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Abstract

This article studies the solutions in H1 of a steady transport equation with a
divergence-free driving velocity that is W 1,∞, in a two-dimensional bounded polygon.
Since the velocity is assumed fully non-homogeneous on the boundary, existence and
uniqueness of the solution require a boundary condition on the open part Γ− where
the normal component of u is strictly negative. In a previous article, we studied the
solutions in L2 of this steady transport equation. The methods, developed in this
article, can be extended to prove existence and uniqueness of a solution in H1 with
Dirichlet boundary condition on Γ− only in the case where the normal component of
u does not vanish at the boundary of Γ−. In the case where the normal component
of u vanishes at the boundary of Γ−, under appropriate assumptions, we construct
local H1 solutions in the neighborhood of the end-points of Γ−, which allow us to
establish existence and uniqueness of the solution in H1 for the transport equation
with a Dirichlet boundary condition on Γ−.

Résumé

Cet article étudie les solutions dans H1 d’une équation de transport stationnaire
avec une vitesse de régularité W 1,∞ à divergence nulle, dans un polygone borné. La
vitesse étant supposée non nulle sur la frontière, l’existence et l’unicité de la solution
requièrent une condition sur la partie de la frontière où la composante normale de la
vitesse est strictement négative. Dans un précédent article, nous avons étudié les solu-
tions dans L2 de cette équation de transport stationnaire. Les méthodes, développées
dans cet article, peuvent être étendues pour prouver l’existence et l’unicité d’une so-
lution dans H1 avec une condition de Dirichlet sur Γ− seulement dans le cas où la
composante normale de u ne s’annulle pas à la frontière de Γ−. Dans le cas où la
composante normale de u s’annulle à la frontière de Γ−, sous des hypothèses ap-
propriées, nous construisons des solutions locales au voisinage des points frontières
de Γ− de régularité H1, qui nous permettent d’établir l’existence et l’unicité de la
solution dans H1 de l’équation de transport avec une condition de Dirichlet sur Γ−.
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0 Introduction.

Transport equations are studied in many frameworks. In [2,7,12] the stress z, i.e, the
transported quantity, is not assumed regular, while they impose strong conditions on the
fluid velocity u, which indicates the direction of the transport. Contrary to this, in [1,4],
the velocity has only bounded variation with its divergence integrable, but the stress is
assumed bounded or continuous. In fact, we have to choose the regularity of z and u for
the product u .∇z to be well defined in some distributional sense. Thus, in [7], V. Girault
and L.R. Scott, for defining u .∇z with the weaker assumptions, studied the transport
equation with the stress z in L2(Ω), the velocity u given in H1(Ω)d, with div u = 0, and
the right hand side given in L2(Ω), where Ω is a Lipschitz-continuous domain. These Au-
thors established existence and uniqueness of the solution for the transport equation by
using the essential technique of Puel and Roptin [11] and the renormalizing argument of
DiPerna and Lions [5]. In a following article [8], they extended their results from L2 to
H1 for the transport equation. By another technique, in particular a Yosida aproximation,
V. Girault anf L. Tartar [9] studied the solutions in Lp, p ≥ 2, of the transport equation,
when the right hand side is in Lp.

However, all these approaches of transport equations assume that the normal compo-
nent of the fluid velocity u vanishes on the boundary of the domain. Indeed, in the contrary
case, the problem is no longer well-posed and the unicity requires a boundary condition.
However, it is not possible to define the trace on the boundary of the stress z when it is not
regular but only square-integrable. Nevertheless, such transport equation with u .n 6= 0,
where n denotes the unit exterior normal to the boundary, arises in the problem of fully
nonhomogeneous second grade fluid [7]: multiple solutions imply that additional boundary
conditions should be imposed.

In a previous article [3], we established existence and uniqueness of the solution, in the
space where z and u .∇z are L2, for the transport equation, with a boundary condition
on the open part of the boundary where the normal component of u is strictly negative,
where Ω is a Lipschitz-continuous domain of IRd, u is given in H1(Ω)d such that div u = 0,
the right hand side is given in L2(Ω), and W is a given real parameter different from 0.
We showed that it is possible to define the normal component of zu on the boundary and,
hence, to prove that the problem is well-posed by requiring a condition for the normal
component of zu on the part of the boundary where u .n < 0.

The present article studies the steady transport problem : find z ∈ H1(Ω) such that{
z +Wu .∇z = l in Ω,
z = 0 on Γ−

, (0.1)

where Ω is a bounded polygon of IR2, u is given in W 1,∞(Ω)2 such that div u = 0, Γ− is the
open part of the boundary of Ω such that u .n < 0, l is given in H1(Ω), and W is a given
real parameter different from 0. But, in a such framework, if we look for a solution in H1,
a difficulty arises when u .n vanishes at the boundary of Γ−, as we shall see in examples
given below. Indeed, the fact that the function u.n vanishes at a boundary point of Γ−

leads to a discontinuity for the partial derivatives of the solution z at this point and the
solution z has not always the regularity H1, see examples 4, 5 and 7. As we will see in the
following examples, the regularity of the solution seems to depend on the multiplicity of
the root of the equation u .n = 0 at the boundary of Γ− and on the sign of u . τ−, where
τ− is the unit tangent vector to the boundary at the point m, directed towards Γ− : in
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these examples, the solution of the transport equation is H1 if the multiplicity of the root
is 0 or 1 and if the sign of u . τ− is negative in m. On the contrary, the solution is not
H1 if the multiplicity of the root is strictly greater than 1 or if the sign of u . τ− in m is
positive, which is consistent with the assumptions (3.5) of the Theorem 3.1.

When u .n does not vanish at the boundary of Γ−, by using results and tools of [3], we
can prove existence and uniqueness of the solution H1 for the steady transport equation
with the boundary condition on Γ−. In contrast, when u .n vanishes at the boundary of
Γ−, the previous method does not work anymore. In this case, we split the right-hand side
of the transport equation, which gives us a set of localized problems, and the solution H1

of the transport problem is the sum of the solutions H1 of the localized problems. For
solving the problems localized in the neighborhoods of the points where u .n vanishes such
as simple roots of the equation u .n = 0, in the case where u . τ− is negative at each of
these points, we use a change of variables, which allows us to explain the local solution H1

of the transport equation in integal form. Next, we extend this local solution to the whole
domain Ω and we obtain the H1 solutions of the transport problems localized around these
roots. Instead, to solve the problems localized far enough of these roots, the methods of
[3] yield the H1 solutions.

After this introduction, this article is organized as follows. In section 1, we study
several examples of transport problems, which show the link between the regularity of the
solution (L2 or H1) and both the multiplicity of the roots of the equation u .n = 0 at the
end points of Γ− and the sign of u . τ− at these points. Section 2 is devoted to the solution
in H1 of the transport problem when the normal component of the velocity does not vanish
on Γ−. In section 3, we deal with the solutions in H1 of the transport problem in the case
where the normal component of the velocity vanishes on Γ−.

We end this introduction by recalling some basic results of [3] that we shall use through-
out this article. Let Γ′ be an open part of the boundary ∂Ω of class C0,1 and, for r > 2,
T Γ′

1,r the mapping v 7→ v|Γ′ defined on W 1,r(Ω). We denote by W 1− 1
r
,r(Γ′) (see [10]) the

space T Γ′
1,r(W

1,r(Ω)) which is equipped with the norm:

‖ϕ‖W 1−1/r,r(Γ′) = inf{‖v‖W 1,r(Ω), v ∈ W 1,r(Ω) and v|Γ′ = ϕ}. (0.2)

For fixed u in H1(Ω)2, let us introduce the space

Xu(Ω) = {z ∈ L2(Ω), u .∇z ∈ L2(Ω)}, (0.3)

which is a Hilbert space equipped with the norm

‖z‖u = (‖z‖2
L2(Ω) + ‖u .∇z‖2

L2(Ω))
1/2. (0.4)

In the same way we define

Yu(Ω) = {z ∈ L2(Ω), u .∇z ∈ L1(Ω)}.

We recall a theorem ( see [3]) concerning the normal component of boundary values of (zu)
where z belongs to Yu(Ω).

Theorem 0.1 Let Ω be a Lipschitz-continuous domain of IRd, let u belong to H1(Ω)d with
div u = 0 in Ω and let r > d be a real number. We denote by r′ the real number defined
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by:
1

r
+

1

r′
= 1. The mapping γ′n : z 7→ (zu) .n|∂Ω defined on D(Ω)d can be extended

by continuity to a linear and continuous mapping, still denoted by γ′n, from Yu(Ω) into
W−1/r′,r′(∂Ω).

From this theorem and with a density argument, we derive the following Green’s for-
mula: let r > d be a real number and let u be in H1(Ω)d with div u = 0 in Ω,

∀z ∈ Yu(Ω), ∀ϕ ∈ W 1,r(Ω),
∫

Ω
z(u .∇ϕ) dx +

∫
Ω
ϕ(u .∇z) dx =< (zu) .n, ϕ >∂Ω . (0.5)

Let Γ0 and Γ1 be two non empty open parts of ∂Ω that have a finite number of connected
components and verify

Γ0 ∩ Γ1 = ∅, ∂Ω = Γ0 ∪ Γ1,

such that Γ0 ∩ Γ1 has a finite number of connected components.
We introduce the space W−1/r′,r′(Γ0) = (W

1−1/r,r
00 (Γ0))′, where

W
1−1/r,r
00 (Γ0) = {v|Γ0 , v ∈ W 1,r(Ω), v|Γ1 = 0}, (0.6)

and we denote < . , . >Γ0 the duality pairing between these two spaces. Note that if
z ∈ Yu(Ω), then (zu) .n|Γ0 ∈ W−1/r′,r′(Γ0) and, in the same way as previously, we have the
Green’s formula : ∀z ∈ Yu(Ω), ∀ϕ ∈ W 1,r(Ω), with ϕ|Γ1 = 0, ∀u ∈ H1(Ω)d with div u = 0
in Ω, ∫

Ω
z(u .∇ϕ) dx +

∫
Ω
ϕ(u .∇z) dx =< (zu) .n, ϕ >Γ0 . (0.7)

Then, we can define the following space :

Xu(Γ0) = {z ∈ Xu, (zu) .n|Γ0 = 0}. (0.8)

From now on, we suppose that d = 2 and Ω ⊂ IR2. Let us denote by Γ− and Γ0,+ the
following open portions of ∂Ω

Γ− =
⋃
i∈I
ωi, (0.9)

where the sequence (ωi)i∈I represents the set of the open sets ωi of ∂Ω such thatW u .n < 0
almost everywhere in ωi. In the same way,

Γ0,+ =
⋃
j∈J
ω′j, (0.10)

where the open sets ω′j of ∂Ω are such that W u .n ≥ 0 almost everywhere in ω′j. Let us
note that these definitions imply

Γ− ∩ Γ0,+ = ∅.
We assume that Γ− and Γ0,+ have a finite number of connected components and verify

∂Ω = Γ− ∪ Γ0,+, Γ− ∩ Γ0,+ = {m1, . . . ,mq}, (0.11)

where mk, 1 ≤ k ≤ q, denote points of the boundary ∂Ω.
Let us define the space U by

U = {v ∈ H1(Ω)2; div v = 0}. (0.12)

Finally, we recall basic results of [3] that we apply in the particular case where d = 2.
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Proposition 0.2 Let Ω be a Lipschitz-continuous domain of IR2, let u be given in U ,
defined by (0.12), and let Γ− and Γ0,+ be defined by (0.9) and (0.10), verifying (0.11). Let
z belong to Xu(Γ−) and w to Xu(Γ0,+) . Then, z and w verify the following inequalities∫

Ω
(Wu .∇z) z dx ≥ 0,

∫
Ω

(Wu .∇w)w dx ≤ 0. (0.13)

Considering the problem: for u in U , l in L2(Ω) and W in IR∗, find z in L2(Ω) such
that: {

z +Wu .∇z = l in Ω,
(zu) .n = 0 on Γ−

. (0.14)

In [3], we prove the following result of existence and uniqueness in L2.

Theorem 0.3 Let Ω be a lipschitz-continuous domain of IR2 and let Γ− and Γ0,+ be defined
by (0.9) and (0.10), verifying (0.11). For all u in U , defined by (0.12), all l in L2(Ω) and
all real numbers W in IR∗, the transport problem (0.14) has a unique solution z in L2(Ω).

1 Examples of transport problems.

In this section, we study different examples of transport problems (0.1), obtained with
different choices of velocities u, functions l as right hand side and domains Ω ⊂ IR×]0,+∞[.

First, we choose u(x, y) = (x,−y), that verifies div u = 0 everywhere, which cor-
responds to the following transport problem : find z ∈ H1(Ω) satisfying z + x

∂z

∂x
− y ∂z

∂y
= l in Ω,

z|Γ− = 0
. (1.1)

This problem was introduced in [3] in the particular case where Ω =]0, 1[×]1, 2[. In the
examples 1, 2 and 3, we study the problem (1.1) for different examples of functions l and
domains Ω. We can set {

X = xy
Y = ln y

.

Setting Ω∗ = {(X, Y ) ∈ IR2, (Xe−Y , eY ) ∈ Ω}, Γ−∗ = {(X, Y ) ∈ IR2, (Xe−Y , eY ) ∈ Γ−}
and Z(X, Y ) = z(x, y), we derive the following equivalent problem : Find Z ∈ H1(Ω∗)
satisfying  Z − ∂Z

∂Y
= l(Xe−Y , eY )

Z|Γ−∗ = 0
.

