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Abstract—The graph edit distance (GED) measures the amount
of distortion needed to transform a graph into another graph.
Such a distance, developed in the context of error-tolerant graph
matching, is one of the most flexible tool used in structural
pattern recognition. However, the computation of the exact
GED is NP-complete. Hence several suboptimal solutions, such
as the ones based on bipartite assignments with edition, have
been proposed. In this paper we propose a binary quadratic
programming problem whose global minimum corresponds to the
exact GED. This problem is interpreted as a quadratic assignment
problem (QAP) where some constraints on solutions have been
relaxed. This allows to adapt the integer projected fixed point
algorithm, initially designed for the QAP, to efficiently compute
an approximate GED by finding an interesting local minimum.
Experiments show that our method remains quite close to the
exact GED for datasets composed of small graphs, while keeping
low execution times on datasets composed of larger graphs.

I. INTRODUCTION

Computing an efficient similarity or dissimilarity measure
between graphs is a major problem in structural pattern
recognition. The graph edit distance (GED) [1]–[4], developed
in the context of error-tolerant graph matching, provides such
a measure. It may be understood as the minimal amount of
distortion required to transform a graph into another, by a
sequence of edit operations applied on nodes and on edges,
restricted here to substitutions, insertions and removals. Such
a sequence is called an edit path. Depending on the nature of
the graphs and on the context, all paths may not have a same
importance, in particular when nodes or edges are labeled or
attributed. So each possible edit operation e is penalized by a
non-negative cost c(e), and the integration of these costs over
an edit path γ defines the length A(γ) of this path. An edit
path having a minimal length, among all edit paths Γ(G1, G2)
transforming a graph G1 into a graph G2, defines the GED
from G1 to G2:

GED(G1, G2) = min
γ∈Γ(G1,G2)

{
A(γ)

def.
=
∑
e⊂γ

c(e)

}
(1)

Since computing the GED is NP-complete, it is restricted to
rather small graphs. So several approaches have been proposed
to approximate the GED efficiently and to process larger
graphs. In this paper, graphs are assumed to be simple (no
loop nor multiple edge), and each element of the two graphs
can be edited only once (no composition of edit operations).

Under these conditions, the GED can be expressed as a
binary quadratic program (QP), which is the subject of this
paper. Contrary to the graph matching problem, which can be

rewritten as a quadratic assignment problem (QAP) [5], [6],
an error-tolerant graph matching can also remove and insert
elements. Managing these edit operations is the main difficulty
of the quadratic framework. To this, a binary QP is obtained in
[7] by considering an edit grid. It is transformed into a binary
linear program, which can be solved exactly with classical
solvers, but graphs are restricted to be undirected, edges to be
unlabeled, and it is also restricted to small graphs since there
are (n+m)2 binary variables, with n= |V1| and m= |V2|. In
[8] a QP with nm real variables is defined to optimize the cost
restricted to node substitutions and associated edge operations.
This QP, solved by an interior point algorithm, provides a
weight for each possible node substitution. From this fuzzy
assignment between nodes, an approximate minimal-cost edit
path is then constructed using an heuristic method. Other
approximate GED are based on a similar two-step strategy.

In particular, the bipartite graph edit distance (bGED) [9],
[10] approximates the GED by replacing the error-tolerant
matching between two graphs by an error-tolerant bipartite
matching of their nodes, from which an edit path is con-
structed. Such an error-tolerant set matching can be rewritten
as a square linear sum assignment problem (LSAP), with
(n+m)2 binary variables to take into account substitutions,
insertions and removals of elements. To approximate the GED,
these operations are penalized by the cost of substituting,
removing or inserting substructures attached to the nodes [9]–
[15]. Since the LSAP can be solved in polynomial time,
for instance in O((n+m)3) with the well-known Hungarian
algorithm [5], [16], the bGED provides an efficient approxi-
mation of the GED. This linear framework has been extended
to a quadratic one [17], where the GED is expressed as a
global solution of a QAP with (n+m)2 binary variables. An
interesting local minimal solution is obtained by relaxing the
constraints on the solutions, and by using the integer projected
fixed point algorithm (IPFP) [6]. This algorithm iterates: an
instance of the LSAP (projection of local continuous solution
in the discrete domain), and a line search in the continuous
domain to get the next local continuous solution.

