
HAL Id: hal-01418936
https://hal.science/hal-01418936

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating Graph Edit Distance using GNCCP
Benoît Gaüzère, Sébastien Bougleux, Luc Brun

To cite this version:
Benoît Gaüzère, Sébastien Bougleux, Luc Brun. Approximating Graph Edit Distance using GNCCP.
Structural, Syntactic, and Statistical Pattern Recognition, Nov 2016, Mérida, Mexico. pp.496–506.
�hal-01418936�

https://hal.science/hal-01418936
https://hal.archives-ouvertes.fr

Approximating Graph Edit Distance using
GNCCP

Benôıt Gaüzère1, Sébastien Bougleux2, and Luc Brun3

1 Normandie Univ, INSA Rouen, LITIS, France
2 Normandie Univ, UNICAEN, CNRS, GREYC, France
3 Normandie Univ, ENSICAEN, CNRS, GREYC, France

Abstract. The graph edit distance (GED) is a flexible and widely used
dissimilarity measure between graphs. Computing the GED between two
graphs can be performed by solving a quadratic assignment problem
(QAP). However, the problem is NP complete hence forbidding the com-
putation of the optimal GED on large graphs. To tackle this drawback,
recent heuristics are based on a linear approximation of the initial QAP
formulation. In this paper, we propose a method providing a better local
minimum of the QAP formulation than our previous proposition based
on IPFP. We adapt a convex concave regularization scheme initially de-
signed for graph matching which allows to reach better local minimum
and avoids the need of an initialization step. Several experiments demon-
strate that our method outperforms previous methods in terms of accu-
racy, with a time still much lower than the computation of a GED.

1 Introduction

Graphs provide a flexible framework to represent data including relationships
between elements. In addition, graphs come with an underlying powerful theory
which allows to infer a lot of information from this representation. However,
graph’s space is not an euclidean space. This last point avoids the use of classic
machine learning methods mainly designed to operate in euclidean spaces. Sev-
eral approaches aim to bridge the gap between graph space and euclidean spaces
in order to combine machine learning and graphs. A first historical approach
consists in embedding graphs onto euclidean spaces by computing a set of de-
scriptors describing graphs. Even if this method is straightforward and can be
easily controlled by choosing the information to keep, the loss of structural infor-
mation induced by the euclidean embedding may constitute a major drawback
for some applications. An extension of this approach is based on the well known
kernel trick. Kernel methods implicitly define a scalar product between embed-
ding of graphs in some Hilbert spaces, without requiring an explicit formulation
of the Reproducing Kernel Hilbert Space (RKHS) associated to the kernel. The
use of this trick allows to combine graphs and powerful kernel methods such as
Kernel Ridge Regression or Support Vector Machines. However, constraints on
the design of graph kernels often complexify the consideration of fine similarities
or dissimilarities between graphs.

Another strategy consists in operating directly in the graph space. One of
the most used measure is the graph edit distance (GED) [2, 14]. The GED of
two graphs may be understood as the minimal amount of distortion required
to transform a source graph into a target one. This distortion is encoded by an
edit path, defined as a sequence of edit operations which includes nodes and
edges substitutions, removals and insertions. Depending on the context, each
edit operation e included in an edit path γ is associated to a non-negative cost
c(e). The sum of all edit operation costs included within γ defines the cost
A(γ) associated to this edit path. The minimal cost A(γ?) among all edit paths
Γ (G1, G2) defines the GED between G1 and G2:

GED(G1, G2) = A(γ?) = min
γ∈Γ (G1,G2)

A(γ) (1)

with A(γ) =
∑
e∈γ c(e). The edit path γ? corresponds to an optimal edit path.

GED has been widely used by the structural pattern recognition community [15,
4, 11, 12] despite the fact that such distance comes along with several drawbacks.
First of all, computing the GED of two graphs requires to find a path having
a minimal cost among all possible paths, which is a NP-complete problem [8].
Computing an exact GED is generally done using A? algorithm. In practice, due
to its high complexity, the computation of an exact GED is intractable for graphs
having more than 10 nodes [11, 4]. Such a limitation restricts applications of GED
on real datasets, hence motivating the graph community to focus on heuristics
providing suboptimal solutions of Eq. 1.

