 2
3 49.348 2 14.6819 2 122.822 2
4 78.957 4 26.3746 4 210.552 4
5 98.696 3 26.3746 4 228.098 4
6 98.696 3 30.4713 2 228.098 3
7 128.305 4 40.7065 6 333.373 4
8 128.305 4 40.7065 6 333.373 4
9 167.783 4 49.2184 4 368.465 4
10 167.783 4 49.2184 4 368.465 4

Table 3. Lowest eigenvalues λk(Ω) and number of nodal sets for associated
eigenfunctions uj of the Dirichlet-Laplacian on Ω = �, # and 4.

3.4.2. Upper bounds. Let us mention that in the case of the disk, we can easily construct
a k-partition of # by considering the partition with k angular sectors of opening 2π/k. If
we denoted by Σ2π/k an angular sector of opening 2π/k, then we have the upper bound

Lk,p(#) ≤ λ1(Σ2π/k). (3.7)

Recall that the eigenvalue of a sector Σα of opening α are given by (see [9]) :

λm,n(α) = j2
m π
α
,n,

where jm π
α
,n is the n-th positive zero of the Bessel function of the first kind Jm π

α
. In

particular, we have

λ1(Σ2π/k) = j2
mk
2
,1
.
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Let us remark that if k is odd, the k-partition with k angular sectors is not nodal and
(3.7) gives a new upper bound which can be better than (3.4) or (3.6). If k is even, we have
Lk(#) ≤ λ1(Σ2π/k).

In the case of the square, we will use the following upper bound which is a weaker but
more explicit than (3.6):

Lk,p(�) ≤ inf
m,n≥1

{λm,n(�)|mn = k} ≤ λk,1(�).

3.5. Candidates for the sum and the max. We have seen in Section 2.4 that the
candidates to be minimal for the sum and the max seem to be the same in the case of
the disk when k = 2, 3, 4, 5 (see Figure 2) whereas they are different for the equilateral
triangle when k = 2, 4, 5 (see Figure 3). Then it could be interesting to have some criteria
to discriminate if a∞-minimal k-partition can be minimal for the sum (p = 1). A necessary
condition is given in [22]:

Proposition 3.7. Let D = (D1, D2) be a ∞-minimal 2-partition and ϕ2 be a second eigen-
function of the Dirichlet-Laplacian on Ω having D1 and D2 as nodal domains.

Suppose that

∫
D1

|ϕ2|2 6=
∫
D2

|ϕ2|2, then L2,1(Ω) < L2,∞(Ω).

Since any∞-minimal 2-partition is nodal, we can use the previous criterion by considering
neighbors in a k-partition.

Proposition 3.8. Let D = (Di)1≤i≤k be a k-partition and Di ∼ Dj be a pair of neighbors.

We denote Dij = IntDi ∪Di. There exists a second eigenfunction ϕij of the Dirichlet-
Laplacian on Dij having Di and Dj as nodal domains.

If

∫
Di

|ϕij |2 6=
∫
Dj

|ϕij |2, then Lk,1(Ω) < λ2(Dij).

4. Candidates for the infinity norm

4.1. Penalization method. We note that the results obtained in Section 2.4 using the
p-norm approach do not consist of exact equipartitions. We recall that this is a necessary
condition for a partition to be a solution of the min-max problem (1.3) with p = ∞ (see
Proposition 3.2). We use the following idea in order to force the eigenvalues to be closer.
If we are able to minimize the sum of eigenvalues

λ1(D1) + . . .+ λ1(Dk),

under the constraint λ1(D1) = . . . = λ1(Dk), we are in fact minimising the maximal
eigenvalue. We can, thus, for every parameter ε > 0 consider the smooth functionals

Fε((Di)) =
1

k

k∑
i=1

λ1(Di) +
1

ε

∑
1≤i<j≤k

(λ1(Di)− λ1(Dj))
2,

i.e. the average of the eigenvalues plus a term penalizing pairs of non-equal eigenvalues. If
we define the functional

F ((Di)) =

{
max{λ1(Di), 1 ≤ i ≤ k} if (Di) is an equipartition,

+∞ otherwise,

then we have the following result.

Proposition 4.1. The functionals Fε Γ-converge to F , in the sense that

− for every (Dε
i )→ (Di) as ε→ 0, lim infε→0 Fε((D

ε
i )) ≥ F ((Di)),

− for every (Di), we can find (Dε
i )→ (Di) such that lim supε→0 Fε((D

ε
i )) ≤ F ((Di)).

Consequently any limit point of a sequence of minimizers of Fε is a minimizer for F .
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Proof. Let (Dε
i ) be a sequence of partitions of Ω which converges to (Di) in the Hausdorff

metric. It is clear that (Di) is also a partition of Ω. Since the Dirichlet-Laplace eigenvalues
are stable under the Hausdorff convergence we directly obtain

lim inf
ε→0

Fε((D
ε
i )) ≥ F ((Di)).

The above inequality is obvious if (Di) is not an equipartition, since then we have

lim inf
ε→0

Fε((D
ε
i )) = +∞.

On the other hand, if (Dε
i ) is an equipartition we clearly see that the inequality is true since

lim inf
ε→0

Fε((D
ε
i )) ≥

1

k

k∑
i=1

λ1(Di)) = max
1≤i≤k

λ1(Di).