While this last quadratic framework improves the approxi-
mation of the exact GED, the size of the initial data has been
artificially augmented to manage removal and insertion opera-
tions more easily. This is also the case in the linear framework
above, and in the one proposed by [7]. Recently, the error-
tolerant set matching involved in the computation of bGEDs
has been formulated as an extension of the LSAP with only
(n+ 1)(m+ 1) binary variables [18]. Since a solution can be



computed in O(min{n,m}2 max{n,m}) time complexity by
an adapted Hungarian algorithm, the computation of the bGED
is improved, in particular for large graphs.

Based on this last formulation (Sec. II) [18], we propose in
this paper a new quadratic expression of the GED with only
(n+ 1)(m+ 1) binary variables (Sec. III). This problem is
interpreted as a quadratic assignment problem (QAP) where
constraints on solutions have been relaxed for removal and
insertions operations. This allows to adapt the IPFP algorithm
used in [17] to compute efficiently an approximate GED.
Experiments (Sec. IV) show that our method remains quite
close to the exact GED for datasets composed of small graphs,
as previously obtained in [17]. Moreover, contrary to [17],
execution times on datasets composed of larger graphs are
similar to the ones obtained by bGEDs.

II. LINEAR SUM ASSIGNMENT PROBLEM WITH EDITION

This section describes the problem of minimal-cost error-
tolerant set matching, formalized as an extension of the LSAP,
as proposed in [18].

A. Assignment with edition

A transformation of a set V1 into a set V2 can be performed
by applying edit operations as follows: Each element i∈V1 is
either substituted by an unique element j ∈V2 (denoted by
i→ j), or removed from V1 (i→ ε). Then each remaining
element j ∈V2, not previously used for a substitution, is
inserted (denoted by ε→ j).

Consider the two sets V ε1 =V1 ∪{ε} and V ε2 =V2 ∪{ε}.
Edit operations (substitutions, removals and insertions) defin-
ing the transformation can be represented by a mapping
ϕ :V ε1 →P(V ε2 ) satisfying: ∀i∈V1, |ϕ(i)| = 1

∀j ∈V2,
∣∣ϕ−1[j]

∣∣ = 1
ε∈ϕ(ε)

(2)

where P(·) is the powerset, and ϕ−1[j]
def.
= ϕ−1[{j}] denotes

the pre-image of any singleton {j}∈P(V ε2 ) by ϕ.
Following [18], such a mapping is called an assignment

with edition, or ε-assignment. It may be understood as a bi-
jection on which the bijectivity constraint has been relaxed on
the element ε. Indeed, we implicitly have 1≤ |ϕ(ε)| ≤m+ 1
and 1≤ |ϕ−1[ε]| ≤n+ 1, with n= |V1| and m= |V2|. Let
Aε(V1, V2) be the set of ε-assignments from V1 to V2.

To simplify the forthcoming expressions, consider w.l.o.g.
that V1 = {1, . . . , n}, V2 = {1, . . . ,m}, V ε1 =V1 ∪{n+ 1} and
V ε2 =V2 ∪{m+ 1}. Any ε-assignment ϕ∈Aε(V1, V2) can be
equivalently represented by a (n+ 1)× (m+ 1) binary matrix

X =

V2 ε


x1,1 . . . x1,m x1,m+1

V1...
. . .

...
...

xn,1 . . . xn,m xn+1,m+1

xn+1,1 . . . xn+1,m 1 ε

(3)

such that
xi,j = δϕ(i)={j}, ∀(i, j)∈V1×V2 (sub.)
xi,m+1 = δϕ(i)={ε}, ∀i∈V1 (rem.)
xn+1,j = δϕ−1[j]={ε}, ∀j ∈V2 (ins.)
xn+1,m+1 = 1

(4)

Due to the constraints on ϕ, the matrix X has a 1 on each of
its n first rows and a 1 on each of its m first columns:

∑m+1
j=1 xi,j = 1, ∀i= 1, . . . , n∑n+1
i=1 xi,j = 1, ∀j= 1, . . . ,m

xn+1,m+1 = 1

(5)

Reciproqualy, any matrix X∈{0, 1}(n+1)×(m+1) satisfying
Eq. 5 represents an ε-assignment.

