
HAL Id: hal-01419016
https://hal.science/hal-01419016

Submitted on 18 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Black-Box Anomaly Detection in Virtual
Network Functions

Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, Karama Kanoun

To cite this version:
Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, Karama Kanoun. Towards Black-Box Anomaly
Detection in Virtual Network Functions. The 46th IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN-2016), Jun 2016, TOULOUSE, France. pp.254 - 257, �10.1109/DSN-
W.2016.17�. �hal-01419016�

https://hal.science/hal-01419016
https://hal.archives-ouvertes.fr


Towards Black-Box Anomaly Detection in Virtual
Network Functions

Carla Sauvanaud∗, Kahina Lazri†, Mohamed Kaâniche∗, Karama Kanoun∗
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Abstract—The maturity of hardware virtualization has moti-
vated communication service providers to apply this paradigm to
network services. Virtual Network Functions (VNFs) come from
this motivation and refer to any virtual execution environment
configured to provide a given network service. VNFs constitute a
new paradigm and related dependability evaluation mechanisms
are still not thoroughly defined. In this paper we propose a
preliminary evaluation of an anomaly detection approach applied
to VNFs. Our approach uses a supervised machine learning
algorithm. It notably relies on data provided by the underlying
hypervisor of the VMs hosting the VNF, making it a black-box
approach. Such an approach is actually well suited for infras-
tructure or telecommunication service providers willing to deploy
tools that are easily configurable while reducing deployment costs.
We validate our approach with the case study of the vIMS (IP
Multimedia Subsystem) implemented by the Clearwater project.
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I. INTRODUCTION

Network functions (NFs) were for a long time inseparable
of specialized proprietary hardware and stringent topology
requirements. With the maturity of virtualization technologies,
communication service providers led multiple initiatives to
extend hardware virtualization to network services. These
initiatives gave rise to the Network Function Virtualization
paradigm (NFV). Moreover, as cloud computing emerged
from virtualized infrastructures, it became attractive to host
NFs as virtual machines running on virtualized and well
orchestrated COTS (Commercial Off The Shelf) servers. The
objective of NFV is to integrate network and IT domains in the
same virtualized datacenters and to consolidate their separated
management layers into a single logically centralized entity.
NFV promises operating expenditure (OPEX) savings, quick
deployments, scalability and high flexibility in the management
of virtualized NFs.

The ETSI Industry Specification Group (ETSI-ISG) [1]
defines the architecture of NFV by means of three functional
entities, i) Virtual Network Functions (VNFs): any virtual
execution environment configured to provide a given network
service, ii) NFV infrastructure (NFVI): provides the execution
environment for the VNFs, including the hardware resources
and the virtualization layer which abstracts hardware resources,
iii) NFV Management and Orchestration (NFV MANO): com-
prises the layers notably responsible for the management of the
NFVI and the life cycle of the instantiated VNFs.

While several NFV use cases are already defined by the
ETSI-ISG [1], some major aspects of this technology are still

fuzzy. In particular, performances of NFs when migrated to
cloud datacenters are one of the important challenges that
needs to be addressed before the global adoption of NFVs.
Indeed, NFs are more performance stringent than common IT
applications. Nonetheless, as a result of their softwarization
they are exposed to failures already present in these applica-
tions, and also to categories of failures related to virtualized
infrastructures. For instance, virtualization overhead, issues in
resource sharing, and hypervisor or VM manager scheduling
failures are threats that should be handled by NFV.

Most of recent research work is focused on the implemen-
tation of single VNF like virtualized Deep Packet Inspection
functions (vDPI), offered as a cloud service [2] or Software
Defined Monitoring functions by Choi et al. [3]. Performance
evaluation has also been subject of an active research effort.
Performance characterization of VNFs is considered in NFV
VITAL [4] and the evaluation of the NFVI infrastructure itself
is addressed in the work of Cotroneo et al. [5]. NFV is also
considered by equipment vendors which implement large NFV
deployments like HP OpenNFV [6] with an implementation
of large NFV deployment composed of several NFV com-
ponents, Alcatel-Lucent Cloudband [7], Intel Open Network
Platform [8], or CloudNFV [9]. Moreover, recent research
results demonstrate the sensitivity of NFV to IT failures.
In [10], Ge et al. show that NFV on COTS servers may
need hardware acceleration to handle network processing tasks
such as Deep Packet Inspection, Network Deduplication, or
Network Address Translation. In adition, some virtualization
features like live VM migration may also represent a source
of performance degradation for VNFs since it may cause
unacceptable downtime [11].