The Γ− lim sup part is straightforward by choosing a constant sequence. �

We use the result of Proposition 4.1 to construct a numerical algorithm which ap-
proaches the min-max problem (1.3) with p = ∞. We minimize the functional Fε for
ε ∈ {10, 1, 0.1, 0.01} and each time we start from the result of the previous optimization. In
the minimization of Fε we use the same discrete framework presented in Section 2.4 as well
as the penalized eigenvalue problem (2.2). In Table 4 we present the minimal and maxi-
mal eigenvalues obtained when minimizing Λk,50 and when using the penalization method
described in this section, that is to say

min{λ1(Dj), 1 ≤ j ≤ k} and max{λ1(Dj), 1 ≤ j ≤ k},
where (Dj) is either the numerical p-minimal k-partition Dk,p for p = 50 or the partition
obtained with the penalization method. We also added the relative differences between
maximal and minimal eigenvalues. Comparing these differences we note that the penaliza-
tion method gives partitions which are closer to being an equipartition. We also observe
that the maximal value among the first eigenvalues is lower for the penalization method.
Thus this method gives us better candidates. The partitions obtained with the penalization
method are presented in Figure 5.

Ω k
Lk,50(Ω) penalization

min max diff.(%) min max diff.(%)

4

4 208.92 211.71 1.32 209.15 211.04 0.89
5 249.17 252.67 1.38 251.27 252.17 0.36
6 275.37 276.16 0.28 275.34 276.22 0.31
7 338.04 348.24 2.92 343.51 345.91 0.69
8 388.47 391.06 0.66 388.46 389.53 0.27
9 422.80 431.92 2.11 425.34 428.74 0.79
10 445.50 456.66 2.44 450.74 453.25 0.55

�

5 103.75 105.82 1.95 104.24 104.60 0.34
6 125.79 128.11 1.81 126.36 128.14 1.38
7 144.49 147.44 2.00 145.81 146.90 0.74
8 160.48 161.64 0.71 160.76 161.28 0.32
9 176.64 179.21 1.49 177.13 178.08 0.53
10 200.00 206.85 3.31 202.78 204.54 0.86

Table 4. Minimal and maximal eigenvalues of the candidates obtained by
the p-norm and the penalization methods.

Since in the cases k = 2, 4 we know the explicit optimizers we summarize in Table 5 the
results obtained with our numerical approaches in these two cases. We observe that the
penalization method produces better candidates.
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Figure 5. Partitions obtained with the penalization method.

Disk Square Equilateral triangle
k p = 50 pen. explicit p = 50 pen. explicit p = 50 pen. explicit
2 20.25 20.24 20.19 49.348 49.348 49.348 123.38 122.96 122.82
4 26.42 26.42 26.37 78.957 78.957 78.957 211.71 211.04 210.55

Table 5. Comparison of the two methods for Ω = #,�,4 in explicit cases.

Synthesized results are presented in Table 6 where we also present the values obtained
with the mixed Dirichlet-Neumann method presented in the next section.

4.2. Dirichlet-Neumann approach. The penalization method proposed in the previous
section gives improved results in some situations as compared to the p-norm method. Still,
the results we obtain are close, but not precisely an equipartition, as the theoretical results
state in Proposition 3.2 presented in the previous section. In this section we propose
a method which in some cases allows us to search precisely for an equipartition. In this
approach, we try to find symmetric candidates whose energy is lower than the ones obtained
before. Nevertheless, we use the previous methods in order to have an idea of the structure
of the optimal partition and thus look now for partitions where we have fixed some parts of
the boundaries of the subdomains. Note that for k = 2 any minimal 2-partition for L2,∞ is
a nodal partition for the second eigenvalue of the Dirichlet-Laplacian on Ω (see Theorem 3.4
and (3.5)). According to Proposition 3.6, when Ω = �, #, 4, no ∞-minimal k-partition
is nodal except for k = 1, 2, 4. This is also observed numerically because the partitions we
exhibit for k /∈ {2, 4} have critical points with degree at least three.

The idea is to search for minimal partitions with the aid of nodal sets of a certain mixed
Dirichlet-Neumann problem. This approach has already been used in [8] for the study of the
3-partitions of the square and the disk. In the following we identify other situations where
the method applies. In those cases the partition obtained with the Dirichlet-Neumann
method is an exact equipartition and it allows us to decrease even more the value of Λk,∞
(see Table 6).

Let us take the case of the 3-partition in the equilateral triangle as an example. The
notations are presented in Figure 6. Figure 6(a) gives the partition obtained by one of the
iterative methods. We represent below the partition with the symmetry axis AD and the
triple point Dr. It is not difficult to see that this partition can be regarded as a nodal
partition if we consider a mixed Dirichlet-Neumann problem with the Dirichlet condition
on the segment [DDr] and the Neumann condition on the segment [ADr]. We also note
that the additional symmetry of the partition allows us to work only on the triangle ABD.
Thus, the working configuration is the triangle ABD with Dirichlet boundary conditions on
[DDr], [DB] and [AB] and a Neumann boundary condition on [ADr]. We take the point Dr
variable on [AD] and we look for the position of Dr for which the nodal line touches the
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segment [DDr] and for which the value of the second eigenvalue is minimal. Figures 6(b)
give examples of nodal partitions according to the position of the mixed Dirichlet-Neumann
point. In the following we make the convention that red lines signify Dirichlet boundary
conditions and blue dotted lines represent Neumann boundary conditions.

(a) D3,50 (b) Nodal lines according to the position of the mixed point

Figure 6. Dirichlet-Neumann approach for 3-partitions of the equilateral triangle.

