N
N

N

HAL

open science

Scheduling for Mixed-criticality Hypervisor Systems in
the Automotive Domain
C Evripidou, A Burns

» To cite this version:

C Evripidou, A Burns. Scheduling for Mixed-criticality Hypervisor Systems in the Automotive Do-
main. WMC 2016 4th International Workshop on Mixed Criticality Systems, Nov 2016, Porto, Por-

tugal. hal-01419143

HAL Id: hal-01419143
https://hal.science/hal-01419143
Submitted on 18 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01419143
https://hal.archives-ouvertes.fr

Scheduling for Mixed-criticality Hypervisor
Systems 1n the Automotive Domain

C. Evripidou
Department of Computer Science,
University of York, UK.
Email: ce514@york.ac.uk

Abstract—Virtualisation has been proposed for use in the
automotive domain as it has the potential to reduce the number of
ECUs (Electronic Control Units) that are required in a modern
vehicle. In this paper we first introduce a visualisation archi-
tecture that makes use of two different types of execution-time
servers to provide separation, low run-time overheads but short
response-times for event-triggered computation. This model is
then extended to mixed-criticality systems and utilises a run-time
switch between the task-server mapping to enhance schedulability
(at the cost of extended response-times). An industrial case study
is used to evaluate the approach.

I. INTRODUCTION

The automotive industry has been using software in cars
for over 30 years, but this is now increasing at a very
fast pace [8], [9]. The software in a vehicle typically runs
within Electronic Control Units (ECUs), which are embedded
hardware platforms responsible for controlling different sub-
systems within a vehicle. Examples of ECUs are door control
units, transmission control units and engine control units.

As stated by Broy [8] in 2006, about 40% of the production
cost of a vehicle was spent on electronics and software. After
the 30-year growth of the volume of software in vehicles, a
modern premium car may contain in excess of 100 processors
spread across 70 ECUs [3], [4], [8], [9]. Nolte [18] studied this
trend; there is a clear indication of the increased complexity
and the added hardware costs that are prominent in modern
vehicles.

When they were first introduced, ECUs were functionally
independent and were connected solely to sensors and ac-
tuators [9]. As ECUs were required to provide additional
functionality, there was a need to establish communication
channels between them. This change has resulted in multiple
ECUs cooperating to provide a certain piece of functionality.
In addition to numbers, ECUs can be heterogeneous and be
responsible for different types of tasks; hard real-time (vehicle
control) and soft real-time (infotainment). Given the large
number of ECUs per vehicle, the dependencies between them
and their lack of homogeneity, it can be inferred that they form
a complex system that is hard to reason about.

Apart from the structural complexity of the electronic parts
of modern vehicles, another challenge in software engineering
for the automotive domain is the difference in lifetime of car
models and ECU hardware [9], [20]. Specifically, a car model
typically has a production lifetime of about 7 years, whereas

A. Burns
Department of Computer Science,
University of York, UK.
Email: alan.burns @york.ac.uk

a microprocessor 5 years. In addition to the 7 years of pro-
duction lifetime, a car manufacturer (OEM) needs to provide
service and spare parts for an additional 15 years. The result
of this difference in lifetimes is that during a car’s lifetime
it is very likely that some ECU hardware components stop
being available in the market. Given that the ECU software is
usually highly optimised for the underlying hardware, porting
to a newer platform can be a hard and expensive task.

In order to deal with the increased complexity that charac-
terises modern vehicles, OEMs, suppliers and other relevant
companies formed a worldwide development partnership. The
result of this partnership is the Automotive Open System
Architecture (AUTOSAR) [6]. AUTOSAR aims to provide
a common architecture as well as a methodology that will
help with the understanding of the interaction of ECUs,
allow software reuse and enable the combination of multiple
functions on a single ECU [14].

In this paper we consider the use of virtualisation (see
Section II) for the integration of multiple ECUs into a single
hardware platform. Section III outlines the general scheduling
approach followed for virtualisation. The key characteristic
of the scheduling approach is the use of a deferrable and
a periodic server per partition for the execution of event-
driven and time-driven tasks; event-driven tasks execute on
deferrable servers for low response times and time-driven
tasks execute on periodic servers for the improved utilisation
and lower overheads. The main contribution of this paper
is the extension of the proposed scheduling approach for
virtualisation to support two modes of degradation (D1 and
D2). The mixed criticality model is presented in Section IV
All the work presented was done in close cooperation with the
automotive company ETAS. They provided the requirements
and application code that was used to form the presented
model, and derive the case study of Section V, which was
used to evaluate the proposed approach.

