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Abstract

In this work, we focus on the numerical resolution of the four dimensional phase space Vlasov-Poisson
system subject to a strong external magnetic field. To do so, we consider a Particle-In-Cell based method,
for which the characteristics are reformulated by means of the two-scale formalism, which is well-adapted to
handle highly-oscillatory equations. Then, a numerical scheme is derived for the two-scale equations. The
so-obtained scheme enjoys a uniform accuracy property, meaning that its accuracy does not depend on the
small parameter. Several numerical results illustrate the capabilities of the method.

Keywords: Kinetic models, Vlasov-Poisson equation, Highly oscillatory, Four dimensional, Uniformly
accurate, Particle-in-Cell, Two-scale formulation

1. Introduction

In plasma devices like tokamaks, when the charged particles are subject to a strong external magnetic
field, a drift phenomenon will happen in the plane orthogonal to the magnetic field direction. As a model to
describe this phenomenon, we consider in this paper the long time Vlasov-Poisson equation with a strong
external magnetic field in the four dimensional phase space. Namely, we consider a distribution function
fε(t,x,v) which depends on time t ≥ 0, space x = (x1, x2)T ∈ R2 and velocity v = (v1, v2)T ∈ R2, which is
solution to the following Vlasov-Poisson equation

∂tf
ε(t,x,v) +

v

ε
· ∇xf

ε(t,x,v) +
1

ε

(
Eε(t,x) +

1

ε
v⊥
)
· ∇vf

ε(t,x,v) = 0, (1.1a)

∇x ·Eε(t,x) = ρε(t,x)− ni, ρε(t,x) :=

∫
R2

fε(t,x,v)dv, (1.1b)

fε(0,x,v) = f0(x,v), x,v ∈ R2, (1.1c)

where Eε is the electric field solution of the Poisson equation (1.1b), and where f0 is a given initial data.
We denote by v⊥ as

v⊥ = Jv = (v2,−v1)T , with J =

(
0 1
−1 0

)
.

The real-valued scalar function fε(t,x,v) is the distribution function of electrons. The given parameters
ε > 0 is inversely proportional to the strength of the magnetic field and ni > 0 denotes the given ion density
of the background which ensures global quasi-neutrality and hence the solvability of the Poisson equation
(1.1b).
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When the plasma is subject to a strong magnetic field, i.e. the parameter ε becomes very small, the
solution fε(t,x,v) of the Vlasov-Poisson equation (1.1) exhibits fast oscillations in time with wavelength
O(ε2). On the other side, there exists a slower dynamics of the so-called guiding-center, which is essentially
given by the “E-cross-B” drift velocity (see [18, 9]). Thus, the system (1.1) is strongly multi-scale which
implies strong restrictions on the numerical parameters when one wants to simulate the solution of (1.1).

When one is interested in the regime ε << 1, the asymptotic model is sufficient to describe the system
in this case; and since it does not contain any stiff term, standard numerical methods can be employed to
approximate it. The solution fε of (1.1) has been proved to converge in a suitable sense towards f when ε
goes to zero (see [12]) which solves

∂tf(t,x,v) + E⊥(t,x) · ∇xf(t,x,v) +
1

2
∇x ·E(t,x)v⊥ · ∇vf(t,x,v) = 0, (1.2a)

∇x ·E(t,x) =

∫
R2

f(t,x,v)dv − ni. (1.2b)

(1.2c)

As usual, the electric field E derives from a potential φ: E = −∇xφ. By integrating (1.2a) with respect to
v ∈ R2, we further get the well-known guiding-center model

∂tρ(t,x) + E⊥(t,x) · ∇xρ(t,x) = 0, t > 0,x ∈ R2, (1.3a)

∇x ·E(t,x) = ρ(t,x)− ni, (1.3b)

ρ(0,x) =

∫
R2

f0(x,v)dv. (1.3c)

The unknown ρ is the limit of the density ρε as ε → 0 (see [20, 2] for mathematical justification of this
limit). As said before, these models are only valid in the asymptotic regime ε << 1.

From a numerical point of view, the passage from (1.1) to (1.3) has been explored by recent works,
within the framework of Particle-In-Cell (PIC) method. The PIC framework (see [1, 15]) enables to focus
on the construction of a numerical integrator in time of the characteristics equations of (1.1). In particular,
in [12], an exponential time integrator has been proposed whereas in [10], the authors propose a high order
IMEX type scheme. Both approaches are uniformly stable with respect to ε, and degenerate when ε goes
to zero to a consistent scheme with the asymptotic model (1.3). In particular, the numerical parameters
can be chosen independently from ε. However, this so-called Asymptotic Preserving property (see [16]) does
not guarantee the good behavior of the numerical scheme in the intermediate regime. The main goal of
the present work is to construct a Uniformly Accurate (UA) numerical scheme with respect to ε. More
precisely, in this work we will also use a Particle-In-Cell method, in which the characteristics equation will
be reformulated using the two-scale formalism (as introduced in [5, 3]). In addition to the uniform stability,
this strategy enables to capture the highly oscillatory (in time) behavior of the solution, and to derive a
uniformly accurate Particle-In-Cell method for ε ∈ (0, 1], which means that the accuracy of the scheme does
not depend on ε.

