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Introduction

Can we characterize the phenotypical distribution of a population which is subject to the Darwinian evolution? The mathematical modeling of the phenotypically structured populations, under the effects of mutations and selection leads to parabolic and elliptic integro-differential equations. The solutions of such equations, as the mutation term vanishes, converge to a sum of Dirac masses, corresponding to the dominant traits. During the last decade, an approach based on Hamilton-Jacobi equations with constraint has been developed which allows to describe such asymptotic solutions. There is a large literature on this method. We refer to [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Mirrahimi | Concentration phenomena in PDEs from biology[END_REF] for the establishment of the basis of this approach for problems from evolutionary biology. Note that related tools were already used in the case of local equations (for instance KPP type equations) to describe the propagation phenomena (see for instance [START_REF] Freidlin | Geometric optics approach to reaction-diffusion equations[END_REF][START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF]). Such results, which are based on a logarithmic transformation (the so-called Hopf-Cole transformation) of the population's density, provide mainly the convergence along subsequences of the logarithmic transform to a viscosity solution of a Hamilton-Jacobi equation with constraint, as the effects of the mutations vanish. This allows to obtain a qualitative description of the population's phenotypical distribution for vanishing mutations' steps. To be able to characterize the population's distribution for non-vanishing effects of mutations, one should prove a uniqueness property for the viscosity solution of the Hamilton-Jacobi equation with constraint and compute the next order terms. Such properties are usually not studied due to technical difficulties. However, from the biological point of view it is usually more relevant to consider non-vanishing mutations' steps. In this work, as announced in [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF], we provide such analysis, including a uniqueness result and the computation of the correctors, in the case of a selection, mutation and migration model. Note that a recent work [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF][START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach[END_REF] has also provided similar results in the case of homogeneous environments. We believe indeed that going further in the Hamilton-Jacobi approach for different problems from evolutionary biology, by providing higher order approximations, can make this approach more useful for the evolutionary biologists. The purpose of this article is to provide the mathematical details and proofs which are necessary for our biological results [START_REF] Mirrahimi | The equilibrium between selection, mutation and migration in spatially heterogeneous environments[END_REF]. As explained in [START_REF] Mirrahimi | The equilibrium between selection, mutation and migration in spatially heterogeneous environments[END_REF], our method allows to provide more quantitative results and correct the previous approximations obtained by biologists.

Our objective is to characterize the solutions to the following system, for z ∈ R,

     -ε 2 n ′′ ε,1 (z) = n ε,1 (z)R 1 (z, N ε,1 ) + m 2 n ε,2 (z) -m 1 n ε,1 (z), -ε 2 n ′′ ε,2 (z) = n ε,2 (z)R 2 (z, N ε,2 ) + m 1 n ε,1 (z) -m 2 n ε,2 (z), N ε,i = R n ε,i (z)dz, for i = 1, 2, (1) 
with R i (z, N i ) = r i -g i (z -θ i ) 2 -κ i N i , with θ 1 = -θ and θ 2 = θ.

(2)

This system represents the equilibrium of a population that is structured by a phenotypical trait z, and which is subject to selection, mutation and migration between two habitats. We denote by n i (z) the density of the phenotypical distribution in habitat i, and by N i the total population size in habitat i. The growth rate R i (z, N i ) is given by [START_REF] Contreras | Action potential and weak kam solutions[END_REF], where r i represents the maximum intrinsic growth rate, the positive constant g i is the strength of the selection, θ i is the optimal trait in habitat i and the positive constant κ i represents the intensity of the competition. The nonnegative constants m i are the migration rates between the habitats. Such phenomena have already been studied using several approaches by the theoretical evolutionary biologists. A first class of results are based on the adaptive dynamics approach, where one considers that the mutations are very rare such that the population has time to attain its equilibrium between two mutations and hence the population's distribution has discrete support (one or two points in a two habitats model) [START_REF] Meszéna | Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation[END_REF][START_REF] Day | Competition and the effect of spatial resource heterogeneity on evolutionary diversification[END_REF][START_REF] Fabre | Evolution of a structured population in a heterogeneous environment[END_REF]. A second class of results are based on an approach known as 'quantitative genetics', which allows more frequent mutations and does not separate the evolutionary and the ecological time scales so that the population's distribution is continuous (see [START_REF] Rice | Evolutionary theory: mathematical and conceptual foundations[END_REF]-chapter 7).

A main assumption in this class of works is that one considers that the population's distribution is a gaussian [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF][START_REF] Ronce | When sources become sinks: migration meltdown in heterogeneous habitats[END_REF] or, to take into account the possibility of dimorphic populations, a sum of one or two gaussian distributions [START_REF] Yeaman | Predicting adaptation under migration load: the role of genetic skew[END_REF][START_REF] Débarre | Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environments[END_REF].

In our work, as in the quantitative genetics framework, we also consider continuous phenotypical distributions. However, we don't assume any a priori gaussian assumption. We compute directly the population's distribution and in this way we correct the previous approximations. To this end, we also provide some results in the framework of adaptive dynamics and in particular, we generalize previous results on the identification of the evolutionary stable strategy (ESS) (see Section 2 for the definition) to the case of nonsymetric habitats. Furthermore, our work makes a connection between the two approaches of adaptive dynamics and quantitative genetics.

Assumptions:

To guarantee that the population does not get extinct, we assume that

max(r 1 -m 1 , r 2 -m 2 ) > 0. (3) 
Moreover, in the first part of this article, we assume that there is positive migration rate in both directions, i.e.

m i > 0, i=1,2. ( 4 
)
The source and sink case, where for instance m 2 = 0, will be analyzed in the last section.

Note that in [START_REF] Mirrahimi | Migration and adaptation of a population between patches[END_REF] the limit, as ε → 0 and along subsequences, of the solutions to such system, under assumption (4), and in a bounded domain, was studied. In the present work, we go further than the asymptotic limit along subsequences and we obtain uniqueness of the limit and identify the dominant terms of the solution when ε is small but nonzero. In this way, we are able to characterize the solution when the mutation's steps are not negligible.

The main elements of the method:

To describe the solutions n ε,i (z) we use a WKB ansatz

n ε,i (z) = 1 √ 2πε exp u ε,i (z) ε . (5) 
Note that a first approximation that is commonly used in the theory of 'quantitative genetics', is a gaussian distribution of the following form

n ε,i (z) = N i √ 2πεσ exp -(z -z * ) 2 εσ 2 = 1 √ 2πε exp -1 2σ 2 (z -z * ) 2 + ε log N i σ ε .
Here, we try to go further than this a priori gaussian assumption and to approximate directly u ε,i . To this end, we write an expansion for u ε,i in terms of ε:

u ε,i = u i + εv i + ε 2 w i + O(ε 3 ). ( 6 
)
We first prove that u 1 = u 2 = u is the unique viscosity solution to a Hamilton-Jacobi equation with constraint which can be computed explicitly. The uniqueness of solution of such Hamilton-Jacobi equation with constraint is related to the uniqueness of the ESS and to the weak KAM theory [START_REF] Fathi | Weak Kam Theorem in Lagrangian Dynamics[END_REF]. Such function u indeed satisfies max R u(z) = 0, with the maximum points attained at one or two points corresponding to the ESS points of the problem. We then notice that, while u(z) < 0, n ε,i (z) is exponentially small. Therefore, only the values of v i and w i at the points which are close to the zero level set of u matter, i.e. the ESS points. We next show how to compute formally v i and hence its second order Taylor expansion around the ESS points, and the value of w i at those points. These approximations together with a fourth order Taylor expansion of u i around the ESS points are indeed enough to approximate the moments of the population's distribution with an error of order ε 2 .

The paper is organized as follows. In Section 2 we introduce some notions from the theory of adaptive dynamics that will be used in the following sections. In Section 3 we state our main results (theorems 3.1 and 3.5) and discuss their consequences. In this section, we also provide the method to compute the correctors and approximate the moments of the population's distribution. In Section 4 we provide the proofs of the results in the adaptive dynamics framework and in particular we prove Theorem 3.1.

In Section 5 we prove Theorem 3.5. Finally, in Section 6 we generalize our results to the sink and source case where the migration is only in one direction (m 2 = 0).

2 Some notions from the theory of adaptive dynamics

In this section, we introduce some notions from the theory of adaptive dynamics that we will be using in the next sections [START_REF] Meszéna | Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation[END_REF]. Note that our objective is not to study the framework of adaptive dynamics where the mutations are assumed to be very rare. However, these notions appear naturally from our asymptotic computations.

Effective fitness: The effective fitness W (z; N 1 , N 2 ) is the largest eigenvalue of the following matrix:

A(z; N 1 , N 2 ) = R 1 (z; N 1 ) -m 1 m 2 m 1 R 2 (z; N 2 ) -m 2 , (7) 
that is

W (z; N 1 , N 2 ) = 1 2 (R 1 (z; N 1 ) + R 2 (z; N 2 ) -m 1 -m 2 ) + (R 1 (z; N 1 ) -R 2 (z; N 2 ) -m 1 + m 2 ) 2 + 4m 1 m 2 ) . (8) 
This indeed corresponds to the effective growth rate associated with trait z in the whole metapopulation when the total population sizes are given by (N 1 , N 2 ).

