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Abstract—The problem of infering the top component of a
noisy sample covariance matrix with prior information about
the distribution of its entries is considered, in the framework
of the spiked covariance model. Using the replica method of
statistical physics the computation of the overlap between the top
components of the sample and population covariance matrices
is formulated as an explicit optimization problem for any kind
of entry-wise prior information. The approach is illustrated on
the case of top components including large entries, and the
corresponding phase diagram is shown. The calculation predicts
that the maximal sampling noise level at which the recovery of
the top population component remains possible is higher than
its counterpart in the spiked covariance model with no prior
information.

Index Terms—Random Matrix Theory, Spiked Covariance
Model, Prior Information, Replica Method, Phase Transitions

I. INTRODUCTION

In the era of big data inferring features of complex systems,
characterized by many degrees of freedom, is of crucial
importance. The high-dimensional setting, where the number
of features to extract is not small compared to the number of
available data, makes this task statistically or computationally
hard. One case of practical interest is the inference of the
largest component (eigenvector) of correlation matrices. Con-
sider T independently drawn observations of N interacting
Gaussian variables, i.e. such that the population covariance
matrix C is not the identity matrix. If T is much larger
than N the empirical covariance matrix Ĉ computed from
the T observations converges to C, and recovering the top
eigenvector is easy. The case where both N,T are large
(sent to infinity at fixed ratio r = N/T ) has received a lot
of attention, both theoretically and practically [1]. From a
theoretical point of view, it has been shown, in the case of
a covariance matrix C with one (or few compared to N )
eigenvalues larger than unity, say, γ, that recovery is possible
if r is smaller than the critical value rc = (γ − 1)2 [2], [3].
For larger sampling noise (r > rc), the top eigenvector of
Ĉ is essentially orthogonal to the top component of C, and
is therefore not informative. It is reasonable to expect that
the situation will improve in the presence of additional, prior
information about the structure of the top component to be
recovered, and that recovery will be possible even when r is
(not too much) larger than rc. That this is indeed the case has
been rigorously shown when all entries are nonnegative [4],
and is supported by strong numerical evidence when the top

component is known to have large entries (finite as N →∞)
[5]. In the present work, using techniques from statistical
physics we propose explicit conjectures about the critical noise
level and its dependence on the signal eigenvalue (γ) and on
prior knowledge. The framework is general and can be applied
to any kind of entry-wise prior probability, i.e. factorized over
the entries ξi of the top component ξ. We show how rigorous
results in the nonnegative case of [4] are recovered, and present
new results for the large entry prior.

The motivation to consider the latter prior stems from
computational biology, more precisely, from the study of co-
evolution between amino acids in protein families. Sequences
of proteins diverged from a common ancestor widely differ
across many organisms, while the protein structure and func-
tion are often very well conserved. The constraints induced
by structural and functional conservation manifest themselves
as correlations between amino acids (the N variables, where
N is the protein length) across the different organisms (the
T observations). Recently, it was shown that the eigenmodes
ξ of the amino-acid covariance matrix corresponding to low
eigenvalues were informative about three-dimensional contacts
on the protein structure [6]. These modes show large entries on
the protein sites and amino-acid types in contact; as the other
entries contain diffuse, non-structural signal [7], the compo-
nents ξ cannot be thought of as being sparse. The presence
of large entries in structurally-informative components was
empirically assessed through the so-called inverse participation
ratio,

∑
i ξ

4
i (for normalized ξ), a quantity that remains finite

for components with (few) large entries and otherwise vanishes
for N → ∞. We hereafter use this quantity as a prior over
the components to facilitate their recovery.

II. PROBABILISTIC FRAMEWORK

A. Spiked covariance model

We consider the popular Spiked Covariance Model, in which
the entries of N -dimensional vectors, x = (x1, x2, ..., xN ), are
Gaussian random variables with zero means and population
covariance matrix C. All eigenvalues of C but one are equal to
unity, while the remaining eigenvalue is γ 6= 1, with associated
eigenvector u. As usual we choose γ > 1 but our results could
be transposed to the case γ < 1 with minor modifications. We
draw T independent samples xt, t = 1, 2, ..., T , and define the
sample covariance matrix Ĉ, with entries Ĉij = 1

T

∑
t x

t
ix
t
j .