Hence, if a ∈ [ min
(x,y)∈Ω

(y), max
(x,y)∈Ω

(y)], we find the general solution of the first equation of (1.1):

z(x, y) = y
∫ ln a

ln y
e−tl(xye−t, et) dt+ yC(xy), (1.2)

where C if any function in L2. Thus, we have an infinity of solutions. In order to obtain a
well-posed problem (see [3]), it is necessary to require a boundary condition on Γ−, which
allows us to compute the function C.
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Second, another choice of velocity u is: u(x, y) = (xy2 + y,−y2), as in the example

4 (or u(x, y) = (−xy2 − y, y2), as in the example 5). Setting X = xy2 + y, Y =
1

y
and

Z(X, Y ) = z(x, y), we have the equivalence

z + u .∇z = l⇐⇒ Z +
∂Z

∂Y
= l̃,

where l̃(X, Y )) = l(XY 2 − Y, 1
Y

), which implies

∀(x, y) ∈ Ω, z(x, y) = e−
1
y

∫ 1
y

1
3

etl((xy2 + y)t2 − t, 1

t
) dt+ e−

1
yC(xy2 + y),

where C is any function in L2. With the choice of l = 1, we obtain

z(x, y) = 1− e
1
3
− 1
y + e−

1
yC(xy2 + y). (1.3)

For a given velocity u, we introduce the following notations :

Γ0 is the interior of the set {x ∈ ∂Ω, (u .n)(x) = 0}, (1.4)

Γ+ is the interior of the set {x ∈ ∂Ω, (u .n)(x) > 0}. (1.5)

In the first two examples, the function u .n does not vanish on Γ− and we verify that
the regularity H1 of the solution z depends on the regularity H1 of l.

1.1 Example 1 : Ω =]0, 1[×]1, 2[, l(x, y) = x
2
3 , u(x, y) = (x,−y).

Let Ω be the square ]0, 1[×]1, 2[⊂ IR2 (see figure 1.1).
We can verify that

lim
x→0+

l′x(x, y) = +∞, but l ∈ H1(Ω).

Moreover Γ− = Γ3 (in red), Γ0 = Γ4 (in green),
Γ+ = Γ1∪Γ2 (in blue). From (1.2) and a = 2, in view of
the boundary condition z|Γ− = 0, we derive C = 0 and

∀(x, y) ∈ [0, 1]× [1, 2], z(x, y) =
3

5
x

2
3 (1− y

5
3

2
5
3

).

We can verify that z ∈ H1(Ω). Thus, we have taken
l ∈ H1(Ω) and we have obtained z ∈ H1(Ω) and the
problem (1.1) is well-posed.
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1.2 Example 2 : Ω =]0, 1[×]1, 2[, l(x, y) =
√
x, u(x, y) = (x,−y).

Here, we have the same domain Ω as previously, therefore the sets Γ−, Γ0 and Γ+ are
the same, but we have now a function l that not belongs to H1(Ω). As previously, from
(1.2) and a = 2, in view of the boundary condition z|Γ− = 0, we derive C = 0 and

∀(x, y) ∈ [0, 1]× [1, 2], z(x, y) =

√
x

6
(4− y

√
2y).

5



We can verify that z ∈ L2(Ω), but z /∈ H1(Ω). Clearly, the reason why is that l /∈ H1(Ω)
and the problem (1.1) has no H1 solution.

In the following three examples, the function u .n vanishes on Γ−. In Example 3, the
two assumptions of (3.5) are verified and the solution z is H1, as expected by Theorem 3.1.
On the contrary, in Examples 4 and 5, one of the two assumptions of (3.5) is not verified
(the first in Example 4 and the second in Example 5) and the solution z is not H1, thus
proving the necessity of the two hypotheses (3.5) in Theorem 3.1.

1.3 Example 3 : Ω = triangle(A(−1
2 ,

1
2), B(1

2 ,
1
2), C(1

2 ,
3
2)),

l(x, y) = 1, u(x, y) = (x,−y).

In this example, the set Γ− is the line ]A,C[ and the
function u .n|Γ− vanishes at the endpoint A.

We can verify that Γ0 = ∅ and Γ+ =]A,B]∪]B,C[. From
(1.2), a = 1

2
and l = 1 we derive

∀(x, y) ∈ Ω, z(x, y) = 1− 2y + y C(xy).

Considering the boundary condition, we have

(z|Γ− = 0)⇐⇒ (∀(x, y) ∈ Γ−, C(xy) = 2− 1

y
).

Setting X = xy, we have the following equivalence:

∀(x, y) ∈ Γ−,

{
y = x+ 1
−0.5 < x < 0.5

⇐⇒

 y =
1 +
√

1 + 4X

2
−0.25 < X < 0.75
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Finally, we obtain the unique solution

∀(x, y) ∈ Ω, z(x, y) = 1− 2y

1 +
√

1 + 4xy
.

Indeed, z ∈ L2(Ω) but we must verify that z ∈ H1(Ω). We have

z′x(x, y) =
4y2

(1 +
√

1 + 4xy)2)

1√
1 + 4xy

.

For computing
∫ ∫

Ω(z′x)
2 dxdy, we make the substitution

{
X = xy
y = y

, the jacobian of which

is
1

y
. We obtain

∫ ∫
Ω

(z′x)
2 dxdy ≤

∫ 1.5

0.5
16y3 dy(

∫ 0.5y

y2−y

1

1 + 4X
dX) =

∫ 1.5

0.5
4y3(ln(1 + 2y)− 2 ln(2y − 1)) dy.

This last integral converges because
∫ 1.5

0.5 ln(2y − 1) dy is convergent in the neighbourhood
of 0.5. We can compute

∫ ∫
Ω(z′y)

2 dxdy in the same way. Thus, we obtain that the solution
z belongs to H1(Ω) and, therefore, the problem (1.1) is well-posed.

Note that, the fact that the function u .n|Γ− vanishes at the point A leads to a dis-
continuity for the partial derivatives of the solution z in A. However, the function u .n|Γ−

has a simple root in A and, moreover, u . τ−(A) = −
√

2
2
< 0 in A, where τ−(A) is the
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unit tangent vector oriented towards Γ−. Thus, the assumptions (3.5) of Theorem 3.1 are
verified, which explains that the solution z is still in H1.

In the two following examples, we change the function u. In the Example 4, the func-
tion u .n vanishes at the end point of Γ− with an order two and the solution z is not H1,
which is consistent with the Theorem 3.1, since the assumption (3.5) is not verified. In
the Example 5, the function u .n vanishes at the end point A of Γ− with an order one
(simple root), but the assumption (3.5) is no longer verified, since the function u . τ−(A)
is positive in A, and again, but for another reason, the solution z is not H1.

1.4 Example 4 : Ω = triangle(A(−2, 1
3), B(0, 1

3), C(0, 1)), l(x, y) = 1,
u(x, y) = (2xy + 1,−y2).

In this example, we change the function
u. We shall see that Γ− is the line ]A,C[
and, as in the example 3, the function u .n|Γ− va-
nishes at the endpoint A. However, contrary to the
example 3, the solution z does not belong to H1(Ω).
The reason why is that, contrary to the previous
example, the root in A is a double root, as we
will show below. We can verify that Γ0 = ∅ and
Γ+ =]A,B]∪]B,C[.
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Γ−

Γ+

We consider the following transport problem : find z ∈ H1(Ω) satisfying{
z + u .∇z = l in Ω,
z|Γ− = 0

(1.6)

Since, for all (x, y) ∈ [A,C], u .n = − (x+2)2√
10
, we obtain Γ− =]A,C[. As we saw

previously, the solution z is expressed by (1.3). Next, in view of X = xy2 + y, we have the
following equivalence {

y = x
3

+ 1
−2 ≤ x ≤ 0

⇐⇒
{
y = (

X− 1
9

3
)
1
3 + 1

3
1
9
≤ X ≤ 1

Then we derive

∀(x, y) ∈ Γ−, z(x, y) = 0⇐⇒ C(X) = e
1
3 − e

1
y = e

1
3 − e

1

(
X− 1

9
3 )

1
3 +1

3 ,

which allows us to compute the unique solution z of Problem (1.6) :

∀(x, y) ∈ Ω, z(x, y) = 1− e
1

α(x,y)
− 1
y , (1.7)

with the function α defined in Ω by

∀(x, y) ∈ Ω, α(x, y) = (
xy2 + y − 1

9

3
)
1
3 +

1

3
.
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Since the domain Ω is below the segment[AC] and since the branch of hyperbola

{
y = − 1

x

x < 0

is above the segment [AC], we derive that, for all (x, y) ∈ Ω, 0 < xy+ 1 ≤ 1. The function
(x, y) 7→ xy + 1 is continuous on the compact Ω, therefore there exists m0 > 0 such that
∀(x, y) ∈ Ω, xy + 1 ≥ m0. Note that m0 ≤ (−2)1

3
+ 1 = 1

3
, which gives

∀(x, y) ∈ Ω, m0 ≤ xy + 1 ≤ 1, with 0 < m0 ≤
1

3
.

Hence, we obtain

∀(x, y) ∈ Ω,
m0

3
≤ 1

3
(1− (1− 3m0)

1
3 )) ≤ α(x, y) ≤ 1. (1.8)

Let us show that z′x does not belong to L2(Ω). Considering (1.7), we compute

∀(x, y) ∈ Ω, z′x(x, y) =
α′x(x, y)

(α(x, y))2
e

1
α(x,y)

− 1
y ,

with

α′x(x, y) =
y2

9(
xy2+y− 1

9

3
)
2
3

.

From (1.8), we derive

∀(x, y) ∈ Ω, |z′x(x, y)| ≥ 1

34 e2

1

(
xy2+y− 1

9

3
)
2
3

.

Using this estimation yields

∫ ∫
Ω

(z′x(x, y))2 dxdy ≥ 1

38 e4

∫ 1

1
3

dy

∫ 0

3(y−1)

1

(
xy2+y− 1

9

3
)
4
3

dx

 .

Making the substitution

{
X = xy2 + y
Y = 1

y

, the jacobian of which is -1, we obtain

∫ ∫
Ω

(z′x(x, y))2 dxdy ≥ 1

38 e4

∫ 3

1
dY


∫ 1

Y

3( 1
Y
− 1

3
)3+ 1

9

1(
X− 1

9

3

) 4
3

dX

 ≥ 1

35 e4

∫ 3

1

1

3− Y
dY− 2

2
3

35 e4
.

Since
∫ 3

1

1

3− Y
dY = +∞, we obtain

∫ ∫
Ω

(z′x(x, y))2 dxdy = +∞.

Finally, the solution z of the example 4, contrary to the previous example, does not belong
to H1(Ω) and, therefore, the problem (1.6) is not well-posed.
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1.5 Example 5 : Ω = triangle(A(−4
3 ,

2
3), B(−11

6 ,
1
6), C(−4

3 ,
1
2)),

l(x, y) = 1, u(x, y) = (−2xy − 1, y2).
6

-

y

xO−11
6
−5

3
−4

3

1

-1

A

B

CD

1
6

1
3

1
2

2
3

figure 1.4

Γ−1

Γ−2Γ+
1

Γ+
2

γ1

γ2

A

B

C

D

Ω1

Ω2

Ω3

figure 1.5

Γ−1

Γ−2Γ+
1

Γ+
2

We can verify: (x, y) ∈ (AB)⇔ x− y+ 2 = 0 and (x, y) ∈ (BC)⇔ 2x− 3y+ 25
6

= 0.

The set Γ− is composed of two parts : Γ−1

{
x− y + 2 = 0
1
3
< y < 2

3

and Γ−2

{
2x− 3y + 25

6
= 0

1
6
< y < 1

2

.

The set Γ+ is composed of two parts : Γ+
1

{
x− y + 2 = 0
1
6
< y < 1

3

and Γ+
2

{
x = −4

3
1
2
< y < 2

3

.

For all m = (x, y) ∈ Γ−1 , u .n(m) = (3x + 5)(x + 1) and for all m = (x, y) ∈ Γ−2 ,
u .n(m) = −9y2 + 25

3
y − 2. Therefore, the function u .n|Γ vanishes at the unique point

9



D(−5
3
, 1

3
), with an order one with respect to the parameter of the line (AB). Thus, we

have

u .n|Γ(D) = 0,
∂u

∂τ−
.n(D) 6= 0 and (u . τ−)|Γ(D) > 0, (1.9)

where τ−(
√

2
2
,
√

2
2

) is unit tangent vector, oriented towards Γ−.

Setting

{
X = −xy2 − y
Y = 1

y

, by technics analogous to the previous examples, we obtain

the solutions of the equation z + u .∇z = l

Z(X, Y ) = 1 + eY (C(X)− 1)⇔ z(x, y) = 1 + e
1
y (C(−xy2 − y)− 1),

where C is a function to be determined by the boundary conditions.
Setting α(y) = X(y − 2, y) = −y3 + 2y2 − y, we can verify

z .n|Γ−1 = 0⇐⇒ ∀y ∈]
1

3
,
2

3
[, C(α(y)) = 1−e

1
y ⇐⇒ ∀X ∈]− 4

27
,− 2

27
[, C(X) = 1−e

1
α−1(X) .

In the same way, setting β(y) = X(3
2
y − 25

12
, y) = −3

2
y3 + 25

12
y2 − y, we can verify

z .n|Γ−2 = 0⇐⇒ ∀y ∈]
1

6
,
1

2
[, C(β(y)) = 1−e

1
y ⇐⇒ ∀X ∈]− 1

6
,− 25

216
[, C(X) = 1−e

1
β−1(X) .