Demographic equilibrium: Consider a set of points Ω = {z 1 , • • • z m }. The demographic equilibrium corresponding to this set is given by (n 1 (z), n 2 (z)), with the total population sizes (N 1 , N 2 ), such that

n i (z) = m j=1 α i,j δ(z -z j ), N i = m j=1 α i,j , W (z j , N 1 , N 2 ) = 0, i = 1, 2, j = 1, • • • , m,
and such that (α 1,j , α 2,j ) T is the right eigenvector associated with the largest eigenvalue W (z j , N 1 , N 2 ) = 0 of A(z j ; N 1 , N 2 ).

Invasibility: We say that a mutant trait z m can invade a resident strategy {z M } at its demographic equilibrium

(N M 1 , N M 2 ) if W (z m , N M 1 , N M 2 ) > 0.
Evolutionary stable strategy:

A set of points Ω * = {z * 1 , • • • , z * m } is called an evolutionary stable strategy (ESS) if W (z, N * 1 , N * 2 ) = 0, for z ∈ A and, W (z, N * 1 , N * 2 ) ≤ 0, for z ∈ A,
where N * 1 and N * 2 are the total population sizes corresponding to the demographic equilibrium associated with the set Ω * .

Notation: We will use the star sign * whenever we talk about an evolutionary stable strategy Ω * (and similarly for the corresponding demographic equilibrium (n * 1 , n * 2 ) and the total population sizes (N * 1 , N * 2 )). We add an index M when the strategy is monomorphic (a set of a single trait {z M * } with the corresponding demographic equilibrium (n M * 1 , n M * 2 ), and the total population sizes (N M * 1 , N M * 2 )) and an index D when the strategy is dimorphic (a set of two traits {z D * I , z D * II } with the corresponding demographic equilibrium (n D * 1 , n D * 2 ), and the total population sizes (N D * 1 , N D * 2 )).

3 The main results and the details of the method

In this section, we state our main results and provide the details of our method for the approximation of the equilibrium distribution n ε,i (z). In Subsection 3.1 we provide the results in the framework of adaptive dynamics. In Subsection 3.2 we state our main result on the convergence to the zero order term u i and its explicit computation. In Subsection 3.3 we show how to compute the next order terms. Finally, in Subsection 3.4 we provide the approximation of the moments of the population's distribution.

The adaptive dynamics framework

Our main result in the adaptive dynamics framework is that there exists a unique ESS which is whether monomorphic (a single Dirac mass) or dimorphic (a sum of two Dirac masses). We determine indeed under which conditions the ESS is monomorphic or dimorphic. To state our result, we first define

z D * = θ 2 - m 1 m 2 4θ 2 g 1 g 2 , N D * 1 = m 1 m 2 4θ 2 g 2 + r 2 -m 1 κ 1 , N D * 2 = m 1 m 2 4θ 2 g 1 + r 2 -m 2 κ 2 . ( 9 
)
Theorem 3.1 Assume (3)-(4). Then, there exists a unique set of points Ω * which is an ESS.

(i) The ESS is dimorphic if and only if m 1 m 2 4g 1 g 2 θ 4 < 1, ( 10 
) 0 < m 2 N D * 2 + (R 1 (-z D * ; N D * 1 ) -m 1 )N D * 1 , (11) 
and 0 < m 1 N D * 1 + (R 2 (z D * ; N D * 2 ) -m 2 )N D * 2 . ( 12 
)
Then the dimorphic equilibrium is given by

n D * i = ν I,i δ(z + z D * ) + ν II,i δ(z -z D * ), ν I,i + ν II,i = N D * i , i = 1, 2. ( 13 
)
(ii) If the above conditions are not satisfied then the ESS is monomorphic. In the case where condition (10) is verified but the r.h.s. of (11) (respectively (12)) is negative, the fittest trait belongs to the interval (-θ, -z D * ) (respectively (z D * , θ)). If (10) is satisfied but (11) (respectively [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]) is an equality then the monomorphic ESS is given by {-z D * } (respectively {z D * }).

Note that one can compute the weights ν k,i , for k = I, II and i = 1, 2:

ν I,1 ν I,2 = m 1 N D * 1 +(R 2 (z D * ;N D * 2 )-m 2 )N D * 2 m 1 m 2 -R 1 (-z D * ;N D * 1 )-m 1 R 2 (z D * ;N D * 2 )-m 2 m 2 -R 1 (-z D * ; N D * 1 ) + m 1 , ν II,1 ν II,2 = m 2 N D * 2 +(R 1 (-z D * ;N D * 1 )-m 1 )N D * 1 m 1 m 2 -R 1 (-z D * ;N D * 1 )-m 1 R 2 (z D * ;N D * 2 )-m 2 -R 2 (z D * ; N D * 2 ) + m 2 m 1 . (14) 
Moreover, since W (-z D * ; N D * 1 , N D * 2 ) = 0, one can easily verify that condition ( 11) is equivalent with

m 1 N D * 1 + (R 2 (-z D * ; N D * 2 ) -m 2 )N D * 2 < 0. ( 15 
)
Similarly, since W (z D * ; N D * 1 , N D * 2 ) = 0, one can easily verify that condition ( 12) is equivalent with

m 2 N D * 2 + (R 1 (z D * ; N D * 1 ) -m 1 )N D * 1 < 0. ( 16 
)
To prove Theorem 3.5-(iii) we will use the following result which is a corollary of Theorem 3.1.

Corollary 3.2 Assume that m 2 N D * 2 + (R 1 (-z D * ; N D * 1 ) -m 1 )N D * 1 = 0, m 1 N D * 1 + (R 2 (z D * ; N D * 2 ) -m 2 )N D * 2 = 0, ( 17 
)
and let the set Ω * be the unique ESS of the model and (N * 1 , N * 2 ) be the total population sizes at the demographic equilibrium of this ESS. Then,

W (z, N * 1 , N * 2 ) < 0, for all z ∈ R \ Ω * . (18) 
Note also that when the habitats are symmetric, then conditions ( 11) and ( 12) always hold under condition [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF], and hence Corollary 3.3 Assume that the habitats are symmetric:

r = r 1 = r 2 , g = g 1 = g 2 , κ = κ 1 = κ 2 , m = m 1 = m 2 . ( 19 
) (i) Then the unique ESS is dimorphic if and only if m 2g < θ 2 . ( 20 
)
The dimorphic ESS is determined by [START_REF] Meszéna | Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation[END_REF].

(ii) When condition (20) is not satisfied, then the ESS is monomorphic and the corresponding monomorphic equilibrium is given by

n M * 1 (z) = n M * 2 (z) = N M * δ(z), with N M * = 1 κ r -gθ 2 . ( 21 
)
The next proposition gives an interpretation of conditions [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] and [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF].

Proposition 3.4 Assume that condition (10) is satisfied and that r i -m i > 0, for i = 1, 2. Then, (i) condition [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] holds if and only if a mutant trait of type z D * can invade a monomorphic resident population of type -z D * which is at it's demographic equilibrium.

(ii) condition (12) holds if and only if a mutant trait of type -z D * can invade a monomorphic resident population of type z D * which is at it's demographic equilibrium.

One can indeed rewrite conditions ( 11) and ( 12) respectively as below

C 1 < α 2 r 2 -α 1 r 1 , C 2 < β 1 r 1 -β 2 r 2 ,
with C i , α i and β i constants depending on m 1 , m 2 , g 1 , g 2 , κ 1 , κ 2 and θ. These conditions are indeed a measure of asymmetry between the habitats. They appear from the fact that even if condition [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF], which is the only condition for dimorphism in symmetric habitats, is satisfied, while the quality of the habitats are very different, the ESS cannot be dimorphic. In this case, the population will be able to adapt only to one of the habitats and it will be maladapted to the other one.

The computation of the zero order terms u i

The identification of the zero order terms u i is based on the following result.

Theorem 3.5 Assume (3)-( 4).

(i) As ε → 0, (n ε,1 , n ε,2 ) converges to (n * 1 , n * 2 )
, the demographic equilibrium of the unique ESS of the model. Moreover, as ε → 0, N ε,i converges to N * i , the total population size in patch i corresponding to this demographic equilibrium. (ii) As ε → 0, both sequences (u ε,i ) ε , for i = 1, 2, converge along subsequences and locally uniformly in R to a continuous function u ∈ C(R), such that u is a viscosity solution to the following equation

-|u ′ (z)| 2 = W (z, N * 1 , N * 2 ), in R, max z∈R u(z) = 0. ( 22 
)
Moreover, we have the following condition on the zero level set of u:

supp n * 1 = supp n * 2 ⊂ {z | u(z) = 0} ⊂ {z | W (z, N * 1 , N * 2 ) = 0}. (iii) Under condition (17) we have supp n * 1 = supp n * 2 = {z | W (z, N * 1 , N * 2 ) = 0} and hence {z | u(z) = 0} = {z | W (z, N * 1 , N * 2 ) = 0}. ( 23 
)
The solution of ( 22)-( 23) is indeed unique and hence the whole sequence (u ε,i ) ε converge locally uniformly in R to u.

Note that a Hamilton-Jacobi equation of type [START_REF] Yeaman | Predicting adaptation under migration load: the role of genetic skew[END_REF] in general might admit several viscosity solutions.