The top eigenvector of Ĉ is denoted by ξ. In the double limit



N,T → ∞ at fixed ratio r = N/T , there exists a phase
transition at a critical value of the sampling noise rc = (γ−1)2
separating the high-noise regime, r > rc, in which ξ and u
have asymptotically zero squared dot product, and the low-
noise regime, r < rc, where the squared dot product between
ξ and u is strictly positive with high probability [2], [3].

B. Likelihood of principal component ξ

The sample covariance matrix Ĉ obeys a Wishart distribu-
tion, determined by C, N and T . Using Bayes formula we may
write the likelihood (density of probability) for the normalized
top component ξ of Ĉ as follows

ρ(ξ) ∝ exp

r β
2

∑
i,j

ξi Ĉij ξj

 δ(ξ2 − 1) , (1)

up to a normalization coefficient. Parameter β above is equal
to βBayes = 1− 1

γ . However, it is convenient to consider β as
a free parameter. The β →∞ limit corresponds to Maximum
Likelihood inference, while working at low values of β may be
useful to ensure rapid mixing of Monte Carlo Markov Chain
sampling of distribution ρ, especially in the presence of prior
information, see below.

C. Prior information over ξ

We now assume that prior information over the population
eigenvector u is available under the form of a potential V
acting on the entries of ξ. The posterior distribution over the
top component now reads

ρ(ξ) ∝ exp

r β
2

∑
i,j

ξi Ĉij ξj −
∑
i

V (ξi)

 δ(ξ2−1) , (2)

up to a normalization coefficient. Three choices for the poten-
tial V are shown in Fig. 1. Motivated by previous works on
protein sequence analysis, see Introduction, we will hereafter
mostly concentrate on V (ξ) = −V0 ξ4, with V0 ≥ 0
(Fig. 1(a)). This potential favors the presence of large entries
in the top component, but does not rule out the existence of
many entries with small magnitude (typically, of the order
of N−1/2). It is therefore different from sparsity-enforcing
potentials, such as V (ξ) ∝ |ξ| in Fig. 1(b). Exact results for
the location of the transition in the nonnegative case (Fig. 1(c))
were recently derived [4]. Our formalism finds back those
results, and can be applied to any potential V as shown below.

III. CALCULATION OF PHASE DIAGRAM

A. General replica calculation

We assume that the logarithm, divided by N , of the nor-
malization coefficient of ρ in Eq. (2),

Z(Ĉ) =

∫
ξ2=1

dξ exp

r β
2

∑
i,j

ξi Ĉij ξj −
∑
i

V (ξi)


(3)

is concentrated around its expectation value L ≡ 1
NEĈ[logZ]

in the N,T →∞ limit, and compute the latter with the help of
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Fig. 1. Three potentials V (ξ) corresponding to three prior information about
the entries ξ of the principal component: (a) large entries are present, (b) L1

penalty favoring zero entries, (c) all entries are nonnegative.

the replica method, a non rigorous technique commonly used
in the statistical physics of disordered systems [8], see [9],
[10], [11] for recent applications to related high-dimensional
inference problem. We obtain

L(r, γ, β) = Extr
{
− 1

2r
log

(
1

β
− q0 + q1

)
− q0q̂0

+
q1

2r( 1β − q0 + q1)
+
(
q̂0 − q̂1

)(
1 + (γ − 1)p2

)
+ µ̂+ q1q̂1 + pp̂− 1

2
log µ̂+

q̂1
2µ̂

+ L̃(µ̂, p̂,u)

}
,

(4)

where the Extremum is computed over the order parameters
p2 = 1

NEĈ[〈(
∑
i uiξi)

2〉Ĉ], q0 = 1
N

∑
i,j CijEĈ[〈ξiξj〉Ĉ],

q1 = 1
N

∑
i,j CijEĈ[〈ξi〉Ĉ〈ξj〉Ĉ], and the conjugated La-

grange multipliers q̂0, q̂1, µ̂. Here, 〈·〉Ĉ denotes the expectation
over the ρ distribution over ξ in Eq. (2). The term L̃ in Eq. (4)
depends on the prior potential V and on the structure of the
normalized population top component u, more precisely, on
how its entries scale with N . We now consider two cases of
interest.