Taking into account these boundary conditions, setting y1 = β−1(− 4
27

) and using a
function α1, which is a restriction of the function α, and functions α2 and α3, which are
restrictions of the function β, we express the solution z by splitting the domain Ω into
three sub domains Ωi, i = 1, 2, 3 :

z|Ωi = 1− e
1
y
−

1

α−1
i (−xy2 − y) , (1.10)

where Ω1 is defined by

Ω1 = {(x, y) ∈ Ω, y >
1

3
, −xy2 − y > − 4

27
} with α1 : [1

3
, 2

3
]→ [− 4

27
,− 2

27
]

y 7−→ −y3 + 2y2 − y
,

where Ω2 is defined by

Ω2 = {(x, y) ∈ Ω, y <
1

3
, −xy2 − y > − 4

27
} with α2 : [1

6
, y1]→ [− 4

27
,− 25

216
]

y 7−→ −3
2
y3 + 25

12
y2 − y

and where Ω3 is defined by

Ω3 = {(x, y) ∈ Ω, −xy2 − y < − 4

27
} with α3 : [y1,

1
2
]→ [−1

6
,− 4

27
]

y 7−→ −3
2
y3 + 25

12
y2 − y

.

Note that the domains Ω1 and Ω3 are adjacent and are separated by the curve γ1 and
the domains Ω2 and Ω3 are adjacent and are separated by the curve γ2 (see the figure 1.5),
where γ1 and γ2 are defined by

γ1

{
−xy2 − y = − 4

27
1
3
< y < 3+

√
3

8

, γ2

{
−xy2 − y = − 4

27

y1 < y < 1
3

.
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Considering the expressions of the solution given by (1.10), we obtain

∀y ∈]
1

3
,
3 +
√

3

8
[, (z|Ω1 − z|Ω3)|γ1(y) = (e

− 1
y1 − e−3)e

1
y ,

which implies that the solution z is discontinuous on the curve γ1. Computing the gradient
of the solution z yields

∇z = ∇̃z|Ω1 + ∇̃z|Ω2 + ∇̃z|Ω3 − δγ1 ,

where the wide tildes denote the extensions by zero and where the distribution δγ1 is defined
by

∀ϕ ∈ (D(Ω))2, < δγ1 ,ϕ >=
∫
γ1

(z|Ω1 − z|Ω3)ϕ .n1 ds,

where n1 is the unit exterior normal vector to the boundary of the domain Ω1. Finally,
since the distribution δγ1 does not belongs to L2(Ω), we obtain that the solution z of the
example 5 does not belong to H1(Ω) and, therefore, the problem (1.6) is not well-posed.

For explaining further in details, in view of (1.9), the function u .n vanishes at the
boundary point D of Γ−1 with an order one with respect to the parameter of the line
(AB), but, since we have (u . τ−)|Γ(D) > 0, the solution z in the neighborhood of D on
the Ω2 side depends of the boundary condition on Γ−2 , which is far from D. This means
that we cannot localize the transport problem in a neighborhood of the boundary point
D and, therefore, we cannot apply the technics of the proof of Theorem 3.1. Thus, the
assumption u(m) . τ−(m) < 0 of Theorem 3.1 is not only a technical assumption, but a
basic assumption as well as the other assumption ∂u

∂τ− (m) .n−(m) 6= 0 of (3.5).

2 Transport equations in H1 when u .n does not

vanish on Γ−

Let us recall the following problem studied in [3]. Let Ω be a bounded domain of IR2

and Γ− be defined by (0.9), verifying (0.11): for u in H1(Ω)d, with div u = 0, l in L2(Ω)
and W in IR∗, find z in L2(Ω) such that{

z +W u .∇z = l in Ω
(zu) .n = 0 on Γ−.

(2.1)

The main result is given by Theorem 3.3 in [3], which gives the existence and the
uniqueness of solution in L2(Ω) in the case where Ω is a Lipschitz-continuous domain of
IRd. Now, we are interested by H1 solutions in the two dimensions case. In order to find H1

solutions, we assume that Ω is a bounded polygon, we suppose that u belongs to W 1,∞(Ω)2

and we shall impose another boundary condition.
Thus, we are led to study the following problem: let Ω be a bounded polygon, for u

in U ∩W 1,∞(Ω)2, where U is defined by (0.12), l in H1(Ω) and W in IR∗, find z in H1(Ω)
such that {

z +W u .∇z = l in Ω
z = 0 on Γ−.

(2.2)

Let Ω be a bounded polygon. We begin to establish a result of existence and uniqueness
in the particular where l vanishes on Γ−.
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Theorem 2.1 Let Ω be a bounded polygon, Γ− be defined by (0.9), verifying (0.11) and U
be defined by (0.12). For all u in U ∩W 1,∞(Ω)2 such that

‖∇u‖L∞(Ω) ≤
1

2|W|
, (2.3)

all l in H1(Ω) such that l|Γ− = 0 and all real number W in IR∗, the transport problem (2.2)
has a unique solution z in H1(Ω).

Proof. Formally, ∇z satisfies

∇z +W u .∇(∇z) = ∇l −W∇u .∇z.

Let us define a sequence (Fn) of functions Fn ∈ Xu(Γ−)2, n ∈ IN, by recurrence, where
Xu(Γ−) is defined by (0.8). We set F0 = 0 and assume that the function Fn ∈ Xu(Γ−)2

is given for n ∈ IN. Then, applying Theorem 0.3, we define each component Fn+1,1 and
Fn+1,2 of Fn+1 as the unique solution of a transport equation from the type (2.1), of such
so that we define Fn+1 ∈ Xu(Γ−)2 as the unique solution of the transport equation{

Fn+1 +W u .∇Fn+1 = ∇l −W∇u .Fn in Ω
(Fn+1 u) .n = 0 on Γ−.

(2.4)

Since Fn+1 belongs to Xu(Γ−)2, the basic result of Proposition (0.2) implies∫
Ω

(W u .∇Fn+1,i)Fn+1,i dx ≥ 0, for i = 1, 2.

Then, taking the scalar product of both sides of the first equation of (2.4) with Fn+1 yields

‖Fn+1‖2
L2(Ω) ≤ (∇l,Fn+1)−W (∇u .Fn,Fn+1).

Hence, we derive

‖Fn+1‖L2(Ω) ≤ ‖∇l‖L2(Ω) + |W|‖∇u‖L∞(Ω)‖Fn‖L2(Ω).

In view of the bound (2.3), we obtain

‖Fn+1‖L2(Ω) ≤ ‖∇l‖L2(Ω) +
1

2
‖Fn‖L2(Ω),

which implies, by a recurrence argument, that Fn is uniformly bounded in L2(Ω) and
∀n ∈ IN,

‖Fn‖L2(Ω) ≤ 2‖∇l‖L2(Ω). (2.5)

Owing to (2.5), u .∇Fn+1 is also uniformly bounded in L2(Ω). Therefore we can pass to
the limit in the first equation of (2.4) and there exists a function F ∈ L2(Ω)2 such that

F +W (u .∇F +∇u .F) = ∇l. (2.6)

Let us set z = l −Wu .F. From the previous equation, we derive F = ∇z and we obtain
z = l −Wu .∇z, which gives that z is solution of the first equation of (2.2).

12



Next, from Green’s formula (0.7) and (Fn+1u) .n|Γ− = 0, we derive ∀ϕ ∈ W 1,r(Ω)2,
with ϕ|Γ0,+ = 0,

(Fn+1u,∇ϕ) + (ϕu,∇Fn+1) =< (Fn+1u) .n, ϕ >Γ−= 0.

Using the above convergence, we can pass to the limit and we obtain

∀ϕ ∈ W 1,r(Ω)2, with ϕ|Γ0,+ = 0, (F u,∇ϕ) + (ϕu,∇F) = 0,

which implies, with again the Green’s formula (0.7), < (F u) .n, ϕ >Γ−= 0. Thus, we
obtain (F u) .n|Γ− = 0, that is to say,

(∇z u) .n|Γ− = 0. (2.7)

Hence, we can use a density result of [3](Corollary 2.11, page 1012): since, for i = 1, 2,
∂z

∂xi
belongs to Xu(Γ−), there exist two sequences (ϕ1,n) et (ϕ2,n) such that, for i = 1, 2,

ϕi,n ∈ D(Ω,Γ−) and

lim
n→+∞

ϕi,n =
∂z

∂xi
strongly in Xu(Γ−),

where Xu(Γ−) is defined in (0.8). Setting ϕn =

(
ϕ1,n

ϕ2,n

)
, from the above convergence and

the regularity of u we derive

lim
n→+∞

u .ϕn = u .∇z strongly in L2(Ω).

Noting that

∇(u .∇z) =


∂u

∂x1

.∇z + u .∇(
∂z

∂x1

)

∂u

∂x2

.∇z + u .∇(
∂z

∂x2

)

 ,
the convergences in Xu(Γ−) give, for i = 1, 2,

lim
n→+∞

(u .∇ϕi,n) = u .∇(
∂z

∂xi
) strongly in L2(Ω),

lim
n→+∞

(
∂u

∂xi
.ϕn) =

∂u

∂xi
.∇z strongly in L2(Ω).

These convergences imply
lim

n→+∞
∇(u .ϕn) = ∇(u .∇z).

Thus, we obtain that

lim
n→+∞

(u .ϕn) = u .∇z strongly in H1(Ω).

In view of ϕn|Γ− = 0, we obtain
(u .∇z)|Γ− = 0.
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Considering that z +W u .∇z = l and l|Γ− = 0, we obtain

z|Γ− = 0.

Thus, we have proven the existence of solution for the transport problem (2.2).
Concerning the uniqueness, let us consider z ∈ H1(Ω) solution of the problem{

z +W u .∇z = 0 in Ω
z = 0 on Γ−.

(2.8)

For proving the uniqueness of solution of Problem (2.2), we must show that necessarily
z = 0. Taking the scalar product in L2(Ω) of the previous equation by z yields

‖z‖L2(Ω) +W(u .∇z, z) = 0.

Since z belongs to Xu(Γ−), Proposition (0.2) implies W(u .∇z, z) ≥ 0 and we derive

‖z‖L2(Ω) ≤ 0.

This gives z = 0, which gives the uniqueness of solution of Problem (2.2). ♦.

Now, we do not assume that l vanishes on Γ−. If m belongs to Γ− and does not belong
to Γ+,0, we denote by

n−(m) the unit exterior normal vector to Γ− in m (2.9)

(one or other of the two unit exterior normal vectors if m is a vertex of the polygon). If m
belongs to Γ− ∩ Γ+,0, then m is the common endpoint of two adjacent straight segments
γ+ and γ− such that γ+ ⊂ Γ+,0 and γ− = [m,m−] ⊂ Γ− with m 6= m−. We denote by

n−(m) the unit exterior normal vector to γ−, (2.10)

and by

τ−(m) the unit tangent vector
1

‖mm−‖
mm−. (2.11)

First, we assume that the normal component of the velocity does not vanish on Γ−.
Since u .n is continuous on the sides of the polygon Ω, this implies that the end points of
Γ− are vertices of the polygon. The following theorem gives assumptions implying existence
and uniqueness for problem (2.2).

Theorem 2.2 Let Ω be a bounded polygon, Γ− be defined by (0.9), verifying (0.11) and U
be defined by (0.12). For all u in U ∩W 1,∞(Ω)2 such that

‖∇u‖L∞(Ω) ≤
1

2|W|
(2.12)

and such that
∀m ∈ Γ−, u(m) .n−(m) 6= 0, (2.13)

where n−(m) is defined by (2.9) or by (2.10), all l in H1(Ω) and all real number W in IR∗,
the transport problem (2.2) has a unique solution z in H1(Ω).
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Proof. Since the end points of Γ− are vertices, we have

Γ− =
⋃
j∈J

Γj, (2.14)

where the sets Γj are sides of the polygon Ω. Since u is continuous on ∂Ω, for all j ∈ J ,
we denote ηj = min

m∈Γj
(|u(m) .nj|). From (2.13), we derive that, for all j ∈ J , ηj > 0, which

implies that (
l

u .nj

)|Γj belongs to H
1
2 (Γj). So, there exists z0 in H2(Ω) verifying, for all

j ∈ J ,  (
∂z0

∂n
)|Γj = (

l

W u .nj

)|Γj

z0|Γj = 0.
(2.15)

Hence, we derive that
(z0 +W u .∇z0)|Γ− = l|Γ− . (2.16)

Next, applying Theorem 2.1, let z∗ ∈ H1(Ω) be the unique solution of the problem{
z∗ +W u .∇z∗ = l − z0 −W u .∇z0 in Ω
z∗ = 0 on Γ−

.

Then, z = z∗ + z0 verifies z +W u .∇z = l and z|Γ− = 0. Thus, we have proven the
existence of solution for the transport problem (2.2). We prove the uniqueness in the same
way as in the previous theorem. ♦.

3 Transport equations in H1 when u .n vanishes on Γ−

We assume that Ω is a bounded convex polygon, but the fact that the normal compo-
nent of the velocity can vanish on the boundary introduces a singularity at the end points
of Γ− and we will be forced to make assumptions at the end points of Γ−, as we could
expect from the examples of the Section 2. We denote by

S the set of the vertices of the polygon Ω (3.1)

and let the set E be defined by

E = {m ∈ Γ− ∩ Γ+,0, u(m) .n−(m) = 0}, (3.2)

where n−(m) is defined by (2.10). Note that, in view of the assumption (0.11), the set E
is finite. In addition, we make the assumption that the velocity u is such that

{m ∈ Γ−, u(m) .n−(m) = 0} ⊂ E, (3.3)

which means that u .n does not vanish in a point located in the interior of Γ−.
The next theorem, which is the main result of the paper, gives assumptions implying

existence and uniqueness for problem (2.2), in the case where the normal component of the
velocity vanishes on the boundary. Note that, the first assumption of (3.5) means that the
function u .n must have only simple roots at the end points of Γ−, which seems consistent
with the previously studied examples. At first glance, the second assumption of (3.5)
seems to be a technical assumption, related to the method used in the proof of Theoren
3.1. Indeed, we need this assumption, in the proof of the theorem, probably because, in
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the case where u(m) . τ−(m) > 0, it does not seem possible to localize the problem around
the points of the set E : on either side of the point where u .n vanishes, the expressions
of the solution z are determined by boundary conditions located in two different places of
the boundary, which leads to a discontinuity of the solution z, see Example 5. In fact, as
it appears in Example 5, this second assumption seems necessary to obtain a solution z in
H1.