Here, the uniqueness is obtained thanks to (23) and a property from the weak KAM theory, which is the fact that the viscosity solutions are completely determined by one value taken on each static class of the Aubry set ( [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF], Chapter 5 and [START_REF] Contreras | Action potential and weak kam solutions[END_REF]). In what follows we assume that [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach[END_REF] and hence (23) always hold. We then give an explicit formula for u considering two cases (one can indeed verify easily that the functions below are viscosity solutions to ( 22)-( 23)):

(i) Monomorphic ESS : We consider the case where there exists a unique monomorphic ESS z M * and the corresponding demographic equilibrium is given by (

N M * 1 δ(z * ), N M * 2 δ(z M * )). Then u is given by u(z) = - z z M * -W (x; N M * 1 , N M * 2 )dx . (24) 
(ii) Dimorphic ESS : We next consider the case where there exists a unique dimorphic ESS (z D * I , z D * II ) with the demographic equilibrium:

n i = ν I,i δ(z -z D * I ) + ν II,i δ(z -z D * II ), and ν I,i + ν II,i = N D * i . Then u is given by u(z) = max -| z z * I -W (x; N D * 1 , N D * 2 )dx|, -| z z * II -W (x; N D * 1 , N D * 2 )dx| .

Next order terms

In this subsection we show how one can compute formally the first order term v i , and in particular its second order Taylor expansion around the zero level set of u, and determine the value of w i at those points. We only present the method in the case of monomorphic population where the demographic equilibrium corresponding to this ESS is given by (

N M * 1 δ(z -z M * ), N M * 2 δ(z -z M * )).
The dimorphic case can be treated following similar arguments.

We first note that, one can compute, using (24), a Taylor expansion of order 4 around the ESS point

z M * : u(z) = - A 2 (z -z M * ) 2 + B(z -z M * ) 3 + C(z -z M * ) 4 + O(z -z M * ) 5 .
We then look for constants D i , E i , F i and G i such that

v i (z) = v i (z M * )+D i (z-z M * )+E i (z-z M * ) 2 +O(z-z M * ) 3 , w i (z M * ) = F i +G i (z-z M * )+O(z-z M * ) 2 .
We will only compute D i , E i and F i . The constants G i are not necessary in the computation of the moments but they appear in our intermediate computations. Replacing the functions u, v i and w i by the above approximations to compute N ε,i = R n ε,i (z)dz, we obtain

v i (z M * ) = log N M * i √ A , N ε,i = N M * i + εK i + O(ε 2 ), with K i = N M * i 7.5 B 2 A 3 + 3(C + BD i ) A 2 + E i + 0.5 D 2 i A + F i .
Note also that writing (1) in terms of u ε,i we obtain

-εu ′′ ε,1 (z) = |u ′ ε,1 | 2 + R 1 (z, N ε,1 ) + m 2 exp u ε,2 -u ε,1 ε -m 1 , -εu ′′ ε,2 (z) = |u ′ ε,2 | 2 + R 2 (z, N ε,2 ) + m 1 exp u ε,1 -u ε,2 ε -m 2 . ( 25 
)
We then let ε → 0 in the first line of (25) and use [START_REF] Yeaman | Predicting adaptation under migration load: the role of genetic skew[END_REF] to obtain

v 2 (z) -v 1 (z) = log 1 m 2 W (z, N M * 1 , N M * 2 ) -R 1 (z, N M * 1 ) + m 1 . (26) 
Keeping respectively, only the terms of order (z -z M * ) and (z -z M * ) 2 we find

λ 1 = D 2 -D 1 = 2g 1 N M * 1 (z M * + θ) m 2 N M * 2 , λ 2 = E 2 -E 1 = N M * 1 m 2 N M * 2 (-A 2 + g 1 ) - 2g 2 1 N M * 2 1 m 2 2 N M * 2 2 (z M * + θ) 2 .
Combining the above lines we obtain

K 2 N M * 2 - K 1 N M * 1 = λ 3 + 0.5 λ 1 (D 1 + D 2 ) A + F 2 -F 1 , with λ 3 = 3B A 2 λ 1 + 1 A λ 2 . ( 27 
)
Next, keeping the terms of order ε in (25) we obtain, for {i, j} = {1, 2},

-u ′′ = 2u ′ • v ′ i -κ i K i + m j exp(v j -v i )(w j -w i ). ( 28 
)
Evaluating the above equality at z M * we obtain

A = -κ i K i + m j N M * j N M * i (F j -F i ).
Replacing (27) in the above system we obtain

   A = -κ 1 K 1 + m 2 N M * 2 N M * 1 ( K 2 N M * 2 -K 1 N M * 1 -λ 3 -0.5 λ 1 (D 1 +D 2 ) A ), A = -κ 2 K 2 + m 1 N M * 1 N M * 2 ( K 1 N M * 1 -K 2 N M * 2 + λ 3 + 0.5 λ 1 (D 1 +D 2 ) A ).
This system allows us to identify (K 1 , K 2 ) in a unique way, as an affine function of (D 1 + D 2 ).

Next we substrate the two lines of the system (28) to obtain

w 2 -w 1 = 2u ′ • (v ′ 2 -v ′ 1 ) + κ 1 K 1 -κ 2 K 2 m 2 exp(v 2 -v 1 ) + m 1 exp(v 1 -v 2 ) . ( 29 
)
Evaluating the above equation at z M * we find

F 2 -F 1 = κ 1 K 1 -κ 2 K 2 m 1 N M * 1 /N M * 2 + m 2 N M * 2 /N M * 1 ,
and keeping the terms of order (z -z M * ) we obtain

G 2 -G 1 = -2A(D 2 -D 1 ) m 1 N M * 1 /N M * 2 + m 2 N M * 2 /N M * 1 + (m 2 N M * 2 /N M * 1 -m 1 N M * 1 /N M * 2 )(D 2 -D 1 ) (m 1 N M * 1 /N M * 2 + m 2 N M * 2 /N M * 1 ) 2 (κ 1 K 1 -κ 2 K 2 ).
We then keep the terms of order (z -z M * ) in (28) to find

-6B = -2AD 1 + m 2 N 2 N 1 (D 2 -D 1 )(F 2 -F 1 ) + G 2 -G 1 .
Combining the above lines, one can write D 1 as an affine function of D 1 + D 2 . Since D 2 -D 1 is already known, this allows to identify, at least in a generic way, D i and consequently K i (see [START_REF] Mirrahimi | The equilibrium between selection, mutation and migration in spatially heterogeneous environments[END_REF] for examples of such computations). Next, we replace (29) in (28) to obtain

-u ′′ = 2u ′ • v ′ i -κ i K i + m j exp(v j -v i ) m 2 exp(v 2 -v 1 ) + m 1 exp(v 1 -v 2 ) 2u ′ • (v ′ j -v ′ i ) + κ i K i -κ j K j .
All the terms in the above system, except v ′ i , are already known. Hence one can compute v i from the above system. In particular, keeping the terms of order (z -z M * ) 2 in the above line, one can compute

E i = 1 2 v ′′ i (z M *
) and consequently F i .

Approximation of the moments

The above approximations of u, v i and w i around the ESS points allow us to estimate the moments of the population's distribution with an error of at most order O(ε 2 ). We only provide such approximations in the monomorphic case. One can obtain such approximations in the case of dimorphic ESS following similar computations. We first note that, replacing u ε,i by the approximation (6) and using the Taylor expansions of u, v i and w i obtained above, we can compute

(z -z M * ) k n ε,i (z)dz = ε k 2 √ AN M * i √ 2π R (y k e -A 2 y 2 1 + √ ε(By 3 + D i y) + O(ε) dy = ε k 2 N M * i µ k ( 1 A ) + √ ε Bµ k+3 ( 1 A ) + D i µ k+1 ( 1 A ) + O(ε k+2 2 ),
where µ k (σ 2 ) is the k-th order central moment of a Gaussian law with variance σ 2 . Note that to compute the above integral, we performed a change of variable z -z M * = √ ε y. Therefore each term z -z * can be considered as of order √ ε in the integration. This is why, to obtain a first order approximation of the moments in terms of ε, it is enough to have a fourth order approximation of u(z), a second order approximation of v i (z) and a zero order approximation of w i (z), in terms of z around z * . The above computation leads in particular to the following approximations of the population size, the mean, the variance and the skewness of the population's distribution: 

             N ε,i = n ε,i (z)dz = N M * i (1 + ε(F i + E i +0.5D 2 i A + 3(C+BD i ) A 2 + 7.5B 2 A 3 )) + O(ε 2 ), µ ε,i = 1 N ε,i zn ε,i (z)dz = z M * + ε( 3B A 2 + D i A ) + O(ε 2 ), σ 2 ε,i = 1 N ε,i (z -µ ε,i ) 2 n ε,i (z)dz = ε A + O(ε 2 ), s ε,i = 1 σ 3 ε,i N ε,i (z -µ ε,i ) 3 n ε,i (z)dz = 6B A 3 2 √ ε + O(ε 3 

The description of the ESS

We first rewrite the conditions for ESS in terms of the following variables:

µ i (N i ) = κ i N i + m i -r i g i , i = 1, 2, (30) 
where µ i is an indicator of the size of the population in patch i. In several parts of this paper, we will express the effective fitness as a function of µ i instead of N i :

W µ (z, µ 1 (N 1 ), µ 2 (N 2 )) = W (z, N 1 , N 2 ),
hence, the effective fitness in terms of µ i is given by

W µ (z, µ 1 , µ 2 ) = 1 2 -g 1 (µ 1 + (z + θ) 2 ) -g 2 (µ 2 + (z -θ) 2 ) + g 1 (µ 1 + (z + θ) 2 ) -g 2 (µ 2 + (z -θ) 2 ) 2 + 4m 1 m 2 .
From the definition of ESS, we deduce that at the demographic equilibrium of an ESS, where the indicators of population size in patches 1 and 2 are given by (µ * 1 , µ * 2 ), we have

