
HAL Id: hal-01418939
https://hal.science/hal-01418939

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taking into account stereoisomerism in the prediction of
molecular properties

Pierre-Anthony Grenier, Luc Brun, Didier Villemin

To cite this version:
Pierre-Anthony Grenier, Luc Brun, Didier Villemin. Taking into account stereoisomerism in the
prediction of molecular properties. 23rd International Conference on Pattern Recognition (ICPR),
Dec 2016, Cancun, Mexico. pp.1543-1548. �hal-01418939�

https://hal.science/hal-01418939
https://hal.archives-ouvertes.fr


Taking into account stereoisomerism in the
prediction of molecular properties

Pierre-Anthony Grenier, Luc Brun
Normandie Univ, ENSICAEN,

CNRS, GREYC, 14000 Caen, France
{pierre-anthony.grenier,luc.brun}@ensicaen.fr

Didier Villemin
Normandie Univ, ENSICAEN,

LCMT UMR CNRS 6507,
Caen, France

didier.villemin@ensicaen.fr

Abstract—The prediction of molecule’s properties through
Quantitative Structure Activity (resp. Property) Relationships are
two active research fields named QSAR and QSPR. Within these
frameworks Graph kernels allow to combine a natural encoding
of a molecule by a graph with classical statistical tools such as
SVM or kernel ridge regression. Unfortunately some molecules
encoded by a same graph and differing only by the three
dimensional orientation of their atoms in space have different
properties. Such molecules are called stereoisomers. These latter
properties can not be predicted by usual graph methods which
do not encode stereoisomerism.

In a previous paper, we proposed to encode the stereoiso-
merism property of each atom by a local subgraph, called
minimal stereo subgraph, and we designed a kernel based on
the comparison of bags of such subgraphs.

However, the encoding of a molecule by a bag of subgraphs
induces an important loss of information. In this paper, we
propose a new kernel based both on the spatial relationships
between minimal stereo subgraphs and the local neighbourhood
of each minimal stereo subgraph within its supergraph. Our
experiments show the benefits of taking into account such
information.

I. INTRODUCTION

Most of QSAR and QSPR methods are based on a basic
principle of the chemoinformatics framework which states
that: “two similar molecules should have similar properties”.
An usual way to encode molecules is to use their molecular
graphs. A molecular graph is a simple graph G = (V,E, µ, ν),
where each node v ∈ V encodes an atom, each edge e ∈ E
encodes a bond between two atoms and the labeling functions
µ and ν associate to each vertex and each edge a label encod-
ing respectively the nature of the atom (carbon, oxygen,. . . )
and the type of the bond (single, double, triple or aromatic).

However, molecular graphs have a limitation: they do not
encode the spatial configuration of atoms. Some molecules,
called stereoisomers, are associated to a same molecular graph
but differ by the relative positioning of their atoms. We can
imagine for example, a carbon atom, with four neighbors,
each of them located on a summit of a tetrahedron. If we
permute two of the atoms, we obtain a different spatial
configuration (Figure 1a). An atom is called a stereocenter
if a permutation of two atoms belonging to its neighborhood
produces a different stereoisomer. Two connected atoms also
define a stereocenter if a permutation of the positions of two
atoms belonging to the union of their neighborhoods produces

(a) Two different spatial configurations of the
neighbors of a carbon

(b) Two different spatial configurations of
two carbons linked by a double bond.

Fig. 1: Two types of stereocenters.

a different stereoisomer (Figure 1b). According to chemical
experts [1], within molecules currently used in chemistry,
98% of stereocenters correspond either to carbons with four
neighbors, called asymmetric carbons (Figure 1a) or to couples
of two carbons adjacent through a double bond (Figure 1b).
We thus restrict the present paper to such cases.