B. Problem formulation

The definition of an ε-assignment does not rely on the
nature of the underlying data. To select a relevant ε-assignment
in Aε(V1, V2), each edit operation o is penalized by a non-
negative cost c(o). Then the cost of an ε-assignment ϕ, is
obtained by summing the costs of its edit operations:

L(ϕ) =
∑
i∈V ε

1

∑
j∈ϕ(i)

c(i→ j)

=
∑
i∈V1

ϕ(i)={j}

c(i→ j)

︸ ︷︷ ︸
substitutions

+
∑
i∈V1

ϕ(i)={ε}

c(i→ ε)

︸ ︷︷ ︸
removals

+
∑
j∈V2

ϕ−1[j]={ε}

c(ε→ j)

︸ ︷︷ ︸
insertions

(6)
Note that the mapping ε→ ε has a zero cost, since it does not
represent any edit operation.

The cost of all edit operations, induced by Aε(V1, V2), can
be collected into a matrix C∈ [0,+∞)(n+1)×(m+1) such that
ci,j = c(i→ j) for all (i, j)∈V ε1 ×V ε2 , with cn+1,m+1 = 0.
Consider an ε-assignment ϕ and its corresponding binary
matrix X (Eq. 4). Then the cost of ϕ (Eq. 6) is equal to:

L(X) =

n+1∑
i=1

m+1∑
j=1

ci,jxi,j = vec(C)T vec(X) (7)

where vec(M) is the vectorization of the p× q matrix M
obtained by concatenating its rows, i.e. a vector of size pq.

A relevant ε-assignment is then defined as one having a
minimal cost among all ε-assignments transforming V1 into
V2, i.e. satisfying

argmin
ϕ∈Aε(V1,V2)

L(ϕ) (8)

or equivalently satisfying the following binary linear program:

argmin
x

{
cTx |Lx=1n+m, x∈{0, 1}p, xp = 1

}
(9)

where p= (n+ 1)(m+ 1), c= vec(C) and the linear system
Lx=1 is the matrix version of the constraints defining
an ε-assignment (Eq. 2 or Eq. 5). The assignment matrix
L∈{0, 1}(n+m)×(n+1)(m+1) is defined by:

∀(i, j),
{
lk,(i,j) = δk=i, ∀k= 1, . . . , n
ln+k,(i,j) = δk=j , ∀k= 1, . . . ,m

(10)



Since L is totally unimodular, from standard tools in linear
programming, the problem defined by Eq. 9 (or Eq. 8) has a
binary solution. This problem is close to the classical linear
sum assignment problem (LSAP). Compared to the LSAP,
elements can also be removed or inserted, i.e. the constraints
in Eq. 9 are relaxed for one element (ε) in each of the two
sets. For this reason, the problem defined by Eq. 9 is called the
linear sum assignment problem with edition (LSAPE) [18].

The LSAPE can be efficiently solved in polynomial time
complexity by adapting algorithms that initially solve the
LSAP. An adaptation of the Hungarian algorithm [5], [16]
is presented in [18]. It computes a solution to the LSAPE in
O(min{n,m}2 max{n,m}) time complexity and in O(nm)
space complexity. This improves complexities obtained by the
classical approach used to transform a set into another with
edit operations [9], [10]. In this last approach, the problem is
formalized as a LSAP with a specific (n+m)× (m+n) cost
matrix. It can be solved by the classical Hungarian algorithm
in O((n+m)3) time complexity and in O((n+m)2) space
complexity.

III. A QUADRATIC EXPRESSION OF THE GED
In this section we extend the linear sum assignment problem

with edition to a quadratic one. This simplifies the quadratic
expression of the GED proposed in [17].

