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The adjoint model method of control theory is known to give accurate and efficient data assimilation 
processes in oceanography and meteorology. However, it has rarely been applied in underwater 
acoustics for inversion purposes. Based on the back-propagation of the mismatch between 
observations and their predictions, the adjoint model can produce the corrections to the associated 
direct forward model input parameters. In this paper, the adjoint of a parabolic equation propagation 
model with non local impedance boundary conditions at the water sediment interface is used in order 
to determine an acoustically equivalent representation of the seabed. The bottom is represented by 
these boundary conditions that play the role of the control parameter. 

1 Introduction 

Bottom properties are essential in shallow water acoustics for prediction of the 
transmission losses encountered in sonar applications. In the last decade inversion 
methods based on signal processing approaches (matched field processing, inversion of 
broadband signals) have been applied extensively to estimate geoacoustic features of the 
bottom (see [1,2] for a survey of the state of the art). The optimization techniques that 
have so far been used within these methods are mostly perturbative approaches based on 
the iterative adjustment of the input parameters of a forward model. The forward model is 
run for a great number of input parameter values until the mismatch between the 
observations (like the spatial structure of the complex pressure field or the temporal 
structure of the propagated signal) and their predictions is low. This often results in highly 
computationally intensive methods. 

In this paper, we present an alternative technique based on a variational approach 
coming from the control theory. This technique aims to solve optimization problems 
based on partial differential equations. The theory is detailed in [3,4]. Variational methods 
by adjoint modeling are tools that have so far been developed in the framework of inverse 
modeling of physical systems, in particular in the domains of geophysics and molecular 
physics. Their use has been generalized especially to meteorology and oceanography for 
the purposes of data assimilation [5-7], model adjustment [8], data inversion [9-10,11-12] 
and sensitivity studies [13]. Variational methods have been recently used for acoustic 
inversion [14-15,22-23]. In [14], we proposed an optimal control approach based on the 
use of a parabolic equation (PE) propagation model in which a local impedance condition 
at the water-sediment interface plays the role of the control parameter. The geoacoustic 



 

concept that was used was that of the acoustically equivalent medium. Rather than 
seeking the geoacoustic parameters in the physical parameter space, we computed the sea 
bottom conditions in a way that was not directly comparable with a ground truth model 
but that was sufficient to predict the field of acoustic transmission losses. These first 
developments and a feasibility study allowed us to demonstrate the controllability of the 
PE approximation suggesting the variational approach as a rather promising technique for 
geoacoustic inversion. However, the use of local impedance conditions is rather limited 
(though realistic in the framework of aerial acoustics [16]), since they can only be used 
for local reacting media. For underwater acoustics, a downgoing radiation condition must 
be imposed on the transmitted component of the field since the seabed is penetrable to 
sound waves, especially at low frequencies. In PE models, this can be done by appending 
an absorbing layer [17] or alternatively by applying a non local boundary condition 
(NLBC). This last method that was first formulated and implemented in a finite difference 
code by Papadakis [18] is rather attractive. Since then, numerous different forms of the 
NLBC concept have been proposed (see [19] for some references). 

In this paper, we apply the NLBC formulation described in [19] to generate realistic 
boundary conditions and then adopt a generalized form of these NLBC conditions for the 
rest of the study. In section 2, the inverse continuous physical problem is presented. We 
define the associated optimal control problem and compute the analytical form of the 
gradient of the cost function by using the adjoint model of a PE propagation model. The 
use of the adjoint model and the gradient of a cost function within a gradient based 
optimization loop is then presented. In section 3, we present some numerical simulations 
showing the data assimilation of acoustical data for geoacoustic inversion purposes. 

2 The continuous problem 

The variational approach being new in the framework of geoacoustic inversion, we adopt 
a rather simple monochromatic matched field processing inverse technique. The 
acoustical data we thus use (or the observations) are the spatial structure of the complex 
pressure field measured along a vertical line array.  

2.1 The direct forward model 

The direct forward model is the standard PE approximation [20]. The model 
recognized as the Standard PE is given for a harmonic point source of time dependence 

)exp( tiω−  in cylindrical coordinates ),( zr  independent of the azimuthal angle θ : 
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Here ),( zru is the envelope of the acoustic pressure field ),( zrP , 00 ck ω= is a 

reference wave number and ),(),( 0 zrcczrn =  is the index of refraction. The pressure 

is assumed to take the form of )(),(),( 0
)1(

0 rkHzruzrP ⋅=  where )1(
0H is a Hankel 

function of the first kind and ),( zru  is supposed to be slowly varying with range. 
In order to obtain a well-posed initial boundary value problem, we add an initial 

pressure field ),0( zu  given by a classical Gaussian source. The boundary conditions at 
the sea surface 0=z  are Dirichlet conditions (perfectly reflecting interface). 