II. VIRTUALISATION

Virtualisation is a technique, initially developed in the early
60’s [10], where logical resources are created in order to allow
one or more applications to execute on the same hardware
platform. The logical resources are created and managed
by the hypervisor (HV), also referred to as virtual machine
manager (VMM). From our experience with ETAS, there is

increasing interest in the automotive industry for the use of
virtualisation to alleviate some of their current problems.

The main use case for HV technology in the automotive
domain is the reduction of ECU count by combining multiple
ECUs on a single hardware platform. The key properties that
must hold in a HV system is spatial and temporal isolation of
the VMs. Spatial isolation is achieved by prohibiting the VMs
from accessing memory areas outside of their memory space.
Temporal isolation, which is the focus of the research reported
in this paper, is the property under which a VM’s behaviour
cannot cause another VM to violate its real-time properties.

Early work on virtualisation by Popek and Goldberg [19]
in 1974 identify three characteristics of an HV. First, an HV
needs to be able to provide its hosted virtual machines (VMs)
with an execution environment which is indistinguishable from
real hardware. Second, execution is efficient by mapping
a large subset of the virtual processor instruction set to a
physical processor. Third, the HV has complete control over
all hardware resources and is able to allow or prohibit VMs
access, according to their configuration.

Popek and Goldberg [19] also identify a set of properties
for HVs:

e Efficiency: all non-privileged instructions are executed
directly on hardware.

e Resource control: it is impossible for a VM to interfere
with any system resources that are not allocated to it.

e Equivalence: a VM produces the same results when
executing as if it was executing without a HV.

The HV characteristics by Popek and Goldberg [19] re-
fer to full virtualisation. Full virtualisation implies that the
applications in VMs can be executed without requiring any
modifications [13]. In order to maintain the properties iden-
tified above in a fully virtualised environment it is necessary
to have adequate hardware support. Specifically, allowing a
VM to execute directly most of the time on the underlying
hardware for efficiency requires that the HV will be able to
identify attempts to execute privileged instructions. The HV
is then responsible for checking whether the VM is allowed
to perform the operation it attempted to and act accordingly.

Paravirtualisation was introduced as means of alleviating the
lack of hardware support and to simplify the development of
the HV. Specifically, in a paravirtualised environment, VMs
execute directly on hardware using modified versions of their
application code [13], using HV calls to replace the func-
tionality of privileged instructions. Examples of virtualisation
platforms are: OKL4 [15], XtratuM [2], Xen [7] and PikeOS
[21].

III. REQUIREMENTS AND APPROACH TO VIRTUALISATION

The driving requirements for the architecture described in
this paper is: the need to partition the code of the applications,
the need to have low run-time overheads (the automotive
industry is very dependent of the efficient use of hardware
resources), and the need to provide very fast response-times
for a certain class of application code (namely, event-triggered
computation). The latter two requirements are contradictory,

fast response times require small containers, efficient imple-
mentation dictates the use of larger containers. This dilemma
is resolved by the use of two different types of container.

A. Task Model

Traditional hypervisor scheduling approaches were devel-
oped assuming no visibility at the task level in the partitions.
In this section we define a flexible task model, which allows
exploiting visibility, where that is available, taking into ac-
count implementation overheads. First, we classify tasks as
synchronous or asynchronous. Synchronous tasks are strictly
periodic, whereas asynchronous are event-triggered tasks with
a known minimum inter-arrival time. The main motivation
behind the proposed scheduling method is that asynchronous
tasks require quick response times, while synchronous ones
can be serviced in a more efficient, lower overheads approach.
All operations performed by the hypervisor are executed in
a non-preemptive manner and are described as highly pre-
dictable pieces of code.

1 2
ce Ci i

A B C D

Fig. 1. Task structure.