The strategy we will use in this work relies on augmented characteristics equations, where the two time
scales t/ε2 and t are separated. The solution of the original characteristics equation are recovered from the
two-scale solution by evaluating it on the diagonal (t, τ = t/ε2). Although the overall strategy follows the
one introduced in [5, 3], several improvements have to be done to handle the problem (1.1). First, the model
(1.1) under study involves two stiff terms: some transport terms (in x,v) of magnitude 1/ε and a transport
term in v of magnitude 1/ε2. This contrasts with the previous study where only one stiffness of magnitude
1/ε was involved, and naturally induces several difficulties. For instance, as we shall see, even after the
filtering step, a nonlinear stiff term is still present in the reformulated equations. As this stiff term strongly
depends on the self-consistent electric field, which is computed numerically, the numerical error is amplified
by the stiffness factor 1/ε and the uniform accuracy is difficult to obtain (contrary to what has been done
in [17] where the analogous term was linear and then was considered implicit in time). To overcome this
difficulty, a suitable change of unknown is performed, which enables to reformulate the two-scale model in
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order to fit with the theoretical framework of [3]. A final and important step is the suitable preparation of
the initial data for the two-scale model. As proved in [3], a suitable choice of the initial condition (in the
additional variable τ) ensures that the time derivatives of the two-scale model are uniformly bounded with
respect to ε. In the present work, a second order exponential integrator is used for the two-scale model,
for which the local truncation error only depends on a second time derivative of the solution (whereas the
second order scheme used in [3] induces the third time derivative). Then, a first order preparation of the
initial data is sufficient to ensure its uniform boundedness and as a consequence, the uniform accuracy of the
numerical scheme is obtained. Note that this first order correction should take into account the dependence
in τ of the electric field and a tricky expansion with respect to ε of the self-consistent electric field is then
required.

It is worth mentionning that this UA PIC scheme is explicit in time and does not require any iterative
algorithm. Moreover, as a byproduct of the uniform accuracy, the scheme has the good asymptotic behavior
when ε <<1, since it is consistent with the asymptotic model (1.2). Several numerical tests are performed
to validate and illustrate the capabilities of the UA PIC scheme in the 4 dimensional phase space setting.
In particular, a few number of points in the additional τ direction are needed to produce accurate numerical
results. Note that this τ direction is easily parallelized using MPI paradigm and the extra cost turns out to
be negligible compared to the cost of a standard Particle-In-Cell method.

The rest of the paper is organized as follows. In the next Section, the UA PIC method is presented in
details after a brief introduction of PIC methods. Then, some numerical results are given in Section 3 and
conclusions are drawn in Section 4.

2. Uniformly accurate particle-in-cell method

In this section, we shall begin by briefly presenting the framework of the Particle-in-Cell (PIC) method
where more details could be found in [22, 1], and then we shall introduce our uniformly accurate (UA)
integrator towards the characteristics equation.

2.1. Framework of PIC

The starting point of the Particle-in-Cell method is to approximate the unknown distribution fε(t,x,v)
of (1.1) by a sum of Dirac masses centred at (xk(t),vk(t)) with weights ωk > 0 for k = 1, . . . , Np and Np ∈ N
as

fεp (t,x,v) =

Np∑
k=1

ωkδ(x− xk(t))δ(v − vk(t)), t ≥ 0, x,v ∈ R2. (2.1)

Inserting (2.1) into (1.1), in the sense of distribution, for k = 1, . . . , Np, each particle obeys the characteristics
equation

ẋk(t) =
vk(t)

ε
, (2.2a)

v̇k(t) =
Eε(t,xk(t))

ε
+

v⊥k (t)

ε2
, t > 0, (2.2b)

xk(0) = xk,0, vk(0) = vk,0. (2.2c)

The weight ωk and initial values of the particles xk,0,vk,0 for k = 1, . . . , Np are prescribed according to the
initial distribution f0(x,v) given by (1.1c). To determine the weight, by integrating (2.1) at t = 0 in whole
space we require

Np∑
k=1

ωk =

∫
R2×R2

f0(x,v)dxdv.

Thus, a simple choice of uniform weight for all particles would be

ωk =
1

Np

∫
R2×R2

f0(x,v)dxdv, k = 1, . . . , Np.
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The initialization of xk,0,vk,0 for k = 1, . . . , Np is a rather well-established and classical sampling issue. It
could be done by the Monte Carlo type rejection sampling method as a general approach. The detailed
process can be found in standard statistics textbooks. As a consequence, this approach introduces a noise of
order 1/

√
Np (see [22]). Note however that when f0 is of variable separation form, i.e. f0(x,v) = χ1(x)χ2(v)

where χ2 is a Gaussian, specific pseudo-random methods can be used. We omit the details here for brevity
and refer the reader to [1].

The characteristics equations for particles (2.2) are coupled to the Poisson equation (1.1b) through the
electrical field Eε. Once the positions {xk(t)}k=1,...,Np of the particles are obtained at time t > 0, one needs
to evaluate the approximated density

ρεp(t,x) =

Np∑
k=1

ωkδ(x− xk(t)) ≈ ρε(t,x) x ∈ R2, (2.3)

then solve the Poisson equation

∇x ·Eεp(t,x) = ρεp(t,x)− ni, x ∈ R2,

on a mesh grid of the spatial domain, with step size ∆x. This provides an approximation Eεp(t,x) ≈ Eε(t,x).
Finally, the values of Eεp(t,xk(t)) are interpolated at each particle position. In practice, the Dirac delta
function δ(x) is replaced by smooth functions S(x) (particle shape function). For example in 1D, it is
approximated by the B-spline function Sm(x) of order m ∈ N [22]:

S0(x) :=


1

∆x
, |x| ≤ ∆x

2
,

0, else,
, Sm(x) :=

1

∆x

∫ x+ ∆x
2

x−∆x
2

Sm−1(y)dy, m ≥ 1. (2.4)

The case in two dimensions is done by tensor product. The B-spline function Sm is defined locally in space
which is preferred from numerical point of view, but globally it is only a Cm−1 function for m ≥ 1. A
smooth but global basis has been considered in [15] to get high order accuracy. The classical PIC scheme is
hence completed by a particle pusher for (2.2).

As is known, either the classical numerical methods or the asymptotic preserving methods would be
problematic for solving oscillatory systems as (2.2) when ε is in a certain regime, which in turns make
the PIC scheme not efficient or less accurate for ε ∈ (0, 1]. Thus, the main difficulty here is to solve the
characteristic equation by some efficient integrator that works uniformly well for all 0 < ε ≤ 1 and embed the
integrator harmoniously into the PIC framework. We are going to apply the two-scale formulation approach
developed in [3, 5] to derive a uniformly accurate PIC method.