The square. We start with the case of 3-partitions and we recall the results obtained in
[8]. The iterative algorithm gives a partition with an axis of symmetry parallel to the sides.
Therefore we choose to impose a mixed condition on this axis, working on only half the
square. Figure 7 illustrates the choice of the mixed problem and the results. We obtain
numerically that the triple point is at the center and that the value of the second Dirichlet-
Neumann eigenvalue on the half-domain is 66.5812. As it was noted in [8], choosing a mixed
condition on the diagonal instead gives another partition with the same energy. Moreover,
in [7], it is shown that we have a continuous family of partitions with the same energy.

(a) Two mixed Dirichlet-Neumann configurations (b) Candidates for the ∞-minimal 3-partition

Figure 7. Dirichlet-Neumann approach for 3-partitions of the square.

In the case of the 5-partition of the square we note that the partition obtained by the
iterative algorithm seems to have the same axes of symmetry as the square. Due to the
symmetry of the partition one can consider a mixed Dirichlet-Neumann problem on an
eighth of the square as seen in Figure 8(a). The second Dirichlet-Neumann eigenfunction
of this configuration has nodal domains which extend by symmetry to a 5-partition of the
square. The second eigenvalue of this mixed configuration is equal to the first Dirichlet
eigenvalue on each cell of the 5-partition built after symmetrization (see Figrue 8(b). This
second Dirichlet-Neumann eigenvalue, equal to 104.294, gives a upper bound for L5,∞(�)
which is lower than the ones obtained with the iterative methods.

The Disk. We know that the ∞-minimal k-partition consists in k equal sectors when
k = 2, 4. Numerically, it seems to be the same for k ∈ {3, 5} and some works tried to prove
it when k = 3 (see [21, 6]).
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(a) Mixed problem (b) Symmetriezd 5-partition

Figure 8. Dirichlet-Neumann approach for 5-partitions of the square.

For larger k (k ∈ [6, 9]), we observe that numerical partitions obtained with the iterative
method consist of a structure which is invariant by a rotation of 2π/(k−1). This motivates
us to use the Dirichlet-Neumann approach for the cases k ∈ [6, 9]. Indeed, one can see
that the invariance by a rotation of angle 2π/(k − 1) allows us to represent exterior cells
of the configurations as subsets of a sector of angle 2π/(k − 1). This brings us to consider
a mixed Dirichlet-Neumann problem on such sectors. If we consider the center of the disk

at the origin, and we denote the sector by O
>
AB then for r ∈ (0, 1) we consider the points

Ar ∈ [OA] and Br ∈ [OB] with ArO = BrO = r. We consider Neumann boundary conditions
on [O,Ar], [O,Br] and Dirichlet condition on [ArA], [BrB] and the arc AB. Figure 9 illustrates
this mixed Dirichlet-Neumann configuration. Next we vary r in (0, 1) and we record the

Figure 9. The setup for the mixed problem on sectors.

position where the nodal line associated to the second eigenfunction of the Laplace operator
with these mixed boundary conditions touches the segments [ArA], [BrB]. This is necessary
in order to have a k-partition after symmetrization. On the other hand we want the largest
possible r in order to obtain minimal eigenvalues in the symmetrized partition of the disk
(since the eigenvalue of the mixed problem is decreasing when r is increasing). Thus, for
each k ∈ [6, 9] we consider the above mixed problem in the sector of angle 2π/(k−1) and we
search in each case for the optimal value of r. The second eigenvalue of the mixed problem
equals the first eigenvalue of each domain of the partition obtained by the symmetrization
of this eigenvalue to the whole disk. The values obtained are recorded in Table 6 and the
partitions are given in Figure 10. We note that for k = 10 the same approach in a sector
of angle 2π/9 gives a candidate which has a larger energy than the partition obtained with
the iterative algorithm.

Equilateral triangle. In this case we also have some configurations where we can apply
the Dirichlet-Neumann method. In the cases k = 3, 6, 10 the partitions obtained by the
iterative algorithm have the three axes of symmetry of the equilateral triangle. This allows
us to reduce the problem to the study of mixed problems on a half or a sixth of the
equilateral triangle. We also observe a possible application of the method to the case k = 5
where we may consider Dirichlet boundary condition on part of the height of the triangle.
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Figure 10. Candidates for the ∞-minimal k-partitions on the disk with
the Dirichlet-Neumann approach, 6 ≤ k ≤ 10.

The case k = 8 also lets us use a mixed problem with Dirichlet boundary condition on part
of the height and a vertical mobile segment.

We start with k = 3 where the optimal candidate seems to be made of three congruent
quadrilaterals with a common vertex at the centroid and each one having a pair of sides
orthogonal to the sides of the triangle. Note that a brief idea of the method was described
in Figure 6. We consider a mixed Dirichlet Neumann problem on half of the equilateral
triangle. Let ABD be half of the equilateral triangle, where AD is one of the heights of
the triangle (see Figure 11). We consider a mobile point Dr on the segment [AD] and we
compute the second eigenvalue of the Dirichlet Laplace operator with Dirichlet boundary
conditions on segments [DrD], [DB], [AB] and Neumann conditions on [ADr]. The choice
of the Dirichlet boundary condition on [DrD] was motivated by the structure of the result
in the iterative algorithm. We may ask what happens when we interchange the boundary
condition on the height [AD], i.e. considering Dirichlet boundary condition on [ADr] and
Neumann boundary condition on [DrD]. This is discussed at the end of this section in
Remark 4.2. Next we vary the position of Dr on [AD] so that the nodal line of the second
eigenvalue of the mixed problem touches [DDr] exactly at Dr. As expected the position
where we obtain this configuration is for DDr = AD/3 which means that the triple point of
the symmetrized partition is the centroid of the equilateral triangle.