B. Case of nonnegative entries

We assume first that the components of u scales as ũi√
N

,
with ũi finite, and denote by ϕ(ũ) the distribution of the ũi. We
focus on the nonnegative entry prior, for which V (ξ) = +∞
for ξ < 0 and 0 for ξ ≥ 0. We obtain

L̃ =
p̂2

2µ̂
+

1

2µ̂

∫
dũ ϕ(ũ)

[
log erfc

(
−p̂ ũ− z

√
2q̂1

2
√
µ̂

)]
z

,

(5)

where erfc is the complementary error function, and [F (z)]z
denotes the average of F (z) over the Gaussian measure,
e−z

2/2/
√
2π. After some elementary algebra, we obtain the

expression for the overlap

p =
[ũ(x ũ+ z)]+z
[(x ũ+ z)2]+z

with x =
p̂√
2q̂1

=
(γ − 1) p√

r(1 + (γ − 1)p2)
(6)

where [F (z))]+z = [max(F (z), 0)]z . These equations corre-
spond to Eqs. (7), (8), (9), (21) and (23) of [4].



C. Case of large entries

We now assume that u has only K ‘large’ entries,
u1, ..., uK , different from zero in the N → ∞ limit (with
finite K), and that the other entries decay fast enough with
N , e.g. are of the order of 1√

N
. Then

L̃ = −
K∑
i=1

min
−1≤ξ≤1

{
µ̂ ξ2 + p̂ ui ξ + V (ξ)

}
, (7)

While the above formula is valid for generic V we restrict
ourselves, in the remaining part of this article, to the potential
V (ξ) = −V0 ξ4. Furthermore, we assume that the K finite
entries of u are all equal to u = 1√

K
; The calculation can be

easily extended to u < 1√
K

, or to the case of nonhomogeneous
entries ui. In addition we assume that (A1) all ξis take
identical values in Eq. (4) (homogeneous regime); (A2) ξ has
no large (finite when N → ∞) entry ξi on sites such that
ui = 0. The validity of these assumptions will be discussed
in the next Section.

After some elementary algebra the extremization conditions
reduce to the following set of K + 1 coupled equations over
µ̂ and the first K entries of ξ:

ξi −
2V0
µ̂

ξ3i =
(γ − 1)p

r
√
K
(

2µ̂
β − 1

) (i = 1, ...,K) ,

K∑
i=1

ξ2i = 1− 1

2µ̂
−

1 + (γ − 1)p2 − 1
2µ̂

r
(

2µ̂
β − 1

)2 (8)

where

p =
1√
K

K∑
i=1

ξi . (9)

Note that the K variables ξis obey the same cubic equation
and, hence, can take at most three different values as i varies.

The equations above admit the solution p = ξi = 0, µ̂ = 1
2 ,

corresponding to the ‘unaligned’ phase. In addition, in some
well-defined regions of the four-dimensional control parameter
space (r, γ, β, V0) solutions with p 6= 0 may be found. We give
in Section IV below results for three cases: (A) no prior (V0 =
0); (B) weak exploitation of many data with prior information
(small β, r for finite V0); (C) maximum a posteriori inference
(finite r, and infinite β and V0 at fixed ratio V0/β).

IV. RESULTS FOR ‘LARGE ENTRY’ PRIOR

A. Warm-up: no prior

We start with the case V0 = 0. Extremization conditions
over the parameters in Eq. (4) give the value of the squared
overlap p2 between u and ξ for any β. We find: p2 = 0 for
r > rc = (1− γ)2 whatever the value of β, and, for r < rc,

p2 =

(
1− β(r)

β

)(1− r
r2c

1 + r
rc

)
if β > β(r) ≡ r

r + γ − 1
.

(10)
Those expressions perfectly agree, in the β → ∞ limit, with
known results for the spiked covariance model [2], [3]. In

addition our formalism gives access to the value of p2 for
finite β. Note that, for r < rc, inference of the direction of u
is possible, i.e. p2 > 0, even for β ≤ βBayes (but larger than
β(r)). At the critical noise, β(rc) = βBayes.