In this paper, we propose a method to compute an accurate GED approx-
imation. In Section 2, we first show the close relationship between GED and
nodes’ mappings. This relationship leads to the formulation of the graph edit
distance as a quadratic assignment problem (QAP). Then, Section 3 first reviews
the method used in [13] to find a local minimum of the QAP associated to GED.
Then, we propose a more accurate and reliable optimizer of our QAP formu-
lation. Section 4 shows the effectiveness of our proposal on chemoinformatics
problems.

2 GED as a quadratic assignment problem

Exact GED computation is based on a tree search algorithm which finds an
optimal edit path among possible ones. The resulting algorithm follows the in-
tuition given by the formal definition of the GED. However, this approach has
an exponential complexity with the number of nodes.

Another formulation of the GED is based on its relationship with nodes’
mapping. First, let us consider two sets of nodes V1 = {v1, . . . , vn} and V2 =
{u1, . . . , um} of two graphs G1 and G2, with n = |V1| and m = |V2|. The substi-
tution of node vi ∈ V1 to node uj ∈ V2 can be encoded by mapping vi to uj . In-
sertions/removals of nodes can not be encoded by a node to node mapping since
a removed node will no longer appear in the target graph. Therefore, we augment
the two sets V1 and V2 by adding enough null elements ε to encode the removal

or insertion of any node: V ε1 = V1∪{ε1, . . . , εm} and V ε2 = V2∪{ε1, . . . , εn}. Note
that |V ε1 | = |V ε2 | = n + m. Insertion of a node uj ∈ V ε2 can now be represented
by mapping an ε element to uj . In the same way, a mapping vi → ε encodes
the removal of node vi. It has be shown [1, 10] that, under mild assumptions
on edit paths, each mapping between the two sets V ε1 and V ε2 of two graphs G1

and G2 corresponds to one and only one edit path transforming G1 into G2.
Considering this bijective relationship, finding the optimal edit path relies on
finding an optimal mapping between the two sets V ε1 and V ε2 which minimizes
the total mapping cost of nodes and edges.

Let us consider a bijective function φ : V ε1 → V ε2 . The mapping cost induced
by this mapping can be defined as a sum of two terms:

S(V ε1 , V
ε
2 , φ) = Lv(V

ε
1 , V

ε
2 , φ) +Qe(V

ε
1 , V

ε
2 , φ) (2)

The first term Lv(V
ε
1 , V

ε
2 , φ) encodes the cost induced by nodes’ mappings and

the second term Qe(V
ε
1 , V

ε
2 , φ) the cost induced by edges’ mappings. Let us con-

sider the matrix X ∈ Π, with Π representing the set of binary doubly stochastic
matrices: X encodes a mapping function Φ iff Xi,j = 1 with φ(i) = j and Xi,j = 0
otherwise. X corresponds then to a mapping or permutation matrix. The cost
induced by nodes mapping can then be defined as:

Lv(V
ε
1 , V

ε
2 , φ) =

n∑
i=1

c(vi → φ(vi)) +

m∑
i=1

c(εi → φ(εi)) =

n+m∑
i=1

n+m∑
j=1

Ci,jXi,j (3)

with C ∈ R(n+m)×(n+m)
+ encoding costs associated to edit operations on nodes.

The bipartite GED, proposed by [11], can be understood as an approximation
of the problem expressed in Eq. 2. In bipartite approach, only the linear term
Lv(V

ε
1 , V

ε
2 , φ) is considered. Finding the optimal mapping w.r.t. Lv(V

ε
1 , V

ε
2 , φ)

corresponds to a Linear Sum Assignment Problem (LSAP) defined as:

X? = argmin
X∈Π

vec(C)Tvec(X) (4)

where vec(X) encodes the vectorization of matrix X, i.e. the concatenation of
its rows into one single vector. For a sake of clarity, vec(X) will be denoted x.