The objective of this paper is to evaluate the efficiency of
a black-box anomaly detection approach applied on a VNF
and relying on monitoring data sourced from the underlying
hypervisor. A black-box approach is indeed well suited for
infrastructure or telecommunication service providers willing
to deploy tools that are easily configurable while reducing
deployment costs. As a first step towards this objective, a set
of fault campaigns are firstly defined and injected into a VNF
execution environment in order to evaluate what impact they
may have under operational conditions. In a second step, an
anomaly detection approach is applied, on a per-VM basis,
to detect any deviation of the VNF VMs from their expected
behavior. One of the main asset of the approach is to ease
automatic root cause analysis in that it can locate the potential
faulty VM on which the anomaly is happening. Our experi-
ments are performed with a real case study, namely a vIMS (IP

1



Multimedia Subsystem) [12] implemented by the Clearwater
project. This vIMS implements multiple components, chained
together dynamically to create a VNF-Forwarding Graph.

In the following, we first describe our testbed in section II.
Section III presents our anomaly detection approach, and
section IV provides preliminary results of our study. Finally,
we conclude and discuss about future work in section V.

II. CASE STUDY AND EXPERIMENTAL PLATFORM

Our deployment is composed of three main entities: the
Clearwater VNF, the IMS workload generated by the SIP
benchmark, and the monitoring module. These entities are
detailed below, after a brief description of the NFVI platform.

A. NFVI testbed

The virtualized platform is a VMware vSphere 5.1 private
platform composed of 2 servers Dell Inc. PowerEdge R620
with Intel Xeon CPU E5-2660 2.20GHz and 64GB memory.
Each server has a VMFS storage. One hypervisor hosts the
benchmark and the other hosts all Clearwater components
VMs. Each VM has 2 CPUs, 10GB memory, a 10GB disk.
VMs are connected through a 100Mbps network.

B. Clearwater

Clearwater is an open source implementation of IMS for
the cloud. It provides SIP-based (Session Initiation Protocol)
voice and video calling, and messaging applications. It imple-
ments key standardized interfaces and functions of an IMS
(except a core network) which enable industries to easily
deploy, integrate and scale an IMS. Clearwater was initially
designed for COTS servers of clouds. It is consequently well
suited for NFV related studies. It encompasses six software
components, namely Bono, Sprout, Homestead, Homer, Ralf,
and Ellis. They are described below and represented in figure 1.

Bono is the SIP proxy in charge of implementing the
P-CSCF function (Proxy-Call/Session Control Functions). It
handles the users requests and routes them to Sprout. It also
performs Network Address Translation traversal mechanisms.

Sprout is the IMS SIP router receiving requests from Bono
and routing them to the adequate endpoints. It implements
some S-CSCF (Serving-CSCF) and I-CSCF (Interrogating-
CSCF) functions and gets the required users profiles and
authentication data from Homestead. Sprout can also call
application servers and actually contains itself a multimedia
telephony (MMTel) application server, whose data are stored
in homer (when calls are configured to use its services).

Homestead is an HTTP RESTful server and stores Home
Subscriber Server data in a Cassandra database (i.e. informa-
tion about subscribed services and locations). It is in charge
of some I-CSCF and S-CSCF functions.

Thus, Bono, Sprout, and Homestead work together for the
access control initiated by users and handle the entire CSCF.

Homer is a XDMS (XML Document Management Server)
server with an XML Configuration Access Protocol Server
(XCAP) interface, and runs a Cassandra database. It stores
configuration information about MMTel service.

Ralf is the CTF (Charging Trigger Function). It bills the
events collected by Bono and Sprout and reports them to a
Charging Data Function server.

Ellis is a provisioning portal offering a web interface to
users for testing purposes.

The IMS scales-out horizontally by means of a simple DNS
load balancing mechanism. Our testbed encompasses Bono,
Sprout, Homestead and Homer, each one deployed on one VM
(see figure 1). As for preliminary results, the billing function is
not configured, so Ralf is not included in our testbed. Neither
is the testing component Ellis, and our deployment does not
encompass redundancy.
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Fig. 1. Testbed deployment and Clearwater components.

C. Benchmark

IMS workloads are emulated by means of the SIPp bench-
mark1. The benchmark is configured with a fixed number of
calls per second (we call it load rate) to be sent to the IMS.
Each workload is defined by a scenario of SIP transactions in
XML. One transaction corresponds to one message to be sent
and an expected response message. The scenario simulates a
standard call between two users and encompasses the standard
SIP REGISTER, INVITE, UPDATE, and BYE messages.