B. Inference at low β with prior information

The above results imply that, in the absence of prior
information (V0 = 0), inference of the top component direction
is possible at low β → 0 provided the sampling noise r is
smaller than β/(1 − γ). In other words, when both β and r
tend to zero with a fixed ratio β̃ = β/r, the aligned and not-
aligned phases correspond, respectively, to β̃ > β̃c(0) =

1
γ−1 ,

and β̃ < β̃c(0).
We expect the critical ratio β̃c(V0) to be a drecreasing

function of the prior strength V0, as stronger prior should
facilitate the recovery of the large-entry top component u.
Resolution of Eq. (8) gives the phase diagram shown in Fig. 2.
Several regimes can be identified, depending on V0:
• For 0 < V0 ≤ K

4 , the critical ratio β̃c(V0) remains
unchanged, see Fig. 2, and equal to 1

γ−1 . As β̃ crosses
this critical value the overlap p continuously increases
from 0 to a positive value, see Fig. 3.

• For K
4 < V0 ≤ K, the aligned phase (p 6= 0) exist

for β̃ > β̃c,1 =
4
√
V0/K

(
1−
√
V0/K

)
γ−1 , see dashed line

in Fig. 2. As β̃ crosses β̃c,1 the squared overlap p2

discontinuously jumps from 0 to 1− 1
2
√
V0
> 0, see Fig. 3.

• For K
4 < V0 ≤ V +

0 × K, the aligned phase (p 6= 0)
is thermodynamically stable, meaning that the value L+

of L in Eq. (4) attached to this phase is larger than the
one of the nonligned phase (p = 0), L0 = 1

2 (1 + β̃), for
β̃ > β̃c,2, see full line in Fig. 2. The value of β̃c,2 and
of the overlap p2 at the phase transition are the roots of
the two coupled equations

0 =
p22

1− p22
+

1

2
log
(
1− p22

)
− V0
K
p42 ,

β̃c,2 =
1

1− p22
− 4

V0
K
p22 ,

(11)

where the first equation actually implements the condition
L+ = L0. The phase transition is illustrated in the middle
panel of Fig. 3 for a specific value of V0. The value of
V +
0 ' 1.227703... is defined from

V +
0 = min

{
V0 s.t.max

ξ 6=0

(
log(1− ξ2) + 2V0 ξ

4
)
> 0
}

(12)
• For V0 ≥ V +

0 × K the prior strength is so strong that
the inferred component ξ has few large entries whatever
the value of β. For β > 0 it is aligned (p 6= 0) with u
(Fig. 3), while for β < 0, it is not, see Fig. 2.

Assumption (A1), see Section III-C, is trivially valid for
K = 1, but is not necessarily correct for K ≥ 2 and strong
prior strength, for which we expect that ξ will condensate
and one component, say, ξ1, will be larger than the other
components, say, ξi, with i = 2, ...,K (nonhomogeneous
regime). The transition line between these two regimes is
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Fig. 3. Average squared overlap between top components of the population
and sample covariance matrices, p2 ≡ EĈ[(u · ξ)2], vs. control parameter
(γ − 1)β̃ for three prior strengths and K = 1.

identified upon imposing that the cubic equation over ξi in
Eq. (4) admits a two-fold degenerate solution ξ, that is,
6V0 ξ

2 = µ̂. The transition line is plotted in the phase diagram
of Fig. 2 (dot-dashed line), and ends up in the point of
coordinate ( 49 ,

8
9 ) lying on the existence line (dashed line).

C. Inference at high β with strong prior information

We now focus on MAP inference at finite sampling noise
r, whereas β and V0 are both sent to infinity, with a fixed
ratio S = r V0/(β). Parameter S, hereafter referred to as
the slope, controls the relative magnitude of the Ĉ-dependent
and prior terms in ρ, see Eq. (2), while the multiplicative
factor r is introduced in the definition of S to compensate
for the explicit dependence upon r in ρ. For simplicity we
present results for K = 1 only, the extension to larger K
being rather straightforward. Equations (8) admit the solution
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Fig. 4. Average squared overlap between top components of the population
and sample covariance matrices, p2, vs. slope S for sampling noises r = 0.2
(top) and 0.4 (bottom). Note the presence of the discontinuous transition at
S− ' 2.19 in the latter case. The randomly condensed solution appears for
S > S+ ' 3.68. Here, rc = (γ − 1)2 = 0.25.

p = 0, µ̂ = 1
2 , and another solution, with µ̂ → ∞ as

β, V0 →∞, with ratios β/µ̂, V0/µ̂ having finite limits. After
some simple algebra we obtain the following expresson for
the slope as a function of the squared overlap for the latter
solution:

S(p2) =

(
r − (γ − 1)y

)(
1 + y

)
4 p2 y

with y =

√
r(1− p2)

1 + (γ − 1)p2
.