The execution of all tasks is defined to be structured
as shown in Figure 1. A task 7; is defined by the tuple
(CiCSlaCmeSQ;ﬂaPi):

o Cf1: the scheduling and context switching overheads
required before the execution of the main task body. In
asynchronous tasks, this section is performed by the hy-
pervisor and is therefore non-preemptible. Synchronous
tasks can be preempted by the hypervisor during this
section but not by other synchronous tasks of the same
partition, since this operation is performed by the parti-
tion.

o C;: the time required for the task’s main body to execute.
Partition tasks (synchronous and asynchronous) can be
preempted while in this section, however hypervisor tasks
run non-preemptively.

o (¢%2: the overheads of terminating the execution of the
task. The preemption rules that apply for C¢5! also apply
during the execution of this section.

o T;: the period or minimum inter-arrival time of the task.

e P;: the priority level of the task.

B. Execution Servers

Our approach aims to minimise the response time for event-
triggered tasks, while at the same time maximise schedula-
bility and enforce temporal protection between the different
partitions'. The CPU time is shared between the partitions
using execution servers. Temporal protection is achieved by

'A similar approach by Missimer et al. [16] using sporadic and priority
inheritance bandwidth preserving servers was published during the develop-
ment of the approach discussed in this paper. Although they also use servers,
they do not have the same approach to mixed-criticality.

prohibiting partitions to execute for more than their servers’
capacity. Each server is associated with a hypervisor task,
which is responsible for replenishing its capacity.

Asynchronous tasks are released in response to events and
therefore need to be serviced with the lowest possible latency.
To facilitate this requirement, asynchronous tasks execute
using deferrable servers that are assumed to always have
enough capacity to service all event-driven tasks, given their
WCET, hypervisor overheads and period. With the use of a
deferrable server, no server capacity is expended when the
system is idle, and events are serviced as they arrive, provided
they have the highest priority in the system.

Deferrable servers (DS) offer low response time for the
asynchronous tasks, however they are inferior in terms of
schedulability in comparison to periodic servers. The time-
driven or synchronous tasks in the system are execute using
a periodic server (PS) in order to alleviate this trade off,
therefore improving schedulability, without compromising on
the low latency required by event-driven tasks.

The association between servers and tasks is defined using
the association matrix M. The rows of the matrix represent
the tasks in the system, whereas the columns are the servers.
All elements can take the values O or 1. If a task 7; is serviced
by s;, then M., ;. = 1, otherwise M, s, = 0. Moreover, a
task can be serviced by exactly one server, which implies that
the sum of each row results is at most 1.

HV DS, DS, PS, PS5

T0 0 0
T1
T2
T3
T4
T5
T6

T7 0 0 0 0 1

(D

OO O ==
OR OO O OO
OO = OO OO
_ O OO oo
OO OO oo

Equation (1) is an example configuration of an association
matrix of a simple system with two partitions (applications),
po and p1. Each of the partitions is associated with a deferrable
and a periodic server. Specifically, DSy and P.Sy are associ-
ated with partition py and DS; and PS; are associated with
partition p;. Each of the servers requires a hypervisor task
so that its capacity is replenished periodically. The hypervisor
tasks that are responsible for replenishing the server’s capacity
are 79, 71, 7o and 73. Partition py has two tasks, 75 and
76, and pg also has two tasks, 74 and 77. 74 and 75 are
asynchronous tasks and are therefore associated with D.Sy and
DS, respectively. Similarly, 7¢ and 7 are synchronous tasks
and are associated with PSSy and PS; respectively.

C. Priority Space

Figure 2 shows the relationship between the execution
modes in terms of their corresponding priority levels. The
hypervisor executes in hypervisor mode at the highest system
priority region. Since the hypervisor’s code is trusted and is

Po P1 Px
Ts
Te Time-driven
T - tasks
12 (periodic servers)
Ti1
Ti0
T4
T3 .)
P
[T]
=
| 2 | Event-driven
: - tasks
H (deferrable servers)
[Ts |
[To |
>
=) |
G
T Hypervisor Tasks

Fig. 2. Example of a k-partition system priority space.

typically consisted of short, highly predictable non-preemptive
tasks. The motivation behind this approach is to allow event-
triggered tasks, such as the service routines of exceptions or
interrupts, to execute at a priority level that is strictly higher
than any time-triggered tasks.