Theorem 3.1 Let Ω be a bounded convex polygon, Γ− be defined by (0.9), verifying (0.11)
and U be defined by (0.12). For all u in U ∩W 1,∞(Ω)2, verifying (3.3), such that

‖∇u‖L∞(Ω) ≤
1

2|W|
(3.4)

and such that

∀m ∈ E, ∂u

∂τ−
(m) .n−(m) 6= 0 and u(m) . τ−(m) < 0, (3.5)

where n−(m) (respectively τ−(m), E) is defined by (2.10) (respectively (2.11), (3.2)), all l
in H1(Ω) and all real number W in IR∗, the transport equation (2.2) has a unique solution
z in H1(Ω).

Proof. Let us split up Γ− into straight segments as

Γ− =
q⋃
j=1

γj, γj ∩ γk = ∅ if k /∈ {j − 1, j, j + 1},

γj ∩ γk = ∅ or γj ∩ γk ∈ S if k ∈ {j − 1, j + 1}, 1 ≤ j ≤ q, 0 ≤ k ≤ q + 1 (3.6)

with the convention γq+l = γl for l = 0, 1, and let µ0 > 0 be defined by

µ0 = min
γj∩γk=∅
1≤j,k≤q

d(γj, γk), (3.7)

where d(., .) is the euclidian distance in IR2. Then, for 0 < µ ≤ 1
2
µ0, in order to localize

around the sets γj, let us define the functions (θj,µ)1≤j≤q ∈ D(IR2) by

∀x ∈ IR2, θj,µ(x) =

{
1 if d(x, γj) ≤ 1

2
µ

0 if d(x, γj) ≥ µ.
(3.8)

and, ∀x ∈ IR2, θq+1,µ(x) = 0. Setting, for 1 ≤ j ≤ q and 0 < µ ≤ 1
2
µ0,

lj,µ = θj,µ(1− θj+1,µ)l (3.9)

and

lµ = (1−
q∑
j=1

θj,µ(1− θj+1,µ))l, (3.10)

where l is the right hand side of the transport equation, we obtain

l = lµ +
q∑
j=1

lj,µ (3.11)
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and we can verify that
∀x ∈ Γ−, lµ(x) = 0. (3.12)

From the development of l given by (3.11), we derive q + 1 problems, constructed from
(2.2) by substituting lµ, lj,µ, 1 ≤ j ≤ q, to l. First, the problem (Pµ) : find z in H1(Ω)
such that

(Pµ)

{
z +W u .∇z = lµ in Ω
z = 0 on Γ−

(3.13)

and, second, the problems (Pj,µ)1≤j≤q : find z in H1(Ω) such that

(Pj,µ)

{
z +W u .∇z = lj,µ in Ω
z = 0 on Γ−.

(3.14)

Note that, because of the linearity, the solution of the problem (2.2) will be the sum of the
solution of the problem (Pµ) and the solutions of problems (Pj,µ)1≤j≤q.

In view of (3.12), applying Theorem 2.1, we derive that

the problem (Pµ) has a unique solution zµ ∈ H1(Ω). (3.15)

Next, we have to solve the problems (Pj,µ)1≤j≤q. We denote by nj the exterior unit
normal vector of the side of the polygon which contains γj and, for i = −1, 1, by Si

j the
end points of γj, with the convention that, if γj ∩ γj+i 6= ∅ for i = −1 or i = 1, then
γj ∩ γj+i = {Si

j}. Note that, for each point Si
j, i = −1, 1, 1 ≤ j ≤ q, we have four

possibilities : Si
j ∈ γj+i, Si

j /∈ γj+i with Si
j /∈ E, Si

j /∈ γj+i with Si
j ∈ (E ∩ S), Si

j /∈ γj+i
with Si

j ∈ (E ∩ Sc), where Sc is the complementary set of S in IR2. We shall not consider
all the cases, because there are similar cases, but we shall study some cases, which will be
models for the other cases. Note that , for i = 1, 2, if Si

j is not a vertex of the polygon,
then u .nj(S

i
j) = 0, that is to say Si

j ∈ E.
1) First case: Si

j ∈ γj+i, i = −1, 1.
Note that, in view of (3.6) and (3.3), Si

j ∈ S and u(Si
j) .nj+i 6= 0, u(Si

j) .nj 6= 0, for

i = −1, 1. Moreover, lj,µ = 0 on γk, for k /∈ {j − 1, j}. Since u(S−1j ) .nj−1 6= 0, there exist

a real number µ1 > 0 such that, for all x verifying d(S−1j ,x) ≤ µ1, we have u(x) .nj−1 6= 0.
Then, with the notation

γj−1,1 = {x ∈ γj−1, d(S−1j ,x) ≤ µ1}, γj−1,2 = {x ∈ γj−1, d(S−1j ,x) > µ1},

taking

0 < µ ≤ min(
1

2
µ0, µ1), (3.16)

in the same way as in the proof of Theorem 2.2, there exists z0,j,µ in H2(Ω) verifying, (
∂z0,j,µ

∂n
)|γj = (

lj,µ
W u .nj

)|γj

z0,j,µ|γj = 0
,


(
∂z0,j,µ

∂n
)|γj−1

=

{
( lj,µ
W u .nj−1

) on γj−1,1

0 on γj−1,2

z0,j,µ|γj−1
= 0

, (3.17)
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and, for 1 ≤ k ≤ q, k 6= j, k 6= j − 1, (
∂z0,j,µ

∂n
)|γk = 0

z0,j,µ|γk = 0
.

Next, applying Theorem 2.1, let z∗j,µ ∈ H1(Ω) be the unique solution of the problem{
z∗j,µ +W u .∇z∗j,µ = lj,µ − z0,j,µ −W u .∇z0,j,µ in Ω
z∗j,µ = 0 on Γ−,

Then, zj,µ = z∗j,µ + z0,j,µ verifies zj,µ +W u .∇zj,µ = lj,µ and zj,µ|Γ− = 0. Thus, in this first
case, we have proven that

zj,µ ∈ H1(Ω) is the solution of Problem (Pj,µ). (3.18)

2) Second case: S−1j /∈ γj−1, S−1j /∈ E, S1
j ∈ γj+1.

We can construct a lifting z0,j,µ as in the first case. Since lj,µ = 0 on γk for 1 ≤ k ≤ q,
k 6= j, there exists z0,j,µ in H2(Ω) verifying, (

∂z0,j,µ

∂n
)|γj = (

lj,µ
W u .nj

)|γj

z0,j,µ|γj = 0

and, for 1 ≤ k ≤ q, k 6= j (
∂z0,j,µ

∂n
)|γk = 0

z0,j,µ|γk = 0
.

Then, in the same way as in the first case, zj,µ = z∗j,µ+z0,j,µ verifies zj,µ+W u .∇zj,µ = lj,µ
and zj,µ|Γ− = 0. Thus, in this second case, we have proven that

zj,µ ∈ H1(Ω) is the solution of the problem (Pj,µ). (3.19)

The cases where, for i = −1, 1, Si
j ∈ γj+i or Si

j /∈ γj+i with Si
j /∈ E can be studied in the

same way as in the first two cases.
3) Third case: S−1j /∈ γj−1, S−1j ∈ (E ∩ S), S1

j ∈ γj+1.

Here, [S−1j ,S1
j ] is a side of the polygon Ω, S−1j is an end point of Γ− such that

u(S−1j ) .nj = 0 and S1
j is located inside Γ−. First, let us make the change of variables

such that the point S−1j is the origin, the x-axis has the direction of nj, oriented towards
inside the domain Ω, that is to say as the vector −nj, and with the segment γj included
in the positive y-axis, which is oriented by the tangent vector τ−(S−1j )(see the figure 3.6

below, where ωj is the inner angle associated to the vertex S−1j ).

-

?x Case ωj ≤ π
2

yωj

S1
jS−1j γj

γj+1

6

���

~nj

~nj+1
-

~τ−(S−1j )

figure 3.6

Γ0,+

�−−−→
u(S−1

j )

-

?x

y

Case ωj >
π
2

ωj

S1
jS−1j γj

γj+1

6

���

~nj

~nj+1
-

~τ−(S−1j )
Γ0,+

�−−−→
u(S−1

j )
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With these new variables, since S−1j ∈ E, we have

S−1j = (0, 0), u(S−1j ) .nj = −u1(0, 0) = 0

and the assumption (3.5) yields

u(S−1j ) . τ−(S−1j ) = u2(0, 0) < 0 and
∂u

∂τ−
(S−1j ) .n−(S−1j ) = −∂u1

∂y
(0, 0) 6= 0.

Considering that γj \ {S−1j } ⊂ Γ−, we have u1(0, y) > 0 for y > 0 small enough. Thus, we

derive the following properties of u in a neighborhood of S−1j = (0, 0) :

u1(0, 0) = 0, u1(0, y) > 0, u2(0, 0) < 0 and
∂u1

∂y
(0, 0) > 0, (3.20)

for (0, y) ∈ γj \ {S−1j }, that is to say for y > 0 small enough.
Next, we are going to split the problem (Pj,µ) into two new problems. In this aim, we

define a function λµ ∈ D(IR2) by

∀x ∈ IR2, λµ(x) =


1 if k(x, y) ≤ µ

0 if k(x, y) ≥ 2µ,
(3.21)

where k(x, y) = |u2(0, 0)| |x|+ 1
2
|∂u1
∂y

(0, 0)|y2.
Then, we set

l̃j,µ = (1− λµ)lj,µ and l̄j,µ = λµlj,µ (3.22)

and we define the problem (P̃j,µ), which is associated to the right hand side l̃j,µ, and the
problem (P̄j,µ), which is associated to the right hand side l̄j,µ. Since lj,µ = l̃j,µ + l̄j,µ, if we
denote by, respectively, zj,µ, z̃j,µ and z̄j,µ the unique solutions of, respectively, (Pj,µ), (P̃j,µ)
and (P̄j,µ), we have

zj,µ = z̃j,µ + z̄j,µ. (3.23)

Thus, to prove that the problem (Pj,µ) has its solution in H1(Ω), we have only to prove
that the problems (P̃j,µ) and (P̄j,µ) have their solutions in H1(Ω). Note that, extending
the function l ∈ H1(Ω) to IR2, from now on, we will consider that the right hand sides l,
lj,µ, l̃j,µ and l̄j,µ belong to H1(IR2)

First, we deal with the problem (P̃j,µ). Owing to the definition of the function λµ,
we can verify that l̃j,µ vanishes on γj on a neighborhood of the point S−1j . So, we can

construct a lifting z̃0,j,µ in the same way as in the second case with l̃j,µ in place of lj,µ,

replacing ( l̃j,µ
W u .nj

)|γj with 0 in a neighborhood of S−1j on γj and z̃j,µ = z∗j,µ + z̃0,j,µ is the

solution of the problem (P̃j,µ) in H1(Ω).
Solving the problem (P̄j,µ) is much more difficult because u(S−1j ) .nj = 0 and l̄j,µ does

not vanish in the neighborhood of S−1j . From now on, we will use the following notation,
for r > 0 :

Bj,r = {x ∈ IR2, d(S−1j ,x) =
√
x2 + y2 < r}, B+

j,r = Bj,r ∩ {(x, y) ∈ IR2, x ≥ 0}. (3.24)

The proof will be built in several steps. In a first step, we define a local problem,
which is the problem (P̄j,µ) restricted to a neighborhhood Ω∩Bj,K of S−1j , and we express
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this local solution in integral form (see Lemma 3.2). In a second step, we show that,
if we chooze µ small enough, this local solution vanishes in Ω ∩ C(S−1j , r∗1,j, r

∗
2,j) where

C(S−1j , r∗1,j, r
∗
2,j) is a ring centered in S−1j and included in Bj,K . In the third step, using

its integral expression, we prove that the local solution belongs to H1(Bj,r∗1,j
∩ Ω), which

implies, owing to the second step, that its extension by zero is the solution H1 of (P̄j,µ).

First step
In the following lemma, we give the expression of the local solution.

Lemma 3.2 Let S−1j belongs to E ∩ S and the real K be defined by (3.40). We set
Ωj,K = Ω ∩Bj,K and Γ−j,K = Γ− ∩Bj,K. The solution of the problem{

z +W u .∇z = l̄j,µ in Ωj,K

z = 0 on Γ−j,K

is expressed by

z(x, y) = e−V (X(x,y),y)(
∫ y

α−1(X(x,y))

eV (X(x,y),t)

WU2(X(x,y),t)
L̄j,µ(X(x, y), t) dt), (3.25)

where V , U2 and L̄j,µ are defined in (3.34).