2.2. Two-scale formulation for characteristics

This part is devoted to the derivation of the two-scale formulation of the highly-oscillatory ODE system
(2.2). To do so, we follow two main steps: after a classical filtering step, the two-scale system can be
obtained and then, a suitable change of unknown enables to recast the so-obtained two-scale system in a
formulation like in [3]. Note that for simplicity of notation, in this subsection we shall omit the subscript k
for particles in (2.2).

First, we introduce a new variable y in order to filter out the main oscillation as

y(t) = e−tJ/ε
2

v(t), t ≥ 0, with e−tJ =

(
cos t − sin t
sin t cos t

)
, (2.5)

so that the characteristic equation (2.2) becomes

ẋ(t) =
1

ε
etJ/ε

2

y(t), (2.6a)

ẏ(t) =
1

ε
e−tJ/ε

2

E(t, t/ε2,x(t)), (2.6b)

x(0) = x0, y(0) = v0. (2.6c)
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Then, we derive a suitable two-scale formulation by separating the fast scale τ = t/ε2 from the slow one t,
as already done in [5, 3, 6, 17]. We consider an augmented system of equations satisfied by the augmented
solution (Xk(t, τ), Yk(t, τ)) (k = 1, . . . , Np) which is periodic with respect to τ (of period 2π), and which
coincides with the original solution (xk(t),yk(t)) (k = 1, . . . , Np) on the diagonal τ = t/ε2

xk(t) = Xk

(
t,
t

ε2

)
, yk(t) = Yk

(
t,
t

ε2

)
, t ≥ 0, k = 1, . . . , Np.

The two-scale equation satisfed by (Xk(t, τ), Yk(t, τ)) reads (removing the subscript k)

∂tX(t, τ) +
1

ε2
∂τX(t, τ) =

1

ε
eτJY (t, τ), (2.7a)

∂tY (t, τ) +
1

ε2
∂τY (t, τ) =

1

ε
e−τJE(t, τ,X(t, τ)), (2.7b)

where the electric field is given by

∇x · E(t, τ,x) ≈
Np∑
`=1

ω`δ(x−X`(t, τ))− ni. (2.8)

The augmented equation (2.7) are to be supplemented with the following initial data

X(0, 0) = x(0), Y (0, 0) = y(0).

Note that we can recover the original solution of (2.2) as

x(t) = X

(
t,
t

ε2

)
, v(t) = etJ/ε

2

Y

(
t,
t

ε2

)
, t ≥ 0.

Solving (2.7) requires to solve numerically the augmented Poisson equation (2.8). Then, at each time,
an approximation error of E(t, τ,x) will be introduced in (2.7). This error (which depends on the number
of particles Np and the mesh size ∆x in x-space) is amplified by the factor 1/ε on the right hand side of
(2.7b), due to the diffusion scaling. As a matter of fact, the extra error apart from the time discretization
will make the scheme non-uniformly accurate for ε ∈ (0, 1]. Note that this lack of accuracy does not occur
when E is given or explicitely depends on the solution. This later case corresponds to [17].

To overcome this essential difficulty, we seek for a suitable reformulation of (2.7). Let us introduce two
new unknown functions U±(t, τ):

U+(t, τ) := X(t, τ) + εJeτJY (t, τ), U−(t, τ) := −εJY (t, τ), t ≥ 0, τ ∈ [0, 2π]. (2.9)

The unknown (X(t, τ), Y (t, τ)) is obtained by the inverse change of variables

X(t, τ) =
(
U+(t, τ) + eτJU−(t, τ)

)
, Y (t, τ) =

1

ε
JU−(t, τ). (2.10)

Combining (2.9) with (2.7) leads to

∂tU± +
1

ε2
∂τU± = F±(t, τ, U+, U−), (2.11)

with

F+(t, τ, U+, U−) := JE
(
t, τ, U+ + eτJU−

)
, F−(t, τ, U+, U−) := −Je−τJE

(
t, τ, U+ + eτJU−

)
, (2.12)

with the initial condition

U+(0, 0) = x0 + εJv0 =: u0
+, U−(0, 0) = −εJv0 =: u0

−, (2.13)
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x0,v0 being the initial condition of the original problem (2.2). Note that E is computed from (U±)`, ` =
1, . . . , Np by the Poisson equation

∇x · E(t, τ,x) =

Np∑
`=1

ω`δ
(
x− (U+ + eτJU−)`

)
. (2.14)

Again, from the solution of (2.11), the solution of (2.2) is recovered via the following relations

x(t) = U+(t, t/ε2) + etJ/ε
2

U−(t, t/ε2), v(t) =
1

ε
etJ/ε

2

JU−(t, t/ε2). (2.15)

Comparing to (2.7), now (2.11) has bounded coefficients in front of the nonlinearity and it enters in the
framework studied [3]. In [3], it is proven that, the initial condition U±(t = 0, τ) has to be chosen under a
suitable expansion to ensure that the time derivatives of U± are uniformly bounded with respect to ε. This
is of importance when one applies a numerical discretization to (2.11) since a uniform accuracy property
can then proved for the numerical scheme (see [3, 17, 6, 5, 4]). The construction of the suitable initial data
U±(t = 0, τ) is based on a Chapman-Enskog type expansion and is detailed in the next subsection.

2.3. Derivation of the initial condition

Following the strategy proposed in [3, 17, 6, 5, 4], we will derive a suitable initial condition for (2.11).
To do so, we will perform a Chapman-Enskog expansion of U±(t, τ) so that U±(0, 0) = u0

±.

Chapman-Enskog expansion of U±. We denote Lu(τ) = ∂τu(τ) for some periodic function u(τ) on [0, 2π]
and introduce the average operator Π as

Πu =
1

2π

∫ 2π

0

u(s)ds.