Eq. 4 can be resolved using well known algorithms such as Hungarian [6] in
O((n+m)3). The optimal mapping encoded by X? encodes a set of nodes edit
operations. Using simple graphs, edges’ edit operations are inferred from the
nodes’ mapping to complete the edit path. Finally, the sum of costs associated
to this edit path is taken as the approximation of GED. Note that since this edit
path may not be optimal, the computed GED may be an overestimation of the
exact one.

Each entry Ci,j of matrix C encodes the cost of the edit operation induced
by mapping the i-th element of V ε1 to the j-th element of V ε2 . Table 1 summarizes
the general term Ci,j . Computing an optimal mapping using only C as defined
in Table 1 will only take into account information about nodes, ignoring all the
structural information encoded by edges. However, since the quality of the GED

Table 1. Edit operations and costs encoded in matrix C

i j edit operation cost Ci,j

∈V1 ∈V2 substitution of vi by uj c(vi → uj)

∈V1 6∈V2 removal of vi c(vi → ε)

6∈V1 ∈V2 insertion of uj c(ε→ uj))

6∈V1 6∈V2 none 0

approximation depends directly from the computed mapping, costs encoded in
matrix C may also estimate costs induced by edit operations on edges. To include
this information, methods based on bipartite graph matching [11, 4, 3] define a
cost matrix C augmented with the costs induced by the mapping of nodes’
neighborhoods. The differences between different methods are mainly based on
the size of the radius considered around each node. Results presented by [3] have
shown that, as expected, the quality of the approximation increases as long as
we take into account a larger radius around each node, and thus more structural
information. However, we also observe an asymptotic gain for radius greater than
3, hence showing the limit of this method. Obviously, computational times also
increase as we increase the radius.

Cost induced by edges’ edit operations are inferred from edges’ mapping.
However, mapping φ is only defined between two extended sets of nodes and an
edge is defined by a couple of nodes. Therefore, edge mappings can be directly
deduced from the mapping of their incident nodes. Let e = (vi, vj) ∈ E1, its
mapped edge in V ε2 corresponds to e′ = (φ(vi), φ(vj)). If e′ ∈ E2, then the
mapping corresponds to an edge substitution, else if e′ /∈ E2, then the edge has
been removed. Reciprocally, if e′ = (ui, uj) ∈ E2 and e = (φ−1(ui), φ

−1(uj)) /∈
E1, then this edge has been inserted. The cost associated to edges’ operations is
encoded by a sum of three terms, one for each kind of edit operation:

Qe(V
ε
1 , V

ε
2 , φ) =

∑
(i,j)∈E1,φ(i)=k,
φ(j)=l,(k,l)∈E2

c((i, j)→ (k, l))

︸ ︷︷ ︸
substitutions

+
∑

(i,j)∈E1,φ(i)=k,
φ(j)=l,(k,l) 6∈E2

c((i, j)→ ε)

︸ ︷︷ ︸
removals

+
∑

(k,l)∈E2,i=φ
−1(k),

j=φ−1(l),(i,j)6∈E1

c(ε→ (k, l))

︸ ︷︷ ︸
insertions

(5)

Following the quadratic assignment formulation given by [1], the termQe(V
ε
1 , V

ε
2 , φ)

can be expressed as a quadratic term depending on a matrix D ∈ R(n+m)2×(n+m)2

encoding edges’ mapping costs :

Qe(V
ε
1 , V

ε
2 , φ) = xTDx (6)

Table 2. General term of matrix D

(i, j) (k, l) edit operation Dik,jl

∈E1 ∈E2 substitution of (i, j) by (k, l) c((i, j)→ (k, l))

∈E1 6∈E2 removal of (i, j) c((i, j)→ ε)

6∈E1 ∈E2 insertion of (k, l) into E1 c(ε→ (k, l))