Graph kernels [2], [3], [4], allow to combine a graph encod-
ing of molecules with usual machine learning methods. Brown
et al. [5] have proposed to take into account stereoisomerism
through an extension of the tree-pattern kernel [3]. In this
method, similarity between molecules is deduced from the
number of common tree-patterns between two molecules.

Intuitively, stereoisomerism property is related to the fact
that permuting two neighbors of a stereocenter produces a
different spatial configuration. If those two neighbors have
a same label, the influence of the permutation should be
searched beyond the direct neighborhood of this stereocenter.
Based on this ascertainment, we have proposed in [6] to
characterize a stereocenter by a subgraph, called a minimal
stereo subgraph, big enough to highlight the influence of
each permutation of the neighbors of this stereocenter but
sufficiently small to provide a local characterization of it.
We then proposed a kernel based on those subgraphs. One



limitation of this approach, is that graph information is reduced
to a bag of subgraphs without taking into account the possible
interactions between these subgraphs nor the neighbourhood
of each instance of a subgraph within the whole graph. Thus,
in [7], we proposed to construct a graph, where each vertex
represent a minimal stereo subgraph and each edge encodes an
interaction between two subgraphs. By using a graph kernel
on this graph we are able to take into account interactions
between minimal stereo subgraphs. However we do not take
into account the neighbourhood of a minimal stereo subgraph
within the whole graph. In this paper we present a way to
combine both information within a unified framework.

In Section II we remind the points of [6] and [7], the
encoding of molecules by ordered graphs, the construction of
minimal stereo subgraphs which characterize stereocenters and
the construction of graphs of interactions. Then in Section III
we present a model which allows to take into account the
neighbourhood of a minimal stereo subgraph and a way
to integrate this model in our previous framework. Results
obtained with this new method are provided in Section IV.

II. MINIMAL STEREO SUBGRAPHS AND GRAPHS OF
INTERACTIONS

A. Encoding of molecules by ordered graphs

The spatial configuration of the neighbors of each atom
may be encoded through an ordering of its neighborhood [6].
In order to encode this information, we introduce the notion
of ordered graph. An ordered graph G = (V,E, µ, ν, ord)
is a molecular graph Ĝ = (V,E, µ, ν) together with a
function ord : V → V ∗ which maps each vertex to an
ordered list of its neighbors. Two ordered graphs G and G′

are isomorphic (G '
o
G′) if it exists an isomorphism f

between their respective molecular graphs Ĝ and Ĝ′ such
that ord′(f(v)) = (f(v1) . . . f(vn)) with ord(v) = (v1 . . . vn)
(where N(v) = {v1, . . . , vn} denotes the neighborhood of v).
In this case f is called an ordered isomorphism between G
and G′.

However, different ordered graphs may encode a same
molecule. We thus have to define an equivalence relationship
between ordered graphs, such that two ordered graphs are
equivalent if they represent a same molecular configuration.

To do so, we introduce the notion of re-ordering function
σ, which associates to each vertex v ∈ V of degree n a
permutation σ(v) on {1, . . . , n}, which allows to re-order
its neighborhood. The graph with re-ordered neighborhoods
σ(G) is obtained by mapping for each vertex v its order
ord(v) = v1 . . . .vn onto the sequence vσ(v)(1) . . . .vσ(v)(n)
where σ(v) is the permutation applied on v.

The set of re-ordering functions, transforming an ordered
graph into another one representing the same configuration is
called a valid family of re-ordering functions Σ [8]. We say
that it exists an equivalent ordered isomorphism f between G
and G′ according to Σ if it exists σ ∈ Σ such that f is an
ordered isomorphism between σ(G) and G′ (σ(G) '

o
G′). The

Fig. 2: Stereocenters and their neighbourhoods.

equivalent order relationship defines an equivalence relation-
ship [8] and two different stereoisomers are encoded by non
equivalent ordered graphs. We denote by IsomEqOrd(G,G′)
the set of equivalent ordered isomorphism between G and G′.