 

For the boundary conditions at the water-sediment interface Hz = , we adopt the 
NLBC formulation proposed by Yevick and Thomson [19]. In that paper, the authors 
proposed a procedure for obtaining NLBC's directly from the z-space Crank-Nicolson 
solvers for both the narrow-angle standard and the wide-angle Claerbout PE's. The 
calculation of the wave field ),( zru at range rr ∆+  along the water-sediment interface 
is obtained in terms of the known field at the previously calculated range values from 0  
to r  by expanding the approximate vertical wave number operator for the downgoing 
field in powers of the translation operator rreT ∂∆−= . 

Define the z-space vertical wave number operator as: 
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where rki ∆= 0
2 4υ and bn  is the index of refraction of the bottom. The authors obtain 

the following impedance boundary condition: 
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where ρ  is the density, the subscript b indicates the bottom, and the subscript w indicates 
the sea water. The numerical implementation of this NLBC requires that the operator 

0Γ is Taylor-expanded in T , which can be finally expressed as: 
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where ( ) 22
0 1 υρρβ +−= bbw nk and jg ,0  are coefficients coming from the Taylor 

expansion. 
The above model was shown to give accurate simulations of the acoustic pressure 

field for homogeneous semi-infinite fluid or solid half-spaces. In the following study, this 
reference model is used to generate realistic NLBC's related to some given geoacoustic 
parameters. However, due to the difficulty to directly apply the variational approach to 
this reference model, we chose to generalize Eq.(4) in the following form: 
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For the numerical results presented in section 3, the initial and the true NLBC 

parameters β and F are first calculated with the reference model to obtain simulations 
that represent realistic environments of underwater acoustics. 
As a synthesis, the continuous direct model can be written as: 
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where R  is the distance between the source and the vertical line array on which the 
acoustic pressure field is measured, and ),( szzS  is the acoustic source at szz = . 

2.2 The inverse problem formulation 

The control procedure consists of finding the optimal controls ],[ optopt Fβ  and the 

corresponding optimal field ),( optoptopt Fuu β=  which minimize a cost criterion 

),( FJ β  based on the standard matched field processing between a measured field, 

),( zRud , measured on the vertical line array at a given range R and the corresponding 

predicted field, ),;,( zRFu β , obtained from the direct model Eq.(6): 
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The problem is to find:  [ ]{ }adGFFJ ∈,),,(min ββ   (8) 

where adG is the set of admissible controls. We note that Eq.(7) is the simplest possible 
cost function and that we can add regularization terms to it. 

 
Let us define [ ]F,βψ = , the concatenation of both control parameters and 

],[ fb=φ , the concatenation of some perturbations of the control parameters. The 
necessary condition for the existence of a minimum is given by the following theorem. 

 
Theorem 1: If J attains a (local) minimum at a point adG∈*ψ , then 

0);( * =∈∀ φψδφ JGad , where 
t

JtJJ
t

)()(lim);(
0

ψφψφψδ −+
=

→
 is the 

directional Gâteaux derivative of J at the point ψ  along the direction φ . 
 

Following the same developments as in [14], we start by calculating the variation of J : 
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where g  is the function defined by:  
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We introduce the real-valued scalar product: )(, vuevu ℜ= ,  (11) 

where v is the complex conjugate of v . 
 
Assuming that ),(' φψJ  exists for all φ and is continuous and linear inφ , the 

gradient )(φJ∇  can be defined as the linear form: 
 

.),(),(' adGJJ ∈∀∇= φφφφψ     (12) 
 
The optimization problem Eq.(8) cannot be resolved directly by using 0),(' =φψJ . 

The idea is thus to identify )(φJ∇  from ),(' φψJ based on Eq.(12). The variation can 
be written in the following form: 
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We then have to write down the conditions satisfied by dtduw /= . In order to do 
this, we write the two systems satisfied by )(ψu  and )( φψ tu + . They are: 
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and 
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By subtracting Eq.(15) from Eq.(14), dividing the result by t  and letting t  tend to 

zero, the system satisfied by w , called the tangent linear model (TLM) is given by: 
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The aim is to use the TLM to evaluate ),(' φψJ . By introducing a function 
),( zrp , and by using the TLM, )(φJ∇  can be identified directly from Eq.(12). The 

new variable ),( zrp , called the adjoint variable, satisfies the following system (that is, 
of the same degree of complexity as the TLM satisfied by w : 
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This model, called the adjoint model is running backwards in r  from Rr =  to 
0=r . It allows us to calculate 'J . Taking the scalar product of the TLM Eq.(16) with 

the adjoint variable p  and integrating by parts: 
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we finally find, after some analytical developments, that the derivative of J  with respect 
to φ is given by: 
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This latest equation can be reformulated in terms of the gradient of the cost function: 
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where p  is the solution of the adjoint equation obtained from the application of the 
theorem. 