Synchronous tasks have the lowest priority range in the
system. Specifically, a partition executes in synchronous mode
if no event is pending and eligible to be handled. The eli-
gibility of handling an event is directly associated with the
asynchronous budget. A partition executing in synchronous
mode is responsible for doing its own task scheduling and
may therefore maintain its own internal priority space.

The analysis employed with the defined model uses standard
response-time analysis to ensure:

e each server (DS and PS) is schedulable, and
e each task within each server is schedulable.

For space reasons the analysis is not given in this paper (see

(12]).

IV. APPROACH TO MIXED CRITICALITY

Having now introduced the approach to virtualisation we
can describe how this model is extended to support mixed
criticality. Separation is already supported. We now wish to
provide a means by which criticality mode changes can be
accommodated.

The introduction of safety in the automotive industry with
the 1SO26262 standard on functional safety of road vehi-
cles [1] gave rise to concerns regarding the integration of
components with different ASIL (Automotive Safety Integrity
Level) in the same ECU. AUTOSAR enables the integration of
SWC (Software Components) from different vendors, requir-
ing modifications to the configuration of the RTE (Runtime
Environment) and BSW (Basic Software) [17]. From a safety-
critical perspective AUTOSAR lacks the required separation
mechanisms. Specifically a failure in an AUTOSAR SWC

Task exceeds its Task exceeds its,
° C(LO) time @ C(MI) time @

Fig. 3. State transitions for the mixed-criticality model.

typically results in an ECU reset. In the case where all SWCs
are of the same ASIL this is acceptable, however in the case of
mixed-criticality this could potentially allow a low criticality
component to interfere with a higher criticality one. This
directly violates freedom from interference (FFI), as dictated
by ISO 26262-6:2011 Annex D [1]. Moreover, Esper et al. [11]
state that suspending the execution of lower criticality tasks
may hinder the certification progress due to lack of isolation
unless the suspended tasks are non-critical.

A possible way of achieving FFI is to ensure that com-
ponents of different criticality levels are located on separate
physical ECUs. Failures in lower criticality components would
therefore be isolated and not propagate to other ECUs of
higher criticality. This approach could potentially increase the
number of physical ECUs, which, as identified earlier, is one
of the main drivers to the high development costs for software
and hardware in vehicles. The use of a hypervisor can provide
the necessary isolation between its partitions to allow the
integration of multiple ECU images on a single physical ECU,
while enforcing FFIL.

The proposed mixed-criticality model supports three levels
of criticality, LO, MI, HI, with HI > MI > LO. The
task model is defined in a similar manner as the model
pro_posed byﬂVestal [22]. A task 7; is defined by the tuple
(Cf“,C_"i,C'fSQ,Y_’;,P;,Li), where:

. CESl: A vector containing the WCET of the implemen-
tation overheads before the execution of the task’s main
body for each criticality level, C**(LO), C¢$1 (M) and
CesL(HI).

. C_"i: A vector containing the WCET of the task’s main
body at each criticality level. C;(LO) < C;(MI) <
Ci_‘(H I).

. C’fSQ: The WCET of the overheads after the execution of
the task’s main body for each criticality level, Cfsz (LO),
Ces2(M1I) and CS*2(HI).

o T;: The period of the task at each level of criticality,
T(LO) > T(MI) > T(HI).

« D: The priority level of the task at each criticality level,
P,(LO), P,(MI), P,(HI).

o L;: The criticality level of the task (ie. LO, M I, HI).

A. Execution Modes

Figure 3 summarises the mode transitions performed by the
system to support multiple levels of criticality. A requirement
of implementing the mixed-criticality model is to monitor the

execution time of all partition tasks. As the figure illustrates
as a task executes for more than its C'(LO) value the first
degraded mode is entered; if necessary a second level of
degradation is entered. A distinctive aspect of the model is
that D1 does not involve the dropping of any tasks. Rather, it
invokes an architectural change in which the event-triggered
tasks executing in deferrable servers are migrated to their
corresponding partitions’ periodic servers. Hence all tasks
continue to execute but the event-triggered work has increased
latency; the periodic work continues to meet all deadlines.
If a further degradation is required then D2 does involve
the dropping of low criticality work (following the model of
Vestal [22]).