Combinatorial map are a special case of ordered graph
where reordering functions are cyclic permutation. In general,
ordered graphs can be used for any application of pattern
recognition where data can be represented by graph and where
the ordering of the vertices is important.

Carbons with four neighbors, and double bonds between
carbons, are not necessarily stereocenters. If they are not
stereocenters, any permutation in their neighbourhood would
lead to an equivalent ordered graph. We thus define for an
ordered graph G = (V,E, µ, ν, ord) and one of its vertex
v ∈ V a set of ordered isomorphism FvG:

FvG =
⋃

(i,j)∈{1,...,|N(v)|}2
i 6=j

{f | f ∈ IsomEqOrd(G, τvi,j(G))

with f(v) = v}

where τvi,j is a re-ordering function equals to the identity on
all vertices except v for which it permutes the vertices of index
i and j in ord(v). Intuitively, isomorphisms in FvG correspond
to a symmetry of the neighbors of v.

We then define a stereo vertex as a vertex for which any
permutation of two of its neighbors produces a non-equivalent
ordered graph:

Definition 1 (Stereo vertex). Let G = (V,E, µ, ν, ord) be an
ordered graph. A vertex v ∈ V is called a stereo vertex iff
FvG = ∅.

Two carbons linked by a double bond form a stereocenter
and we have proved in [8] that if a carbon of a double bond
is a stereo vertex then the other one is also a stereo vertex.
Therefore we denote by kernel(s) the set of stereo vertices
corresponding to a stereocenter (kernel(s) = {s} if s is an
asymmetric carbon and kernel(s) = {s, u} if s is a carbon
of a double bond, where u is the other carbon of the double
bond). We further denote by StereoStar(s) the set composed
of a stereocenter and its neighbourhood: StereoStar(s) =
kernel(s)∪N(kernel(s)) (Figure 2) where N(kernel(s)) is
the neighbourhood of the vertices of kernel(s).



B. Minimal stereo subgraphs
Definition 1 is based on the whole graph G to test if a

vertex v is a stereo vertex. However, given a stereo vertex s,
one can observe that on some configurations, the removal of
some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo
vertex, we should thus determine a vertex induced subgraph
H of G, including s, large enough to characterize the stereo
property of s, but sufficiently small to encode only the relevant
information characterizing the stereo property of s. Such a
subgraph is called a minimal stereo subgraph of s.

We now present a constructive definition of a minimal stereo
subgraph of a stereo vertex. Let s denotes a stereo vertex and
let Hs be a subgraph of G containing kernel(s). We say that
the stereo property of s is not captured by Hs if (Definition 1):

FsHs
6= ∅ (1)

To define a minimal stereo subgraph of s, we consider a fi-
nite sequence (Hk

s )nk=1 of vertex induced subgraphs of G. The
first element of this sequence H1

s is the smallest vertex induced
subgraph for which we can test (1): V (H1

s ) = StereoStar(s).
If the current vertex induced subgraph Hk

s does not capture
the stereo property of s, we know by (1), that it exists some
isomorphisms f ∈ FsHk

s
. We denote by Ekf the set of vertices

of Hk
s inducing the isomorphism f in Hk

s :

Ekf = {v ∈ V (Hk
s ) | ∃p = (v0, . . . , vq) ∈ Hk

s

with v0 ∈ kernel(s), vq = v and f(v1) 6= v1} (2)

In [8], we show that for any f in FsHk
s

, Ekf is not empty. A
vertex v belongs to Ekf if neither its label nor its neighborhood
in Hk

s allow to differentiate it from f(v). The basic idea of
our algorithm consists in enforcing constraints on each v ∈ Ekf
at iteration k + 1 by adding to Hk

s the neighborhood of v in
G. The set of vertices of the vertex induced subgraph Hk+1

s

is thus defined by:

V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈Fs

Hk
s

N(Ekf ) (3)

where N(Ekf ) denote the neighborhood of Ekf .
The algorithm stops when the set f ∈ FsHk

s
becomes empty.