The benchmark executes as many instances of scenario (i.e.
calls) so as to comply with the load rate parameter. A call fails
when a transaction fails. A transaction fails when a message is
not sent or when an expected message is not received because
of a timeout or an HTTP error code is received.

D. System observation

Computing and communication systems behaviors can be
studied by means such as the monitoring of performance
metrics, the analysis of audit data, or the analysis of OS or
application logs. This paper specially focuses on the moni-
toring of performance data (such as CPU consumption, disk
I/O, free memory...) of our Clearwater reference system. These
data are collected through the VNF hypervisor API following
a black-box approach. In other words, our approach does not
require knowledge about the VNF implementation, and it can
easily be applied to all types of VNF.

A vector of metrics collected at a given timestamp corre-
sponds to a monitoring observation (also referred to as obser-
vation). Observations are collected from the VNF VMs every
15sec. A monitoring entity centralizes all VMs observations
in a database. Nonetheless, the observations of each VM are
studied separately in order to perform anomaly detection in
each single VM. We use Pysphere2 that communicates with

1http://sipp.sourceforge.net/index.html
2https://pypi.python.org/pypi/pysphere
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the VMware SDK to collect metrics from the VMs. Each
observation is composed of the 152 metrics listed online3.

III. APPROACH AND ASSESSMENT

A. Anomaly detection approach based on machine learning

In previous work [13], [14] we defined an approach based
on machine learning for anomaly detection in virtualized
infrastructures (we tested our approach on testbeds hosting
MongoDB and VoltDB database). In this paper, we evaluate
to what extent such an approach is efficient to the detection
of anomalies in VNFs. We base our work on the application
of a supervised learning algorithm named Random Forest, to
detect anomalies based on monitoring data. This algorithm is
well known to provide good classification results and to handle
a large number of vectors features (i.e. observations metrics).

In order to apply a supervised learning, we need to
provided the algorithm with training data that encompass
data representing normal behaviors but also data representing
abnormal behaviors so as to create a classifier. As a result,
we use fault injection techniques during a training-purposed
runtime of our VNF so as to deterministically trigger abnormal
behaviors. In this way we obtain different classes of behaviors
observations including anomalies in a short testing time.

Considering our testbed, anomaly detection is performed
for each VM of the VNF components. Thus we get several
classifiers that detect anomalies in single VMs. This method
eases the root cause analysis by locating the potential faulty
VM. Also, it is useful for the analysis of fault propagation
between components of the same VNF.

B. Fault injection

Our injection scripts enable us to emulate five types of
anomalies, namely 1) CPU consumption, 2) misuse of memory
(i.e. memory increase), 3) anomalous number of disk access
(i.e. increase of disk I/O access and synchronisations), 4) net-
work packet loss, and 5) network latency. They are respectively
referred to as CPU, memory, disk, packet loss, and latency
injections.

In the following, we give further details about the emulated
anomalies, the intensity levels of injections, their implementa-
tion and we describe the injection campaigns that we carried
out.

1) Types of anomalies: CPU consumption. Anomalous
CPU consumptions may arise from faulty programs encoun-
tering impossible termination conditions leading to infinite
loops, busy waits or deadlocks of competing actions, which
are common issues in multiprocessing and distributed systems.

Memory leaks. Anomalous memory usages are common
whose allocated chunks of memory are not freed after their use.
Accumulations of unfreed memory may lead to memory short-
age and system failures. We believe that such cloud-related
mechanism as ballooning may also lead to such failures.

Anomalous number of disk access. A high number of disk
accesses, or an increase of disk accesses over a short period
of time, emulates anomalous disks whose accesses often fail

3https://homepages.laas.fr/csauvana/datasets/pysphere vm counters.txt

and lead to an increase in disk access retries. It may also result
from a faulty program stuck in an infinite loop of data writing.

Network anomaly. Such anomalies may arise from net-
work interfaces or the interconnection of networks. We emulate
packet losses, and latency increases. Packet losses may arise
from undersized buffers, wrong routing policies and even
firewall misconfigurations. Latency anomalies may originate
from queuing or processing delays of packets on gateways.

2) Intensity levels: Each anomaly has two intensity levels,
namely medium and high, that we calibrated based on prior
experimentations on the platform. Regarding the memory,
disk and CPU anomalies, the maximum intensity value of
an anomaly is constrained by the capacity of VMs operating
systems. In other words, the high intensity injection is the max-
imum resource consumption that is tolerated by the OS before
it kills the injection script or triggers protection mechanisms
that prevent the injection program to consume more resources.
Considering the remaining types of injections, the maximum
intensity value is set so as not to lead to a maximum SLA
violation rate, i.e. 100% failed transactions but to be close to
it (around 99%). Intensity levels are described in Table I.

