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A VARIATIONAL APPROACH FOR GEOACOUSTIC INVERSION USING ADJOINT MODELING OF A PE APPROXIMATION MODEL WITH NON LOCAL IMPEDANCE BOUNDARY CONDITIONS

The adjoint model method of control theory is known to give accurate and efficient data assimilation processes in oceanography and meteorology. However, it has rarely been applied in underwater acoustics for inversion purposes. Based on the back-propagation of the mismatch between observations and their predictions, the adjoint model can produce the corrections to the associated direct forward model input parameters. In this paper, the adjoint of a parabolic equation propagation model with non local impedance boundary conditions at the water sediment interface is used in order to determine an acoustically equivalent representation of the seabed. The bottom is represented by these boundary conditions that play the role of the control parameter.

Introduction

Bottom properties are essential in shallow water acoustics for prediction of the transmission losses encountered in sonar applications. In the last decade inversion methods based on signal processing approaches (matched field processing, inversion of broadband signals) have been applied extensively to estimate geoacoustic features of the bottom (see [START_REF] Chapman | Benchmarking geoacoustic inversion methods -Special Issue[END_REF][START_REF] Hermand | Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory and experimental results[END_REF] for a survey of the state of the art). The optimization techniques that have so far been used within these methods are mostly perturbative approaches based on the iterative adjustment of the input parameters of a forward model. The forward model is run for a great number of input parameter values until the mismatch between the observations (like the spatial structure of the complex pressure field or the temporal structure of the propagated signal) and their predictions is low. This often results in highly computationally intensive methods.

In this paper, we present an alternative technique based on a variational approach coming from the control theory. This technique aims to solve optimization problems based on partial differential equations. The theory is detailed in [START_REF] Lions | Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués[END_REF]. Variational methods by adjoint modeling are tools that have so far been developed in the framework of inverse modeling of physical systems, in particular in the domains of geophysics and molecular physics. Their use has been generalized especially to meteorology and oceanography for the purposes of data assimilation [START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation -Part I[END_REF][START_REF] Courtier | Variational assimilation of meteorological observations with the adjoint vorticity equation -Part II[END_REF][START_REF] Leredde | On initial boundary conditions and viscosity coefficient control for Burgers' equation[END_REF], model adjustment [START_REF] Schröter | Variational assimilation of GEOSAT data into an eddy-resolving model of the Gulf-Stream extension area[END_REF], data inversion [START_REF] Plessix | Waveform inversion of reflection seismic data for kinematic parameters by local optimization[END_REF][START_REF] Jameson | Aerodynamic design via control theory[END_REF][START_REF] Dimet | Variational algorithms for analysis and assimilation of meteorological observation: Theoretical aspects[END_REF][START_REF] Belmiloudi | A control method for assimilation of surface data in a linearized Navier-Stokes-type problem related to oceanography[END_REF] and sensitivity studies [START_REF] Cacucci | Sensitivity theory for nonlinear systems. Part I: Non linear functional analysis approach[END_REF]. Variational methods have been recently used for acoustic inversion [START_REF] Asch | An adjoint method for geoacoustic inversion[END_REF][START_REF] Hursky | Adjoint-assisted inversion for shallow water environment parameters[END_REF][START_REF] Asch | Adjoint modeling for geoacoustic inversion -I: PE approximation with local impedance boundary conditions[END_REF][START_REF] Gac | Adjoint modeling for geoacoustic inversion -II: PE approximation with non local impedance boundary conditions[END_REF]. In [START_REF] Asch | An adjoint method for geoacoustic inversion[END_REF], we proposed an optimal control approach based on the use of a parabolic equation (PE) propagation model in which a local impedance condition at the water-sediment interface plays the role of the control parameter. The geoacoustic concept that was used was that of the acoustically equivalent medium. Rather than seeking the geoacoustic parameters in the physical parameter space, we computed the sea bottom conditions in a way that was not directly comparable with a ground truth model but that was sufficient to predict the field of acoustic transmission losses. These first developments and a feasibility study allowed us to demonstrate the controllability of the PE approximation suggesting the variational approach as a rather promising technique for geoacoustic inversion. However, the use of local impedance conditions is rather limited (though realistic in the framework of aerial acoustics [START_REF] Robertson | Low frequency sound propagation modeling over a locally reacting boundary with the parabolic approximation[END_REF]), since they can only be used for local reacting media. For underwater acoustics, a downgoing radiation condition must be imposed on the transmitted component of the field since the seabed is penetrable to sound waves, especially at low frequencies. In PE models, this can be done by appending an absorbing layer [START_REF] Jensen | Computational Ocean Acoustics (AIP Series in Modern Acoustics and Signal Processing[END_REF] or alternatively by applying a non local boundary condition (NLBC). This last method that was first formulated and implemented in a finite difference code by Papadakis [START_REF] Papadakis | Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics[END_REF] is rather attractive. Since then, numerous different forms of the NLBC concept have been proposed (see [START_REF] Yevick | Non local boundary conditions for finite difference parabolic equation solvers[END_REF] for some references).