We proved in [8] that the subgraph obtained by this algorithm
captures the stereo property of s. Figure 3 illustrates our
algorithm. Remarks that the computation of the minimal stereo
subgraph requires the computation of graph isomorphisms
and is thus nearly NP-complete. However, minimal stereo
subgraphs correspond to a local characteristic of a vertex and
have consequently a limited size [6].

Thus for each stereo vertex we can construct its minimal
stereo subgraph to characterize it. We consider two stereo ver-
tices as similar if they have a same minimal stereo subgraph,
and to test it efficiently, we transform each minimal stereo
subgraph S into a code cS thanks to the method described
in [9]. The set of minimal stereo subgraphs of a graph G is
denoted by H(G).

Fig. 3: An asymmetric carbon and its associated sequence
(Hk

C)3k=1

C. Graph of interactions

We now propose to encode interactions between minimal
stereo subgraphs. To do so, we define a function of interac-
tions F between minimal stereo subgraphs. This function of
interactions is defined according to a sequence of conditions
(cond1, . . . , condn). These conditions are increasingly con-
straining:

∀i ∈ {1, . . . , n− 1} condi+1 ⇒ condi

Let S1 and S2 be two minimal stereo subgraphs of a same
ordered graph, such that s1 is the stereo vertex of S1 and s2
is the stereo vertex of S2. We propose the following set of
conditions:

cond0 : StereoStar(s1) 6⊂ S2

cond1 : StereoStar(s1) ⊂ S2

cond2 : S1 ⊂ S2

(4)

The value F (S1, S2) is obtained by taking the index j of
the condition condj which represents the strongest interaction
between S1 and S2:

F (S1, S2) = max{j ∈ {0, 1, 2} | condj}

F (S1, S2) equals to zero means that we consider that S1

does not interact with S2. Note that F is a non symmetric
function.

We define thanks to this function, a graph of interactions
Gi where each vertex v ∈ Vi represents a minimal stereo
subgraph and each edge encodes an interaction between two
minimal stereo subgraphs deduced from F :

Definition 2 (Graph of interactions). Let G =
(V,E, µ, ν, ord) denotes an ordered graph, and
H(G) = {S1, . . . , Sn} its set of minimal stereo subgraphs.
A graph of interactions Gi = (Vi, Ei, µi, νi) is a graph built
from G and the function of interaction F . Each vertex uj of
Vi corresponds to a minimal stereo subgraphs Sj of G and
(uj , uk) ∈ Ei only if F (Sj , Sk) or F (Sk, Sj) is not null. The
labels of the graph of interactions are defined by :
• ∀uj ∈ Vi, µi(u) = cSj .
• ∀e = (uj , uk) ∈ Ei, νi(e) = min(F (Sj , Sk), F (Sk, Sj))
� max(F (Sj , Sk), F (Sk, Sj)).



(a) An ordered graph and its minimal stereo subgraphs
(each of them are surrounded by a line)

(b) Its graph of interaction

Fig. 4: One ordered graph and its graph of interactions Gi

where � denotes the concatenation and cS is the code
describing S and defined in [9].

Figure 4 shows a graph of interactions obtained from an
ordered graph. We can see that the edge between H1 and H4 is
labeled by 04 because F (H1, H2) = 4 and F (H2, H1) = 0. In
practice, a molecular ordered graph have few identical minimal
stereo subgraphs. Thus few vertices have identical labels in a
graph of interaction and an edge is almost defined by the labels
of its vertices. Therefore using directed graphs as graph of
interaction would not give much more information. Moreover
there exists a lot of graph kernels (e.g. [2], [3], [4]) which
can be used to measure similarities of undirected graphs. By
using one of those graph kernel on the graph of interactions,
we obtain a kernel which takes into account stereoisomerism
and interactions between minimal stereo subgraphs.