W µ (z, µ * 1 , µ * 2 ) ≤ 0, for z ∈ R,
with the equality attained at one or two points corresponding to the monomorphic or dimorphic ESS. We then notice that the above inequality is equivalent with

g 1 (µ * 1 + (z + θ) 2 ) + g 2 (µ * 2 + (z -θ) 2 ) ≥ 0, f (z; µ * 1 , µ * 2 ) := (µ * 1 + (z + θ) 2 )(µ * 2 + (z -θ) 2 ) ≥ m 1 m 2 g 1 g 2 .
This implies that at the ESS, µ * i > 0 and min

x (µ * 1 + (z + θ) 2 )(µ * 2 + (z -θ) 2 ) = m 1 m 2 g 1 g 2 . ( 31 
)
Note that the above function is a fourth order polynomial and hence has one or two minium points, which here will correspond to the monomorphic or dimorphic ESS. Conditions for the demographic equilibria will help us determine (µ * 1 , µ * 2 ):

(i) If the minimum in ( 31) is attained at the point z M * , for z M * to be an ESS the following condition must be satisfied:

  -g 1 (z M * + θ) 2 + µ * 1 m 2 m 1 -g 2 (z M * -θ) 2 + µ * 2   N M * 1 N M * 2 = 0, with N M * i > 0, µ * i = µ i (N M * i ) = κ i N M * i + m i -r i g i , i = 1, 2.
(ii) If the minimum in (31) is attained at two points z D * I and z D * II , for (z D * I , z D * II ) to be an ESS, there must exist ν k,i > 0, for i = 1, 2 and k = I, II, such that,

  -g 1 (z D * k + θ) 2 + µ * 1 m 2 m 1 -g 2 (z D * k -θ) 2 + µ * 2   ν k,1 ν k,2 = 0, k = I, II, (32) 
ν I,1 + ν II,,1 = N D * 1 , ν I,,2 + ν II,,2 = N D * 2 , µ * i = µ i (N D * i ) for i = 1, 2. ( 33 
)

The dimorphic ESS

To identify the dimorphic ESS we first give the following lemma Proof. Let's suppose that f (z; µ 1 , µ 2 ) has two global minimum points z I and z II and µ 2 < µ 1 . The case with µ 1 < µ 2 can be treated following similar arguments.

Since z I and z II are minimum points we have

(µ 1 + (z k + θ) 2 )(µ 2 + (z k -θ) 2 ) ≤ (µ 1 + (-z k + θ) 2 )(µ 2 + (-z k -θ) 2 ), k = I, II. It follows that 0 ≤ 4z k θ(µ 1 -µ 2 ), k = I, II,
and hence

0 ≤ z k , k = I, II.
This implies in particular that all the roots of f ′ (z, µ 1 , µ 2 ) are positive. However, this is not possible since

f ′ (z, µ 1 , µ 2 ) = 4z 3 + 2(µ 1 + µ 2 -2θ 2 )z + 2θ(µ 2 -µ 1 ).
The fact that there is no second order term in the above expression implies that the sum of the roots is zero and hence the roots change sign. This is a contradiction with the previous arguments. We hence deduce that µ 1 = µ 2 .

The above lemma indicates that at a dimorphic ESS one should have µ * 1 = µ * 2 = µ * . Hence to find a dimorphic ESS we look for (µ * , z * I , z * II ) such that

f (z * k , µ * , µ * ) = min f (z; µ * , µ * ) = m 1 m 2 g 1 g 2 , k = I, II. (34) 
To identify the minimum points of f we differentiate f with respect to z and find

f ′ (z, µ * , µ * ) = 4z 3 + 4(µ * -θ 2 )z.
For f to have two minimum points, f ′ must have three roots and hence one should have

µ * < θ 2 . ( 35 
)
Then, the minimum points are given by

z * I = -θ 2 -µ * , z * II = θ 2 -µ * .
Then replacing the above values in (34) we obtain

µ * = m 1 m 2 4θ 2 g 1 g 2 .
Note that combining the above line with condition (35) we obtain [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF].

Up until now, we have proven that if a dimorphic ESS exists [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] is verified and the dimorphic ESS is given by (z D * I , z D * II ) = (-θ 2 -µ * , θ 2 -µ * ). However, for this point to be an ESS, as explained in the previous subsection, there must exist ν k,i > 0, for i = 1, 2 and k = I, II such that (32)-(33) are satisfied. Replacing z D * k by their values and solving (32)-(33), we obtain that ν k,i , for i = 1, 2 and k = I, II, are identified in a unique way by [START_REF] Mirrahimi | Concentration phenomena in PDEs from biology[END_REF]. One can verify by simple computations that the weights ν k,i are positive if and only if conditions ( 11)-( 12) are satisfied. As a conclusion, we obtain that a dimorphic ESS exists if and only if the conditions ( 10)-( 12) are satisfied. Moreover, when it exists, such dimorphic ESS is unique.

The monomorphic ESS

In this subsection we prove Theorem 3.1-(ii) and Corollary 3.2. To this end, we assume thanks to (3) and without loss of generality that r 1 -m 1 > 0 and then we consider two cases: (i) We first suppose that condition [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] does not hold. We then introduce the following functions:

F = (F 1 , F 2 ) : (0, +∞) → (0, +∞) × [-θ, θ] µ 2 → (µ 1 , z), G : (0, +∞) × [-θ, θ] → R (µ 1 , z) → µ 2 ,
where µ 1 and z are chosen such that

f (z, µ 1 , µ 2 ) = min f (z; µ 1 , µ 2 ) = m 1 m 2 g 1 g 2 ,
and µ 2 is given by

µ 2 = 1 g 2 κ 2 g 1 m 2 ((z + θ) 2 + µ 1 ) g 1 µ 1 + r 1 -m 1 κ 1 + m 2 -r 2 . ( 36 
)
We claim the following lemma which we will prove at the end of this paragraph.

Lemma 4.2 If (10) does not hold, then the functions F and G are well-defined. Moreover, F 1 and F 2 are decreasing with respect to µ 2 and G is increasing with respect to µ 1 and z.

Following the arguments in Section 4.1, one can verify that a trait z * is a monomorphic ESS with a demographic equilibrium (µ * 1 , µ * 2 ) if and only if

F (µ * 2 ) = (µ * 1 , z * ) and G • F (µ * 2 ) = µ * 2 .
Therefore, identifying monomorphic evolutionary stable strategies is equivalent with finding the fixed points of G • F . In the one hand, from Lemma 4.2 we deduce that G • F is a decreasing function . In the other hand, one can verify that, as

µ 2 → 0, G • F (µ 2 ) → +∞. In particular G • F (µ 2 ) > µ 2 for µ 2 small enough. It follows that there exists a unique µ * 2 such that G • F (µ * 2 ) = µ * 2 .
We deduce that there exists a unique ESS which is given by z M * = F 2 (µ * 2 ). Moreover, (F 1 (µ * 2 ), µ * 2 ) corresponds to its demographic equilibrium. Note that for such ESS to make sense, one should also have N M * i (µ * i ) > 0. This is always true for such fixed point. Note indeed that, since 36) and the positivity of r 1 -m 1 and µ * 1 .

µ * 1 = F 1 (µ * 2 ) ∈ (0, ∞) and r 1 -m 1 > 0 we deduce that N M * 1 > 0. Moreover, the positivity of N M * 2 follows from N M * 2 = (g 2 µ * 2 + r 2 -m 2 )/κ 2 , (
Proof of Lemma 4.2. The fact that G : (0, +∞) × [-θ, θ] → R (and respectively F 1 = (0, +∞) → (0, ∞)) is well-defined and increasing (respectively decreasing) is immediate. We only show that F 2 is well-defined and decreasing. To this end, we notice that since f is a fourth order polynomial, it admits one or two minimum points. However, from the arguments in Subsection 4.2 we know that the only possibility to have two global minima is that (10) holds and µ 2 = µ * = m 1 m 2 4θ 2 g 1 g 2 . Since we assume that [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] does not hold, f always admits a unique minimum point in R. This minimum point is indeed attained in [-θ, θ] since for all z < -θ, f (z; µ 1 , µ 2 ) > f (-θ; µ 1 , µ 2 ) and for all z > θ, f (z; µ 1 , µ 2 ) > f (θ; µ 1 , µ 2 ). Hence z is defined in a unique way in [-θ, θ].

Finally, it remains to prove that F 2 : (0, ∞) → [-θ, θ] is a decreasing function. To this end, let's suppose that µ 2 > µ 2 . Therefore,

F 1 ( µ 2 ) = µ 1 < F 1 (µ 2 ) = µ 1 . We want to prove that F 2 ( µ 2 ) = z < F 2 (µ 2 ) = z.
To this end, we write

f (z; µ 1 , µ 2 ) = f (z; µ 1 , µ 2 ) + ( µ 1 -µ 1 )(z -θ) 2 + ( µ 2 -µ 2 )(z + θ) 2 + µ 1 µ 2 -µ 1 µ 2 = f (z; µ 1 , µ 2 ) + h(z; µ 1 , µ 2 , µ 1 , µ 2 ),
where h is increasing with respect to z. Since f (z, µ 1 , µ 2 ) attains its minimum at z and f (z, µ 1 , µ 2 ) attains its minimum at z we find that

f (z; µ 1 , µ 2 ) < f ( z; µ 1 , µ 2 ), f ( z; µ 1 , µ 2 ) + h( z; µ 1 , µ 2 , µ 1 , µ 2 ) < f (z; µ 1 , µ 2 ) + h(z; µ 1 , µ 2 , µ 1 , µ 2 ).
Combining the above inequalities, we obtain that

h( z; µ 1 , µ 2 , µ 1 , µ 2 ) < h(z; µ 1 , µ 2 , µ 1 , µ 2 ).
and since h is an increasing function, we conclude that z < z.