A. Simultaneous assignment with edition
Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs,

directed or not. A transformation of G1 into G2, with edit
operations applied on nodes and on edges, can be fully
represented by an ε-assignment ϕ :V ε1 →P(V ε2 ) transforming
V1 into V2. Then the set E1 is transformed into the set E2 as
follows:

1) Any edge (i, j)∈E1 is mapped by ϕ to a pair (k, l) ∈
V ε2 ×V ε2 with ϕ(i) = {k} and ϕ(j) = {l}. The edge
(i, j) is either

a) substituted by (k, l) if (k, l)∈E2, or
b) removed if (k, l) 6∈E2, in particular if i or j is

removed by ϕ (k= ε or l= ε).
2) Any edge (k, l)∈E2 is inserted into E1 if it has not

been used by a substitution in Step 1, i.e. if there is
a pair (i, j)∈V ε1 ×V ε1 such that k∈ϕ(i), l∈ϕ(j) and
(i, j) 6∈E1. In particular, this occurs when k or l is
inserted by ϕ into V1 (i= ε or j= ε).

The sequence of edit operations transforming E1 into E2 is
thus represented by a simultaneous ε-assignment of the nodes.
Its cost is defined by summing the cost of its edit operations:

Q(ϕ) =
∑

(i,j)∈E1

with {k}=ϕ(i),{l}=ϕ(j),(k,l)∈E2

c((i, j)→ (k, l)) (sub.)

+
∑

(i,j)∈E1

with {k}=ϕ(i),{l}=ϕ(j),(k,l)6∈E2

c((i, j)→ ε) (rem.)

+
∑

(k,l)∈E2

with {i}=ϕ−1[k],{j}=ϕ−1[l],(i,j) 6∈E1

c(ε→ (k, l)) (ins.)

(11)

TABLE I
EDIT OPERATION INDUCED BY THE SIMULTANEOUS ASSIGNMENT OF

i, j ∈V ε1 TO k, l∈V ε2 RESPECTIVELY

(i, j) (k, l) edit operation cost dik,jl
∈E1 ∈E2 substitution of (i, j) by (k, l) c((i, j)→ (k, l))

∈E1 6∈E2 removal of (i, j) c((i, j)→ ε)

6∈E1 ∈E2 insertion of (k, l) into E1 c(ε→ (k, l))

6∈E1 6∈E2 do nothing 0

More generally, the cost of simultaneously assigning i∈V ε1
to k∈V ε2 , and j ∈V ε1 to l∈V ε2 , can be defined by:

dik,jl = c ((i, j)→ (k, l)) δ(i,j)∈E1
δ(k,l)∈E2

(sub.)
+ c((i, j)→ ε)δ(i,j)∈E1

(1− δ(k,l)∈E2
) (rem.)

+ c(ε→ (k, l))(1− δ(i,j)∈E1
)δ(k,l)∈E2

(ins.)
(12)

where δr = 1 if the relation r is true or δr = 0 else. The edit
operation associated to the simultaneous node assignment is
reported in Table I. Observe that dik,jl = 0 when both (i, j)
and (k, l) are not edges of G1 and G2 respectively. Indeed
in this case the simultaneous assignment does not correspond
to an edit operation applied on edges. Then the cost Q(ϕ)
defined by Eq. 11 can be written more compactly as:

Q(ϕ) = g
∑
i∈V ε

1

∑
k∈ϕ(i)

∑
j∈V ε

1

∑
l∈ϕ(j)

dik,jl

with g =

{
1
2 if G1 and G2 are undirected
1 else

(13)

When graphs are both undirected, the cost dik,jl is symmetric
(dik,jl = djl,ik). So a factor 1

2 is introduced to count the cost
of each edit operation only once.

B. Quadratic assignment problem with edition and GED

An optimal transformation of G1 into G2 consists in com-
puting an ε-assignment having a minimal cost that penalizes
operations both on nodes and edges, among all ε-assignments
from V1 onto V2. In other terms, the cost of this optimal
transformation is equal to the GED from G1 to G2 [17]:

GED(G1, G2) = min
ϕ∈Aε(V1,V2)

{
A(ϕ)

def.
= Q(ϕ) + L(ϕ)

}
(14)

This optimization problem is close to the quadratic assignment
problem (QAP), see [5] for more details on QAP.