Proof. Owing to (3.20), the continuity of u2 yields that there exists a strictly positive real
number µ2 ≤ µ0, such that

∀x = (x, y) ∈ Bj,µ2 ∩ Ω, u2(x) < 0. (3.26)

In the same way, again the continuity of u2 and the definition of
∂u1

∂y
(0, 0) with u1(0, 0) = 0

imply that there exists a strictly positive real number µ3 ≤ min(µ2, |γj|) such that

∀x ∈ Bj,µ3 ∩ Ω,
3

2
u2(0, 0) ≤ u2(x) ≤ 1

2
u2(0, 0) < 0 and

∀y ∈ [0, µ3],
1

2

∂u1

∂y
(0, 0)y ≤ u1(0, y) ≤ 3

2

∂u1

∂y
(0, 0)y. (3.27)

For 0 ≤ r1 < r2, let us define the sets

Er1,r2 = {(x, y) ∈ IR2, r1 ≤ k(x, y) ≤ r2} and C(S−1j , r1, r2) = {(x, y) ∈ IR2, r1 ≤
√
x2 + y2 ≤ r2},

(3.28)
where k(x, y) is defined in (3.21). Considering that, for r > 0,

k(x, y) = r ⇐⇒ x2 + y2 =
(∂u1
∂y

(0, 0))2

4 (u2(0, 0))2
y4 + (

r

|u2(0, 0)|
)2 + (1−

r |∂u1
∂y

(0, 0)|
(u2(0, 0))2

)y2

and that y2 ≤ 2r

|∂u1
∂y

(0, 0)|
, we can verify, for 0 < r ≤ (u2(0, 0))2

|∂u1
∂y

(0, 0)|
, the following inclusions :

Bj, r
|u2(0,0)|

⊂ E0,r ⊂ Bj,2
√

r

| ∂u1
∂y

(0,0)|
(3.29)
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and if (r1, r2) verifies
0 ≤ r1 < r2 ≤

(u2(0, 0))2

|∂u1
∂y

(0, 0)|

r1 <
|∂u1
∂y

(0, 0)|r2
2

4(u2(0, 0))2

then C(S−1j , 2

√
r1

|∂u1
∂y

(0, 0)|
,

r2

|u2(0, 0)|
) ⊂ Er1,r2 . (3.30)

Let us consider the transport equation z +W u .∇z = l̄j,µ of the problem (P̄j,µ) and
the following change of variables : we set for all (x, y) ∈ Ω X(x, y) = −

∫ x

0
u2(t, y) dt+

∫ y

0
u1(0, t) dt

Y (x, y) = y
. (3.31)

Note that it is more convenient, especially in the case where ωj >
π

2
(ωj is the inner

angle of the polygon Ω associated to the vertex S−1j ), to define X(x, y) for y ≤ 0 and
x ≥ 0 small enough. So, we will replace u2 with an extension of u2, defined for example by
symmetries, in (3.31), this extension of u2, still denoted u2, verifying (3.26), respectively
(3.27), in B+

j,µ2 , respectively B+
j,µ3 . Then, we define an extension of u1, for y ≤ 0 and x ≥ 0

small enough, by

u1(x, y) = −
∫ x

0

∂u2

∂y
(t, y) dt,

such that div u = 0 and u1(0, y) = 0, for y ≤ 0 small enough. We can verify, in view of
div u = 0, that

X ′x = −u2 and X ′y = u1 in Ω. (3.32)

Let us show that the mapping

ϕ : B+
j,µ2 −→ ϕ(B+

j,µ2)
(x, y) 7−→ (X, Y )

is one− to− one, (3.33)

where µ2 is defined in (3.26). Let us assume that

X(x, y) = X(x′, y′) and Y (x, y) = Y (x′, y′) with (x, y) ∈ B+
j,µ2

and (x′, y′) ∈ B+
j,µ2

.

Then, the second equation gives directly y = y′ and we obtain X(x, y) = X(x′, y). Since
X ′x(x, y) = −u2(x, y) > 0 for (x, y) ∈ B+

j,µ2 , we derive x = x′.
Since ϕ is of class C1 in B+

j,µ2 and since the jacobian of the mapping ϕ is −u2, which
is strictly positive in B+

jµ2 , we can define an inverse function ϕ−1 of class C1 in ϕ(B+
j,µ2).

Then, in view of the definition of µ3 in (3.27), we define the functions Z, U2, L̄j,µ and V
on ϕ(B+

j,µ3) by

Z = z ◦ ϕ−1,U2 = u2 ◦ ϕ−1, L̄j,µ = l̄j,µ ◦ ϕ−1 and V : (X, Y ) 7→
∫ Y

0

1

WU2(X, t)
dt. (3.34)

Let us show that for x = (x, y) in a neighborhood of (0, 0) and 0 ≤ |t| ≤ |Y | with
tY ≥ 0, then (X(x, y), t) belongs to ϕ(B+

j,µ2). First, for (x, y) ∈ B+
j,
µ3
2

and 0 ≤ t ≤ Y = y

or y = Y ≤ t ≤ 0 (case where ωj >
π
2
), owing to (3.27), in view of u1(0, y) = 0 for y ≤ 0,

we have

X(0, t) ≤ X(x, y) ≤ 3

2
k(x, y) and X(

µ3

2
, t) ≥ µ3

4
|u2(0, 0)|.
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Then,

∀(x, y) ∈ IR2 such that

 k(x, y ≤ µ3|u2(0, 0)|
6

(x, y) ∈ B+
j,
µ3
2

,
(3.35)

we have X(0, t) ≤ X(x, y) ≤ X(µ3
2
, t) and there exists a real number xt ∈ [0, µ3

2
] such that

X(xt, t) = X(x, y)) and, therefore, (X(x, y), t) belongs to ϕ(B+
j,µ3). Finally, we set

µ4 =
|u2(0, 0)|
|∂u1
∂y

(0, 0)|
and B̃j = B+

j,min(
µ3
6
,µ4)
∩ Ω. (3.36)

Since B̃j = B+
j, r
|u2(0,0)|

∩ Ω with r = min(
µ3|u2(0, 0)|

6
,
(u2(0, 0))2

|∂u1
∂y

(0, 0)|
), in view of (3.29), all

x = (x, y) ∈ B̃j verifies (3.35) and, consequently, (X(x, y), t) belongs to ϕ(B+
j,µ3). Then,

with the new functions defined in (3.34), in view of div u = 0, we have the following
equivalence :

z +W u .∇z = l̄j,µ a.e. in B̃j ⇐⇒ Z +W U2
∂Z

∂Y
= L̄j,µ a.e. in ϕ(B̃j).

Solving this last equation yields

∀(X, Y ) ∈ ϕ(B̃j), Z(X, Y ) = e−V (X,Y )(
∫ Y

0

eV (X,t)

WU2(X,t)
L̄j,µ(X, t) dt+ C(X))⇐⇒

∀(x, y) ∈ B̃j, z(x, y) = e−V (X(x,y),y)(
∫ y

0

eV (X(x,y),t)

WU2(X(x, y), t)
L̄j,µ(X(x, y), t) dt+ C(X(x, y))),

where C is a function of L2. We have to compute the function C so that the solution Z
verifies the boundary condition on Γ−.

Let us define the real number yM > 0 by

yM = sup{y, m(0, y) ∈ B̃j ∩ γj}

and the function α on the set [0, yM ] by

∀y ∈ [0, yM ], α(y) = X(0, y). (3.37)

Note that
yM = min(

µ3

6
, µ4, |γj|). (3.38)

Considering that, ∀y ∈]0, yM ],
α′(y) = u1(0, y) > 0,

the mapping α from [0, yM ] to [0, α(yM)] is one-to-one and we can define the inverse function
α−1 from [0, α(yM)] to [0, yM ]. Moreover, α−1 is strictly positive on ]0, α(yM)]. Then, the
continuity of the functions X and Y yields that there exist a real number µ5 > 0 such that

∀(x, y) ∈ B+
j,µ5

, X(x, y) ∈ [0, α(yM)]. (3.39)

Finally, we set

K = min(
µ3

6
, µ4, µ5, |γj|), (3.40)

22



where the constants µ3, µ4 and µ5 are defined, respectively, by (3.27), (3.36) and (3.39).
Then, the boundary condition z|γj = 0 allows us to compute the function C. Indeed,
setting s = X(0, y) = α(y)⇔ y = α−1(s), we have

z|Γ−j,K
= 0⇔ ∀y, 0 ≤ y ≤ K, z(0, y) = 0⇔ ∀s, 0 ≤ s ≤ α(K), Z(s, α−1(s)) = 0

⇔ ∀s, 0 ≤ s ≤ α(K), C(s) = −
∫ α−1(s)

0

eV (s,t)

WU2(s, t)
L̄j,µ(s, t) dt

and we obtain that the solution z is expressed in Ωj,K as (3.25). ♦
Second step

Let us show that, for µ small enough and x far enough from S−1j , then z(x, y) = 0.
More precisely, let us prove the following lemma.

Lemma 3.3 Let r1,j and r2,j be defined by (3.44), let µ > 0 such that µ ≤ r1,j
6

and let the
local solution z of the problem (P̄j,µ) be expressed by (3.25). Then,

∀(x, y) ∈ C(S−1j , 2

√
r1,j

|∂u1
∂y

(0, 0)|
,

r2,j

|u2(0, 0)|
) ∩ Ω, z(x, y) = 0. (3.41)

Proof. Let us note that, if (x, y) ∈ B+
j,K , then y ≤ α−1(X(x, y)). Indeed, if y < 0,

then y < 0 ≤ α−1(X(x, y)) and if y ≥ 0, then α(yM) ≥ X(x, y) ≥ X(0, y) = α(y) ≥ 0,
which implies y ≤ α−1(X(x, y)), since α−1 is strictly increasing on [0, α(yM)]. Thus, we
distinguish two cases :
a) First case : (x, y) ∈ B+

j,K
6

and 0 ≤ y ≤ t ≤ α−1(X(x, y)).

Note that, since K
6
≤ µ5, then α−1(X(x, y)) ≤ yM , which implies t ≤ µ3

6
. On the one hand,

we have
α(t) = X(0, t) ≤ X(x, y).

On the other hand, since |x| ≤ K
6

, we derive

X(x, y) ≤ 3

2
|u2(0, 0)| |x|+

∫ y

0
u1(0, θ) dθ ≤ 1

4
|u2(0, 0)|K +

∫ t

0
u1(0, θ) dθ ≤ X(

K

2
, t).

Therefore, if (x, y) ∈ B+
j,K

6

with y ≥ 0, there exists xt ∈ [0, K
2

] such that

X(x, y) = X(xt, t) with (xt, t) ∈ B+
j,µ3

. (3.42)

Then, the inequalities (3.27) yield

1

2
k(x, y) ≤ X(x, y) = X(xt, t) ≤

3

2
k(xt, t) =⇒ 1

3
k(x, y) ≤ k(xt, t). (3.43)

We set

r1,j = min(
|u2(0, 0)|K

12
,
|∂u1
∂y

(0, 0)|K2

288
) and r2,j =

K|u2(0, 0)|
6

. (3.44)

Choosing the real number µ > 0 such that

µ ≤ r1,j

6
⇐⇒ 6µ ≤ r1,j, (3.45)
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we can verify that 0 < r1,j < r2,j ≤
(u2(0, 0))2

|∂u1
∂y

(0, 0)|
and r1,j <

|∂u1
∂y

(0, 0)|r2
2,j

4(u2(0, 0))2
and, owing to

(3.30), we obtain,

∀(x, y) ∈ C(S−1j , 2

√
r1,j

|∂u1
∂y

(0, 0)|
,

r2,j

|u2(0, 0)|
) ∩ Ω with y ≥ 0, r1,j ≤ k(x, y) ≤ r2,j.

Hence, in view of (3.43), we derive

∀(x, y) ∈ C(S−1j , 2

√
r1,j

|∂u1
∂y

(0, 0)|
,

r2,j

|u2(0, 0)|
) ∩ Ω with y ≥ 0,

k(xt, t) ≥
1

3
k(x, y) ≥ 1

3
r1,j ≥ 2µ.

Finally, since L̄j,µ(X(x, y), t) = L̄j,µ(X(xt, t), t) = l̄j,µ(xt, t), considering (3.21), (3.22) and
(3.25), we obtain

∀(x, y) ∈ C(S−1j , 2

√
r1,j

|∂u1
∂y

(0, 0)|
,

r2,j

|u2(0, 0)|
) ∩ Ω with y ≥ 0, z(x, y) = 0,

where r1,j, r2,j and µ are given by (3.44) and (3.45).

b) Second case (ωj >
π

2
) : (x, y) ∈ B+

j,K
6

, y < 0 and y ≤ t ≤ α−1(X(x, y)).

Choosing first t ∈ [0, α−1(X(x, y))] and second t ∈ [y, 0], considering that u1(0, y) = 0
when y < 0, we process in the same way as previously and we obtain, as in the case where
y ≥ 0, that there exists xt ∈ [0, K

2
] such that

X(x, y) = X(xt, t) with (xt, t) ∈ B+
j,µ3

(3.46)

and ∀(x, y) ∈ C(S−1j , 2
√

r1,j

| ∂u1
∂y

(0,0)|
, r2,j
|u2(0,0)|) ∩ Ω with y < 0,

∫ 0

α−1(X(x,y))

eV (X(x,y),t)

WU2(X(x,y),t)
L̄j,µ(X(x, y), t) dt = 0,

∫ y

0

eV (X(x,y),t)

WU2(X(x,y),t)
L̄j,µ(X(x, y), t) dt = 0,

which implies z(x, y) = 0. Finally, gathering the cases y ≥ 0 and y < 0, we derive (3.41).♦
Third step

Next, we will prove the following lemma that gives the regularity H1 of the local
solution of the problem (P̄j,µ).