(ii) We next suppose that (10) holds. Consequently, F is not well-defiled at

µ 2 = µ * = m 1 m 2 4θ 2 g 1 g 2 since F 1 (µ * ) = µ * and max z f (z; µ * , µ *
) is attained at two points ±z D * . Therefore, we only can define F in (0, ∞) \ {µ * }:

F = ( F 1 , F 2 ) : (0, +∞) \ {µ * } → (0, +∞) × [-θ, θ] µ 2 → (µ 1 , z), G : (0, +∞) × [-θ, θ] → R (µ 1 , z) → µ 2 ,
where µ 1 , z and m 2 are chosen as above. Following similar arguments as in the proof of Lemma 4.2 we obtain Lemma 4.3 Under condition (10) the functions F and G are well-defined. Moreover, F 1 and F 2 are decreasing with respect to µ 2 in the intervals (0, µ * ) and (µ * , +∞) and G is increasing with respect to µ 1 and z.

As above, identifying monomorphic evolutionary stable strategies is equivalent with finding the fixed points of G • F , which is a decreasing function in the intervals (0, µ * ) and (µ * , +∞) thanks to the lemma 4.3. We then compute

F (µ * -) = (µ * , z D * ), F (µ * + ) = (µ * , -z D * ), G • F (µ * -) = 1 g 2 κ 2 m 2 (g 1 (z D * + θ) 2 ) + µ * ) g 1 µ * + r 1 -m 1 κ 1 + m 2 -r 2 , G • F (µ * + ) = 1 g 2 κ 2 m 2 (g 1 (-z D * + θ) 2 ) + µ * ) g 1 µ * + r 1 -m 1 κ 1 + m 2 -r 2 ,
where µ * + and µ * -correspond respectively to the limits from the right and from the left as µ → µ * . One can easily verify that G • F (µ * + ) < µ * if and only if [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] holds, and similarly G • F (µ * -) > µ * if and only if [START_REF] Mirrahimi | The equilibrium between selection, mutation and migration in spatially heterogeneous environments[END_REF], or equivalently [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF], holds. We hence deduce, from the latter property and the fact that G • F is decreasing in the intervals (0, µ * ) and (µ * , +∞), that: and µ 2 is given by

µ 2 = 1 g 2 κ 2 g 1 m 2 ((z D * -θ) 2 + µ 1 ) g 1 µ 1 + r 1 -m 1 κ 1 + m 2 -r 2 .
Then the demographic equilibrium (µ eq 1 , µ eq 2 ) of a monomorphic resident population of type -z D * corresponds to a fixed point of H • K:

H • K(µ eq
2 ) = µ eq 2 , K(µ eq 2 ) = µ eq 1 .

Note also that, for such equilibrium to make sense, one should have 0

≤ N i (µ eq i ) or equivalently m i -r i g i ≤ µ eq i .
Moreover, since W µ (-z D * , µ eq 1 , µ eq 2 ) = 0, we have the additional condition

0 < µ eq 1 + (z D * -θ) 2 , 0 < µ eq 2 + (z D * + θ) 2 .
Reciprocally, a pair (µ 1 , µ 2 ) which satisfies the above conditions corresponds to a demographic equilibrium.

We next notice, on the one hand, that K is a decreasing function, and hence, in view of the above conditions, a fixed point (µ eq 1 , µ eq 2 ) of H • K, is a demographic equilibrium if and only if

µ eq 2 ∈ -(-z D * + θ) 2 , µ 2 ), with µ 2 = K -1 (max( m 1 -r 1 g 1 , -(z D * -θ) 2
). On the other hand, H, restricted to max( m 1 -r 1 g 1 , -(z D * -θ) 2 ), +∞ , is an increasing function. Therefore H • K, restricted to the set -(z D * + θ) 2 , µ 2 ), is decreasing. We deduce that a demographic equilibrium, if it exists, is unique.

We then note that, as

µ 2 → -(z D * +θ) 2+ , H •K(µ 2 ) → +∞. In particular, for µ 2 close to -(z D * +θ) 2 , H •K(µ 2 ) > µ 2 . Furthermore, H •K( µ 2 ) = m 2 -r 2 g 2
< 0. Note also that, K( µ 2 ) < 0 and K(µ * ) = µ * > 0 and hence 0 < µ * < µ 2 , which implies that H • K( µ 2 ) < µ 2 . We deduce from the intermediate value theorem that, H • K : -(z D * + θ) 2 , µ 2 ) → R has a unique fixed point (µ eq 1 , µ eq 2 ) and hence there exists a unique demographic equilibrium.

We next observe that, since W µ (-z D * , µ eq 1 , µ eq 2 ) = 0, we have W µ (z D * , µ eq 1 , µ eq 2 ) > 0 if and only if µ eq 2 < µ eq 1 . Moreover, since W µ (-z D * , µ * , µ * ) = 0, this is equivalent with µ eq 2 < µ * < µ eq 1 .

We are now ready to conclude. Let's first suppose that [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] holds which implies that H • K(µ * ) < µ * . Then, thanks to the fact that µ * < µ 2 and from the monotonicity of K and H • K we deduce that the unique fixed point, µ eq 2 , of H • K satisfies µ eq 2 < µ * < K(µ eq 2 ) =: µ eq 1 .

This implies that W µ (z D * , µ eq 1 , µ eq 2 ) > 0 or equivalently, a mutant trait z D * can invade a resident population of trait -z D * at its demographic equilibrium.

Let's now suppose that W µ (z D * , µ eq 1 , µ eq 2 ) > 0 and hence µ eq 2 < µ * < µ eq 1 . We then deduce from H • K(µ eq 2 ) = µ eq 2 and that the monotonicity of H • K that H • K(µ * ) < µ * . This implies [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF].

Proposition 5.2 Assume (3)-( 4).

(i) For i = 1, 2 and all ε ≤ ε 0 , the families (v ε,i ) ε are locally uniformly bounded and locally uniformly Lipschitz.

(ii) As ε → 0, both families (v ε,i ) ε , for i = 1, 2, converge along subsequences and locally uniformly in R to a continuous function v ∈ C(R) and (N ε,i ) ε , for i = 1, 2, converge along subsequences to N i , such that v is a viscosity solution to the following equation

-|v ′ (z)| 2 = W (z, N 1 , N 2 ), in R, max z∈R v(z) = 0. ( 43 
) (iii) We have W (z, N 1 , N 2 ) ≤ 0. ( 44 
)
Consequently, there exists δ > 0 such that

N i ≥ δ, for i = 1, 2. ( 45 
)
The proof of this proposition is given at the end of this subsection. Note that (45) implies that, for ε small enough, N ε,i ≥ δ 2 . This together with (39) imply that, for ε ≤ ε 1 with ε 1 small enough,

1 2 max(r 1 , r 2 ) ≤ α ε ≤ 1 δ , and consequently v ε,i + ε log(δ) ≤ u ε,i ≤ v ε,i + ε log(2 max(r 1 , r 2 )).
We then conclude from the above inequality together with Proposition 5.2-(ii) that (u ε,i ) ε , for i = 1, 2, converge along subsequences and locally uniformly to a function u ∈ C(R) which is a viscosity solution of (37).

To prove (38) we use the following lemma:

Lemma 5.3 The function v is semiconvex.
Then (38) is immediate from the WKB ansatz (5) and the fact that v is differentiable at its maximum points (since it is a semiconvex function). Finally, lemma 5.3 can be proved following similar arguments as in [START_REF] Mirrahimi | Migration and adaptation of a population between patches[END_REF]-Theorem 1.2, but using cut-off functions to treat the unbounded case as in the proof of Proposition 5.2-(i).

Proof of Proposition 5.1. (i) We first prove (39). To this end, we integrate the equations in (1) with respect to z to obtain

R n ε,i (z)(r i -m i -g i (z -θ i ) 2 -N ε,i )dz + m j N ε,j = 0, i = 1, 2, j = 2, 1.
Adding the two equations above, it follows that

N 2 ε,1 + N 2 ε,2 ≤ r 1 N ε,1 + r 2 N ε,2 ,
and hence (39).