Then L is invertible on the set of periodic functions with zero average, i.e. for u(τ) with Πu = 0,

L−1u(τ) = (I −Π)

∫ τ

0

u(s)ds.

We introduce the decomposition

U±(t, τ) = U±(t) + h±(t, τ), with U±(t) = ΠU±(t, τ),

then we have the equation for the macro part of the solution

∂tU±(t) = ΠF±(t, τ, U+(t) + h+(t, τ), U−(t) + h−(t, τ)),

and the equation for the micro part

∂th±(t, τ) +
1

ε2
Lh±(t, τ) = (I −Π)F±(t, τ, U+(t) + h+(t, τ), U−(t) + h−(t, τ)). (2.16)

By inverting L in the micro part equation (2.16), we get

h±(t, τ) = ε2AF±(t, τ, U+(t) + h+(t, τ), U−(t) + h−(t, τ))− ε2L−1∂th±(t, τ),

where A := L−1(I−Π). By assuming ∂th± = O(1), we get h± = O(ε2). By further assuming ∂2
t h± = O(1),

we get a fourth order expansion of U± as

U±(t, τ) = U±(t) + ε2AF±(t, τ, U+(t), U−(t)) +O(ε4), (2.17)

6



where we recall that F±(t, τ, U+(t), U−(t)) are given by

F+(t, τ, U+(t), U−(t)) = JE
(
t, τ, U+ + eτJU+

)
, (2.18)

F−(t, τ, U+(t), U−(t)) = −Je−τJE
(
t, τ, U+ + eτJU+

)
. (2.19)

One has to point out that the electric field E is computed through the Poisson equation (2.14), and then
evaluated at (U+ + eτJU+). To get an expansion of U± as a function of U±, one then needs to also expand
the electric field E solution of (2.14). To do so, we approximate U± in the right hand side of (2.14) by
U±. We will see that this approximation provides a second order approximation of E , as required from the
expansion (2.17).

Denoting by X1st the following quantity

X1st(t, τ) := U+(t) + eτJU−(t), (2.20)

one has X = X1st + O(ε2). Indeed, on the one side, a Chapman-Enskog expansion of X solution of (2.7)
reads

X(t, τ) = X(t) + εL−1eτJY (t, τ) +O(ε2) = X(t)− εJeτJY (t) +O(ε2).

On the other side, one can express X1st defined in (2.20) in terms of X and Y using (2.9)

X1st(t, τ) = X(t) + εJΠ(eτJY (t, τ))− εeτJJY (t) = X(t)− εJeτJY (t) +O(ε2).

We deduce from the two last equation that X = X1st +O(ε2).
Then, using the Poisson equation (2.8), one can compute E1st

∇x · E1st(t, τ,x) ≈
Np∑
k=1

ωkδ(x−X1st
k (t, τ))− ni, (2.21)

and we deduce E(t, τ,x) = E1st(t, τ,x) +O(ε2). Finally E1st enables to get F1st
± as in (2.18)-(2.19):

F1st
+ (t, τ, U+(t), U−(t)) = JE1st

(
t, τ, U+(t) + eτJU−(t)

)
, (2.22)

F1st
− (t, τ, U+(t), U−(t)) = −Je−τJE1st

(
t, τ, U+(t) + eτJU−(t)

)
. (2.23)

We end up by defining U2nd as

U2nd
± (t, τ) = U±(t) + ε2AF1st

± (t, τ, U+(t), U−(t)). (2.24)

Link with the original initial condition u0
±. Now, we need to compute U± so that U2nd

± (0, 0) = u0
± where

U2nd is defined by (2.24). Note that u0
± is defined by (2.13) as a function of (x0,v0) which is the initial

data of the original problem. Evaluating (2.24) at t = τ = 0 and using U2nd
± (0, 0) = u0

±, one has directly
u0
± − U±(t = 0) = O(ε2). Then, we can rewrite (2.24) at t = 0 as

U2nd
± (0, τ) = U±(0) + h1st

± (τ) +O(ε4), with h1st
± (τ) = ε2AF1st

± (0, τ,u0
+,u

0
−), (2.25)

and F1st
± defined by (2.22)-(2.23). Using again the condition U2nd

± (0, 0) = u0
±, we get from (2.25) at τ = 0:

U±(0) = u0
± − h1st

± (0). Replacing U±(0) by this latter expression in (2.25) leads to

U2nd
± (0, τ) = u0

± − h1st
± (0) + h1st

± (τ), with h1st
± (τ) := ε2AF1st

± (0, τ,u0
+,u

0
−), (2.26)

with
F1st

+ (0, τ,u0
+,u

0
−) = JE1st

(
0, τ,u0

+ + eτJu0
−
)
,

F1st
− (0, τ,u0

+,u
0
−) = −Je−τJE1st

(
0, τ,u0

+ + eτJu0
−
)
,
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where E1st is computed with the following Poisson equation

∇x · E1st(0, τ,x) =

Np∑
k=1

ωkδ
(
x−

(
(u0

+)k + eτJ(u0
−)k
))
− ni,

and where u0
+ = x0 + εJv0, u

0
− = −εJv0.

We conclude this part with the following proposition which ensures that the solution of the two-scale
equations (2.11) with the suitable initial condition (2.26) is smooth with respect to ε.

Proposition 2.1. Let us consider the following problem satisfied by U±(t, τ), t ∈ [0, T ], T > 0, τ ∈ [0, 2π]

∂tU± +
1

ε2
∂τU± = F±(t, τ, U+, U−),

with the initial condition defined by (2.26) and the above notations. Then, there exists a constant C > 0
independent of ε such that,

‖∂kt U±‖L∞t,τ ≤ C, k = 0, 1, 2. (2.27)

The proof will not be done here but can be obtained in a analogous way as in [3].

2.4. An exponential integrator

Now we present a numerical scheme for the discretization of the characteristics (2.11). We shall integrate
the two-scale equation (2.11) by an exponential integrator.