(a) Mixed problem (b) Optimal nodal partition (c) Symmetrized partition

Figure 11. Dirichlet-Neumann approach for 3-partitions of the equilateral triangle.

The case k = 5 can be treated in the same framework, but instead of looking at the
second eigenfunction of the mixed problem we study the third one. The result is presented
in Figure 12. In optimal configuration, the triple point is such that DDr = AD/2.

We continue with the case k = 8 where we can also use a Dirichlet Neumann approach on
half of the equilateral triangle. Here we observe that in addition to the axis of symmetry,
one of the common boundaries between the cells also seems to be a vertical segment. We use
this fact to define a mixed eigenvalue problem with four parameters on half of the equilateral
triangle. Like in Figure 13 we consider four variable points defined as follows. We consider
the triangle ABD where AD is a height of the equilateral triangle. On the side AD we
consider two variable points Xs,Xt. On the segment [Xs,Xt] we put a Dirichlet boundary
condition and on the segments [AXs], [DXt] we have Neumann boundary conditions. We
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(a) Mixed problem (b) Optimal nodal partition (c) Symmetrized partition

Figure 12. Dirichlet-Neumann approach for 5-partitions of the equilateral triangle.

consider another variable point Yr ∈ [BD] and we construct Yq such that YqYr ⊥ BD with
the length of [YrYq] as a variable. On the segment [YqYr] we put a Dirichlet boundary
condition. Of course, the remaining segments [AB], [BD] also have a Dirichlet boundary
conditions. We vary the position of these four points so that the fifth eigenfunction of the
mixed problem has nodal lines which touch the Dirichlet parts at their extremities. The
choice of the fifth eigenvalue is motivated by the fact that we need a nodal 5-partition so
that the symmetrized partition would have 8 cells. The optimal configuration is shown in
Figure 13.

(a) Mixed problem (b) Optimal nodal partition (c) Symmetrized partition

Figure 13. Dirichlet-Neumann approach for 8-partitions of the equilateral triangle

In the case k = 6 the optimal partition obtained with the iterative algorithm has three
axes of symmetry. Using this we can reduce the problem to the study of a mixed problem
on one sixth of the equilateral triangle, i.e. a subtriangle defined by a vertex, the feet of a
height and the centroid of the triangle. As in Figure 14(a) we consider the triangle defined
by a vertex A, the feet of an altitude D and the centroid C. On the side AC we consider
a mobile point Xr = rA + (1 − r)C for r ∈ (0, 1). We note that the candidate obtained
with the iterative algorithm seems to correspond to a mixed problem on the triangle ACD
with Dirichlet boundary conditions on segments [AD] and [CXr] and Neumann boundary
conditions on [CD] and [AXr]. We search for the position of Xr such that the nodal line of
the second eigenfunction touches the segment [CXr] precisely at Xr (see Figure 14(b)). The
optimal nodal configuration and the partition obtained by performing symmetrizations is
represented in Figure 14(c).

In the case k = 10 we observe that the partition has again three axes of symmetry
and we may try to represent it as a mixed Dirichlet-Neumann problem on a sixth of the
equilateral triangle. Consider the same starting triangle ACD like for k = 6. Pick the
variable points Xr = (1− r)A+ rD on [AD] and Xs = sC+ (1− s)D. Construct Yr ∈ [AC]

such that XrYr ⊥ AD and Ys ∈ [AC] such that X̂sCYs = π/3 (to satisfy the equal angle
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(a) Mixed problem (b) Optimal nodal partition (c) Symmetrized partition

Figure 14. Dirichlet-Neumann approach for 6-partitions of the equilateral triangle.

property). If we pick the origin at A and D of coordinates (0.5, 0) then we obtain the
following coordinates for all the above defined points: C(0.5,

√
3/6), Xr(r, 0), Yr(r, r

√
3/3),

Xs(0.5, s
√

3/6), Ys(0.25 + s
√

3/2,
√

3/12 + s/2). As in the Figure 15(a) we take a Dirichlet
boundary condition on segments [AD], [DXs], [YsYr] and Neumann boundary condition on
segments [AYr], [CYs], [CXs]. Since the numerical candidate in this case seems to have cells
with polygonal borders we search the positions of Xr and Xs such that the nodal lines of
the third eigenfunctions of the eigenvalue problem with mixed boundary conditions are
exactly the segments [XrYr] and [XsYs]. The result is shown in Figure 15 together with the
symmetrized partition.

(a) Optimal nodal partition (b) Optimal nodal partition (c) Symmetrized partition

Figure 15. Dirichlet-Neumann approach for 10-partitions of the equilateral triangle.

Remark 4.2. In some cases we have chosen the Dirichlet and Neumann parts of the mixed
problem based on the results given by the iterative method. We may ask what happens if
we permute the two conditions.

For the case k = 3 on the equilateral triangle, if we consider Dirichlet boundary condition
on segment [ADr] and Neumann boundary condition on [DDr] (see Figure 11(a) for the
notations) then the optimal configuration is again when DDr = AD/3, but the eigenvalues
of the cells on the symmetrized domain are strictly higher than the one obtained before.