2.3 The optimization procedure 

By using the successive resolution of both the forward direct model and the backward 
adjoint model, we can therefore calculate the exact gradient of the cost function relative to 
the control parameter [ ])(),()( rFrr βψ = . Once the gradient of the cost function J∇  
is known, we can seek a (local) minimum of )(ψJ . The global optimization procedure is 
summarized in Fig. 1. In order to accelerate the convergence, we use a classical conjugate 
gradient method of Polack-Ribière type rather than the simplest method of steepest 
descent. The algorithm that is used is described in [21] and proceeds in two steps. First, 
the direction of minimization is computed following the Polack-Ribière algorithm that 
exploits the gradient of the cost function Eq.(20). Then the step length along the 
minimization direction is computed thanks to a soft linesearch algorithm that applies the 
Wolfe criteria. The interested reader is referred to [21] for a precise description of the 
implemented algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Optimization algorithm – J is minimized until some convergence criteria are attained. 

[β,F] =[β,F] +α ∇J(β,F) 
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3 Numerical results 

The numerical results that are presented in this section rely on the finite-difference 
implementation of the direct and the adjoint models presented above, and of the 
associated discrete version of the gradient of the cost function. Before applying the 
inversion procedure, a gradient check (not shown here) was performed. 

For a frequency of 500 Hz, we present the results obtained with an isovelocity sound 
speed profile in the water column of 1500 m s-1. The true non local impedance boundary 
conditions were initially calculated for a sandy reflecting bottom with a compression 
speed of 1600 m s-1, an attenuation of 0.5 dB/λ and a density of 1.8 g cm-3. The initial 
ones were obtained with a soft sediment (mud) characterized by a compression speed of 
1505 m s-1, the other parameters remaining unchanged. No more than 5 or 6 iterations of 
the optimization algorithm were needed for the algorithm to converge. However, due to 
the drastic convergence criteria we adopted for our calculations, we reached a maximum 
of 10 iterations. The corresponding computations, performed on a high-end PC (Pentium 
IV, 2 GHz), required around 20 minutes for a complete inversion. By optimizing the 
convergence criteria, this could be reduced by a factor of two.  

Figure 2 gives an overall representation of the reconstruction of the field in the entire 
range-depth domain. Although the initial field (top) was quite different from the true field 
(middle), the field calculated after inversion (bottom) agrees very well with the true one. 
The improvement of the acoustic pressure filed is drastic, the initial error for ranges 
greater than 400 m being reduced from 30-40% to only 2% approximately. 

 
Figure 2. Visualization of the amplitude of the initial (top), true (middle) and inverted (bottom) u fields for 
f=500 Hz. After the assimilation process, the inverted and the true fields are nearly identical. 



 

 
Figure 3. Comparison of the initial, the true and the inverted control parameters – (a)(b) Inversion of the real and 
imaginary parts of the β parameter – (c)(d) Inversion of the real and imaginary parts of the F parameter. 

 
Figure 3 is devoted to the representation of the control parameters. We can observe 

that the accuracy of the F  parameter is excellent after the inversion process. On the 
contrary, the β  parameter is badly determined, which is certainly due to the ill-posed 
nature of the inverse problem. The use of a wider angle PE approximation is susceptible 
to improve our results since the angular limitation of the standard PE approximation 
imposes that the chosen Gaussian source has no interaction with the bottom near the 
source. This assumption is under investigation. 

4 Conclusions 

We have generalized the variational approach that was presented in [14]. Here we treat 
the case of a PE propagation model constrained by NLBC's to simulate realistic 
environments in underwater acoustics. The obtained results are promising. They show 
that for a reasonable computational cost punctual acoustical data can be assimilated (here, 
vertical array data) which results in a global and drastic improvement of the prediction of 
complex pressure fields. The other central concept underlying our variational approach is 
that of the acoustically equivalent medium. This results in a rather abstract but concise 
representation of the geoacoustic properties of the seabed via its non local boundary 
conditions. These NLBC's are not easily related to the classical geoacoustic parameters of 
the bottom but are able to simulate the same acoustical behavior, at least for the simple 
but realistic environments considered in our simulations. In sonar applications, one of the 
main objectives is to be able to predict the acoustical losses in the water column. For this 
purpose the concept of acoustically equivalent medium is relevant and NLBC's are 
therefore good potential candidates as equivalent models. The presented method is rather 
new and should be studied in order to improve the generality of the approach. Further 
works should be involved in the use of sparse linear arrays and wider angle PE 
approximations or other propagation models. The application of the method will also be 
studied in the case of more complex seabed properties (multi-layered sub-bottoms). More 
importantly, and following the last tendencies in geoacoustic inversion, multi-tone and 
broadband signals will be considered in order to physically constrain the inverse problem 
and to aim at a unique inverted solution. 
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