(13)
We show in Fig. 4 the representative curve of p2 vs. the slope
S, for r below and above the critical noise level, rc = (γ−1)2,
in the absence of prior. For r < rc the squared overlap is an
increasing function of S, starting from a non zero value for
S = 0: the population eigenvector direction can be estimated
without prior at low sampling noise [3], but the overlap is
increased in the presence of prior. For r > rc a discontinuous
jump is observed from p = 0 to p > 0 at a critical value of
the slope,

S− = min
p2>0

S(p2) (r > rc) , (14)

while the overlap further increases as S exceeds S−. Remark-
ably, even for large sampling noise values, the presence of a
sufficiently strong prior allows us to infer u. The value of S−
as a function of the noise level r is shown in Fig. 5; for large
noise levels we have S− = r

4 + 3
44/3

γ1/3 r2/3 +O(r1/3).
This aligned phase competes with a nonaligned, but con-

densed phase, in which assumption (A2), see Section III-C,
is violated. In other words, for S and r sufficiently large, ξ
has few large entries (ξ2j > 0 in the N → ∞ limit), but not
along the directions i corresponding to the large components
of u; hence, p2 = 0. To describe this new phase we set ui
to 0 in the expression for L̃ in Eq. (7). The corresponding
optimization equations can be solved in the β, V0 →∞ limit,
with the result that the nonaligned, condensed regime exists
for S larger than

S+ = min
0<b<

√
r

1+
√

r

[
r2(1− b)2

4b
(
r(1− b)2 − b2

)] . (15)
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Here, K = 1.

The value of S+ as a function of the noise level r is shown
in Fig. 5. For small r (slightly above rc) we observe that
S+ is larger than S−, as intuitively expected: it is favorable
to condense ξ along the direction of u rather than any other
direction. It can be checked that the value of L in Eq. (4) is
higher for this phase than for the aligned condensed phase.
Hence, as soon as S exceeds S+ the overlap p vanishes.

For large noise levels, however, we have S+ = r
4 +

3
44/3

r2/3+O(r1/3), which is asymptotically smaller than S−,
see insert of Fig. 5. Indeed, the threshold slopes S− and S+

cross at a well-defined value of the noise, rd, which depends
on the top eigenvalue γ. We show in Fig. 6 the behaviour of rd
vs. γ, and compare it to the critical noise rc in the absence of
prior. We observe the presence of a region in the (γ, r) plane,
above the critical line rc, where the direction of u can be
inferred thanks to the large-entry prior. Our replica symmetric
theory predicts that the benefit of the prior does not extend to
very large values of the signal eigenvalue γ and of the noise
r, see Fig. 6.

V. CONCLUSION

The non rigorous calculations done in this paper suggest that
inference of the top component of the population covariance
matrix is possible in the presence of prior information, even
above the critical noise level of the spiked covariance model,
in agreement with rigorous results for the nonnegative case [4]
and numerical investigations for the large-entry case [5]. Many
interesting questions have not been investigated in the present
paper: how hard is the recovery problem from a computational
point of view? Are there ‘dynamical’ phase transitions separat-
ing subregions in the aligned phase, where the top component
can be recovered in polynomial time or not? If so how do these
line compare to the ‘static’ critical lines derived in this paper?
In addition it would be interesting to investigate the validity
of the replica-symmetric hypothesis used to derive the results
above [8]. Though replica symmetry is generally expected to
be correct for convex optimization problems what happens in
nonconvex situations is not clear. For instance, inference of
the top component with the nonnegative prior gives rise to a
nonconvex optimization problem [4], but all rigorous results
are exactly found back within our replica symmetric approach,
see Section III.B. From this perspective it would be useful
to investigate whether the present results are robust against
replica symmetry breaking.
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