Λ3,∞ = 142.89 Λ3,∞ = 215.13

Figure 16. Dirichlet-Neumann approach for 3-partitions of the equilateral triangle.
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For the case k = 5 on the square we have seen that the partition seems to have all
the symmetry axes of the square. As suggested by the result of the iterative method we
considered a Dirichlet-Neumann condition corresponding to an axis of symmetry parallel
to the sides of the square. As shown in [5, Figure 19] choosing a mixed boundary condition
on the diagonal gives a partition with a strictly higher maximal eigenvalue.

Remark 4.3. We note the similarity of the partitions of the equilateral triangle for k = 3
and k = 5 to some eigenvalues of the Aharonov-Bohm operator on a sector considered in
[9, 11]. Thus we were able to check that the partition for k = 3 corresponds to the third
eigenvalue of the Aharonov-Bohm operator on the equilateral triangle with a singularity at
its centroid. In the same way, the partition for k = 5 corresponds to the sixth eigenvalue of
the Aharonov-Bohm operator on the equilateral triangle with a singularity at the midpoint
of one of the heights.

4.3. Summary of the numerical results. We have seen three numerical approaches for
the study of the minimizers of Lk,∞: the use of p-norms of eigenvalues with p large, the
penalization method and the Dirichlet-Neumann method. We make below a brief analysis
and a comparison of the results given by these methods.

First we note that the p-norms method and the penalization method work in all cases.
In most of the cases, the penalization method does exactly what it was build for: penalize
the difference between the eigenvalues while minimizing their sum. Thus there is no great
surprise to see that it manages to give better upper bounds for Lk,∞(Ω). As we can see in
Table 4 the penalization method produces results where the gap between the minimal and
maximal eigenvalues of cells is smaller. Inspiring from the results of the iterative methods,
we can improve them by restricting the research to some particular partitions where we fixe
some parts of the boundaries of the subdomains: this is the Dirichlet-Neumann approach.
Once the structure is fixed, we express the partition as a nodal set of a mixed problem.
In this paper, we apply this method only with fixed straight lines and symmetry. On
the other hand, when the Dirichlet-Neumann can be applied, it produces equipartitions
and thus gives the best upper bounds for Lk,∞(Ω). Table 6 summarize the lowest energy
Λk,∞(D) obtained according to the three methods (iterative method for p = 50, penalization
and Dirichlet-Neumann approach), and thus we deduce some upper bounds for Lk,p(Ω).

Disk Square Equilateral triangle
k p = 50 pen. D-N p = 50 pen. D-N p = 50 pen. D-N
3 20.25 20.24 20.19 66.69 66.612 66.581 143.06 142.88 142.88
5 33.31 33.31 33.21 105.82 104.60 104.29 252.67 252.17 251.99
6 39.40 39.17 39.02 128.11 127.11 - 276.16 276.22 275.97
7 44.26 44.25 44.03 147.44 146.88 - 348.24 345.91 -
8 50.46 50.64 50.46 161.64 161.28 - 391.06 389.53 389.31
9 58.28 58.30 58.25 179.21 178.08 - 431.92 428.75 -
10 64.54 64.27 67.19 206.85 204.54 - 456.66 453.25 451.93

Table 6. Lowest energies Λk,∞ for the three methods, Ω = #, �, 4.

The Disk. We notice that for k ∈ [2, 5] the optimal partitions correspond to sectors of
angle 2π/k and we use the upper bound (3.7) to fill the third column for the disk in Table 6.

For k ∈ [6, 9] the best candidates are given by the Dirichlet-Neumann approach on sectors
of opening 2π/(k − 1); the other two methods give close but larger results.

When k = 10, we can also apply a Dirichlet-Neumann approach on an angular sector
of opening 2π/9 but the upper bound is worse than with the iterative methods. Indeed,
we observe that the optimal 10-partition seems to have two subdomains at the center (see
Figure 5).
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The Square. For k ∈ {3, 5}, it is possible to use the Dirichlet-Neumann method and this
gives the lowest upper bound for Lk,∞(�). As shown in [5, Figure 8] for k = 3 we have a
continuous family of solutions, each with the same maximal eigenvalue.

In other cases, the penalization method gives the best upper bounds for Lk,∞(�). Let
us note that for k = 9 we are not able to obtain partitions which have a lower maximal
eigenvalue than the partition into 9 equal squares, for which all cells have eigenvalue 177.65.
On the other hand, since the partition into 9 squares is nodal and the 9-th eigenfunction on
the square is not Courant sharp, this is not a ∞-minimal 9-partition (see Theorem 3.4). In
our computations, with the p-norm and penalization approaches we find partitions whose
energy Λk,∞ equals 179.21 and 178.08 respectively. Since our computations using iterative
methods were based on a relaxed formulation for the eigenvalues, the limited numerical
precision of the method does not enable us to reach better results whereas we know that
the minimal 9-partition has an energy less than 177.65.

The Equilateral triangle. The equilateral triangle gives us lots of occasions where a
Dirichlet-Neumann method can be used. For k ∈ {3, 5, 6, 8, 10} this method gives us the
best known upper bound for Lk,∞(4). For the cases k ∈ {7, 9} the penalization method
gives lowest upper bounds. When k ∈ {3, 6, 10} numerical simulations produce partitions
hose subdomains are particular polygons with straight lines and it seems this behavior
appears for some specific values of k.