V. EVALUATION

The proposed approach was heavily motivated by the re-
quirements of the automotive industry and takes into account
implementation overheads. In this section a case study, derived
from application code provided by ETAS Ltd., is used to
evaluate the proposed approach.

The case study evaluation was performed using ECU appli-
cation code that was provided by ETAS Ltd. The application
code consisted of a set of AUTOSAR TASKSs of a Mercedes-
Benz M160 engine controller. The functionality of the ap-
plication code includes controlling the air flow, idle speed,
and fuel injection. Each TASK has a unique period and a
set of sub-tasks that are to be executed at that period. The
provided taskset was split into two partitions with different
criticality levels by an expert with respect to the individual task
functionality. Each task was then classified as asynchronous
or synchronous, with respect to their real-time requirements.

A. Task Measurement

1) Application Tasks: The next step for the case study is
to analyse the provided ECU code, in order to realise the
proposed model. The source contained only application code,
without the underlying OS. The minimum information that is
required for the proposed model is the period of each task,
which was provided and the execution time. The execution
times of the tasks were obtained using a measurement-based
approach. The first part of the timing analysis was to study
the provided code. Upon inspection, the code was primarily
linear with minimal branching. Numeric calculations and
variable conversions were the primary operations performed
by the code. The input/output of the tasks was made by
reading/writing to external variable, each with a clearly defined
range of valid values.

Measuring the task execution times required modifications
to the provided code, since the OS code was not available.
Specifically the code was modified with definitions of all the
external variables and structures, that were initialised using
valid values. The granularity of the timer was insufficient for
the measurement of the short task execution times, therefore
each task execution time was estimated by measuring the
amount of time required to execute it one million times in
sequence. Each such measurement was then taken 500 times,

Task | Partition | T (ms) Max Mean Std
0 Po 100 516.06 518.49 0.42
1 Po 10 | 3351.14 | 3641.27 | 64.65
T Po 100 955.6 959.29 0.74
T3 p1 10 188.55 189.35 0.16
T4 Po 100 612.29 615.18 0.52
T5 Po 1 221.49 222.28 0.16
T p1 1000 444.86 447.13 0.24
7 P1 100 123.99 124.65 0.13
T8 Po 10 361.33 362.95 0.31
9 Po 10 361.36 363.6 0.37
710 Po 1 497.33 499.7 0.45
T11 Po 1 361.41 363.16 0.34
T12 Po 100 420.06 424.44 0.38
T13 p1 10 361.39 363.38 0.34
T14 Po 100 419.97 422.01 0.34
T15 Po 100 | 1035.55 | 1039.08 0.59
T16 Po 100 248.28 249.26 0.18
17 Po 100 | 1084.03 | 1088.36 0.63
T18 p1 100 | 2523.01 | 2537.88 2.97
T19 p1 50 361.39 363.18 0.32
T20 p1 100 338.45 340.07 0.27
T21 Po 100 372.68 374.8 0.32
T22 Po 1 343.02 344 0.19
T23 Po 20 | 1325.86 | 1330.68 0.89
T24 p1 10 480.63 483.01 0.4
T25 Po 1 460.15 462.09 0.24
T26 Po 100 173.33 174.15 0.14
Tov Po 10 203.72 204.47 0.16
T28 Po 10 492.54 493.55 0.21
T29 Po 10 505.74 507.78 0.24
T30 Po 20 | 2351.58 | 2373.03 3.73
T31 Po 100 755.56 758.3 0.26
TABLE T
APPLICATION TASK TEMPORAL CHARACTERISTICS AND PARTITION
MAPPING.

therefore obtaining a sample of 500 estimated execution times
per task.

Table I summarises the sampled execution times in ns. From
the table, there is a small difference between max and mean as
well as a small standard deviation of the execution times. This
confirms that there is little variation between each measured
execution time, as expected from the minimal branching that
was observed during the inspection of the code. Analysis using
Pearson’s r showed no correlation between the WCET and the
period of tasks, r(30) = —0.0622, p = 0.735 (two-tailed test).