However, from an intuitive point of view, a stereo subgraph
partially fixes the geometry of a part of a molecule. Remaining
parts of the graph attached to the different extremities of
a stereo subgraph should thus play different roles in the
property to predict according to the extremity to which they are
attached. We have thus to take into account the neighbourhood
of each minimal stereo subgraph into our final kernel.

III. NEIGHBOURHOOD OF MINIMAL STEREO SUBGRAPHS

In this section, we present a method to take into account
the direct neighbourhood of minimal stereo subgraphs. We first
construct a kernel between minimal stereo subgraphs, which
compares their direct neighbourhood.

A. Kernel between minimal stereo subgraphs

For a stereo subgraph S, we denote δin(S) the set of vertices
on the boundaries of S :

δin(S) = {v ∈ S | N(v) 6⊂ S}

Fig. 5: A minimal stereo subgraph S with the vertex of its
boundaries {v1, v2, v3, v4, v5} and their 3-neighborhood.

For each vertex v on the boundary of a minimal stereo sub-
graphs S we define a subgraph Skv called the k-neighborhood
of v :

Definition 3 ( k-neighborhood ). Let G = (V,E, µ, ν, ord) be
an ordered graph. We denote s a stereo vertex of G and S its
minimal stereo subgraph. The k-neighborhood of v, a vertex
of δin(S), is the induced subgraph Skv of G such that:

VSk
v

=

{
u ∈ G− S

∣∣∣∣ d(u, v) ≤ k
∀v′ ∈ δin(S), d(u, v) ≤ d(u, v′)

}
Figure 5 shows an example of k-neighborhoods associated

to vertices of the boundary of a minimal stereo subgraph.
We can notice that a k-neighborhood can be disconnected
(S3
v3 ) and that two k-neighborhoods can have a non empty

intersection (S3
v4 and S3

v5 ).
We want to compare two minimal stereo subgraphs located

in different graphs, such that there is an equivalent ordered
isomorphism f between them. As they can have different
surroundings, their k-neighborhoods are compared in order
to have a local measure of similarity. However, in order to
respect the orientation provided by stereocenters, we do not
compare all the pairs of k-neighborhood but only the ones
associated to vertices u and v which can be matched by an
equivalent ordered isomorphism. As we compare a subset of
pairs of k-neighborhoods we define our kernel as a matching
kernel [11].



For a minimal stereo subgraph S we denote by (v1, . . . , vn)
an ordering of δin(S). We also denote se(S) the ordered
sequence of the k-neighborhoods associated to the sequence
(v1, . . . , vn):

se(S) = (Skv1 , . . . , S
k
vn)

The mapping between two minimal stereo subgraphs S and
S′ is defined as :

MS,S′ =

 (se(S),se(S’))
∃f ∈ IsomEqOrd(S, S′)
s.t ∀i ∈ {1, . . . , n},
f(vi) = v′i


where se(S) = (Skv1 , . . . , S

k
vn) and se(S′) =

(S′kv′1
, . . . , S′kv′n).

The kernel between those minimal stereo subgraphs is then
defined by:

kinf (S, S′) =

∑
(se(S),se(S′))∈MS,S′

n∏
i=1

kt(S
k
vi , S

′k
v′i

)√
|δin(S)|!|δin(S′)|!

(5)

where kt is a kernel between graphs. Note that, the normal-
ization by

√
|δin(S)|!|δin(S′)|! allows to discard the influence

of the arbitrary ordering of δin(S). If MS,S′ is empty, there
is no equivalent ordered isomorphism between S and S′, and
thus kinf (S, S′) is equal to zero.

The kernel kt is a “weight” kernel defined by :

kt(G,G
′) = e

−(w−w′)2
d (6)

where d is a parameter and w the weight of a molecular
graph (defined as the sum of the weights of atoms encoded
by vertices of the graph). In practice, we also tested usual
graph kernels [3], [4], which do not provide significantly better
results than this kernel.