Remark 4.4. (Remark about partitions corresponding to triangular numbers) We note
that in cases where k is a triangular number, i.e. k = n(n+ 1)/2 with n ≥ 2, the p-minimal
k-partition of the equilateral triangle seems to be the same for any p and to be made of
three types of polygonal cells: 3 quadrilaterals at corners which are each a third of an
equilateral triangle, 3(n − 2) pentagons with two right angles and three angles measuring
2π/3 and a family of regular hexagons. In Figure 17 we represent some of the results
obtained numerically with the iterative method for k ∈ {15, 21, 28, 36}.

Figure 17. Numerical candidates for k ∈ {15, 21, 28, 36}.

4.4. Candidates for the max vs. the sum. Given a candidate for minimizing Λk,∞ we
may wonder if this partition can also minimize the sum of the eigenvalues Λk,1. Such a
discussion has already been made in [22] for k = 2 and it is concluded that, in general, we
have L2,1(Ω) < L2,∞(Ω). A criterion which allows us to make a decision in some cases was
given in Proposition 3.8. Since the optimal partition for Λk,∞ is an equipartition, given
two neighbors Di and Dj from this partition, we have that (Di, Dj) forms a nodal partition

for IntDi ∪Dj . Our interest is to see whether the eigenfunction associated to this nodal
partition has the same L2 norm on the two domains Di, Dj . In the case when the L2 norms
are different we conclude that, supposing the initial partition was optimal for the max, the
corresponding partition is not optimal for the sum. Since the criterion can only be applied
to equipartitions we quickly examine the candidates obtained with the Dirichlet-Neumann
approach.

Let’s first remark that Proposition 3.8 does not allow us to say anything about the cases
where the optimal partition for the max is made out of congruent elements. In this case the
L2 norms on the subdomains will evidently be the same. This is the case for the k ∈ {2, 4}
on the square, k ∈ {3, 4} on the equilateral triangle and k ∈ {2, 3, 4, 5} on the disk.
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For the other situations, let us apply Proposition 3.8 at the results obtained with the
Dirichlet-Neumann method. For the cases k ∈ {5, 7, 8, 9} for the disk, k ∈ {3, 5} for the
square and k ∈ {5, 8} for the equilateral triangle we always find two adjacent domains Di, Dj

in the partition for which the second eigenfunction on Di ∪Dj has different L2 norms on
Di, Dj (with a gap larger than 0.03 for normalized eigenfunction). We can conclude that if
the above configurations are optimal for the max then they are not optimal for the sum.

Let us analyze below in more detail the situation where Proposition 3.8 does not allow us
to conclude. For the equilateral triangle with k = 6 or k = 10, the gap when we apply the
L2 norm criterion is less than 10−4. In these situations, the subdomains of the numerical
∞-minimal k-partition seem to be polygons with straight lines: quadrilateral, pentagon
and regular hexagon (for k = 10). If we consider only partitions whose subdomains are like
this, we will now compare the best partitions for the sum or the max. Let us discuss a little
more these two situations k = 6 and k = 10 below.

− k = 6: the partition is represented in Figure 14. We perform a one parameter study
with respect to r ∈ [0, 1] just as in the case of the Dirichlet-Neumann approach where
we compute numerically the eigenvalues on the two types of polygonal cells present
in the partition (quadrilateral and pentagon). Numerically we find that the partitions
minimizing the max and the sum are almost the same, in the sense that the difference
between the values of r which minimize the sum and the max is smaller than 10−4. Thus,
the partitions minimizing the sum and the max are either the same or are too close to
be distinguished numerically.

− k = 10: the partition is represented in Figure 15. We can see that we have three types of
domains: a regular hexagon in the center, six pentagons and three quadrilaterals. As in
the Dirichlet-Neumann mixed approach, we note that we can characterize the partition
using two parameters t, s ∈ [0, 1]. Next we search for the parameters which optimize the
maximal eigenvalue and the sum. To obtain an equipartition (for the max), we need to
consider non symmetric pentagon. As for k = 6, it seems that the optimal partitions are
the same for the sum and the max (or very close). The difference between corresponding
parameters is again smaller than 10−4.

This suggests that

p∞(4, k) = 1, for k = 6, 10.

Next is the case of the disk for k = 7. Here we also have L2 norms which are close
(the gap is around 0.03) and we analyze this case more carefully in the following sense.
Note that the central domain seems to be a regular hexagon 7 and the exterior domains
Di (i = 1, . . . , 6) are subsets of angular sector of opening π/3. We optimize the sum and
the max by varying the size of the interior hexagon. Using two different finite element
methods, Mélina and FreeFem++, we obtain that the sum is minimized when the side
of the hexagon is equal to 0.401 and the maximum is minimized for a side equal to 0.403.
These computations let us think that the optimal partitions for the sum and the max might
be different in this case. In the following Table 7, we give the parameters for which the
sum Λ7,1 and the maximal eigenvalue Λ7,∞ are minimized, as well as the corresponding
eigenvalues. We observe that Λ7,1(D7,1) < Λ7,∞(D7,∞) in coherence with (3.1) and that
the gap between the eigenvalues of the minimizer for the sum is significant enough to say
that this partition is not an equipartition. Consequently, if the minimal 7-partition of the
disk for the max has the previous structure (a regular hexagon at the center and straight
lines to join the boundary), it seems that this partition is not minimal for the sum.

In the following section a more detailed analysis is devoted to showing the difference
between the partitions minimizing the sum and the ones minimizing the maximal eigenvalue
by looking at the evolutions of the partitions with respect to p when minimizing the p-norm
of eigenvalues.
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r λ1(7) λ1(D1) Λ7,∞ Λ7,1

0.401 44.498 43.949 44.498 44.028
0.403 44.030 44.030 44.030 44.030

Table 7. Upper bounds for L7,p(#) for p = 1 and p =∞.