6∈E1 6∈E2 none 0

Table 2 summarizes all mapping costs encoded within matrix D. Note that the
computation of xTDx has, in a naive computation, a O((n+m)4) computa-

tional and memory complexity. However, the vector x ∈ {0, 1}(n+m)2 is sparse
since it encodes a mapping and thus only (n + m) terms differs from 0, which
reduces the computational complexity if we only process them (Alg. 2, lines 1
and 3). Therefore, with a proper approach, the computation of (xTDx) has thus
a O((n+m)2) complexity. Note that this complexity is given for x encoding
a permutation matrix. If more than n + m elements of x are different from 0,
the associated complexity will be higher. We also avoid the storage of D since
we can efficiently compute each term trough a function d (Alg.2, line 7) which
computes Dij,kl according to Table 2. The overall memory complexity can thus
be reduced to the storage of n+m mappings.

Plugging Eq. 3 and Eq. 6 into Eq. 2, the cost of transforming G1 into G2

including both nodes and edge costs according to a mapping φ can then be
written as:

S(V ε1 , V
ε
2 , φ) = Qe(V

ε
1 , V

ε
2 , φ) + Lv(V

ε
1 , V

ε
2 , φ) = xTDx + cTx (7)

with D and c = vec(C) being fully dependant on the two input graphs G1 and
G2 and x encoding the mapping φ. Given a pair of graphs, Eq. 7 can be rewritten
as only depending on x as S(x) = xTDx + cTx.

Given the Alg. 2, each edge is processed twice, i.e. once as (i, j) and once as
(j, i). In case of undirected graphs, it will thus count each edit operation twice.
We have xTDx = 1

2x
T (D + DT)x and to handle both directed and undirected

Algorithm 1 Computation of xTDx(φ)

1: for all j, l | xjl 6= 0 do // O(n+m) if x ∈ Π
2: (xTD)jl = 0
3: for all i, k | xik 6= 0 do // O(n+m) if x ∈ Π
4: δij ← (i, j) ∈ E1

5: δkl ← (k, l) ∈ E2

6: (xTD)jl ← (xTD)jl + d(δij , δkl, c(· → ·) // see Table 2
7: end for
8: end for
9: return xk+1

graphs, we introduce a matrix ∆ :

S(x) =
1

2
xT∆x + cTx with ∆ =

{
D if G1 and G2 are undirected

D + DT else

(8)
Note that D is symmetric if both G1 and G2 are undirected [1]. Hence, ∆ is
symmetric in both cases. Including the linear part into the quadratic one leads
to:

S(x) = xT ∆̂x, with ∆̂= 1
2∆+ diag(c) (9)

Then, computing the GED of two graphs leads to minimize the quadratic func-
tion given in Eq. 9 under the constraint that x is a permutation matrix. This
problem corresponds thus to the QAP:

GED(G1, G2) = min
x∈Π

xT ∆̂x (10)

Note that quadratic formulation of GED have already been proposed: [5] pro-
poses a binary quadratic program transformed into a binary linear program
but restricted to undirected and unlabeled edges. Slightly after, [10] proposed
another quadratic program but where optimization is only focused on node sub-
stitutions.

3 Resolution of the QAP

As stated in Introduction, computing an exact GED is intractable for most
applications. Reducing the complexity relies thus on finding the best possible
mapping, i.e. the one having the lowest mapping cost, in an acceptable compu-
tational time. Rather than finding an exact solution of a linear approximation
of the problem, another strategy consists in optimizing the QAP associated to
GED (Eq. 10). However, since ∆ is neither positive nor negative definite, find-
ing a global minimum of Eq.10 is, conversely to LSAP, a NP-complete problem.
Since this problem is NP-complete, most of algorithms find thus approximate so-
lutions by relaxing the original problem to the set of doubly stochastic matrices.
As we resolve a QAP and not a generic quadratic problem, the solution should
be a permutation matrix encoding a mapping. Since most of classic approaches
used to resolve quadratic problems do not take this constraint into account, the
final projection of the continuous solution to a permutation matrix may alter
the approximation of the GED.