We can define a kernel between ordered graphs by compar-
ing their sets of minimal stereo subgraphs:

kinfG(G,G′) =
∑

S∈H(G)

∑
S′∈H(G′)

kinf (S, S′) (7)

We propose in the next section a method to use the kernel
of equation 5, within the framework of graph of interactions
(Section II-C).

B. Integration within the graph of interactions

In [7], we used several graph kernels [2], [3], [4] to compute
a measure of similarity between graphs of interactions.

Treelet are all the labeled subtrees with six or less vertices
of a graph. The authors of [4] define how to compute those
treelets, and a code formed with their labels, which allows to
test efficiently if two treelets are isomorphic. The treelet kernel
applied to the graph of interactions [7] is defined by :

kT (G,G′) =
∑

t∈T (Gi)∩T (G′i)

K(ft(Gi), ft(G
′
i)) (8)

where Gi is the graph of interactions of G, T (Gi) is the set
of treelets of Gi, ft(Gi) is the number of occurrence of the

treelet t in the graph Gi and K is a definite positive kernel
between real numbers.

The treelet kernel compare the number of occurrences of
each treelet present in both graph. Two treelets are identical
if they have the same structure and the same labels. In graph
of interactions, labels of vertices are the code defined in [9]
which describes minimal stereo subgraph. However, if we use
the kernel between minimal stereo subgraphs (equation 5),
two minimal stereo subgraphs with identical code are no
longer considered as identical since they may have different
neighbourhoods. Thus we can no longer count the identical
patterns within graphs of interactions. Let us first remark that
if K is a scalar product (8) may be rewritten as follows :

kT (G,G′) =
∑

t∈T(Gi)

∑
t′∈T(G′i)

δ(t, t′) (9)

where δ(t, t′) a function equal to 1 if there is an isomorphism
between t and t′ and 0 otherwise and T(Gi) is the bag of
treelets of Gi. Hence unlike in T (Gi) (equation 8), an element
t of T(Gi) may appear several times.

As we want to compare treelets with identical labeling, we
can replace δ(t, t′) by a kernel between t and t′ in (9):

kT (G,G′) =
∑

t∈T(Gi)

∑
t′∈T(G′i)

∑
φ∈Isom(t,t′)

k(t, φ(t)) (10)

where Isom(t, t′) is the set of isomorphism between t and
t′. Note that if Isom(t, t′) is empty,

∑
φ∈Isom(t,t′)

k(t, φ(t)) is

equal to zero.
Each vertex of t (respectively t′) is associated to a minimal

stereo subgraph of G (respectively G′). To compare the
neighbourhood of each minimal stereo subgraph associated to
a treelet t, the subkernel k is defined by :

k(t, φ(t)) =
∏
v∈t

kinf (S(v), S(φ(v))) (11)

where kinf is the kernel between minimal stereo subgraphs
defined in equation (5), and S(v) is the minimal stereo
subgraph associated to the vertex v of t.

By using the kernel of equation (10) on graph of interaction,
with the subkernel of equation (11), we obtain a measure of
similarity between molecules, which takes into account both
the direct neighbourhoods of minimal stereo subgraphs and
the interactions between minimal stereo subgraphs.

Moreover, some treelets may have more influence on a
property than others. Based on this assumption, [12] proposed
to combine the treelet kernel with a multiple kernel learning
method [13], by learning a weight wt for each treelet t. The
formulation of equation (8) becomes :

kT (G,G′) =
∑

t∈T (G)∩T (G′)

wtK(ft(G), ft(G
′)) (12)

where wt is the weight associated to the kernel t.



TABLE I: Time of computation of the gram matrices

Method Time in seconds
1 - Stereo Kernel [6] 0.7
2 - Graph of interactions [7] with [4] 0.8
3 - Kernel between minimal stereo subgraphs (7) 3
4 - Graph of interactions and neighbourhood (10) 11

TABLE II: Prediction of the biological activity of synthetic
vitamin D derivatives.