Lemma 3.4 Let z be defined by (3.25)and let r∗j be defined by

r∗j = 2

√
r1,j

|∂u1
∂y

(0, 0)|
= min(

√√√√ |u2(0, 0)K

3|∂u1
∂y

(0, 0)|
,
K

6
√

2
), (3.47)

where r1,j and K are defined in (3.44) and (3.40). Then z belongs to H1(Bj,r∗j
∩ Ω).

Proof. Let us prove first that z belongs to L2(Bj,r∗j
∩ Ω). Using the change of variables

defined in (3.31) yields z(x, y) = Z(X, Y ) with

Z(X, Y ) = e−V (X,Y )
∫ Y

α−1(X)

eV (X,t)

WU2(X, t)
L̄j,µ(X, t) dt (3.48)
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and, in view of the jacobian D(x,y)
D(X,Y )

= − 1
U2

and the inequality of Cauchy-Schwarz, we obtain

∫ ∫
Bj,r∗

j
∩Ω
z2 dxdy =

∫ ∫
ϕ(Bj,r∗

j
∩Ω)

Z2 1

|U2|
dXdY (3.49)

≤
∫ ∫

ϕ(Bj,r∗
j
∩Ω)

e2V

|U2|
(
∫ α−1(X)

Y

e−2V (X,t)

W2(U2(X, t))2
dt)(

∫ α−1(X)

Y
(L̄j,µ(X, t))2 dt)dXdY.

We have to estimate the terms of the previous integral. Since r∗j ≤ K
6

, in view of (3.27),
we derive

∀(x, y) ∈ Bj,r∗j
∩ Ω,

1

|U2(X, Y )|
=

1

|u2(x, y))|
≤ 2

|u2(0, 0)|
.

Owing to (3.36) and (Bj,r∗j
∩ Ω) ⊂ B̃j, for (X, Y ) ∈ ϕ(Bj,r∗j

∩ Ω) and |t| ≤ |Y |, we have

U2(X, t) = u2(xt, t) with xt ∈ [0, µ3
2

] and, considering that |Y | ≤ K
6

, we obtain

|V (X, Y )| = |
∫ Y

0

1

Wu2(xt, t)
dt ≤ K

3|W||u2(0, 0)|
.

In the same way, for (X, Y ) ∈ ϕ(Bj,r∗j
∩ Ω) and Y ≤ t ≤ α−1(X), in view of (3.42) and

(3.46), we have U2(X, t) = U2(X(xt, t), t) = u2(xt, t) with (xt, t) ∈ B+
j,µ3 , which implies

1

|U2(X, t)|
≤ 2

|u2(0, 0)|

and, for V (X, t) =
∫ t

0

1

WU2(X, θ)
dθ, we prove that X = X(xθ, θ) with (xθ, θ) ∈ B+

j,µ3 ,

which gives, since −K
6
≤ Y ≤ t ≤ α−1(X) ≤ yM ≤ µ3

6
, the following estimate

|V (X, t)| ≤ µ3

3|W||u2(0, 0)|
.

Substituting these bounds in (3.49) yields that there exists a strictly positive constant C
such that ∫ ∫

Bj,r∗
j
∩Ω
z2 dxdy ≤ C

∫ ∫
ϕ(Bj,r∗

j
∩Ω)

(
∫ α−1(X)

Y
(L̄j,µ(X, t))2 dt)dXdY. (3.50)

Since ∀(X, Y ) ∈ ϕ(Bj,r∗j
∩ Ω), we have −K

6
≤ Y ≤ K

6
and X(0, Y ) ≤ X ≤ X(K

6
, Y ), we

obtain∫ ∫
Bj,r∗

j
∩Ω
z2 dxdy ≤ C

∫ K
6

−K
6

dY

(∫ X(K
6
,Y )

X(0,Y )
dX(

∫ α−1(X)

Y
(L̄j,µ(X, t)))2 dt)

)
,

≤ C
∫ K

6

−K
6

dY
(∫ ∫

DY
(L̄j,µ(X, t)))2 dX dt

)
,

where DY = {(X, t) ∈ IR2, X(0, Y ) ≤ X ≤ X(K
6
, Y ), Y ≤ t ≤ α−1(X)}. Next, we

compute the integral on DY by making the substitution

{
X = X(x̃, t)
t = t

, the jacobian of
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which is −u2(x̃, t). Indeed, the mapping
ψ : DY −→ ψ(DY )

(X, t) 7−→ (x̃, t)
is one− to− one and

of class C1 on DY , as we proved previously by (3.42) and (3.46), with x̃ ∈ [0, K
2

] and
t ∈ [−K

6
, µ3

6
]. Thus, the jacobian is strictly positive and bounded by 3

2
|u2(0, 0)|, and we

obtain∫ ∫
Bj,r∗

j
∩Ω
z2 dxdy ≤ 1

2
CK|u2(0, 0)|

∫ ∫
[0,K

2
]×[−K

6
,
µ3
6

]
l̄j,µ(x̃, t) dx̃ dt < +∞, (3.51)

which proves that z belongs to L2(Bj,r∗j
∩ Ω), since l̄j,µ belongs to H1(IR2).

It remains to prove that ∇z belongs to L2(Bj,r∗j
∩ Ω). Again, we use the change of

variables defined in (3.31). Computing the partial derivatives yields

∂z

∂x
= −U2

∂Z

∂X
and

∂z

∂y
= U1

∂Z

∂X
+
∂Z

∂Y
.

Then, the inequality 2|ab| ≤ a2 + b2 implies |∇z|2 ≤ (1 + U2
1 + U2

2 )|∇Z|2, where | . |
represents the euclidian norm in IR2. Hence, we derive

∫ ∫
Bj,r∗

j
∩Ω
|∇z|2 dxdy ≤

2 max
x∈Ω

(1 + u2
1 + u2

2)

|u2(0, 0)|

∫ ∫
ϕ(Bj,r∗

j
∩Ω)
|∇Z|2 dXdY.

Since Z+WU2
∂Z

∂Y
= L̄j,µ, owing to (3.27), we obtain that

∂Z

∂Y
belongs to L2(ϕ(Bj,r∗j

∩Ω)).

Next, we now come to the crucial point, which is to prove that the other partial

derivative
∂Z

∂X
belongs to L2(ϕ(Bj,r∗j

∩ Ω)). From (3.48), computing this derivative yields

∂Z

∂X
(X, Y ) = −∂V

∂X
(X, Y )Z(X, Y ) + e−V (X,Y ) (3.52)

(
∫ Y

α−1(X)

∂( eV (X,t)

WU2(X,t)
L̄j,µ(X, t))

∂X
dt− (α−1)′(X)(

eV (X,α−1(X))

WU2(X,α−1(X))
L̄j,µ(X,α−1(X)))

and

∂( eV (X,t)

WU2(X,t)
L̄j,µ(X, t))

∂X
= eV (X,t)

∂V
∂X

(X, t)U2(X, t)− ∂U2

∂X
(X, t)

(U2(X, t))2
L̄j,µ(X, t)+

eV (X,t)

U2(X, t)

∂L̄j,µ
∂X

(X, t).

Then, for (X, Y ) ∈ ϕ(Bj,r∗j
∩ Ω) and |t| ≤ |Y | or Y ≤ t ≤ α−1(X), we prove that (X, t)

belongs to ϕ(B+
j,µ3). Considering that U2 is strictly negative and of class C1 on ϕ(B+

j,µ3),

we derive that U2 and V are of class C1 on ϕ(B+
j,µ3), which implies that the functions ∂U2

∂X

and ∂V
∂X

are bounded on ϕ(B+
j,µ3). Hence, there exist strictly positive constants C1, C2, C3

and C4 such that

| ∂Z
∂X

(X, Y )| ≤ C1|Z(X, Y )|+ C2

∫ α−1(X)

Y
|L̄j,µ(X, t)| dt

+C3

∫ α−1(X)

Y
|∂L̄j,µ
∂X

(X, t)| dt+ C4|(α−1)′(X)||L̄j,µ(X,α−1(X))|. (3.53)
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In view of the equalities (X,α−1(X)) = (α(α−1(X)), α−1(X) = (X(0, α−1(X)), α−1(X)),
we derive L̄j,µ(X,α−1(X)) = l̄j,µ(0, α−1(X)). Next, owing to |α−1(X)− Y | ≤ µ3+K

6
, using

inequalities of Cauchy-Schwarz and setting C5 = C2
1 + C2

2 + C2
3 + C2

4 and C6 = µ3+K
6
C5

yield

(
∂Z

∂X
(X, Y ))2 ≤ C5((Z(X, Y ))2 + ((α−1)′(X))2(l̄j,µ(0, α−1(X)))2)

+C6

∫ α−1(X)

Y
((L̄j,µ(X, t))2 + (

∂L̄j,µ
∂X

(X, t))2) dt. (3.54)

There is only one term that is difficult to bound in L2(ϕ(B(S−1j , r∗j )∩Ω)). Indeed, we have
just prove that Z belongs to L2(ϕ(Bj,r∗j

∩ Ω)) and for

∫ α−1(X)

Y
((L̄j,µ(X, t))2 + (

∂L̄j,µ
∂X

(X, t))2) dt,

we apply the previous method, which allowed us to bound the right hand side of the in-

equality (3.50), using the same substitution

{
X = X(x̃, t)
t = t

as previously, since l̄j,µ belongs

to H1(IR2) and since we have
∂L̄j,µ
∂X

(X, t) = − 1

u2(x̃, t)

∂l̄j,µ
∂x̃

(x̃, t). It remains to bound the

basic term ∫ ∫
ϕ(Bj,r∗

j
∩Ω)

((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dXdY.

Let us recall that, in view of (3.37),(3.39), since (x, y) belongs to Bj,r∗j
∩ Ω, we have

X ∈ [0, α(yM)]⇐⇒ α−1(X) ≤ yM =≤ min(
µ3

6
, µ4, |γj|).

Since α′(α−1(X)) = u1(0, α−1(X)) > 0 and considering (3.27), on the one hand, we derive

|(α−1)′(X)| = 1

|α′(α−1(X))|
=

1

|u1(0, α−1(X)|
≤ 2

|∂u1
∂y

(0, 0)||α−1(X)|
. (3.55)

On the other hand, owing again to (3.27), we have

|X| = |α(α−1(X)| = |
∫ α−1(X)

0
u1(0, θ) dθ| ≤ 3

4
|∂u1

∂y
(0, 0)|(α−1(X))2.

Substituting this inequality in (3.55) yields the following basic estimate of |(α−1)′(X)|

|(α−1)′(X)| ≤
√√√√ 3

|∂u1
∂y

(0, 0)|
1√
X
. (3.56)

Next, we distinguish two cases : if the angle ωj ≤ π
2
, then

ϕ(Bj,r∗j
∩ Ω) ⊂ E1 = {(X, Y ) ∈ IR2, Y ∈ [0,

K

6
], X ∈ [X(0, Y ), X(

K

6
, Y )],
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and, if the angle ωj >
π
2
, then

ϕ(Bj,r∗j
∩ Ω) ⊂ E1 ∪ E2,

where

E2 = {(X, Y ) ∈ IR2, Y ∈ [−K
6
, 0], X ∈ [X((tanωj)Y, 0), X(

K

6
, 0)].

Therefore, in the both case, we have to compute, for Y ≥ 0∫ X(K
6
,Y )

X(0,Y )
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX.

Considering that l̄j,µ belongs to H1(IR2), we derive that the function (0, y) 7→ l̄j,µ(0, y)

belongs to H
1
2 (γj) ⊃ L6(γj). Hence, in view of (3.56), using the Holder’s inequality yields∫ X(K

6
,Y )

X(0,Y )
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX

≤ 3

|∂u1
∂y

(0, 0)|
(
∫ X(K

6
,Y )

X(0,Y )

1

X
3
2

dX)
2
3 (
∫ X(K

6
,Y )

X(0,Y )
(l̄j,µ(0, α−1(X)))6 dX)

1
3 .

Setting v = α−1(X), with (3.27), we obtain∫ X(K
6
,Y )

X(0,Y )
(l̄j,µ(0, α−1(X)))6 dX ≤

∫ α(yM )

0
(l̄j,µ(0, v))6|u1(0, v)| dv ≤ 3

2
α(yM)|∂u1

∂y
(0, 0)| ‖l̄j,µ‖6

L6(γj)
,

which implies∫ X(K
6
,Y )

X(0,Y )
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX ≤ (

162α(yM)

(∂u1
∂y

(0, 0))2
)
1
3

‖l̄j,µ‖2
L6(γj)

(X(0, Y ))
1
3

.

Hence, since
1

|X(0, Y )|
≤ 4

|∂u1
∂y

(0, 0)|Y 2
(see (3.27)), we derive

∫ X(K
6
,Y )

X(0,Y )
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX ≤

(648α(yM))
1
3‖l̄j,µ‖2

L6(γj)

|∂u1
∂y

(0, 0)|Y 2
3

. (3.57)

In the case where ωj >
π
2
, we have to bound, for Y < 0,∫ X(K

6
,0

X((tanωj)Y,0)
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX.

In the same way as previously, we obtain∫ X(K
6
,0)

X((tanωj)Y,0)
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX ≤ (

162α(yM)

(∂u1
∂y

(0, 0))2
)
1
3

‖l̄j,µ‖2
L6(γj)

(X((tanωj)Y, 0)))
1
3

.