5. Numerical results for the p-norm

5.1. Overview. Our main interest when studying numerically the optimizers of the p-norm
of the eigenvalues was the approximation of the Lk,∞ problem. As we have seen before,
the numerical p-minimal k-partition for p = 50 is not far from being an equipartition. In
this section we make some remarks, based on the numerical simulations, concerning the
behavior of the p-minimal k-partitions with respect to p. We are interested in observing
the evolution of the configuration of the partitions as p varies from 1 to 50. In most cases
the configuration is stable, but there are, however, some cases where the partitions change
as p grows and converge to different topological configurations when p goes to ∞. Viewing
the evolution of the maximal eigenvalue and the p-norm as p grows can also confirm the
conclusions of the previous section concerning the fact that some partitions which optimize
the maximal eigenvalue may not optimize the sum. In the following, we will consider the
three geometries Ω = 4,�,# and some values of k.

For each of these parameters two figures will highlight the evolution of the p-minimal
k-partitions Dk,p obtained by the iterative method. The first one concerns the evolution of
the energies: we represent p 7→ Λk,p(Dk,p) in blue, p 7→ Λk,∞(Dk,p) in red and eventually the

upper bound Lk(Ω) or ΛDNk (Ω) obtained by the Dirichlet-Neumann approach in magenta
(see Figures 18(a), 19(a), 22(a), 23(a), 25(a), 27, 28). In these graphes, we observe that
the curve p 7→ Λk,p(Dk,p) (in blue) is increasing, in coherence with (3.1). The decay of the

curves p 7→ Λk,∞(Dk,p) (in red) show that as p is increasing, we get a better and better
upper-bound for Lk,∞(Ω). Theses two curves converge to the same value, which is the
upper bound obtained by the Dirichlet-Neumann approach when it can be applied. We
also illustrate the evolution of the boundary of Dk,p according to p with p = 1 in blue and
p = 50 in red (see Figures 18(b), 19(b), 20, 22(b), 23(b), 24, 25, 26(b)-26(c), 27, 28).

5.2. The equilateral triangle. The equilateral triangle is a first example where the op-
timal partitions for p = 1 and p = ∞ do not coincide, as seen in the previous section (see
also [22] for k = 2). Figure 18 represents the evolution of the energies and the optimal
partitions as p increases. We observe that even if the partitions do not change much, the
maximal eigenvalue is significantly decreased as p increases.

(a) Λ2,p(D2,p), Λ2,∞(D2,p) and ΛDN2 (4) vs. p (b) D2,p vs. p

Figure 18. p-minimal 2-partitions of the equilateral triangle vs. p.

For k = 3 we obtain an equipartition starting from p = 1 and thus the partition does
not change with p and the energies are constant with respect to p. This suggests that the
p-minimal 3-partition is given by Figure 6(a) and p∞(4, k) = 1.
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For k = 4, since the 4-th eigenvalue of the equilateral triangle is Courant sharp, we know
that the minimal 4-partition for p =∞ is the partition with 4 similar equilateral triangles
(see Figure 4(b)). The evolution of the partitions according to p is given in Figure 19,
where L4(4) = λ4(4) = L4,∞(4) is plotted in magenta. We observe the convergence of

Λk,p(Dk,p) as well as the decay of the largest first eigenvalue to λ4(4). The partition Dk,p
changes in a significant way with p. Indeed, it seems that the minimal 4-partition for the
sum has 4 singular points on the boundary and two inside. The points are moving with p to
collapse when p =∞ where we have only 3 singular points on the boundary. Furthermore,
the minimal 4-partition for the max has more symmetry than those for p <∞.

(a) Λ4,p(D2,p), Λ4,∞(D4,p) and λ4(4) vs. p (b) D4,p vs. p

Figure 19. p-minimal 4-partitions of the equilateral triangle vs. p.

We represent in Figure 20 the evolution of the partitions for these values of k. For
k ∈ {5, 7, 8, 9} we observe similar behaviors for the maximal eigenvalue and the p-norm as
the ones already shown for k ∈ {2, 4}.

Figure 20. p-minimal k-partitions of the equilateral triangle vs. p, for k ∈ {5, 7, 8, 9}.

The remaining cases k ∈ {6, 10} are in the class of triangular numbers and as observed
before (see Figure 17) in these cases it seems that the cells of the optimal partitions are
polygonal domains. As seen in the previous section, the L2 norm criterion does not allow
us to say that the candidates found for minimizing Lk,∞ are not minimizers for Lk,1 in
these cases. The study of the evolution of the p-norms does not allow us to conclude
that these partitions are different. In fact, the partitions are not observed to move at
all and the energies do not vary much. This reinforces the observations at the end of the
previous section where we have seen that the partitions minimizing the sum or the maximal
eigenvalue are either the same or too close to decide.

Figure 21. p-minimal k-partitions of the equilateral triangle vs. p, for k ∈ {6, 10}.
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5.3. The square. In cases k ∈ {2, 4} we obtain equipartitions starting from p = 1, which
makes the energies and partitions stationary (see Figure 4 where we represent the nodal
partition associated with the second and fourth eigenfunctions).

For k = 3 we have seen in the previous section that there seem to be different p-minimal
3-partitions for p = 1 and p =∞. This can also be seen by looking at the evolution of the
partitions and of the p-norms in Figure 22. We clearly see how the triple point approaches
the center of the square, represented by a black dot in Figure 22.