Method RMSE
1 - Tree pattern kernel [3] 0.251
2 - Treelet kernel [4] 0.271
3 - Tree pattern kernel with stereo [5] 0.184
4 - Stereo Kernel [6] 0.194
5 - Graph of interactions [7] with [4] 0.171
6 - Graph of interactions [7] with [3] 0.161
7 - Graph of interactions [7] with [4] and MKL 0.172
8 - Kernel between minimal stereo subgraphs (7) 0.177
9 - Graph of interactions and neighbourhood (10) 0.177

10 - Graph of interactions, neighbourhood and MKL (13) 0.154

In the same way, we can change the formulation of equa-
tion (10) to integrate a weight for each treelet extracted from
the graph of interactions:

kT (G,G′) =
∑

t∈T(G)

∑
t′∈T(G′)

wt
∑

φ∈Isom(t,t′)

k(t, φ(t)) (13)

With this formulation, we can use a multiple kernel learning
algorithm to weight the influence of each treelet of the graph
of interactions.

IV. EXPERIMENTS

We have tested our method on a dataset of synthetic vitamin
D derivatives, used in [5]. This dataset is composed of 69
molecules, with an average of 8.55 stereocenters per molecule.
This dataset is associated to a regression problem, which
consists in predicting the biological activity of each molecule.

Table I shows the computing time of the gram matrices
for this dataset for each of our methods. We can see that the
extension induce more computing time.

For all the experiments we use the same protocol: a nested
cross-validation which selects parameters and estimates the
performance. The outer cross-validation is a leave-one-out
procedure, used to compute an error of prediction for each
molecule of the dataset. For each fold, we use another leave-
one-out procedure on the remaining molecules, to compute a
validation error. We use standard SVM methods for regression
of molecules.

We can see in Table II, that methods which do not encode
stereoisomerism information [3], [4] obtain poor results (lines
1 and 2). Adding stereoisomerism information allows to obtain
better results as the tree pattern kernel with stereo [5] (line 3)
and the stereo kernel [6] (line 4) obtain better results than the
two previous ones. The adaptation of the tree pattern kernel to
stereoisomerism [5] is however better than the stereo kernel [6]
because it can implicitly take into account the neighbourhood
of minimal stereo subgraphs. By taking this neighbourhood
into account explicitly (line 8) or by taking into account the

interactions between minimal stereo subgraphs (lines 5-7) we
are able to obtain better results than [5] (line 3).

By combining the graph of interactions, with the kernel
between minimal stereo subgraphs (line 9) we do not obtain
better results than with the kernel between minimal stereo
subgraphs alone (line 8) or the graph of interactions alone
(lines 7-5). However, by using a multiple kernel learning
algorithm on the treelets of the graph of interactions and
using the kernel between minimal stereo subgraphs (line 10)
we improve significantly the best result obtained so far. Note
that the multiple kernel method applied on the graph of
interactions (with a dirac kernel between stereo subgraphs)
does not provide any improvement (lines 5 and 7). Our kernel
between stereo subgraphs taking into account their embedding
into their original graphs (equation 10 and 11) provide thus an
additional information put in evidence by the multiple kernel
method.

V. CONCLUSION

The stereo kernel [6] which compares the minimal stereo
subgraphs of two ordered graphs has one drawback : graph
information are reduced to a bag of subgraphs without taking
into account possible interactions between these subgraphs
nor the neighbourhood of each instance of a subgraph within
the whole graph. The graph of interactions introduced in [7]
allows to take into account the interactions between minimal
stereo subgraphs, but not the direct neighbourhood of those
subgraphs.

In this paper we have presented a kernel which take
into account the neighbourhood of minimal stereo subgraphs.
Moreover, we have shown how to integrate this kernel into
the framework of the graph of interactions. This combination
provides a significant decrease of the prediction error.
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