Let ∆t > 0 be the time step and denote tn = n∆t for n ≥ 0. Discretizating the τ -direction as τj =
j∆τ, j = 0, 1, . . . , Nτ , with ∆τ = 2π/Nτ and Nτ some positive even integer, and applying the Fourier
transform to (2.11) on [0, 2π], we get for ` = −Nτ/2, . . . , Nτ/2− 1,

d

dt
(̂U±)`(t) +

i`

ε2
(̂U±)`(t) = (̂F±)`(t), t > 0, (2.28)

where

U±(t, τ) =

Nτ/2−1∑
`=−Nτ/2

(̂U±)`(t)e
i`τ , F±(t, τ, U+, U−) =

Nτ/2−1∑
`=−Nτ/2

(̂F±)`(t)e
i`τ .

Integrating (2.28) from tn to tn+1 (n ≥ 0), we get

(̂U±)`(tn+1) = e−
i`∆t
ε2 (̂U±)`(tn) +

∫ ∆t

0

e−
i`
ε2

(∆t−s)(̂F±)`(tn + s)ds. (2.29)

We approximate the above integral by the following quadrature for n ≥ 1,

(̂U±)`(tn+1) ≈ e−
i`∆t
ε2 (̂U±)`(tn) +

∫ ∆t

0

e−
i`
ε2

(∆t−s)
(

(̂F±)`(tn) + s
d

dt
(̂F±)`(tn)

)
ds

≈ e−
i`∆t
ε2 (̂U±)`(tn) + p`(̂F±)`(tn) + q`

1

∆t

(
(̂F±)`(tn)− (̂F±)`(tn−1)

)
,

where

p` :=

∫ ∆t

0

e−
i`
ε2

(∆t−s)ds =


iε2

`

(
e−

i`∆t
ε2 − 1

)
, ` 6= 0,

∆t, ` = 0,

q` :=

∫ ∆t

0

e−
i`
ε2

(∆t−s)sds =


ε2

`2

(
ε2 − ε2e−

i`∆t
ε2 − i`∆t

)
, ` 6= 0,

∆t2

2
, ` = 0.
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For the first iteration, the starting value (̂U±)`(t1) (with t1 = ∆t) is computed using a prediction-correction
scheme. The first order prediction writes

(̂U±)
∗
` (t1) := e−

i`∆t
ε2 (̂U±)`(0) + p`(̂F±)`(0),

which gives a prediction of the nonlinearity at t1 = ∆t as

F±(t1, τ, U
∗
+(t1, τ), U∗−(t1, τ)) =

Nτ/2−1∑
`=−Nτ/2

(̂F±)
∗
` (t1)ei`τ .

Then, we do a correction step

(̂U±)`(t1) ≈ e−
i`∆t
ε2 (̂U±)`(0) + p`(̂F±)`(0) + q`

1

∆t

(
(̂F±)

∗
` (t1)− (̂F±)`(0)

)
.

At each time level tn (n ≥ 0), when the approximated U±(tn, τ) is obtained as above, we get

X(tn, τ) = U+(tn, τ) + eτJU−(tn, τ), t ≥ 0, τ ∈ [0, 2π].

and we compute

E(tn, τ,x) = −∇xΦε(tn, τ,x), −∆Φε(tn, τ,x) ≈
Np∑
k=1

ωkδ(x−Xk(tn, τ))− ni,

then the evaluation of nonlinearity F± follows from (2.12)

F+(tn, τ, U+(tn, τ), U−(tn, τ)) = JE
(
tn, τ, U+(tn, τ) + eτJU−(tn, τ)

)
,

F−(tn, τ, U+(tn, τ), U−(tn, τ)) = −Je−τJE
(
tn, τ, U+(tn, τ) + eτJU−(tn, τ)

)
.

In all, the detailed numerical scheme of the solver towards (2.11) reads as follows. Denote (U±)n(τ) ≈
U±(tn, τ) for n ≥ 0 and let U0

± = U±(0, τ) the initial condition given by (2.26). We update the Un± for n ≥ 1
as

(̂U±)
1

` = e−
i`∆t
ε2 (̂U±)

0

` + p`(̂F±)
0

` + q`
1

∆t

(
(̂F±)

∗,1
` − (̂F±)

0

`

)
, (2.30a)

(̂U±)
n+1

` = e−
i`∆t
ε2 (̂U±)

n

` + p`(̂F±)
n

` + q`
1

∆t

(
(̂F±)

n

` − (̂F±)
n−1

`

)
, ∀n ≥ 1, (2.30b)

where

Un±(τ) =

Nτ/2−1∑
`=−Nτ/2

(̂U±)
n

` ei`τ , Fn±(τ) =

Nτ/2−1∑
`=−Nτ/2

(̂F±)
n

` ei`τ , F∗,1± (τ) =

Nτ/2−1∑
`=−Nτ/2

(̂F±)
∗,1
` ei`τ , n ≥ 0,

and

Fn+(τ) = JEn
(
τ, Un+(τ) + eτJUn−(τ)

)
, Fn−(τ) := −Je−τJEn

(
τ, Un+(τ) + eτJUn−(τ)

)
, n ≥ 0,

F∗,1+ (τ) = JE∗,1
(
τ, U∗,1+ (τ) + eτJU∗,1− (τ)

)
, F∗,1− (τ) := −Je−τJE1,∗

(
τ, U∗,1+ (τ) + eτJU∗,1− (τ)

)
,

with

(̂U±)
∗,1
` = e−

i`∆t
ε2 (̂U±)

0

` + p`(̂F±)
0

` , U∗,1± (τ) =

Nτ/2−1∑
`=−Nτ/2

(̂U±)
∗,1
` ei`τ .
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The numerical electrical field En is given by collecting all the two-scale characteristics (Un±)k, k = 1, . . . , Np
and solving the Poisson equation:

∇x · En(τ,x) =

Np∑
k=1

ωkS(x−Xn
k (τ))− ni, Xn

k (τ) = Un+,k(τ) + eτJUn−,k(τ),

∇x · E∗,1(τ,x) =

Np∑
k=1

ωkS(x−X∗k(τ))− ni, X∗k(τ) = U∗,1+,k(τ) + eτJU∗,1−,k(τ), (2.31)

where S(x) is the regularised basis (the choice of quintic splines has been done in our computations).
We conclude this section with the following proposition which states that the so-obtained numerical

scheme is uniformly accurate with respect to ε.