Interger-Projected Fixed Point (IPFP) method [7] has originally been pro-
posed to resolve graph matching problems formalized as a maximization of a
QAP. Conversely to classical methods used to resolve quadratic problems, IPFP
allows to approximate the optimal solution by a gradient descent approach tak-
ing into account the nature of the solution. The algorithm mainly iterates over
two steps: (i) compute a gradient direction which maximizes a linear approxima-
tion of the QAP in discrete domain and (ii) maximize the QAP in the continuous
domain between the previous solution and the one found at step (i).

Algorithm 2 IPFP(x0, ∆̂, ε)

1: k = 0
2: repeat
3: b? ← argminb∈Π (xk

T ∆̂)

4: α← (xk
T ∆̂)b? − 2S(xk) + cTxk

5: β ← S(b?) + S(xk)− (xk
T ∆̂)b? + cTxk

6: t? ← −α/2β
7: xk+1 ← xk + t?(b? − xk)
8: k ← k + 1
9: until ||xk − xk−1|| < ε

10: return argmaxb∈Π xTk b

IPFP has been adapted from its original definition to GED computation [1,
13] by considering a minimization rather than a maximization and by consider-
ing the matrix ∆̂. The algorithm corresponding to this adaptation is shown in
Alg. 3. Line 3 corresponds to the computation of the gradient direction. This
step corresponds to a LSAP and can be efficiently computed using an Hun-
garian algorithm such as in bipartite GED framework. Then, a line search is
performed to minimize the quadratic objective function in continuous domain.
This optimization relies on the computation of a step size t? (line 6) which can
be computed analytically. Finally, the solution at convergence is projected onto
the set of mapping matrices (line 10). Note that the stochastic matrix xk is
projected by line 10 onto its closest permutation matrix. However, the distance
betwenn xk and its projection can not be bounded a priori. In [1, 13], we reported
the results obtained by using this approach and, as expected, it reaches a better
accuracy than LSAP based methods. However, due to the non convexity of the
objective function, the accuracy of the approximation is strongly dependant on
the initialization x0.

Graduated NonConvexity and Concativity Procedure (GNCCP) [9, 16] is a
path following algorithm which consists in approximating the solution of a QAP
by using a convex-concave relaxation. This approach brings several advantages
over IPFP. First, no initial mapping is required. This may avoid the accuracy
variations induced by the initialization step observed with IPFP [13]. Second,
this algorithm converges towards a mapping matrix [9]. This second property
allows to avoid the projection step required at the end of IPFP algorithm which
may alter the accuracy of the approximation. GNCCP algorithm is based on a
weighted sum of a convex and a concave relaxation of Eq. 9:

Sζ(x) = (1− |ζ|)S(x) + ζxTx (11)

For ζ = 1, Sζ(x) is equal to xTx which corresponds to a fully convex objective
function. Conversely, for ζ = −1, Sζ(x) = −xTx which now defines a concave
function. GNCCP algorithm starts with ζ = 1, and since the problem is convex,
the initialization does not alter the result and will not influence the quality of
the approximation as in [13]. Then, the algorithm, detailed in Alg. 3, smoothly

Algorithm 3 GNCCP(x0, c, ∆, kmax)

1: ζ = 1, d = 0.1, x = 0
2: while ζ > −1 & x /∈ A do
3: // Resolution of relaxed QAP according to ζ using Frank-Wolfe like algorithm
4: x← argminx∈Π(1− |ζ|)(1

2
xT ∆̂x) + ζxTx

5: ζ ← ζ − d
6: end while
7: return xk+1

interpolates convex and concave relaxations by passing from ζ = 1 to ζ = −1
with steps of size d until convergence is reached by having a mapping matrix
or ζ = −1. Note that the minimum of the concave relaxation is a mapping
matrix [17, 16]. Hence, conversely to IPFP, we do not need to perform a final
projection step which may alter the approximation (end of Alg. 3).