Since |X((tanωj)Y, 0)| ≥ 2

|u2(0, 0| | tanωj| |Y |
, we derive

∫ X(K
6
,0)

X((tanωj)Y,0)
((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dX ≤

(324α(yM))
1
3‖l̄j,µ‖2

L6(γj)

((∂u1
∂y

(0, 0))2|u2(0, 0)| | tanωj|)
1
3

1

|Y | 13
.

(3.58)
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In the case where ωj ≤ π
2
, integrating with respect to Y on the interval [0, K

6
] the both side

of (3.57) yields

∫ ∫
ϕ(Bj,r∗

j
∩Ω)

((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dXdY ≤ 9
(4α(yM)K)

1
3

|∂u1
∂y

(0, 0))|
‖l̄j,µ‖2

L6(γj)
< +∞.

In the case where ωj >
π
2
, in addition to the previous integral, we must integrate with

respect to Y on the interval [−K
6
, 0]] the both side of (3.58), which gives∫ ∫

ϕ(Bj,r∗
j
∩Ω)

((α−1)′(X))2(l̄j,µ(0, α−1(X)))2 dXdY

≤ (9
(4α(yM)K)

1
3

|∂u1
∂y

(0, 0))|
+

3

2

(9α(yM)K2)
1
3

((∂u1
∂y

(0, 0))2|u2(0, 0)| | tanωj|)
1
3

)‖l̄j,µ‖2
L6(γj)

< +∞.

Finally, in view of (3.54), we have obtained that
∂Z

∂X
belongs to L2(ϕ(Bj,r∗j

∩ Ω)), which

implies, as we saw previously, that ∇z belongs to L2(Bj,r∗j
∩Ω) and, therefore, with (3.51),

we derive that z belongs to H1(Bj,r∗j
∩ Ω), which ends the proof of the lemma. ♦

Considering that (3.41) implies that z vanishes in a neighborhood of the boundary of
Bj,r∗j

∩ Ω (see the definition (3.47) of r∗j ) , we can now construct the solution z̄j,µ of the

problem (P̄j,µ), which belongs to H1(Ω), by

z̄j,µ =

 e−V (X(x,y),y)(
∫ y
α−1(X(x,y))

eV (X(x,y),t)

WU2(X(x,y),t)
L̄j,µ(X(x, y), t) dt) if (x, y) ∈ Bj,r∗j

∩ Ω

0 if (x, y) ∈ Ω \Bj,r∗j
,

(3.59)
where the function X is defined by (3.31), the functions L̄j,µ, U2 and V are defined by
(3.34), the function α is defined by (3.37) and the real number r∗j by (3.47), with a small
enough real number µ verifying (3.45). Thus, thanks to (3.23), in this third case, we have
proven that

zj,µ ∈ H1(Ω) is the solution of the problem (Pj,µ). (3.60)

4) Fourth case: S−1j /∈ γj−1, S−1j ∈ (E ∩ Sc), S1
j ∈ γj+1.

-

?x
figure 3.7
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jS−1j γj

γj+1
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~nj

~nj+1
-
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�
−−−→
u(S−1

j )

The fourth case is not very different that the third case : S−1j is still the origin, the
x-axis and the y-axis are defined in the same way, but, for y < 0 small enough, the point
(0, y) belongs to Γ0,+ and, therefore, we have u1(0, y) ≤ 0. We denote by Γkj the side of
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the polygon which contains γj and we set ηj = d(S−1j , ∂Γkj), where d(., .) is the euclidian

distance in IR2. According to the assumptions of the fourth case, ηj > 0. Instead of (3.27)
which corresponds to the third case, we define µ′3 ≤ min(µ2, ηj) such that

∀x ∈ Bj,µ′3
∩ Ω,

3

2
u2(0, 0) ≤ u2(x) ≤ 1

2
u2(0, 0) < 0 and

∀y ∈ [−µ′3, µ′3],
1

2

∂u1

∂y
(0, 0)y ≤ |u1(0, y)| ≤ 3

2

∂u1

∂y
(0, 0)y. (3.61)

Next, the proof of (3.35)-(3.36) is slightly different in the case where y = Y ≤ t ≤ 0. First,
we have

X(0, t) =
∫ t

0
u1(0, θ) dθ ≤ X(x, y).

Second, in view of (3.61), since
t∫

0
u1(0, θ) dθ ≥ 0, we still have

X(x, y) ≤ 3

2
k(x, y) and X(

µ′3
2
, t) ≥ µ′3

4
|u2(0, 0)|

and (3.34), (3.35) and (3.36) are still verified with µ′3 in the place of µ3. In the same way,
(3.37) and (3.39) run unchanged, while (3.25) is verified with K ′ in the place of K where
K ′ is defined by

K ′ = min(
µ′3
6
, µ4, µ5, |γj|). (3.62)

Afterwards, the case where 0 ≤ y ≤ t ≤ α−1(X(x, y)) remains unchanged and we still have
(3.41) for y ≥ 0, with r′1,j and r′2,j in the place of r1,j and r2,j, where r′1,j and r′2,j are defined
by

r′1,j = min(
|u2(0, 0)|K ′

12
,
|∂u1
∂y

(0, 0)|K ′2

288
) and r′2,j =

K ′|u2(0, 0)|
6

. (3.63)

When y ≤ t ≤ α−1(X(x, y)), with y < 0, we consider first 0 ≤ t ≤ α−1(X(x, y)) and
second y ≤ t < 0.

If 0 ≤ t ≤ α−1(X(x, y)) and (x, y) ∈ B+

j,K
′

6

, we have t ≤ µ′3
6

and

α(t) = X(0, t) ≤ X(x, y) ≤ 3

2
k(x, y).

Applying (3.29) with r = |u2(0, 0)|K′
6

, we obtain k(x, y) ≤ |u2(0, 0)|K
′

6
. Hence, we derive

X(0, t) ≤ X(x, y) ≤ |u2(0, 0)|K
′

4
≤ X(

K ′

2
, t).

Then, there exists xt ∈ [0, K
′

2
] such that

X(x, y) = X(xt, t) with (xt, t) ∈ B+
j,µ′3

.

Next, as previously, we derive that ∀(x, y) ∈ C(S−1j , 2

√
r′1,j

| ∂u1
∂y

(0,0)|
,

r′2,j
|u2(0,0)|) ∩ Ω with y < 0,

∫ 0

α−1(X(x,y))

eV (X(x,y),t)

WU2(X(x,y),t)
L̄j,µ(X(x, y), t) dt = 0.
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Finally, for the case where y ≤ t ≤ 0, we process in the same way as previously and we
obtain that (3.41) is verified for y < 0 with r′1,j and r′2,j in the place of r1,j and r2,j.

The rest of the proof is the same as in the third case. Thus, in the fourth case, we
have proven that

zj,µ ∈ H1(Ω) is the solution of the problem (Pj,µ). (3.64)

By localization, all the other cases, where S−1j ∈ E and (or) S1
j ∈ E, can be solved as

in the third case or the fourth case. ♦

4 Appendix

In the two following examples, the domains Ω are no longer a bounded polygon, but
domains of class C1,1. Even if in this article, we mainly deal with bounded polygons,
it seems to us interesting to show that the regularity of the solution z of the transport
problem in domains of class C1,1 seems still linked to the multiplicity of the roots of the
equation u .n = 0 at the end-points of Γ−, in the case where u . τ− is negative.

4.1 Example 6 : Ω = C(I(0, 1), 0.5), l(x, y) = 1, u(x, y) = (x,−y).

In this example, the boundary, which is the circle of center
I(0, 1) and of radius R = 0.5, is very regular, but the function
u.n vanishes at the boundary points of Γ−, which leads to a
discontinuity for the partial derivatives of the solution z in
these points.

The equation of Γ is


x =

1

2
cos t

y = 1 +
1

2
sin t

, t ∈]− π, π] and

the unit exterior normal is n = (cos t, sin t). Let us determine
the sets Γ−, Γ0 and Γ+. On Γ, we have

(u .n)(t) = − sin2 t− sin t+
1

2
,

that vanishes for t0 = arcsin(
√

3−1
2

) and t1 = π−arcsin(
√

3−1
2

),
and Γ− is the open arc of the circle Γ defined by t0 < t < t1,
Γ+ is Γ \ Γ−, Γ0 = ∅.

6

-

1.5
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1

y

xO 0.5-0.5
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figure 4.8

Note that, we can easily verify that (u . τ−)(t) is negative for t = t0 and t = t1, so that
assumptions analogous to the assumptions of (3.5) are verified at points where u .n va-
nishes in this example. As in the first three examples, we have

∀(x, y) ∈ Ω, z(x, y) = 1− 2y + y C(xy), ∀(x, y) ∈ Γ−, C(xy) = 2− 1

y
. (4.1)

Setting X = xy, we must compute the function α such that y = α(X), for (x, y) ∈ Γ−.
1) First case : t0 < t ≤ π

2
, (x, y) ∈ Γ− ∩ IR2

+.
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x = 1
2

√
1− (2y − 2)2 = 1

2

√
(2y − 1)(3− 2y), which imply X =

y

2

√
(2y − 1)(3− 2y). We

compute y(t0) = 3+
√

3
4

and X(t0) =

√
2
√

3(3+
√

3)

16
. Considering the function

g : y 7→ X =
y

2

√
(2y − 1)(3− 2y), (4.2)

which is defined on the set [1
2
, 3

2
]. Since we have, ∀y ∈]1

2
, 3

2
[, g′(y) = −

4(y − 3+
√

3
4

)(y − 3−
√

3
4

)√
(2y − 1)(3− 2y)

,

the statement of changes of g is

y 1
2

3+
√

3
4

3
2

g′(y) ‖+∞ + 0 - −∞‖

g 0
��

���:
X(t0) XXXXXz

0

.

Since g is strictly decreasing from [y(t0), 3
2
] to [0, X(t0)], therefore g|[y(t0), 3

2
] has an inverse

function and we have
α|[0,X(t0)] = (g|[y(t0), 3

2
])
−1. (4.3)

Finally, we obtain, for (x, y) ∈ Γ− ∩ IR2
+, y = α(X)⇐⇒ y = g(X).

2) Second case : π
2
≤ t ≤ π − t0, (x, y) ∈ Γ− ∩ IR− × IR+.

In the same way, we have X = −y
2

√
(2y − 1)(3− 2y) and we define α on [−X(t0), 0] by

α|[−X(t0),0] = ((−g)|[y(t0), 3
2

])
−1. (4.4)

The statement of changes of the even function α is :

X −X(t0) 0 +X(t0)
α′(X) ‖+∞ + 0 - −∞‖

α
3+
√

3
4

���
��:

3
2 XXXXXz 3+

√
3

4

From (4.1), we derive the solution of the example 6

∀(x, y) ∈ Ω, z(x, y) = 1− y

α(xy)
. (4.5)

Let us show that z belongs to H1(Ω). We compute

∀(x, y) ∈ Ω \ {(±x(t0), y(t0))}, z′x(x, y) =
y2α′(xy)

(α(xy))2
, z′y(x, y) =

xyα′(xy)

(α(xy))2
− 1

α(xy)
,

with x(t0) =

√
2
√

3

4
and y(t0) = 3+

√
3

4
. Hence, we derive

z belongs to H1(Ω)⇐⇒
∫ ∫

Ω
(α′(xy))2 dxdy < +∞. (4.6)

Let us set Ω+ = Ω ∩ IR2
+ and note that

∫ ∫
Ω(α′(xy))2 dxdy = 2

∫ ∫
Ω+

(α′(xy))2 dxdy.
In order to show that the last integral converges, we split Ω+ in two subdomains:

Ω1
+ = Ω+ ∩ (IR+ × [

3 +
√

3

4
,
3

2
]) and Ω2

+ = Ω+ ∩ (IR+ × [
1

2
,
3 +
√

3

4
]).
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1) We compute
∫ ∫

Ω1
+

(α′(xy))2 dxdy by making the substitution

{
u = α(xy)
y = y

⇐⇒
{
x = g(u)

y

y = y
,

the jacobian of which is
g′(u)

y
. Since ∀u ∈]3+

√
3

4
, 3

2
], α′(g(u)) =

1

g′(u)
, we obtain

∫ ∫
Ω1

+

(α′(xy))2 dxdy =
∫ 3

2

3+
√
3

4

1

y
dy(

∫ 3
2

y

1

|g′(u)|
du).

Considering that, ∀u ∈]3+
√

3
4
, 1.5[, g′(u) = −

4(u− 3+
√

3
4

)(u− 3−
√

3
4

)√
(2u− 1)(3− 2u)

, we can verify

∫ ∫
Ω1

+

(α′(xy))2 dxdy ≤ K1

∫ 3
2

3+
√
3

4

dy(
∫ 3

2

y

1

u− 3+
√

3
4

du) =
3−
√

3

4
K1 < +∞, (4.7)

with K1 =

√
3− 1

3
.

2) For
∫ ∫

Ω2
+

(α′(xy))2 dxdy, it is more complicated. Setting X = xy, we obtain

∫ ∫
Ω2

+

(α′(xy))2 dxdy =
∫ 3+

√
3

4

1
2

dy(
∫ g(y)

y

0
(α′(xy))2 dx) =

∫ 3+
√
3

4

1
2

1

y
dy(

∫ g(y)

0
(α′(X))2 dX),

where the function g is defined by (4.2). Next, making the substitution X = g(u), for

u ∈ [1
2
, 3+

√
3

4
], we derive

∫ ∫
Ω2

+

(α′(xy))2 dxdy =
∫ 3+

√
3

4

1
2

1

y
dy(

∫ y

1
2

(α′(g(u)))2g′(u) du).