Proposition 2.2. Let U± the solution of (2.11) on [0, T ] × [0, 2π] subject to the initial condition (2.26).
Let (Un±), n ≥ 0 defined by the numerical scheme (2.30) with the initial data (2.26). Then, the following
estimate holds

sup
ε∈]0,1]

‖U±(tn, ·)− Un±(·)‖L∞τ ≤ C∆t2,

with C > 0, for all n = 0, . . . , N with N∆t = T is the final time.

Proof. By Taylor expansion (with integral remainder) of V (tn + s) := (̂F±)`(tn + s) in (2.29), we get

V (tn + s) = V (tn) +
s

∆t
[V (tn)− V (tn−1)]

+

∫ 1

0

(1− t)s2V ′′(tn + st)dt+ s

∫ 1

0

(1− t)∆tV ′′(tn − t∆t)dt.

Then, the exact solution (̂U±)(t) satisfies the scheme (2.30) up to the following remainder term R

R :=

∫ ∆t

0

e−
i`
ε2

(∆t−s)s2

∫ 1

0

(1− t)V ′′(tn + st)dtds

+

∫ ∆t

0

e−
i`
ε2

(∆t−s)s

∫ 1

0

∆t(1− t)V ′′(tn − t∆t)dtds.

Thanks to Proposition 2.1, ‖∂2
tU‖L∞t,τ is uniformly bounded (the derivatives of F are bounded, as in [3]) so

that

|R| ≤

(∫ ∆t

0

s2ds+ ∆t

∫ ∆t

0

sds

)
‖V ′′‖L∞t,τ ≤ C∆t3.

Now, we define the error En := |(̂U±)(tn)− (̂U±)
n
|, which satisfies the following estimate

En+1 ≤ En + C

∫ ∆t

0

(En + En−1)ds+ C∆t3 ≤ En(1 + C∆t) + C∆tEn−1 + C∆t3. (2.32)

We proceed by induction to prove there exisits C > 0 such that En ≤ C∆t2(1 + C∆t)n,∀n ≥ 1. For the
first iteration, from E0 = 0 then we get E1 ≤ C∆t2 (since a prediction-correction scheme is used for the first
iteration). Thanks to this estimate, we conclude the proof using the following

En ≤ C∆t2(1 + C∆t)n ≤ C∆t2eCn∆t ≤ C∆t2eCT ,

where T = N∆t is the final time.

10



The proposed exponential integrator (2.30)-(2.31) is self-consistent for solving (2.11). During the com-
putation, the scheme runs with Un±(τ) only. It does not require approximations of the original components
x(t),y(t) for (2.6) or X(t, τ), Y (t, τ) for (2.7). In addition to the second order uniform accuracy in time
and the spectral accuracy in τ , the scheme (2.30)-(2.31) is fully explicit and efficient thanks to fast Fourier
transform in τ and the locality of the regularised basis S(x).

With (Un±)k, k = 1, . . . , Np from the exponential integrator (2.30)-(2.31), one can obtain the approxima-
tion of the solution of the original characteristics (2.2) as

xk(tn) ≈
(
Un+(tn/ε

2) + eJtn/ε
2

Un−(tn/ε
2)
)
k

= Xn
k

(
tn
ε2

)
, vk(tn) ≈ J

ε
eJ

tn
ε2 Un−,k

(
tn
ε2

)
, n ≥ 1.

Then together with the PIC approximation (2.1), we complete the numerical scheme of a two-scale PIC
method for solving the Vlasov-Poisson equation (1.1).

3. Numerical results

In this section, we first test the accuracy of the proposed UA PIC method (2.30)-(2.31) and then conduct
some numerical experiments to explore the dynamics of the Vlasov-Poisson equation (1.1) in the limit regime.

3.1. Example 1

We consider the Vlasov-Poisson equation (1.1) with the Kelvin-Helmholtz instability type initial data
[7, 21, 12],

f0(x,v) =
1

2π
(1 + sin(x2) + η cos(kx1)) e−

|v|2
2 , (3.1)

on a computational domain for x = (x1, x2) as Ω = [0, 2π/k]× [0, 2π] for some k, η > 0. Periodic boundary
conditions are assumed in x.

Accuracy test. In order to show the importance of the preparation of the initial data for the UA property,
we consider the following initial data for each two-scale characteristic (2.11):

• U±(0, τ) = u0
± (we will refer as U0th);

• U±(0, τ) = U1st
± ; here the electric field E1st is replaced in the Chapman-Enskog expansion (2.26) by

the initial electric field E(t = 0,x) solution of ∇x · E(t = 0,x) =
∑Np
`=1 ω`δ(x− x`,0);

• U±(0, τ) = U2nd
± given by (2.26).

We shall test the performance of the proposed scheme (2.30)-(2.31) under the two inefficient choices of
initial data U0th

± and U1st
± . We shall compare the results with the one obtained from the two-scale PIC

(2.30)-(2.31) under the well-prepared initial data U2nd
± (2.26).