(ii) We define

K ε = x ε | x ∈ K , n ε,i (y) = n ε,i (εy), for i = 1, 2.
From (1) we have, for z ∈ R,

-n ′′ ε,1 (z) = n ε,1 (z)R 1 (εz, N ε,1 ) + m 2 n ε,2 (z) -m 1 n ε,1 (z), -n ′′ ε,2 (z) = n ε,2 (z)R 2 (εz, N ε,2 ) + m 1 n ε,1 (z) -m 2 n ε,2 (z). (46) 
Moreover, from ( 2) and (39) we obtain that there exists a constant C = C(K) such that

-C ≤ R i (εz, N ε,i ) ≤ C, for all z ∈ K ε .
Therefore the coefficients of the linear elliptic system (46) are bounded uniformly in K ε . It follows from the classical Harnack inequality ( [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], Theorem 8.2) that there exists a constant C M = C M (K) such that, for all z 0 ∈ K ε such that B 1 (z 0 ) ⊂ K ε and for i, j = 1, 2, sup

z∈B 1 (z 0 ) n i ε (z) ≤ C M inf z∈B 1 (z 0 ) n j ε (z).
Rewriting the latter in terms of n 1 ε and n 2 ε and replacing (z, z 0 ) by ( z ′ ε ,

z ′ 0 ε ) we obtain sup z ′ ∈Bε(z ′ 0 ) n i ε (z ′ ) ≤ C M inf z ′ ∈Bε(z ′ 0 ) n j ε (z ′ ),
and hence (40).

(iii) We integrate the equations in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] with respect to z to obtain

0 ≤ R n ε,i (z)(r i -g i (z + θ) 2 )dz + m j N ε,j (z). (47) 
We choose a constant R > 0 large enough such that for all |z| > R, we have

r i -g i (z -θ i ) 2 < - N M η max(r 1 + m 2 , r 2 + m 1 ), i = 1, 2.
Splitting the integral term in the r. h. s. of (47) into two parts we obtain

0 < r i |z|≤R n ε,i (z)dz - N M η max(r 1 + m 2 , r 2 + m 1 ) |z|>R n ε,i (z)dz + m j N ε,j .
Next, using (39), we obtain

N M η max(r 1 + m 2 , r 2 + m 1 ) |z|>R n ε,i (z)dz < (r i + m j )N M ,
and hence (41).

Proof of Proposition 5.2. (i) We first prove that for all a > 0 and any compact set K, there exists ε 0 such that for all ε ≤ ε 0 , we have

v ε,i (z) ≤ a, for i = 1, 2, z ∈ K.
Note that, thanks to (40), for any compact set K, there exists a constant

C M = C M (K) such that |v ε,i (x) -v ε,j (y)| ≤ ε log C M , for |x -y| ≤ ε and i = 1, 2. ( 48 
) We fix a compact set K. Let z 0 ∈ K, i ∈ {1, 2} and ε ≤ ε 0 = a 2 log C M be such that a < v ε,i (z 0 ).
Therefore, for all |y -z 0 | ≤ ε, we find

a 2 < a -ε log C M < v ε,i (y). It follows that ε exp( a 2ε ) ≤ |y-z 0 |≤ε exp( v ε,i (y) ε )dy ≤ R l ε,i (y)dy.
Note that the l. h. s. of the above inequality tends to +∞ as ε → 0, while the r. h. s. is bounded by 1, which is a contradiction. Such z 0 therefore does not exists and for all z ∈ K, ε ≤ ε 0 and i = 1, 2, we find v ε,i (z) ≤ a.

(ii) We next notice that, similarly to the proof of Theorem 5.1-(iii), one can prove that, for all η > 0 there exists a constant R large enough such that |z|>R l ε,i (z)dz < η, for i = 1, 2.

(49) (iii) Next, we prove that there exists ε 0 > 0 such that for all ε ≤ ε 0 , the families (v ε,i ) ε are locally uniformly bounded from below. To this end, we first observe from (42) and (49) that, for η ∈ (0, 1 4 ) there exists a constant R 0 > 0 such that

|z|≤R 0 (l ε,1 (z) + l ε,2 (z))dz > 1 -2η > 1 2 .
Consequently, for ε ≤ ε 0 , with ε 0 small enough, there exists z 0 ∈ R and i ∈ {1, 2} such that |z 0 | ≤ R 0 and -1 ≤ v ε,i (z 0 ). We deduce, thanks to (48), that for any compact set

K = B R (0), with R ≥ R 0 , -1 -2 log(C M (K))R ≤ v ε,i (z), for i = 1, 2, ε ≤ ε 0 , z ∈ K.
(iv) We prove that, for any compact set K, the families (v ε,i ) ε are uniformly Lipschitz in K. To this end, we first notice that (v ε,i ) ε solves the following system:

-εv ′′ ε,i = |v ′ ε,i | 2 + R i (z, N ε,i ) + m j exp v ε,j -v ε,i ε -m i , i = 1, 2, j = 2, 1. (50) 
We differentiate the above equation with respect to z and multiply it by v ′ ε,i to obtain

-εv ′ ε,i v ′′′ ε,i = 2v ′2 ε,i v ′′ ε,i + ∂ ∂z R i (z, N ε,i )v ′ ε,i + m j v ′ ε,i v ′ ε,j -v ′ ε,i ε exp v ε,j -v ε,i ε .
We then define p ε,i := |v ′ ε,i | 2 and notice that

p ′ ε,i = 2v ′ ε,i v ′′ ε,i , p ′′ ε,i = 2v ′′2 ε,i + 2v ′ ε,i v ′′′ ε,i .
Combining the above lines we obtain that

- ε 2 p ′′ ε,i + εv ′′2 ε,i = 2p ′ ε,i v ′ ε,i + ∂ ∂z R i (z, N ε,i )v ′ ε,i + m j v ′ ε,i v ′ ε,j -v ′ ε,i ε exp v ε,j -v ε,i ε . (51) 
We then fix a point ξ ∈ K and introduce a cut-off function ϕ ∈ C ∞ (R) which satisfes

ϕ(ξ) = 1, 0 ≤ ϕ ≤ 1 in R, ϕ ≡ 0 in B 1 (ξ) c , |ϕ ′ | ≤ Cϕ 1 2 , |ϕ ′′ | ≤ C. (52) 
We then define P ε,i = p ε,i ϕ and notice that

P ′ ε,i = p ′ ε,i ϕ + p ε,i ϕ ′ , P ′′ ε,i = p ′′ ε,i ϕ + 2p ′ ε,i ϕ ′ + p ε,i ϕ ′′ .
We then multiply (51) by ϕ to obtain

-ε 2 P ′′ ε,i + εϕv ′′2 ε,i = 2P ′ ε,i v ′ ε,i + ∂ ∂z R i (z, N ε,i )ϕv ′ ε,i + m j ϕv ′ ε,i v ′ ε,j -v ′ ε,i ε exp v ε,j -v ε,i ε -ε 2 ϕ ′′ p ε,i -εϕ ′ p ′ ε,i -2p ε,i ϕ ′ v ′ ε,i .
Let's suppose that max

z∈R (P ε,1 (z), P ε,2 (z)) = P ε,1 (z 0 ), for z ∈ B 1 (ξ).
Then, evaluating the equation on P ε,1 at z 0 we obtain

εϕ(z 0 )v ′′2 ε,1 (z 0 ) ≤ ∂ ∂z R 1 (z 0 , N ε,i )ϕ(z 0 )v ′ ε,1 (z 0 )- ε 2 ϕ ′′ (z 0 )p ε,1 (z 0 )-εϕ ′ (z 0 )p ′ ε,1 (z 0 )-2p ε,1 (z 0 )ϕ ′ (z 0 )v ′ ε,1 (z 0 ). Using (52) and 0 = (ϕp ε,1 ) ′ (z 0 ) = ϕ ′ (z 0 )p ε,1 (z 0 ) + ϕ(z 0 )p ′ ε,1 (z 0 ), we obtain εϕ(z 0 )v ′′2 ε,1 (z 0 ) ≤ ∂ ∂z R 1 (z, N ε,1 )ϕ(z 0 )v ′ ε,1 (z 0 ) + 3Cε 2 |v ′ ε,1 (z 0 )| 2 + 2Cϕ(z 0 ) 1 2 |v ′ ε,1 (z 0 )| 3 .
We deduce thanks to (50) and the above line that,

ϕ(z 0 ) ε |v ′ ε,1 (z 0 )| 2 + R 1 (z 0 , N ε,1 ) + m 2 exp v ε,2 (z 0 )-v ε,1 (z 0 ) ε -m 1 2 ≤ ∂ ∂z R 1 (z, N ε,1 )ϕ(z 0 )v ′ ε,1 (z 0 ) + 3Cε 2 |v ′ ε,1 (z 0 )| 2 + 2Cϕ(z 0 ) 1 2 |v ′ ε,1 (z 0 )| 3 . Since ξ ∈ K, R 1 (z, N ε,1 ) and ∂ ∂z R 1 (z, N ε,1
) are bounded uniformly by a constant depending only on K. We thus deduce that there exists a constant D = D(K) such that for all ε ≤ ε 0 we have

|v ′ ε,1 (z 0 )| 2 ≤ D ϕ(z 0 )
, which leads to P ε,1 (z 0 ) ≤ D.

Since z 0 was the maximum point of P ε,i , we obtain that ϕ(ξ)|v ′ ε,i (ξ)| 2 = P ε,i (ξ) ≤ D.

However, ϕ(ξ) = 1 and hence

|v ′ ε,i (ξ)| ≤ √ D.
It is possible to do the above computations for any ξ ∈ K and the above bound √ D, depending only on K, will remain unchanged. We conclude that the families (v ε,i ) ε are uniformly Lipschitz in K.

in the viscosity sense.