For a given ζ, each iteration of GNCCP minimizes the quadratic functional
defined in Eq. 11 using a Frank-Wolfe like algorithm. In this paper, we adapt
IPFP algorithm used in [13] to perform this step and we remove last projection
step (Alg. 3, line 10). However, since we optimize the relaxed objective function
(Eq. 11), we have to update the linear subproblem and line search step. In our
modified version of Alg. 3, the gradient direction b? has now to minimize Sζ(x):

∂Sζ(x)

∂x
= (1− |ζ|)∂S(x)

∂x
+ ζ2xT = (1− |ζ|)(xT ∆̂) + ζ2xT (12)

Then, line 3 of Alg. 3 is updated with:

b? ← argmin
b∈Π

[(1− |ζ|)(xT ∆̂) + 2ζxT]b (13)

Given the gradient direction b?, line search step has also to be updated to
minimize Sζ(x) rather than S(x). After some calculus, lines 4 and 5 are updated
with:

αζ ← [(1− |ζ|)(xk
T ∆̂) + 2ζxk

T]b? − 2Sζ(xk) + (1− |ζ|)cTxk (14)

βζ ← Sζ(b
?) + Sζ(xk)− [(1− |ζ|)(xT ∆̂) + 2ζxk

T]b? + (1− |ζ|)cTxk (15)

Note that some of the terms of Eq. 14 and 15 have been already computed:
[(1− |ζ|)(xT ∆̂) + 2ζxk

T]b? corresponds to the optimal cost computed by LSAP
resolver on line 3 of Alg. 3, cTxk to the linear term included into ∆̂ and com-
puted for the linear subproblem and Sζ(xk) corresponds to the score of objective
function computed at previous iteration. Finally, step size t? is computed in the
same way as in Alg. 3 with t? = −αζ/2βζ (line 6).

4 Experiments

Our method based on GNCCP is tested on 3 real world chemical datasets4.
Similarly to our previous papers using these datasets [3, 4, 13], edge and node

4 Datasets are available at https://iapr-tc15.greyc.fr/links.html

Table 3. Accuracy and complexity scores. d is the average edit distance, e the average
error and t the average computational time.

Algorithm
Alkane Acyclic PAH

d e t d e t d t

A∗ 15 - 1.29 17 - 6.02 - -
LSAP [11] 35 18 ' 10−3 35 18 ' 10−3 138 ' 10−3

LSAP Random Walks [4] 33 18 ' 10−3 31 14 ' 10−2 120 ' 10−2

LSAP K-graphs[3] 26 11 2.27 28 9 0.73 129 2.01

IPFPRandom init 22.6 7.1 0.007 23.4 6.1 0.006 63 0.04
IPFPInit [4] 20.5 5 0.006 20.7 3.4 0.005 52.5 0.037

GNCCP 16.7 1.2 0.46 18.8 1.5 0.33 41.8 6.24

substitutions costs have been set to 1 and 3 for insertions and deletions. To avoid
bias due to arbitrary order of nodes in data files, each graph adjacency matrix
is randomly permuted. We compare our method to others methods computing
GED. First, we used an exact GED computed using A? but only available for
small graphs (line 1). Second, we show results obtained by LSAP based meth-
ods using different information around each node: incident edges and adjacent
nodes [11] (line 2), bag of random walks up to 3 edges (line 3) [4], subgraphs
up to a radius 3 (line 4) [3]. We also show results obtained by IPFP approach,
detailed in Section 3, with two different initializations: a random one (line 5) and
one using [4] (line 6). Finally, results obtained by our method with d = 0.1 are
displayed (line 7). First of all, Table 3 shows clearly that our method allows to
reach the best accuracy. Considering the two first datasets Alkane and Acyclic
for which we have a ground truth computed using A? (line 1), average error of
approximation is divided by over 2 for acyclic and by over 4 for alkane, hence
showing a very good approximation of GED. These improvements allow to re-
duce the relative error to about 10%. Concerning PAH dataset, the quality of
the approximation must be deduced from average distance since we can not com-
pute the exact GED. Since the edit distance is always overestimated, the lowest
edit distance may correspond to a better approximation. The quality of our ap-
proximation is also validated on PAH dataset since the average edit distance is
reduced by about 20%. Despite the good approximation offered by GNCCP, we
also observe an important increase of computationnal times. This phenomenon
is not surprising since GNCCP iterates over IPFP. For d = 0.1, we may perform
about 20 iterations in the worst case (Alg. 3). In practice, we observe an average
of 11 iterations before reaching convergence. Nonetheless, computational times
increase by a factor 40. This increase is due to the computation of quadratic
term xT∆x. Indeed, for ζ far from 0, the matrix x may contains a lot of entries
different from 0. Therefore, the complexity stated from Alg. 2 no longer holds.