We choose η = 0.05, k = 0.5 in (2.26) for this accuracy test. We discretize the spatial domain Ω with
64 points in x1-direction and 32 points in x2-direction. The Poisson equation (1.1b) is solved on Ω with
periodic boundary conditions by the fast Fourier transform where the background density ni is such that
the average in space of total charge vanishes. We take the basis function S(x) for the PIC method as the
fifth order B-spline (same in other numerical experiments), i.e. m = 5 in (2.4). The high order spline
function is chosen here to reach a high accuracy in spatial approximation so that the temporal error can be
distinguished. We choose the numerical grid points in τ -direction as Nτ = 32. We take Np = 204800 and
generate the initial position and velocity (xk,0,vk,0) of each particle by means of the rejection sampling.

We compute the error on the density function ρε(t,x) =
∫
R2 f

ε(t,x,v)dv,x ∈ Ω at the final time t = 1
where a reference solution is obtained numerically via the UA PIC with very small time step, e.g. ∆t = 10−3.
We measure the error under maximum norm in space. The temporal error test results of the proposed two-
scale PIC method (2.30)–(2.31) with the three types of initial data U0th

± , U1st
± , U2nd

± are given in Figure 1.
We can observe the influence of the initial data on the convergence of the method. When the initial data
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Figure 1: Temporal error of the proposed PIC method in ρε with respect to ∆t and ε: results of U2nd
± (first row); results of

U1st
± (second row); results of U0th

± (third row).

is chosen as U2nd
± , the uniform accuracy is well recovered whereas order reduction (or even no convergence)

can be observed when the initial data is not well-prepared, in particular in the intermediate regime. We
also study the numerical error to further address the error from the velocity part, considering the following
quantities

ρεv,1(t,x) :=

∫
R2

(|v1|+ |v2|)fε(t,x,v)dv, ρεv,2(t,x) :=

∫
R2

|v|2fε(t,x,v)dv, x ∈ Ω.

The errors of the UA PIC regarding ρεv,1 and ρεv,2 at t = 1 are shown in Figure 2, with the initial condition

U2nd
± (under the similar setup as previously). The uniform accuracy is still observed on these quantities.

Then, in the following, UA PIC scheme will always refer to the scheme (2.30)–(2.31) with the initial data
U2nd
± .

Figure 3 investigates the error in τ -direction (using the maximum norm) by comparing the solution
obtained by the UA PIC scheme under ∆t = 10−3 and different Nτ to a reference one obtained under
Nτ = 32 (the other numerical parameters are the same as previously). Figure 3 illustrates the spectral
accuracy of the scheme in the τ -direction, meaning that a few number of grid points are sufficient to obtain
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Figure 2: Temporal error of the proposed PIC method under U2nd
± : results in ρεv,1 (first row) and results in ρεv,2 (second row)

with respect to ∆t and ε.
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Figure 3: Error of with respect to Nτ under different ε.

a good accuracy.
Finally, the time history of the relative total energy (H(t)−H(0))/H(0) is displayed in Figure 4, where

H(t) is a conserved quantity defined by

H(t) =
1

2

∫
R2

∫
Ω

|v|2fε(t,x,v)dxdv +
1

2

∫
Ω

|Eε(t,x)|2dx.

The error of the total energy, i.e. |H(tn) −H(0)|/H(0) during the computation of the UA PIC (i.e. with
U2nd
± ) is given in Figure 4 under time step ∆t = 0.1 and ∆t = 0.05 for several ε. We can observe that the

error is well preserved and in particular, its amplitude is divided by 4 when the time step is divided by 2,
as expected.

Numerical exploration. Next, we carry out some numerical explorations on the Vlasov-Poisson equation
(1.1). We firstly investigate numerically the convergence of the Vlasov-Poisson equation (1.1) to its limit
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Figure 4: Time history of the relative error of the total energy for the UA PIC scheme, with ∆t = 0.05, 0.1.

model (1.2). We work under the initial data (3.1) with η = 0.05, k = 0.5. We solve the asymptotic model
(1.2) satisfied by f(t,x,v) using a standard PIC method (a leap-frog scheme is used for the characteristics).
We study the following quantities

ρε(t,x)− ρ(t,x) :=

∫
R2

fε(t,x,v)dv −
∫
R2

f(t,x,v)dv, x ∈ Ω

ρεv,2(t,x)− ρv,2(t,x) :=

∫
R2

|v|2fε(t,x,v)dv −
∫
R2

|v|2f(t,x,v)dv, x ∈ Ω,

in the L∞ norm in space, for different values of ε, at time t = 1. In Figure 5, these errors are displayed as
a function of ε. In both cases, a first order in ε is obtained. These results confirm the strong convergence
of Vlasov-Poisson equation (1.1) towards the asymptotic model (1.2).
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Figure 5: Convergence of the Vlasov-Poisson equation (1.1) towards the asymptotic model (1.2): ‖ρε(t = 1, ·)− ρ(t = 1, ·)‖L∞
(left) and ‖ρεv(t = 1, ·)− ρv(t = 1, ·)‖L∞ (right) as a function of ε.
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Then, we consider the Root Mean Square (RMS) quantity in this example:

RMS(t) :=

√∫
Ω

x2
1(ρε(t,x)− ni)dx, t ≥ 0, (3.2)

which fast oscillates in time with frequency O(ε−2) as 0 < ε � 1. We consider this quantity using the UA
PIC scheme with the initial data U2nd

± , for ε = 0.025 and ε = 0.0125. On Figure 6, we plot the time history
of RMS using the UA PIC scheme under a comparatively large time step ∆t = 0.025, 0.05, 0.1, together
with a reference solution obtained with a resolved time step. From the results, we can see that the UA PIC
scheme is able to capture the correct RMS quantity at different time even though the time step is too large
to resolve the oscillation waves (the ratio ∆t/ε2 takes values up to 640).
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Figure 6: Time history of RMS(t) for ε = 0.025 (left) and ε = 0.0125 (right) by using UA PIC with ∆t = 0.025, 0.05, 0.1.

Figure 7: Contour plot of quantity χε(t,v) at different t with ε = 0.005.