(vii) Next, we prove that

-|u ′ 2 | 2 ≤ max(R 1 (z, N M * 1 ) -m 1 , R 2 (z, N 2 )).
To this end, we consider two cases. Let's first suppose that z 0 is such that u 2 (z 0 ) = u 1 (z 0 ). Moreover, let ϕ be a smooth test function such that u 2 -ϕ has a local maximum at z 0 . Then, since u 1 (z) ≤ u 2 (z), u 1 -ϕ has also a local maximum at z 0 and hence

-|ϕ ′ (z 0 )| 2 ≤ R 1 (z, N M * 1 ) -m 1 ≤ max(R 1 (z, N M * 1 ) -m 1 , R 2 (z, N 2 )).
Next we assume that u 1 (z 0 ) < u 2 (z 0 ). In this case, as ε → 0, the last term in (61) tends to 0 at z 0 and hence

-|u ′ 2 (z 0 )| 2 ≤ R 2 (z, N 2 ) ≤ max(R 1 (z, N M * 1 ) -m 1 , R 2 (z, N 2 )
), in the viscosity sense.

(viii) We then prove (59). The fact that supp n 2 ⊂ {z | u 2 (z) = 0} is immediate from [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF]. To prove the second property, we first notice that, considering 0 as a test function,

-|u ′ 2 | 2 ≤ max(R 1 (z, N 1 ) - m 1 , R 2 (z, N 2 )) implies that 0 ≤ max(R 1 (z, N M * 1 ) -m 1 , R 2 (z, N 2 )), in {z | u 2 (z) = 0}. Moreover, -|u ′ 2 | 2 ≥ R 2 (z, N 2 )
, implies that R 2 (z, N 2 ) ≤ 0. We also know that R 1 (z, N M * 1 ) -m 1 ≤ 0. Hence, (59).

(ix) Finally, we deduce from the previous step that W (z, N 2 ) ≤ 0, in R, W (z, N 2 ) = 0, for z ∈ supp n 2 .

This means that supp n 2 is an ESS and hence, thanks to Theroem 6.1, we obtain that n 2 = n * 2 and N 2 = N * 2 , where n * 2 and N * 2 are given by Theorem 6.1. We then deduce in particular that the whole sequences (n ε,2 ) ε and (N ε,2 ) ε converge respectively to n * 2 and N * 2 .

Theorem 6.2 allows us to identify u in a neighborhood of the ESS points: (iii) Assume that 4g 2 θ 2 r 2 κ 2 < m 1 (r 1 -m 1 )

κ 1 . ( 62 
)
Then u 2 (θ) < 0.

We next compute v 2 and w 2 around the ESS points. We only present the method to compute v 2 and w 2 around -θ, in the case where m 1 (r 1 -m 1 )

κ 1 > 4g 2 θ 2 r 2 κ 2 ,
so that the ESS is monomorphic and is given by {-θ}. The dimorphic case, where (57) is satisfies, can be analyzed following similar arguments. We recall that in the degenerate case where m 1 (r 1 -m 1 ) κ 1 = 4g 2 θ 2 r 2 κ 2 , we don't provide an approximation of n ε,2 .

To compute v 2 , we keep the zero order terms in (61) in O I and using (64) we obtain

v 2 (z) = log m 1 g 1 4 1 N M * 1 -g 1 (z + θ) 2 + g 2 (z -θ) 2 -r 2 + κ 2 N M * 2
, for z ∈ O I .

Similarly to Section 3.3 we write a Taylor expansion for v 2 around -θ: dz we obtain that

K 2 = N M * 2 E 2 + 0.5D 2 2 √ g 1 + F 2 . (65) 
Moreover, keeping the first order terms in (61) in O I we obtain that

√ g 1 = -2 √ g 1 (z + θ)v ′ 2 -κ 2 K 2 + m 1 N M * 1 N M * 2 (w 1 -w 2 ). ( 66 
)
We evaluate the above equation at -θ to obtain

F 2 = - √ g 1 κ 1 N M * 1 - N M * 2 m 1 N M * 1 √ g 1 + κ 2 K 2 .
One can then compute K 2 and F 2 combining the above equation with (65). Note finally that, once K 2 is known, one can compute w 2 in I thanks to (66).

2 ). 4 . 4 )

 244 Identification of the ESS (the proofs of Theorem 3.1 and Proposition 3In this section, we prove Theorem 3.1, Corollary 3.2 and Proposition 3.4. We first provide a description of the ESS in Subsection 4.1. Next, we prove Theorem 3.1-(i) in Subsection 4.2. In Subsection 4.3 we prove Theorem 3.1-(ii) and Corollary 3.2. Finally in Subsection 4.4 we prove Proposition 3.4.

Lemma 4 . 1

 41 If f (z; µ 1 , µ 2 ) has two global minimum points z I and z II , then µ 1 = µ 2 and z I = -z II .

Proposition 6 . 3 1 2 (z + θ) 2 . 2 2

 63122 (i) There exists a connected and open set O I ⊂ R, with -θ ∈ O I , such that u 2 (z) = -√ g (ii) Assume that (57) holds. Then, there exists a connected and open set O II ⊂ R, with θ ∈ O II , such that u 2 (z) = -√ g (z -θ) 2 .

v 2 4 1 1 √

 241 (z) = v 2 (-θ) + D 2 (z + θ) + E 2 (z + θ) 2 + O(z + θ) 3 , with v 2 (-θ) = log(g 1 N M * 2 ),and we define w 2 (-θ) = F 2 . Note that D 2 and E 2 are known thanks to the explicit computation of v 2 (z) given above. Similarly to Section 3.3, keeping the first order terms in 2πε I exp u ε,2 (z) ε
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1. If [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] and [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] hold there is no monomorphic ESS. Note that, under these conditions there exists a unique dimorphic ESS.

2. if [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] holds and the r.h.s. of ( 12) is negative, then there exists a unique monomorphic ESS in µ M * 2 ∈ (0, µ * ), µ M * 1 ∈ (µ * , ∞) and z M * ∈ (z D * , θ).

3. if [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] holds and the r.h.s. of ( 11) is negative, then there exists a unique monomorphic ESS with µ M * 2 ∈ (µ * , ∞), µ M * 1 ∈ (0, µ * ) and z M * ∈ (-θ, -z D * ). [START_REF] Débarre | Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environments[END_REF]. if [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] holds and ( 12) is an equality, then there exists a unique monomorphic ESS which is given by {z D * } and µ * 1 = µ * 2 = µ * .

5. if [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] holds and ( 11) is an equality, then there exists a unique monomorphic ESS which is given by {-z D * } and µ * 1 = µ * 2 = µ * .

6. Finally, from the fact that [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] and [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] are respectively equivalent to [START_REF] Mirrahimi | Migration and adaptation of a population between patches[END_REF] and [START_REF] Mirrahimi | The equilibrium between selection, mutation and migration in spatially heterogeneous environments[END_REF] we deduce that at least one of conditions [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] and ( 12) always holds. Therefore, all the possible cases have been considered.

Note that, following similar arguments to the previous case, the total population sizes N M * i (µ * i ), for i = 1, 2, corresponding to the unique fixed point, are positive and hence the obtained monomorphic ESS is indeed valid. This concludes the proof of Theorem 3.1. It remains to prove Corollary 3.2:

Proof of Corollary 3.2 We first notice from the arguments above that W (z,

2 ) has at most two global maximum points. Therefore, for [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF] not to hold, the unique ESS should be monomorphic while W µ (z, µ * 1 , µ * 2 ) has two maximum points. However, from the arguments in Section 4.2 we know that if W µ (z, µ * 1 , µ * 2 ) has two maximum points, then [START_REF] Gandon | A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations[END_REF] holds, µ * 1 = µ * 2 = µ * and the maximum points are given by {±z D * }. Finally, from the results in the above paragraph, we know that the only possibility to have a monomorphic ESS in this case, is that either [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] or [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] is an equality, which is in contradiction with [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach[END_REF].

4.4

The interpretation of conditions [START_REF] Hendry | Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests[END_REF] and [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] In this subsection we prove Proposition 3.4. We only prove the first claim. The second claim can be derived following similar arguments.

We denote by (µ eq 1 , µ eq 2 ) the demographic equilibrium of a monomorphic population of trait -z D * and we first claim the following lemma. Proof. We introduce two functions K and H which are respectively close to F 1 and G introduced above:

where

5

The proof of Theorem 3.5

In this section, we prove Theorem 3.5. To this end, we first provide a convergence result along subsequences in Subsection 5.1. We next conclude using a uniqueness argument in Subsection 5.2.

Convergence to the Hamilton-Jacobi equation with constraint

In this section, we prove that as ε → 0, both sequences (u ε,i ) ε , for i = 1, 2, converge along subsequences and locally uniformly to a function u ∈ C(R), such that u is a viscosity solution to the following equation

supp

where (n 1 , n 2 ) (respectively (N 1 , N 2 )) is a limit, along subsequences, of (n ε,1 , n ε,2 ) (respectively (N ε,1 , N ε,2 )) as ε vanishes. Moreover,

Note that this is indeed the claim of Theorem 3.5, except that we don't know yet if (n 1 , n 2 ) = (n * 1 , n * 2 ). To this end, we first claim the following Proposition 5.1 Assume (3)-( 4). (i) For all ε > 0, we have

In particular, for i = 1, 2, (n ε,i ) ε converge along subsequences and weakly in the sense of measures to n i and N ε,i converges along subsequences to N i .