(a) Λ3,p(D3,p), Λ3,∞(D3,p) and ΛDN3 (�) vs. p (b) D3,p vs. p

Figure 22. p-minimal 3-partitions of the square vs. p.

Another interesting case is k = 5. Here we were also able to use a Dirichlet-Neumann
approach in order to present an equipartition which is a candidate for minimizing the
maximal first eigenvalue. As seen in the previous section the L2 norm criterion does show
that the same partition cannot also be optimal for the sum. We observe in Figure 23 that
the energies and the numerical p-minimal 5-partitions evolve when p grows.

(a) Λ5,p(D5,p), Λ2,∞(D5,p) and ΛDN5 (�) vs. p (b) D5,p vs. p

Figure 23. p-minimal 5-partitions of the square vs. p.

When k ∈ {6, 8, 9, 10} we observe in Figure 24 similar behaviors in the evolution of the
energies and the numerical p-minimal k-partitions.

Figure 24. p-minimal k-partitions of the square vs. p, for k ∈ {6, 8, 10}.

We mention that for k = 9 the largest eigenvalue of the partition we obtain for p = 50
is not smaller than the partition into 9 equal squares. On the other hand, we know that
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the partition into 9 equal squares is not optimal for p = ∞ since it is a nodal partition
which is not Courant sharp (see Proposition 3.6 and [1] for more details). We believe that
the partition we obtained for k = 9 may have the right structure of the minimizer, but the
errors made in the penalized eigenvalue setting make us obtain a slightly higher energy.
For reference, the maximal eigenvalue obtained for p = 50 is 179.21 (and 178.08 with the
penalized method) and the first eigenvalue of a square of side 1/3 is L9(�) = 177.65. The
evolution of the energies and the numerical 9-partition can be viewed in Figure 25.

(a) Λ9,p(D9,p), Λ9,∞(D9,p) and L9(�) vs. p (b) D9,p vs. p

Figure 25. p-minimal 9-partitions of the square vs. p.

Something different happens for k = 7 where we have two configurations which have
close energies at optimum. We represent the partitions of the two configurations in Figure
26 along with a comparison of the maximal eigenvalues and p-norms. We can see that while
the first configuration has a lower maximal eigenvalue for large p, the first configuration
always has a lower p-norm. We note that when we use the penalization method we find
the first configuration which is consistent with the results obtained with the p-norm. We
remark that these configurations we obtain are similar to the ones presented in [18]. Still,
the small differences we observe for the maximal eigenvalues and the p-norms may be due to
our limited numerical precision. In order to conclude which of these partition is better than
the other we would need to use some more refined methods which do not use relaxations.

(a) Λk,p/∞(D5,p
j ) vs. p for j = 1, 2 (b) D5,p

1 (�) vs. p (c) D7,p
2 (�) vs. p

Figure 26. Comparison of two candidates for 7-partition of the square.

5.4. The disk. In this case for k ∈ {2, 3, 4, 5} we obtain numerically that Lk,p(#) is mini-
mized by k equal sectors starting from p = 1. In such cases, where we obtain an equipartition
when optimizing the sum, the optimal partition is the same for all p and the p-norm does
not vary with p. The partitions can be visualized in Figure 2.
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In cases k ∈ {6, 8, 9} we obtain for every p partitions consisting of a rounded regular
polygon with k− 1 sides surrounded by k− 1 equal subsets of a sector of angle 2π/(k− 1).
In these cases we may see clearly how the optimal partition evolves with p. For k ∈ {6, 8, 9}
we have seen in the end of the previous section that there seem to be different optimal
partitions for the sum and for the max. The evolution of the partitions is represented in
Figure 27. For k = 10 the best candidate is obtained with the iterative method. The
evolution of the p-norm of eigenvalue and of the maximal eigenvalue with respect to p is
presented in Figure 28. We may see that the candidate found for the sum is not optimal
for the max since the maximal eigenvalue strictly decreases with respect to p.

(a) k = 6 (b) k = 7 (c) k = 8 (d) k = 9

Figure 27. p-minimal k-partitions of the disk vs. p, for k ∈ {6, 7, 8, 9}.

Figure 28. p-minimal 10-partitions of the disk vs. p.

For k = 7 the optimal partition seems to be made out of a regular hexagon and 6 equal
sector portions. The partitions and the evolution of the energies is depicted in Figure 27(b).
Even if the evolution of the energies and the partitions is not as evident as in the other
cases we see that the maximal eigenvalue decreases with p and this seems to indicate, like
in the analysis performed at the end of the previous section, that the partitions minimizing
the sum and the max are not the same.

5.5. Conclusion. We have seen different behaviors according to Ω, k or p. It seems that
either the energy Lk,p(Ω) is constant with p and there exists a k-partition which is p-minimal
for any p ≥ 1, or the energy Lk,p(Ω) is strictly increasing with p. With Definition (3.3),
this writes

p∞(Ω, k) ∈ {1,∞}.
Numerical simulations suggest (see Conjecture 1.3) that p∞(Ω, k) = 1 if

− Ω is a disk and k ∈ {2, 3, 4, 5},
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− Ω is a square and k ∈ {2, 4},
− Ω is an equilateral triangle and k = n(n+ 1)/2 with n ≥ 1.
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[7] V. Bonnaillie-Noël, B. Helffer, and T. Hoffmann-Ostenhof. Aharonov-Bohm Hamiltonians, isospectrality
and minimal partitions. J. Phys. A, 42(18):185203, 20, 2009.
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