To see this, consider an ε-assignment ϕ∈Aε(V1, V2) and
the associated binary vector x∈{0, 1}p, with xp = 1 and
p= (n+ 1)(m+ 1). Nodes i and j of V ε1 are simultaneously
assigned by ϕ to k and l of V ε2 , respectively, iff xik =xjl = 1.

The quadratic cost Q(ϕ) can then be rewritten as

Q(x) = g

n+1∑
i=1

m+1∑
k=1

n+1∑
j=1

m+1∑
l=1

dik,jlxikxjl = g xTDx (15)

where the matrix D∈ [0,+∞)p×p, of general term dik,jl
(Eq. 12), encodes the cost of all possible simultaneous as-
signments. Compared to Eq. 13, the sum in Eq. 15 is also



carried on simultaneous assignments which are not induced
by the ε-assignment ϕ, i.e. xik = 0 or xjl = 0. Since they
do not contribute to the sum, we have Q(x) =Q(ϕ). Due to
the constraints on ε-assignments, when i, j ∈V1 and k, l∈V2

remark that several simultaneous assignments never occur,
i.e. xikxil = 0 with k 6= l or xikxjk = 0 with i 6= j (a node
cannot be assigned twice). In these cases, the value of dik,jl
is not well-defined by Eq. 12 and should be equal to 0.
Nevertheless dik,jlxikxjl = 0 is always satisfied according to
the previous remark, and so the value of the cost is not so
relevant. Also, since graphs are simple, all diagonal elements
are null (dik,ik = 0).

The cost of transforming G1 into G2 can then be written as

A(x) = g xTDx + cTx (16)

where c∈ [0,+∞)p is the edit cost vector defined in Eq. 9.
Since xTDx= 1

2x
T (D + DT )x, we have

A(x) =
1

2
xT∆x + cTx

with ∆ =

{
D if G1 and G2 are undirected
D + DT else

(17)
The cost matrix ∆ is always symmetric, even if at least one
of the two graphs is directed. The linear part of the cost can
also be included in the quadratic part, leading to

A(x) = xT ∆̂x, with ∆̂ = 1
2∆ + diag(c) (18)

Then the GED is rewritten as the following quadratic program:

GED(G1, G2) = min
{
xT ∆̂x | Lx=1n+m, x∈{0, 1}p

}
(19)

We call it the quadratic assignment problem with edition
(QAPE). The QAPE differs from the classical QAP by the
constraint matrix L. A QAP finds a bijection or an injection
inducing a simultaneous assignment, as for the quadratic
expression of the GED proposed in [17]. This expression
describes a QAP involving assignments represented by vectors
of size (n + m)2. This is simplified by Eq. 19 by involving
vectors of size (n+ 1)(m+ 1) only.

C. Relaxation, approximation, algorithm

While exact solutions to the QAPE could be computed
by adapting algorithms that initially solve the QAP [5], this
would not be competitive with bipartite GEDs in terms of
computational time. So we propose to approximate the GED
by adapting the integer projected fixed point (IPFP) algorithm
[6], designed to approximate the solution to the QAP, and it
is also used in [17] to approximate the GED. As several other
algorithms, the IPFP algorithm tries to find a solution to the
relaxed quadratic problem given here by

argmin
{
xT ∆̂x | Lx=1n+m, x∈ [0, 1]p

}
(20)

where the space of solutions is now continuous.

Given an initial candidate solution x, the algorithm iterates
the three following steps

b? ← argmin
{

(xT ∆̂)b | Lb=1,b∈{0, 1}p, bp = 1
}

(21)

α? ← argmin
α∈[0,1]

A(x + α(b?−x)) (22)

x← x + α?(b? − x) (23)

until convergence (when x becomes discrete) or after a given
number of iterations.