B. Hypervisor Overheads

Hypervisor Overhead WCET
Forward interrupt 363ns
Return from interrupt 139ns
Replenish server capacity 553ns
Mode change 645ns

TABLE IT
HYPERVISOR OVERHEADS FOR THE MIXED-CRITICALITY MODEL.

To calculate the hypervisor overheads, a partial hypervisor
implementation was built. The hypervisor overheads in the
system are responsible for the replenishment of the server
capacity and handling forwarding and returning from inter-
rupts. The WCETs of the developed hypervisor components
were calculated using the maximum cycles required for the

600

[Nmode
[D1mode

500 - D2 mode 470
440 436

5

344

Task WCET Scaling
w
8

8

103 103
100 80

2-partition 3-partition

System Configuration

8-partition

Fig. 4. Application task WCET scaling with 2, 3 and 8-partition configura-
tions.

ARM1176JZF-S instructions to execute [5]. Table II sum-
marises the hypervisor overheads. These values are deemed
applicable to all criticality modes. Therefore, the WCET for
all operations performed by the hypervisor are not scaled up
for the M T and H1I criticality levels.

C. Experiments

The case study was used to undertake sensitivity analysis
using the response-time analysis developed for the two server
type model. The case study taskset specification in conjunction
with the system overhead parameters are used to produce
a system configuration that is marginally schedulable at all
criticality levels.

Sensitivity analysis is then repeated for the two degraded
modes, D1 and D2, to see what improvement in schedula-
bility results. The processor used for these experiments was
considerable more powerful that the one from which the code
WCET times were derived. High scaling factors were therefore
observed. A scaling factor of 100 implies that all code could
be increased 100 times and the system would still (just) be
schedulable.

Three methods of supporting D1 were investigated:

e 2-partition — here each of the two applications uses just
one DS and one PS; in D1 all tasks in the DS are moved
to the PS.

¢ 3-partition — here each application uses just one DS and
one PS; in D1 the DS is converted to a new, distinct, PS
(i.e. another partition is added).

o 8-partition — here each application uses a number of DSs
and PSs; in D1 all DSs are converted to PSs.

D. Results

In this section we discuss the results of the sensitivity
analysis on the three identified system configurations.

Figure 4 shows the scaling that was achieved by each
system configuration for all criticality levels. The 2-partition
configuration while the system executes in N mode achieved
a scaling factor of 103. At the degraded modes there is
significant capacity loss, which makes the proposed model
ineffective for the 2-partition configuration. The reason for
the poor performance in D1 and D2 is the large variation

of the temporal requirements of the application tasks served
by individual periodic servers. This variation in temporal
requirements results in wasted server capacity.

The 3-partition configuration achieves the same scaling as
the 2-partition configuration while the system executes in N
mode. After the mode switch to D1 there is a significant
increase of the WCET scaling, by a factor of 3. Assigning
the asynchronous tasks in a separate partition eliminated the
server parameter shortcoming of the 2-partition configuration.
Specifically, in the degraded modes the asynchronous tasks
execute using the original periodic server. All asynchronous
tasks in the system share the same minimum inter-arrival
time of 1ms. This allows for no wasted server capacity,
therefore increasing the achieved scaling in the degraded
modes. Switching to the second degraded mode, D2, there
is a small increase in the scaling factor. The small increase
is as expected, since the 95% of application task utilisation is
used by H criticality tasks.

The scaling achieved with the 8-partition configuration was
80, which is significantly lower than the 2 and 3-partition
configurations. The lower scaling achieved for the 8-partition
configuration was attributed to the large number of hyper-
visor tasks, which reside at the highest priority band in the
system. Specifically, server capacity replenishment tasks are
assigned strictly higher priorities than application tasks, there-
fore having a greater impact on the optimality of the priority
assignment algorithm. Another contributing factor to this is the
context switching overheads of asynchronous tasks. After the
switch to the first degraded mode, D1, the achieved scaling is
310, which is the highest achieved in all three configurations.
The use of solely periodic servers servicing tasks of the same
period made the priority assignment algorithm very effective.
Switching to D2 results in more spare capacity than the 3-
partition configuration, since additional capacity is freed due
to the number of server replenishment tasks that are no longer
in use.