In this paper, we apply the NLBC formulation described in [START_REF] Yevick | Non local boundary conditions for finite difference parabolic equation solvers[END_REF] to generate realistic boundary conditions and then adopt a generalized form of these NLBC conditions for the rest of the study. In section 2, the inverse continuous physical problem is presented. We define the associated optimal control problem and compute the analytical form of the gradient of the cost function by using the adjoint model of a PE propagation model. The use of the adjoint model and the gradient of a cost function within a gradient based optimization loop is then presented. In section 3, we present some numerical simulations showing the data assimilation of acoustical data for geoacoustic inversion purposes.

The continuous problem

The variational approach being new in the framework of geoacoustic inversion, we adopt a rather simple monochromatic matched field processing inverse technique. The acoustical data we thus use (or the observations) are the spatial structure of the complex pressure field measured along a vertical line array.

The direct forward model

The direct forward model is the standard PE approximation [START_REF] Tappert | The parabolic approximation method[END_REF]. The model recognized as the Standard PE is given for a harmonic point source of time dependence For the boundary conditions at the water-sediment interface H z = , we adopt the NLBC formulation proposed by Yevick and Thomson [START_REF] Yevick | Non local boundary conditions for finite difference parabolic equation solvers[END_REF]. In that paper, the authors proposed a procedure for obtaining NLBC's directly from the z-space Crank-Nicolson solvers for both the narrow-angle standard and the wide-angle Claerbout PE's. The calculation of the wave field 
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where ρ is the density, the subscript b indicates the bottom, and the subscript w indicates the sea water. The numerical implementation of this NLBC requires that the operator 0 Γ is Taylor-expanded in T , which can be finally expressed as: The above model was shown to give accurate simulations of the acoustic pressure field for homogeneous semi-infinite fluid or solid half-spaces. In the following study, this reference model is used to generate realistic NLBC's related to some given geoacoustic parameters. However, due to the difficulty to directly apply the variational approach to this reference model, we chose to generalize Eq.( 4) in the following form:
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For the numerical results presented in section 3, the initial and the true NLBC parameters β and F are first calculated with the reference model to obtain simulations that represent realistic environments of underwater acoustics. As a synthesis, the continuous direct model can be written as:
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where R is the distance between the source and the vertical line array on which the acoustic pressure field is measured, and ) , ( s z z S is the acoustic source at s z z = .

The inverse problem formulation

The control procedure consists of finding the optimal controls ] , [ , obtained from the direct model Eq.( 6):
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The problem is to find:
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where ad G is the set of admissible controls. We note that Eq.( 7) is the simplest possible cost function and that we can add regularization terms to it. , the concatenation of some perturbations of the control parameters. The necessary condition for the existence of a minimum is given by the following theorem.

Let us define
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is the directional Gâteaux derivative of J at the point ψ along the direction φ .

Following the same developments as in [START_REF] Asch | An adjoint method for geoacoustic inversion[END_REF], we start by calculating the variation of J :
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We introduce the real-valued scalar product:
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where v is the complex conjugate of v .

Assuming that ) , ( ' φ ψ J exists for all φ and is continuous and linear inφ , the gradient ) (φ J ∇ can be defined as the linear form: . ),
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The optimization problem Eq.( 8) cannot be resolved directly by using 12). The variation can be written in the following form: 
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By subtracting Eq.( 15) from Eq.( 14), dividing the result by t and letting t tend to zero, the system satisfied by w , called the tangent linear model (TLM) is given by:
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The aim is to use the TLM to evaluate ) , ( ' φ ψ

J

. By introducing a function ) , ( z r p , and by using the TLM, ) (φ J ∇ can be identified directly from Eq.( 12). The new variable ) , ( z r p , called the adjoint variable, satisfies the following system (that is, of the same degree of complexity as the TLM satisfied by w :
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This model, called the adjoint model is running backwards in r from R r = to 0 = r . It allows us to calculate ' J . Taking the scalar product of the TLM Eq.( 16) with the adjoint variable p and integrating by parts:
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we finally find, after some analytical developments, that the derivative of J with respect to φ is given by: . ,
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This latest equation can be reformulated in terms of the gradient of the cost function:
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where p is the solution of the adjoint equation obtained from the application of the theorem.