The first step (Eq. 21) consists in computing a linear
approximation of A around the current solution x in the
discrete domain. This can be realized by solving a LSAPE
with xT ∆̂ as an edit cost matrix (Sec. II). Indeed, the first-
order Taylor expansion of A around x is given by

A(y) ≈ A(x) + (xT ∆̂)(y − x), y∈ [0, 1]p (24)

so minimizing A(x) locally is approximatively equivalent to
minimizing xT ∆̂y with x fixed. By standard tools in linear
programming, this linear program has a same binary solution
b? as the problem defined by Eq. 21, here a LSAPE. It can be
solved in O(min{n,m}2 max{n,m}) time complexity and in
O(nm) space complexity (Sec. II-B). Compared to the IPFP
algorithm proposed in [17], where Eq. 21 corresponds to a
square LSAP, computational time is reduced at each iteration.
This confirmed experimentally (Section IV).

The second step consists in computing the local minimum
of A, by a line search, between the current solution x and
the candidate binary solution b? included. As detailed in [17]
this can be solved analytically, here in O(mn). The vector
realizing this minimum is the new candidate solution.

The iterative process generally converges to a local min-
imum of the relaxed problem defined by Eq. 20. When x
is continuous, an additional projection (Eq. 21) is performed
to get the final binary vector. The quality of the approxima-
tion depends mainly on the initialization. A random vector
satisfying the constraints could be used. Instead, it seems to
be more natural to compute a bipartite GED (bGED), i.e. to
solve a LSAPE [18], and consider the corresponding optimal
ε-assignment as initial vector in IPFP algorithm. In this way,
results obtained by a bGED should be improved. This is
analyzed experimentally in the following section.

IV. EXPERIMENTS

A. Chemical datasets

Table II shows results obtained by different state of the art
methods to compute an estimation of the GED. These methods
have been tested on four chemoinformatics datasets 1, in the
same way as in previous papers using these datasets [12],
[13]. Each dataset is composed of molecular graphs. Costs
have been set to 1 for any substitution operation, and 3
for insertions and deletions. It is important to notice that
each graph adjacency matrix is randomly permuted in order

1Datasets are available at https://iapr-tc15.greyc.fr/links.html

https://iapr-tc15.greyc.fr/links.html


TABLE II
ACCURACY AND COMPUTATIONAL SCORES. d IS THE AVERAGE EDIT DISTANCE, e THE AVERAGE ERROR AND t THE AVERAGE COMPUTATIONAL TIME.

Algorithm Alkane Acyclic MAO PAH
d e t d e t d t d t

1 A∗ 15 1.29 17 6.02
2 [9], [10] 35 18 ' 10−3 35 18 ' 10−3 105 ' 10−3 138 ' 10−3

3 [12] 33 18 ' 10−3 31 14 ' 10−2 49 ' 10−2 120 ' 10−2

4 [13] 26 11 2.27 28 9 0.73 44 6.16 129 2.01
5 QAP 20.2 4.7 0.002 20.8 3.4 0.004 33.9 0.019 53.9 0.038
5 (this paper) QAPE 20.1 4.6 ' 10−3 20.8 3.5 0.002 33.9 0.005 53.6 0.010

0.984

0.988

0.992

0.996

1

(a) Repartition of normalized average mean edit distance for each repetition.

0

0.2

0.4

0.6

0.8

1

(b) Computational times normalized over the 4 datasets

Fig. 1. Comparison of IPFP algorithm for the QAP and for the QAPE.

to avoid some alignment bias which may provide optimistic
approximations of the GED. The tested methods are:
• Exact GED based on A? algorithm (line 1), restricted to

very small graphs (not adapted to MAO and PAH).
• Bipartite GED based on the Hungarian algorithm adapted

to the LSAPE [18], with the substructure attached to each
node defined by: incident edges and adjacent nodes [9],
[10], a bag of random walks up to 3 edges (line 2) [12],
a subgraph up to a radius 3 (line 3) [13].

• Approximate GED formalized as a QAP (line 4) [17]
and as a QAPE (line 5), both solved by the IPFP
algorithm with the same initialization provided by [12],
since initialization influences the approximation of the
GED.