(ii) For any compact set K ⊂ R, there exists a constant C M = C M (K) such that, for all ε ≤ 1,

(iii) For all η > 0 there exists a constant R large enough such that

Consequently

We postpone the proof of this proposition to the end of this paragraph and we pursue giving the scheme of the proof of Theorem 3.5. The next step, is to introduce functions (l ε,1 , l ε,2 ) as below

We next prove the following (v) The next step is to prove the convergence along subsequences of the families (v ε,i ) ε to a viscosity solution of (43). Note that thanks to the previous steps we know that the families (v ε,i ) ε are locally uniformly bounded and Lipschitz. Therefore, from the Arzela-Ascoli Theorem, they converge along subsequences to functions v i ∈ C(R). Moreover, we deduce from (48) that v 1 = v 2 = v. The fact that v is a viscosity solution to (43) can be derived using the method of perturbed test functions similarly to the proof of Theorem 1.1 in [START_REF] Mirrahimi | Migration and adaptation of a population between patches[END_REF].

(vi) We next prove (44). Let's suppose in the contrary that there exists z 0 ∈ R such that W (z 0 , N 1 , N 2 ) > 0. Then, there exists an interval (a 0 , b 0 ) such that z 0 ∈ (a 0 , b 0 ) and W (z, N 1 , N 2 ) > 0 for z ∈ (a 0 , b 0 ). We then notice that v being locally uniformly Lipschitz, is differentiable almost everywhere. Let's z 1 ∈ (a 0 , b 0 ) be a differentiability point of v. Then from (37) we obtain that

which is a contradiction with the fact that W (z 1 , N 1 , N 2 ) > 0.

(vii) Finally, we prove (45). Note from the expression of W (z, N 1 , N 2 ) in ( 8) and from (3) that 0 < max W (-θ, 0, 0), W (θ, 0, 0) . We assume, without loss of generality, that 0 < W (-θ, 0, 0). Therefore, there exists an interval (a 1 , b 1 ) with -θ ∈ (a 1 , b 1 ) and δ such that

for all N 1 , N 2 < δ, and z ∈ (a 1 , b 1 ).

We deduce from the above line and step (vi) that there exists i ∈ {1, 2} such that N i > δ. Without loss of generality, we suppose that i = 1. From the fact that (N ε,i ) ε converges to N i and from Proposition 5.1-(iii) we obtain that there exists a compact set K and a constant ε 0 > 0 such that

We then deduce from 5.1-(ii) that

This completes the proof of (45).

5.2

Convergence to the demographic equilibrium of the ESS and consequences (the proof of Theorem 3.5)

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. (i) We first prove the first part of the theorem. Note that we already proved in the previous section that as ε → 0, n ε,i converges in the sense of measures to n i and N ε,i converges to N i such that R n i (z)dz = N i . Moreover, thanks to (38) and (44) we have

Furthermore, one can verify using (8) that W can take its maximum only at one or two points and hence the support of n i contains only one or two points. This implies indeed that supp n i is indeed an ESS. We then deduce from the uniqueness of the ESS (see Theorem 3.1) that n i = n * i and N i = N * i , for i = 1, 2 and (n * 1 , n * 2 ) the demographic equilibrium corresponding to the unique ESS.

(ii) The second part of Theorem 3.5 is immediate from it's first part and the previous subsection.

(iii) We first notice from part (i) that Ω = supp n * 1 = supp n * 2 is the unique ESS of the model. Moreover, from Corollary 3.2 and under condition [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach[END_REF] we obtain [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF] and consequently

The above equalities together with (38) lead to (23). It then remains to prove that the solution of ( 22)-( 23) is unique. The uniqueness of u indeed derives from the fact that any negative viscosity solution of ( 22) can be uniquely determined by its values at the maximum points of W ( [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF], Chapter 5). However, (23) implies that u = 0 at such points and hence such solution is unique.

Note indeed that restricting to a bounded domain O and following similar arguments as in [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]-Chapter 5, we obtain that a viscosity solution of ( 22) in the domain O, verifies

Although here we have an unbounded domain, the trajectories which come from infinity do not change the value of the solution since u is negative and W is strictly negative for |z| large enough. This allows to conclude that the solution u of ( 22) is indeed determined by its values at the maximum points of W . Note also that the above property is indeed a particular case of a property from the weak KAM theory, which is the fact that the viscosity solutions are completely determined by one value taken on each static class of the Aubry set [START_REF] Contreras | Action potential and weak kam solutions[END_REF].

A source and sink case

In this section, we consider a particular case where there is migration only from one habitat to the other, that is

We also assume that

Following similar arguments to the case of migration in both directions, one can characterize the mutation, selection and migration equilibria. However, since the migration is only in one direction, we should study the equilibria in the two habitats separately.

Note that since m 2 = 0, there is no influence of the second habitat on the first habitat. One can indeed compute explicitly n ε,1 :

Note that as ε → 0, n ε,1 converges in the sense of measures to n M *

Here, {-θ} is indeed the unique ESS in the first habitat and n * 1 corresponds to the demographic equilibrium at the ESS.

In the second habitat however, there is an influence of the population coming from the first habitat. The natural quantity that appears in this case as the effective fitness in the second habitat is still the principal eigenvalue of ( 7) which is, in this case, given by

Then one can introduce the notion of the ESS for this habitat similarly to Section 2.

The results in the adaptive dynamics framework

We can indeed always identify the unique ESS: Theorem 6.1 Assume (53)-(54). In each patch there exists a unique ESS. In patch 1 the ESS is always monomorphic and it is given by {-θ} with the following demographic equilibrium:

In patch 2 there are two possibilities: (i) the ESS is dimorphic if and only if

The dimorphic ESS is given by {-θ, θ} with the following demographic equilibrium:

(ii) If condition (57) is not satisfied then the ESS in the second patch is monomorphic. The ESS is given by {-θ} with the following demographic equilibrium:

The proof of the above theorem is not difficult and is left to the interested reader.

The computation of the zero order term u 2

We then proceed with the method presented in the introduction to characterize the evolutionary equilibrium n ε,2 (z). To this end, we first identify the zero order term u 2 (introduced in ( 5)-( 6)):

, the demographic equilibrium of the unique ESS of the metapopulation, given by Theorem 6.1. Moreover, as ε → 0, (N ε,1 , N ε,2 ) converges to (N M * 1 , N * 2 ), the total populations in patch 1 and 2 corresponding to this demographic equilibrium.

(58) where the first two inequalities are in the viscosity sense. Moreover, we have the following condition on the zero level set of u 2 :

Proof. The proof of Theorem 6.2 is close to the proof of Theorem 3.5-(i) and (ii). We only provide the steps of the proof and discuss the main differences.

(i) We first notice that the convergence of (n ε,1 ) ε , (N ε,1 ) ε and (u ε,1 ) ε is trivial from (55).

(ii) Following similar arguments as in Proposition 5.1-(i) and (iii) we find that N ε,2 is bounded from above and that n ε,2 has small mass at infinity. Hence, as ε → 0 and along subsequences, respectively (n ε,2 ) ε and (N ε,2 ) ε converges to n 2 and N 2 with N 2 = n 2 (z)dz.

(iii) Note that since m 2 = 0, (40) does not hold anymore but a weaker version of it still holds true. We can indeed obtain, following similar arguments and still referring to [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], Theorem 8.2, that for any compact set K ⊂ R, there exists indeed a constant C M = C M (K) such that, for all ε ≤ 1,we have

(iv) We deduce from (60) and the fact that n ε,1 has small mass at infinity, that there exists ε 0 such that, for all ε ≤ ε 0 , N ε,2 is uniformly bounded from below by a positive constant.

(v) Following similar arguments as in the proof of Proposition 5.2 we obtain that there exists ε 0 > 0, such that for all ε ≤ ε 0 , (u ε,2 ) ε is locally uniformly bounded and Lipschitz. Therefore, as ε → 0 and along subsequences, (u ε,2 ) ε converges to a function u 2 ∈ C(R) such that max z∈R u 2 (z) = 0. Moreover, from (60) we obtain that u 1 (z) ≤ u 2 (z), for all z ∈ R.

(vi) Note that u ε,2 solves the following equation

Passing to the limit as ε → 0 and using the fact that the last term above is positive we obtain that

Note that when m 1 (r 1 -m 1 )

we don't know the value of u 2 (θ). In particular, it can vanish. This is why we cannot provide an approximation of n ε,2 in this degenerate case.

Proof of Proposition 6.3. (i) Note that using similar arguments as in the proof of Theorem 3.5-(iii), where we used properties from the weak KAM theory, and using

which holds thanks to (58), we obtain that

From the above inequality it is immediate that there exists a connected and open set

Combining this with the third property in (58) we deduce the first claim of Proposition 6.3.

(ii) Note that under condition (57) the ESS is dimorphic and that supp n D * 2 = {-θ, θ}. Therefore, we deduce thanks to (59) that u 2 (θ) = 0. This property combined with the second property in (58) implies that

The second claim of the theorem then follows from (63).

(iii) Finally, we prove the third claim of the theorem. To this end, we assume that (62) holds, and hence the ESS in the second patch is monomorphic and given by {-θ}, but u 2 (θ) = 0. Note that similarly, to the case of migration in both directions, u 2 is a semiconvex function. Therefore it is differentiable at its maximum points and in particular at θ. Hence, the first claim of (58) implies that 0 ≤ max(R 1 (θ, N M * 1 ) -m 1 , R 2 (θ, N M * 2 )).

However, this is in contradiction with (62).

Next order terms

In this subsection we compute the next order terms in the approximation of u ε,i and N ε,i :

We first notice that, thanks to (55) we already know explicitly u ε,1 and N ε,1 :

and hence