TABLE I. ANOMALIES TYPES AND INTENSITIES.

Type Unit Intensity levels
Medium High

CPU consumption % 70 97
Misuse of memory % 70 97

Disk access #workers 40 60
Packet loss % 5.0 10.0

Network latency ms. 50 100

3) Injection campaigns implementation: Injections are per-
formed by scripts stored on each VMs disks. They are run
through an SSH connexion orchestrated by a campaign handler
script which is a configurable script hosted on the benchmark
VM. We use the Linux kernels tools iptables and tc for the
injection of network latencies on the POSROUTING chain,
and iptables on the INPUT and OUTPUT chains for the
injection of packet losses. The stress test tool Stress-ng4 is
run for CPU, disk, and memory related injections.

Injection campaigns target Sprout, Bono, and Homestead,
which implement the CSCF of Clearwater. In each campaign,
the benchmark is run for 80min. The load rate of the bench-
mark is calibrated to lead to less than a 1% failure rate of
the IMS without injections (failures might arise from a load
being too high because of bottlenecks in Sprout ??). After
40min an anomaly of 3min is injected. The injection time is
calibrated to affect several instances of scenario executions
(an execution lasts surely less than 1sec) and not to be too
short regarding our monitoring period of 15sec. Thus, each
campaign contains one injection of one intensity in one target
VM. Finally, each campaign ends up with the reboot of all the
VMs of the testbed.

IV. RESULTS

We present a few examples of experimental results illustrat-
ing the effectiveness of our approach to detect injection-related
abnormal behaviors, by computing the Receiver Operating
Characteristic (ROC) (i.e. the true positive rate against the

4http://kernel.ubuntu.com/∼cking/stress-ng/
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false positive rate) and the Precision-Recall (PR) curve (i.e.
precision-recall pairs for different classification probability
thresholds). For both curves, a perfect classifier would have
an Area Under the Curve (AUC) of 1.

As we ran the injection campaigns presented in III-B3, we
collected around 9600 observations for each VM hosting a
Clearwater component. We ran the Random Forest algorithm
over these observations for a binary detection (class 0: no
injection; 1: injection) and a multi-class detection with the
training of one model for each class (class 0: packet loss
injection; class 1: latency injection...). We first validated our
datasets by cross validation and obtained a standrad deviation
of the ROC and PR AUC of 0.02. The best detection results
are obtained when the Random Forest algorithm is configured
with 10 decision trees. ROC and PR curves for the detection
from Sprout monitoring observations and for the detection of
injections that were injected in Sprout are presented respec-
tively in figure 2 and 3. We obtain similar results for the
detection of injections in Bono (resp. Homestead) from Bono
(resp. Homestead) observations.
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Fig. 2. ROC curves for multi-class and binary classification.

Firstly, the ROC and PR AUC for the binary classification
case are respectively 0, 98 and 0.94, which corresponds to high
precision and recall with a low false alarm rate. In addition
the ROC AUC for the multi-class detection varies between 1
and 0.95, and the PR AUC varies between 1 and 0.86. Thus,
results are encouraging and make our approach applicable to
real case scenario of online anomaly detection. In addition, the
nature of injections can be indentified by the models and help
root cause analysis. Regarding the PR curves, CPU injections
are more difficult to discern from other injections and a normal
behavior with a PR AUC of 0.86. The algorithm might confuse
such injections with disk or memory injections which also use
additional CPU time so as to process the injections scripts.

V. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the ability of the Random Forest
algorithm to detect abnormal behaviors in the Clearwater VNF
with a black-box approach. Our approach enables an excellent
detection of anomaly injections on a per-VM basis, with
an area under the PR and ROC curves from 0.87 up to 1
depending on the type of anomaly for a multi-class detection.
It may also discern different classes of injections such as
CPU exhaustion, memory shortage, excessive disk I/O, and
network anomalies. Thus it actually does ease the root cause
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Fig. 3. PR curves for multi-class and binary classification.

analysis and reconfiguration actions. As a future work, we
plan to evaluate with the same approach the behaviors of
Clearwater components during cloud management actions such
as ballooning and live VM migration. In this way we will test
whether and to what extent such actions might impact the IMS
operation and whether the NFV MANO should make use of
such techniques. We also intend to work on the impact of our
injections on the IMS SLA.
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