Observe that these two last approaches obtain the best ap-
proximation results. Considering Alkane and Acyclic datasets,
this is trivially inferred from average errors. For the two
remaining datasets, we observe lower average edit distances
which may correspond to better approximations since the exact
GED is always over-estimated. In addition, we can note that
computational times of quadratic approaches remain globally
acceptable, especially compared to the bGED proposed in [13]
where most of the time is spent to compute the costs.

Moreover, quadratic approaches seem to have similar accu-
racies, while the approach presented in this paper improves
clearly the computational time. This is analyzed through a
second experiment consisting in 30 repetitions of each ap-
proach, for each dataset. As before, graph adjacency matrices
are randomly permuted in order to avoid some alignment
bias. Figure 1a shows the boxplot of the normalized average
approximate GEDs. For each dataset, these average values are

normalized by the maximal mean approximate GED given
by max{maxi{d̄QAPE

i },maxi{d̄QAP
i }} where d̄i is the mean

approximate GED obtained for the repetition i∈{1, . . . , 30}.
Considering Acyclic and MAO datasets, the distribution are
statistically similar according to a paired Student’s test with a
p-value equals to 0.01. Considering Alkane and PAH datasets,
the difference is statistically significant but not so important
for the approximation of GEDs (about 0.4%). From a compu-
tational time point of view, Figure 1b shows the normalized
mean times according to a same initialization. We can clearly
see that the proposed approach is faster than previous one, with
a ratio around 2 for smaller graphs and 4 for larger graphs.

B. Synthetic datasets

To explore the behavior of the quadratic approaches when
the number of nodes increases, we generate synthetic datasets
having the same characteristics as MAO dataset but gener-
alized to different graph sizes. These characteristics include
node’s and edge’s labels distribution and ratio between num-
ber of edges and number of nodes. For a given number
of nodes, each new synthetic graph is created according to
these characteristics. This allows to retrieve characteristics
of common molecular graphs. For each tested size, up to
100 nodes, a dataset composed of 100 synthetic graphs has
been synthesized. Each of this graph, called source graph, is
then associated to a target graph which has been obtained by
removing one node and by substituting another one from the
associated source graph. The exact GED between a source and
a target is thus known by construction and is around 10.

Figure 2a shows the behavior of the quadratic approaches
when the size increases. As we can see, the proposed approach
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Fig. 2. Total computational time in seconds taken by IPFP algorithm for the QAP (upper red line) and for the QAPE (bottom blue).

based on a QAPE scales better in terms of computational
times. Indeed, for graphs having 100 nodes, the computational
ratio is over 5. Moreover, the average error is the same for both
methods and remains quite stable on the set of sizes. It is worth
noticing that the most important part of time is dedicated here
to the initialization, realized as in the previous section. Fig-
ure 2b shows a similar result but with a fixed size for the first
graph (20 nodes) and a varying size for the second one (from
20 to 500 nodes). The gain in computational times increases as
the size of graphs also increases. Considering a second graph
with 500 nodes, this gain corresponds to a computational time
reduced by a factor 29. This is explained by the reduction of
variable sizes from (n+m)2 to (m+ 1)(n+ 1), and by the
use of a LSAPE instead of a LSAP, at each iteration of IPFP
algorithm (Sec. III-C).

V. CONCLUSION

Based on the notion of assignment with edition, this pa-
per presents a binary quadratic programming problem whose
global optimum is equal to the GED when graphs are sim-
ple, and when edit operations are restricted to substitutions,
removals and insertions. The proposed quadratic program
reformulates a previous expression of the GED as a QAP,
by reducing the number of binary variables to (n+ 1)(m+ 1)
and by relaxing the constraints associated to removals and
insertions. This allows us to adapt an iterative algorithm,
that initially finds an approximate solution to the QAP, to
approximate the GED and reduce both space and time com-
plexities. This is confirmed experimentally. Experiments also
show that computational times are close to those of bGEDs,
while providing distances closer to exact GEDs, on tested
datasets.
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