Finally, we perform simulations for a larger final time. To validate our simulations, we consider the
asymptotic regime ε = 0.005 so that fε is close to f solution of (1.2). Using an isotropic (in v) initial
condition (3.1) implies that the solution f remains isotropic for all time. Then, the asymptotic model (1.2)
can be integrated with respect to v to get the guiding-center model (1.3). For this model, the linear theory
enables to determine a priori an instability rate for the initially excited modes of the electric potential
([7, 12]). This rate can be compared to our numerical results obtained by the UA PIC solver when ε is
small. Then, with ε = 0.005, we consider the dynamics of the following quantity

ξ(t) := ln
(∣∣∣(̂φε1,1)(t)

∣∣∣) , t ≥ 0, (3.3)
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where (̂φε1,1) denotes the Fourier coefficient of φε of mode (1, 1). Figure 8 shows the time history of ξ(t)
under different values of η and k. We observe that when η is small, the linear phase is larger, and for a given
k, the numerical rate is in a very good agreement with the analytical one. In Figure 9 (resp. Figure 7), we
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Figure 8: Time history of the quantity ξ(t) (3.3) under different η with ε = 0.005, k = 0.5 (first row) and k = 0.4 (second row).

study the space (resp. velocity) profiles ρε(t,x) − ni (resp. χε(t,v) :=
∫

Ω
fε(t,x,v)dx), at different times.

The evolution of ρε(t,x) − ni is in very good agreement with the results obtained in the literature [7, 12].
We can remark in Figure 7 that there is no dynamics in the velocity direction. As mentioned above, this is
explained by the isotropic character of the initial condition (3.1).

3.2. Example 2

Then, we apply the UA PIC scheme to study the Vlasov-Poisson equation (1.1) with a non-isotropic (in
v) initial data:

f0(x,v) =
1

4π
(1 + sin(x2) + η cos(kx1))

(
e−

(v1+2)2+v2
2

2 + e−
(v1−2)2+v2

2
2

)
. (3.4)

As discussed previously, since the initial data is no more isotropic and at least when ε << 1, a non trivial
dynamics should be observed in the velocity direction. We choose η = 0.05, k = 0.5 and take Np =
409600, Nτ = 16. We compute the solution under ε = 0.005 at different times. The dynamics of χε(t,v) :=∫

Ω
fε(t,x,v)dx is shown in Figure 10. The profiles of ρε are similar to the results in (9), so we omit them

for brevity. For small times, the two bumps of χε start to rotate, at t ≈ 15, the bumps merge and for large
times, the velocity distribution becomes isotropic. These effects can not be observed using the guiding-center
model (1.3) since the associated initial condition is the integral with respect to v of (3.4).

3.3. Long time test

At last but no least, we study the behavior of the UA PIC scheme with the initial condition (3.1) and
for a large final time (tf = 100). We fix the numerical parameters as follows: ∆t = 0.1, Nx = 128, Ny =
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Figure 9: Contour plot of quantity ρε(t,x)− ni at different t with ε = 0.005.

Figure 10: Contour plot of quantity χε(t,v) at different t with ε = 0.005.

17



0 10 20 30 40 50 60 70 80 90 100
-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-6

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-6

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-6

-5

-4

-3

-2

-1

0

1

Figure 11: Time history the quantity ξ(t) (3.3) for different values of ε = 1, 0.1, 0.05, 0.01 (from top left to bottom right).

64, Nτ = 16, Np = 1638400 and consider different values for ε. In Figure 11, the time history of ξ defined
by (3.3) is displayed for different values of ε (ε = 1, 0.1, 0.05, 0.01). Different behaviors can be observed (see
also [10]): when ε is small, the Kelvin-Helmoltz instabilities occurs (up to t ≈ 20) whereas when ε is large,
we do not get instability anymore. Note that all the numerical parameters are fixed and only the physical
parameter ε changes.

Furthermore, for large times it turns out that the two-scale t and τ may no longer be separated variables
and numerical instabilities may occur. These instabilities have been observed typically for ε = 0.1 in our
numerical tests. To avoid this, we propose to ”re-initialize” the numerical solution every t0 (where t0 has to
be chosen, typically t0 = 20 for this test) as follows. At time t = t0, we compute the original unknowns x(t0),
v(t0) according to (2.15) then we apply the general procedure where the initial time is now t0: two-scale
formulation combined with the suitable preparation (2.26) of the initial data at t = t0, in which u0

± are now
computed from x(t0), v(t0) instead of x(0), v(0). This refreshing process is repeated at all times t = kt0,
k = 1, 2, . . . . To illustrate the influence of this strategy, we plot in Figure 12 the time history of ξ defined
by (3.3). The numerical parameters are the same as previously. Without the refreshing process, we observe
that numerical instabilities are developed at t ≈ 80 for the UA PIC approach. However, if we apply the
refreshing process every t0 = 20, the solution is smoothed and the numerical instabilities disappear.
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Figure 12: Time history the quantity ξ(t) (3.3) for ε = 0.1 without refreshing (left) and with refreshing every t0 = 20 (right).

4. Conclusion

In this work, a two-scale Particle-In-Cell solver is introduced for solving the long time behavior of the
four dimensional phase space Vlasov-Poisson system under the influence of a strong homogeneous magnetic
field. In the asymptotic regime, the solution exhibits oscillations in time of period of order ε2 where 1/ε is
related to the magnitude of the magnetic field.

This numerical scheme is based on a two-scale formulation in which the slow and fast time scale are
separated, and on a suitable choice of the initial data for the two-scale system. Then, this solver is proved to
be uniformly accurate of second order (in time) with respect to the parameter ε ∈ (0, 1]. Numerical results
confirm the good behavior of the scheme in different regimes and considering isotropic and non isotropic
initial conditions.

The strategy is able to handle other scaling relevant for strongly magnetized plasmas such as the so-called
finite Larmor radius regime. However the case of a non homogeneous magnetic field is still an issue, since
oscillations in space and velocity have to be considered.
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