However, the complication comes from the fact that, for 1
2
≤ u < 3+

√
3

4
, α(g(u)) 6= u since

α(g(u)) > 3+
√

3
4

. Let us define the function β on the set [1
2
, 3+

√
3

4
] by

∀u ∈ [
1

2
,
3 +
√

3

4
], β(u) = α(g(u)).

Since g(β(u)) = g(u), then, for 1
2
< u < 3+

√
3

4
,

g′(u) = g′(β(u))β′(u) and α′(g(u)) = α′(g(β(u))) =
1

g′(β(u))
=
β′(u)

g′(u)
.

Hence, we can write

∫ ∫
Ω2

+

(α′(xy))2 dxdy =
∫ 3+

√
3

4

1
2

1

y
dy(

∫ y

1
2

(β′(u))2

g′(u)
du).

Let us show that β′ is bounded on the set ]1
2
, 3+

√
3

4
[ and that we can extend β′ on [1

2
, 3+

√
3

4
]

by continuity. Computing β′(u) yields

β′(u) =
u(u− 3+

√
3

4
)(u− 3−

√
3

4
)

β(u)(β(u)− 3+
√

3
4

)(β(u)− 3−
√

3
4

)
.
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Note that the right hand previous expression extends β′ by continuity in 1
2
. It remains to

compute the limit of β′ in 3+
√

3
4

. Applying to the function g the Taylor-Lagrange formula

in the neighborhood of 3+
√

3
4

, we obtain

g(u) = g(
3 +
√

3

4
)+

1

2
g′′(c)(u−3 +

√
3

4
)2 = g(β(u)) = g(

3 +
√

3

4
)+

1

2
g′′(d)(β(u)−3 +

√
3

4
)2,

with c ∈ [u, 3+
√

3
4

] and d ∈ [3+
√

3
4
, β(u)], which implies lim

u→ 3+
√
3

4

−

(u− 3+
√
3

4
)2

(β(u)− 3+
√
3

4
)2

= 1 and

lim
u→ 3+

√
3

4

−

u− 3+
√
3

4

β(u)− 3+
√
3

4

= −1, since
u− 3+

√
3

4

β(u)− 3+
√
3

4

≤ 0. Hence, we derive lim
u→ 3+

√
3

4

−
β′(u) = −1 and,

therefore, there exists a constant K2 > 0, such that, for u ∈ [1
2
, 3+

√
3

4
], |β′(u)| ≤ K2. Then,

we have

∫ ∫
Ω2

+

(α′(xy))2 dxdy ≤ (
√

3 + 1)K2
2

∫ 3+
√
3

4

1
2

dy(
∫ y

1
2

1
3+
√

3
4
− u

du) ≤ (
(
√

3 + 1)K2

2
)2 < +∞

and, with (4.6 and (4.7), we derive that the solution z belongs to H1(Ω). Finally, although
u .n vanishes at the end points of Γ−, the problem (1.1) is well-posed, probably because
the function u .n has only simple roots at the end points of Γ− with, in addition, u . τ−
negative at these end points.

4.2 Example 7 : Ω = Ω7, l(x, y) = 1, u(x, y) = (x,−y).

The boundary of Ω7 is composed of two half semi-
circles, linked up by two segments (see the figure 4.9).
The boundary is of class C1,1 but the arc of circle Γ− is
adjacent to the segment Γ0, which leads to a disconti-
nuity for the partial derivatives of the solution z. But,
as in the example 4, this discontinuity is such that
the solution z does not belong to H1(Ω), as we
shall see further. The parametric equation of the up-

per semicircle is


x =

1

2
+

1

2
cos t

y = 1 +
1

2
sin t

, t ∈ [0, π].

6

-

Γ0

1.5

1 Ω7

0.75

0.25

1

y

xO 0.5

Γ−

Γ+

figure 4.9

Let us determine the sets Γ−, Γ0 and Γ+. Again, we have n = (cos t, sin t). On the
upper semicircle, we compute (u .n)(t) = cos( t

2
)(cos( t

2
) − 2 sin( t

2
)(sin t + 1)). In view of

cos( t
2
) > 0 for 0 ≤ t < π, (u .n)(t) has the same sign that f(t) = cos( t

2
)−2 sin( t

2
)(sin t+1).

1) For π
2
≤ t ≤ π, f(t) = cos( t

2
)(1− 4 sin2( t

2
))− 2 sin( t

2
) < 0.

2) For 0 ≤ t ≤ π
2
, f(t) = cos3( t

2
)(−2 tan3( t

2
)−3 tan2( t

2
)−2 tan( t

2
)+1). Setting θ = tan( t

2
),

we must study the sign of the polynomial g(θ) = −2θ3 − 3θ2 − 2θ + 1, for 0 ≤ θ ≤ 1. We
have g′(θ) = −6θ2 − 6θ − 2 < 0, g(0) = 1, g(1) = −6. Then the continuity and the strict
decreasing of g implies that there exists an unique number θ0 ∈]0, 1[, such that g(θ0) = 0.
Finally, for 0 ≤ t ≤ π, (u .n)(t) vanishes for two values :

t0 = 2 arctan(θ0) ≈ 0.614 and π (4.8)
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and

Γ− is the open arc of circle defined by


x =

1

2
+

1

2
cos t

y = 1 +
1

2
sin t

, t ∈]t0, π[,

while the part of the previous semicircle, defined by t ∈ [0, t0[, is included into Γ+. Next,

the part of Γ, defined by

{
x = 0
3
4
< y < 1

is Γ0 and we are going to show that the lower

semicircle is included in Γ+. Indeed, the parametric equations of the lower semicircle is
x =

1

2
+

1

2
cos t

y =
3

4
+

1

2
sin t

, t ∈ [−π, 0]. Considering that, for t ∈ [−π, 0],

(u .n)(t) =
1

2
cos t+

1

2
cos2 t− 3

4
sin t− 1

2
sin2 t,

we distinguish two cases :
1) t ∈]− π,−3π

4
[∪]− π

2
, 0]

(u .n)(t) = 1
2
(cos t− sin t)(1 + cos t+ sin t)− 1

4
sin t > 0.

2) t ∈ [−3π
4
,−π

2
]

1
2

cos t− 1
2

sin2 t = −5
8

+ 1
2
(cos t + 1

2
)2 ≥ −5

8
and 1

2
cos2 t− 3

4
sin t = 25

32
− 1

2
(sin t + 3

4
)2 ≥ 3

4
.

Therefore, (u .n)(t) ≥ 1
8
> 0.

Finally,

{
x = 1
3
4
< y < 1

is included in Γ+, which ends the determining of the sets Γ−, Γ0 and

Γ+, see figure 4.9.
Again, it is easy to verify that (u . τ−)(t) is negative for t = t0 and t = π. As in

example 6, we have

∀(x, y) ∈ Ω, z(x, y) = 1− 2y + y C(xy), ∀(x, y) ∈ Γ−, C(xy) = 2− 1

y
. (4.9)

Setting X = xy, we must compute the function α such that y = α(X), for (x, y) ∈ Γ−.
1) First case : (x, y) ∈ Γ− ∩ ([0, 1

2
]× IR+).

X =
y

2
(1−

√
(2y − 1)(3− 2y) ). Considering the function

g : y 7→ X =
y

2
(1−

√
(2y − 1)(3− 2y)). (4.10)

We have, for 1
2
< y < 3

2
,

g′(y) =
8y2 − 12y + 3 +

√
(2y − 1)(3− 2y)

2
√

(2y − 1)(3− 2y)
. (4.11)

For
1

2
< y < 1, 8y2−12y+3 < −1,

√
(2y − 1)(3− 2y) < 1, therefore, g′(y) < 0. Moreover,

g′(1) = 0.

For
3 +
√

3

4
< y <

3

2
, 8y2 − 12y + 3 > 0, therefore g′(y) > 0.

For 1 < y < 3+
√

3
4

, we note that g′(y) has the same sign that

h(y) = 8y2 − 12y + 3 +
√

(2y − 1)(3− 2y)
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and h′(y) = 16y− 12− 4(y − 1)√
(2y − 1)(3− 2y)

. In view of
4(y − 1)√

(2y − 1)(3− 2y)
≤
√

6−
√

2

30.25
< 1

and (16y − 12) ≥ 4, we derive h′(y) > 0. Since h(1) = 0, we obtain that h(y) > 0, that is
to say, g′(y) > 0.

Thus, we obtain the statement of changes of g :

y 1
2

1 3
2

g′(y) ‖−∞ - 0 + +∞‖

g

1
4 XXXXXz 0 ��

���:
3
4

Finally, the function g, defined by (4.10), is strictly increasing from [1, 3
2
] to [0, 3

4
], therefore

g|[1, 3
2

] has an inverse function and we define α on the set [0, 3
4
] by

α|[0, 3
4

] = (g|[1, 3
2

])
−1, (4.12)

that verifies y = α(X)⇐⇒ X = g(y) for (x, y) ∈ Γ− ∩ ([0, 1
2
]× IR+).

2) Second case : (x, y) ∈ Γ− ∩ ([1
2
, 1]× IR+).

X =
y

2
(1 +

√
(2y − 1)(3− 2y) ), with y(t0) < y < 3

2
, where t0 is defined by (4.8) and

y(t0) ≈ 1.288. Considering the function

g̃ : y 7→ X =
y

2
(1 +

√
(2y − 1)(3− 2y)).

We compute g̃′(y) =
−8y2 + 12y − 3 +

√
(2y − 1)(3− 2y)

2
√

(2y − 1)(3− 2y)
. We can verify that

∀t ∈ [0,
π

2
], (u .n)(t) = 0⇐⇒ −8y2 + 12y − 3 +

√
(2y − 1)(3− 2y) = 0.

Hence, we derive that g̃′ vanishes at y(t0) and, since the numerator of g̃′ is a strictly decrea
sing function on [y(t0), 3

2
], we obtain that g̃′ is strictly negative on ]y(t0), 3

2
[, which implies

that the function g̃ is strictly decreasing from [y(t0), 3
2
] to [3

4
, g̃(y(t0))], with g̃(y(t0)) ≈ 1.17.

Therefore g̃|[y(t0), 3
2

] has an inverse function and we define α on the set [3
4
, g̃(y(t0))] by

α|[ 3
4
,g̃(y(t0))] = (g̃|[y(t0), 3

2
])
−1, (4.13)

that verifies y = α(X)⇐⇒ X = g̃(y) for (x, y) ∈ Γ− ∩ ([1
2
, 1]× IR+).

Finally, from (4.9), we derive the solution of example 7 :

∀(x, y) ∈ Ω, z(x, y) = 1− y

α(xy)
, (4.14)

where the function α is defined on the interval [0, g̃(y(t0))] by (4.12) and (4.13).
Let us show that z does not belongs to H1(Ω). We again compute

∀(x, y) ∈ Ω \ {(0, 1))}, z′x(x, y) =
y2α′(xy)

(α(xy))2
.

We integrate (z′x(x, y))2 on a domain Ω∗ = {(x, y) ∈ IR2,
3

4
≤ y ≤ 1, 0 ≤ x ≤ 1

4y
}, which

is included in Ω. Moreover, since in Ω∗, we have 0 ≤ xy ≤ 1

4
≤ 3

4
, we use the expression

36



of the fonction α defined by (4.12) from the function g, defined by (4.10). Clearly,∫ ∫
Ω

(z′x(x, y))2 dxdy ≥
∫ ∫

Ω∗
(z′x(x, y))2 dxdy.

Let us show that the integral
∫ ∫

Ω∗(z
′
x(x, y))2 dxdy = +∞. First, we compute

∫ ∫
Ω∗(z

′
x(x, y))2 dxdy

by making the substitution

{
X = xy
y = y

⇐⇒
{
x = X

y

y = y
, the jacobian of which is

1

y
. We

obtain ∫ ∫
Ω∗

(z′x(x, y))2 dxdy = (
∫ 1

3
4

y3 dy)(
∫ 1

4

0

((α′(X))2

(α(X))4
dX).

Since the function, g defined by (4.10), is strictly increasing from [1, 3
2
] to [0, 3

4
], making a

substitution,

{
X = g(u)
1 ≤ u ≤ α(1

4
)
⇐⇒

{
u = α(X)
0 ≤ X ≤ 1

4

yields

∫ ∫
Ω∗

(z′x(x, y))2 dxdy = (
∫ 1

3
4

y3 dy)(
∫ α( 1

4
)

1

(α′(g(u)))2g′(u)

(α(g(u)))4
du).

Since α′(g(u)) =
1

g′(u)
and α(g(u)) = u, for 1 < u < α(1

4
), we derive

∫ ∫
Ω∗

(z′x(x, y))2 dxdy = (
∫ 1

3
4

y3 dy)(
∫ α( 1

4
)

1

1

u4g′(u)
du) ≥ 175

1024(α(1
4
))4

∫ α( 1
4

)

1

1

g′(u)
du.

In view of

1

g′(u)
=

√
(2u− 1)(3− 2u)(

√
(2u− 1)(3− 2u)− 8u2 + 12u− 3)

2(u− 1)(−16u3 + 32u2 − 17u+ 3)
∼
1

1

2(u− 1)
,

since
∫ α( 1

4
)

1

1

2(u− 1)
du = +∞, we obtain

∫ ∫
Ω∗

(z′x(x, y))2 dxdy = +∞.

Finally, the solution z of the example 7 does not belong to H1(Ω) and, therefore, the pro-
blem (1.1) is not well-posed. The reason why is probably that (u .n)(t), which vanishes
in t = π, is not equivalent to A(t − π), with A 6= 0, in the neighborhood of π, that is to
say it vanishes with an order greater than 1. On the contrary, the assumption (u . τ−)(t)
negative is verified for t = t0 and t = π.
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