The optimization procedure

By using the successive resolution of both the forward direct model and the backward adjoint model, we can therefore calculate the exact gradient of the cost function relative to the control parameter [ ]
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. Once the gradient of the cost function J ∇ is known, we can seek a (local) minimum of ) (ψ J

. The global optimization procedure is summarized in Fig. 1. In order to accelerate the convergence, we use a classical conjugate gradient method of Polack-Ribière type rather than the simplest method of steepest descent. The algorithm that is used is described in [START_REF] Frandsen | Unconstrained optimization[END_REF] and proceeds in two steps. First, the direction of minimization is computed following the Polack-Ribière algorithm that exploits the gradient of the cost function Eq. [START_REF] Tappert | The parabolic approximation method[END_REF]. Then the step length along the minimization direction is computed thanks to a soft linesearch algorithm that applies the Wolfe criteria. The interested reader is referred to [START_REF] Frandsen | Unconstrained optimization[END_REF] for a precise description of the implemented algorithm. The numerical results that are presented in this section rely on the finite-difference implementation of the direct and the adjoint models presented above, and of the associated discrete version of the gradient of the cost function. Before applying the inversion procedure, a gradient check (not shown here) was performed.

For a frequency of 500 Hz, we present the results obtained with an isovelocity sound speed profile in the water column of 1500 m s -1 . The true non local impedance boundary conditions were initially calculated for a sandy reflecting bottom a compression speed of 1600 m s -1 , an attenuation of 0.5 dB/λ and a density of 1.8 g cm -3 . The initial ones were obtained with a soft sediment (mud) characterized by a compression speed of 1505 m s -1 , the other parameters remaining unchanged. No more than 5 or 6 iterations of the optimization algorithm were needed for the algorithm to converge. However, due to the drastic convergence criteria we adopted for our calculations, we reached a maximum of 10 iterations. The corresponding computations, performed on a high-end PC (Pentium IV, 2 GHz), required around 20 minutes for a complete inversion. By optimizing the convergence criteria, this could be reduced by a factor of two.

Figure 2 gives an overall representation of the reconstruction of the field in the entire range-depth domain. Although the initial field (top) was quite different from the true field (middle), the field calculated after inversion (bottom) agrees very well with the true one. The improvement of the acoustic pressure filed is drastic, the initial error for ranges greater than 400 m being reduced from 30-40% to only 2% approximately. 3 is devoted to the representation of the parameters. We can observe that the accuracy of the F parameter is excellent after the inversion process. On the contrary, the β parameter is badly determined, which is certainly due to the ill-posed nature of the inverse problem. The use of a wider angle PE approximation is susceptible to improve our results since the angular limitation of the standard PE approximation imposes that the chosen Gaussian source has no interaction with the bottom near the source. This assumption is under investigation.

Conclusions

We have generalized the variational approach that was presented in [START_REF] Asch | An adjoint method for geoacoustic inversion[END_REF]. Here we treat the case of a PE propagation model constrained by NLBC's to simulate realistic environments in underwater acoustics. The obtained results are promising. They show that for a reasonable computational cost punctual acoustical data can be assimilated (here, vertical array data) which results in a global and drastic improvement of the prediction of complex pressure fields. The other central concept underlying our variational approach is that of the acoustically equivalent medium. This results in a rather abstract but concise representation of the geoacoustic properties of the seabed via its non local boundary conditions. These NLBC's are not easily related to the classical geoacoustic parameters of the bottom but are able to simulate the same acoustical behavior, at least for the simple but realistic environments considered in our simulations. In sonar applications, one of the main objectives is to be able to predict the acoustical losses in the water column. For this purpose the concept of acoustically equivalent medium is relevant and NLBC's are therefore good potential candidates as equivalent models. The presented method is rather new and should be studied in order to improve the generality of the approach. Further works should be involved in the use of sparse linear arrays and wider angle PE approximations or other propagation models. The application of the method will also be studied in the case of more complex seabed properties (multi-layered sub-bottoms). More importantly, and following the last tendencies in geoacoustic inversion, multi-tone and broadband signals will be considered in order to physically constrain the inverse problem and to aim at a unique inverted solution.
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 1 Figure 1. Optimization algorithm -J is minimized until some convergence criteria are attained.
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 2 Figure 2. Visualization of the amplitude of the initial (top), true (middle) and inverted (bottom) u fields for f=500 Hz. After the assimilation process, the inverted and the true fields are nearly identical.
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 3 Figure 3. Comparison of the initial, the true and the inverted control parameters -(a)(b) Inversion of the real and imaginary parts of the β parameter -(c)(d) Inversion of the real and imaginary parts of the F parameter.
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