VI. CONCLUSIONS

In this paper we have shown how two forms of execution-
time servers (namely deferrable server and periodic server) can
be used (with a hypervisor) to support multiple applications
(partitions) running on the same processor/core. The approach
derived has been in response to the needs of the automotive
domain. The servers provide the necessary level of separation,
and the different characteristics of the two servers allow
low latencies for event-triggered tasks and low overheads for
time-triggered (periodic) tasks to be manifest. The proposed
approach was extended to support three levels of criticality,
featuring two degraded modes (D1 and D2). The mixed-
criticality model aims to provide the partitions with additional
CPU capacity by providing an alternative task-server mapping

(D1) before the suspension of lower criticality tasks (D2). An
industrial case study was used to evaluate the approach. This
demonstrated the need to keep the overheads of the hypervisor
as low as possible.

Future work will move the scheme to multi-core platforms,
this is a strong requirement of the automotive domain, al-
though it presents a number of significant challenges.

REFERENCES

[1] ISO 26262-2:2011 road vehicles — functional safety.

[2] XtratuM, August 2012. [Accessed: 16 Feb 2016].

[3] U. Abelein, H. Lochner, D. Hahn, and S. Straube. Complexity, quality
and robustness-the challenges of tomorrow’s automotive electronics. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 870-871. IEEE, 2012.

[4] H. André and H. Gernot. Operating systems technology for converged
ECUs. In 6th Embedded Security in Cars Conference. ISITS, 2008.

[5] ARM Information Center. ARM1176JZE-S™technical reference man-
ual, 2009. [Accessed: 14 May. 2016].

[6] AUTOSAR. AUTomotive Open System ARchitecture, August 2012.
[Accessed: 30 Sep. 2012].

[7]1 P. Barham and et al. Xen and the art of virtualization. In Proceedings of
the nineteenth ACM symposium on Operating systems principles, pages
164-177. ACM, 2003.

[8] M. Broy. Challenges in automotive software engineering. In Proceedings
of the 28th international conference on Software engineering, ICSE 06,
pages 33-42, New York, NY, USA, 2006. ACM.

[91 M. Broy, L.LH. Kruger, A. Pretschner, and C. Salzmann. Engineering
automotive software. Proceedings of the IEEE, 95(2):356 —373, February
2007.

[10] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine
architecture. In Proceedings of the National Computer Conference and
Exposition, pages 291-299. ACM, 1973.

[11] A. Esper and et al. How realistic is the mixed-criticality real-time system
model? In Proceedings of the 23rd International Conference on Real
Time and Networks Systems, RTINS 15, pages 139-148, 2015.

[12] Chiristos Evripidou. Scheduling for Mixed-criticality Hypervisor Sys-
tems in the Automotive Domain. PhD thesis, University of York,
Department of Computer Science, 2016.

[13] Robert Kaiser. Combining partitioning and virtualization for safety-
critical systems. Embedded World Conference, January 2009.

[14] E Kirschke-Billern and et al. AUTOSAR - A worldwide standard:
Current developments, roll-out and outlook. In 15th International VDI
Congress Electronic Systems for Vehicles, Baden-Baden, Germany, 2011.

[15] Open Kernel Labs. OKL4 microvisor, August 2012. [Accessed: 01 Oct.
2012].

[16] E. Missimer, K. Missimer, and R. West. Mixed-criticality scheduling
with I/O. In Proc. 28th ECRTS, pages 120-130, 2016.

[17] G. Morgan. Safety and security with hypervisor technology. In
Embedded World Conference, Nuremberg, Germany, February 2016.
Design & Elektronik.

[18] T. Nolte. Hierarchical scheduling of complex embedded real-time
systems. In Ecole d’Ete Temps-REel (ETR), 2009.

[19] G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412-421, 1974.

[20] A. Pretschner, M. Broy, I.H. Kruger, and T. Stauner. Software engineer-
ing for automotive systems: A roadmap. In 2007 Future of Software
Engineering, FOSE, pages 55-71, Washington, DC, USA, 2007. IEEE
Computer Society.

[21] SYSGO AG. PikeOS RTOS and virtualization concept, August 2012.
[Accessed: 16 Feb 2016].

[22] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS), pages 239-243, 2007.