5 Conclusion

Considering the relationship between graph edit distance and nodes’ mapping,
we present in this paper a quadratic assignment problem formalizing the graph

edit distance with substitutions, insertions and removals of nodes and edges.
Following a previous optimization scheme based on a Frank Wolfe algorithm,
we adapt a convex concave relaxation framework to the resolution of the QAP
associated to edit distance. This approach does not require any initialization
step and converges towards a mapping matrix. These two properties allow to
compute a more reliable and robust approximation of the graph edit distance.
The experiments conducted on real world chemical datasets valid our hypothesis.

References

1. S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, and M. Vento. A
quadratic assignment formulation of the graph edit distance. Technical report,
Normandie Univ, NormaSTIC FR 3638, France, 2015.

2. H Bunke and G Allermann. Inexact graph matching for structural pattern recog-
nition. Pattern Recognition Letters, 1(4):245–253, 1983.

3. V. Carletti, B. Gaüzère, L. Brun, and M. Vento. Approximate graph edit distance
computation combining bipartite matching and exact neighborhood substructure
distance. In GbRPR, volume 9069, pages 168–177. Springer, 2015.

4. B. Gaüzère, S. Bougleux, K. Riesen, and L. Brun. Approximate Graph Edit Dis-
tance Guided by Bipartite Matching of Bags of Walks. In Structural, Syntactic
and Statistical Pattern Recognition, volume 8621, pages 73–82. Springer, 2014.

5. D. Justice and A. Hero. A binary linear programming formulation of the graph
edit distance. IEEE Trans. Pattern Anal. Mach. Intell., 28(8):1200–1214, 2006.

6. H.W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quaterly, 2:83–97, 1955.

7. M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected fixed point
method for graph matching and map inference. In Advances in neural information
processing systems, pages 1114–1122, 2009.

8. C. Lin. Hardness of approximating graph transformation problem. In 5th Annual
International Symposium on Algorithms and Computation, volume 834 of LNCS,
pages 74–82. Springer-Verlag, Berlin, 1994.

9. Z.-Y. Liu and H. Qiao. GNCCP–Graduated NonConvexity and Concavity Proce-
dure. Pattern Anal. Mach. Intell., 36(6):1258–1267, 2014.

10. M. Neuhaus and H. Bunke. A quadratic programming approach to the graph edit
distance problem. In GbRPR, volume 4538 of LNCS, pages 92–102. Springer, 2007.

11. K. Riesen and H. Bunke. Approximate graph edit distance computation by means
of bipartite graph matching. Image and Vision Comp., 27:950–959, 2009.

12. K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit for graph edit
distance computation. In Graph-based Representations in Pattern Recognition,
volume 7877 of LNCS, pages 142–151. Springer, 2013.

13. L. Brun S. Bougleux, B. Gaüzère. Graph edit distance as a quadratic program. In
ICPR 2016., 2016. Submitted.

14. A. Sanfeliu and K.-S. Fu. A distance measure between attributed relational graphs
for pattern recognition. Systems, Man. and Cybernetics, 13(3):353–362, 1983.

15. S. Serratosa. Speeding up fast bipartite graph matching through a new cost matrix.
Int. Journal of Pattern Recognition, 29(2), 2015.

16. M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for the graph
matching problem. Pattern Anal. Mach. Intell., 31(12):2227–2242, 2009.

17. F. Zhou and F. De la Torre. Factorized graph matching. In CVPR, pages 127–134,
2012.

