
HAL Id: hal-01418925
https://hal.science/hal-01418925

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata-based Verification of Programs with Tree
Updates

Peter Habermehl, Radu Iosif, Tomas Vojnar

To cite this version:
Peter Habermehl, Radu Iosif, Tomas Vojnar. Automata-based Verification of Programs with Tree
Updates. 12th. International Conference on TOOLS AND ALGORITHMS FOR THE CONSTRUC-
TION AND ANALYSIS OF SYSTEMS (TACAS 2006), Mar 2006, Vienne, Austria. pp.350-364,
�10.1007/11691372_23�. �hal-01418925�

https://hal.science/hal-01418925
https://hal.archives-ouvertes.fr

Automata-based Verification of Programs with

Tree Updates

Peter Habermehl1, Radu Iosif2, and Tomas Vojnar3

1 LIAFA/Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France
haberm@liafa.jussieu.fr

2 VERIMAG/CNRS, 2 Avenue de Vignate, 38610 Gières, France
iosif@imag.fr

3 Brno University of Technology, Bozetechova 2, CZ-612 66 Brno, Czech Republic
vojnar@fit.vutbr.cz

Abstract. This paper describes an effective verification procedure for
imperative programs that handle (balanced) tree-like data structures.
Since the verification problem considered is undecidable, we appeal to
a classical semi-algorithmic approach in which the user has to provide
manually the loop invariants in order to check the validity of Hoare
triples of the form {P}C{Q}, where P,Q are the sets of states corre-
sponding to the pre- and post-conditions, and C is the program to be
verified. We specify the sets of states (representing tree-like memory con-
figurations) using a special class of tree automata named Tree Automata
with Size Constraints (TASC). The main advantage of using TASC in
program specifications is that they recognize non-regular sets of tree lan-
guages such as the AVL trees, the red-black trees, and in general, spec-
ifications involving arithmetic reasoning about the lengths (depths) of
various (possibly all) paths in the tree. The class of TASC is closed un-
der the operations of union, intersection and complement, and moreover,
the emptiness problem is decidable, which makes it a practical verifica-
tion tool. We validate our approach considering red-black trees and the
insertion procedure, for which we verify that the output of the insertion
algorithm is a balanced red-black tree, i.e. the longest path is at most
twice as long as the shortest path.

1 Introduction

Verification of programs using dynamic memory primitives, such as allocation,
deallocation, and pointer manipulations, is crucial for a feasible method of soft-
ware verification. In this paper, we address the problem of proving correctness
of programs that manipulate balanced tree-like data structures. Such structures
are very often applied to implement in an efficient way lookup tables, associa-
tive arrays, sets, or similar higher-level structures, especially when they are used
in critical applications like real-time systems, kernels of operating systems, etc.
Therefore, there arised a number of such search tree structures like the AVL
trees, red-black trees, splay trees, and so on [7].

Tree automata [6] are a powerful formalism for specifying sets of trees and
reasoning about them. However, one obstacle preventing them from being used
currently in program verification is that imperative programs perform destruc-
tive updates on selector fields, by temporarily violating the fact that the shape
of the dynamic memory is a tree. Another impediment is the fact that tree au-
tomata represent regular sets of trees, which is not the case when one needs
to reason in terms of balanced trees, as in the case of AVL and red-black tree
algorithms.

In order to overcome the first problem, we observe that most algorithms [7]
use tree rotations (plus the low-level addition/removal of a node to/from a tree)
as the only operations that effectively change the structure of the input tree.
Such updates are usually implemented as short low-level pointer manipulations
[16], which are assumed to be correct in this paper. However, their correctness
can be checked separately in a different formalism, such as [17], or by using tree
automata extended with additional ”routing” expressions on the tree backbone
as in [11].

The second inconvenience has been solved in the present paper by introducing
a novel class of tree automata, called Tree Automata with Size Constraints
(TASC). TASC are tree automata whose actions are triggered by arithmetic
constraints involving the sizes of the subtrees at the current node. The size
of a tree is a numerical function defined inductively on the structure, as for
instance the height, or the maximum number of black nodes on all paths, etc. The
main advantage of using TASC in program specifications is that they recognize
non-regular sets of tree languages, such as the AVL trees, the red-black trees,
and in general, specifications involving arithmetic reasoning about the lengths
(depths) of various (possibly all) paths in the tree. We show that the class of
TASC is closed under the operations of union, intersection and complement.
Also, the emptiness problem is decidable, and the semantics of the programs
performing tree updates (node recoloring, rotations, nodes appending/removal)
can be effectively represented as changes on the structure of the automata.

Our approach consists in writing pre- and post-condition specifications of a
(sequential) imperative program and asking the user to provide loop invariants.
The verification problem consists in checking the validity of the invariants and of
the Hoare triples of the form {P}C{Q} where P,Q are the sets of configurations
corresponding to the pre- and post-condition, and C is the program to be verified.
We need to stress the fact that here P and Q are languages accepted by TASC,
instead of logical formulae, as it is usually the case with Hoare logic. The validity
of the triple is established by computing the set of states reached from a state
in P , after the execution of C, i.e. post(P,C), and afterwards deciding whether
post(P,C) ⊆ Q holds.

We have validated our approach on an example of the insertion algorithm for
the red-black trees, for which we verify that for a balanced red-black tree input,
the output of the insertion algorithm is also a balanced red-black tree, i.e. the
number of black nodes is the same on each path.

2

Related Work Verification of programs that handle tree-like structures has
attracted researchers with various backgrounds, such as static analysis [12], [16],
proof theory [4], and formal language theory [11]. The approach that is the closest
to ours is probably the one of PALE (Pointer Assertion Logic Engine) [11], which
consists in translating the verification problem into the logic SkS [15] and using
tree automata to solve it. Our approach is similar in that we also specify the
pre-, post-conditions and the loop invariants, reducing the validity problem for
Hoare triples to the language emptiness problem. However, the use of the novel
class of tree automata with arithmetic guards allows us to encode quantitative
properties such as tree balancing that are not tackled in PALE. The verification
of red-black trees (with balancing) is reported also in [2] by using hyper-graph
rewriting systems. Two different approaches, namely net unfoldings, and graph
types, are used to check that red nodes have black children and that the tree is
balanced, respectively.

The definition of TASC is the result of searching for a class of counter tree
automata that combines nice closure properties (union, intersection, complemen-
tation) with decidability of the emptiness problem. Existing work on extending
tree automata with counters [8], [18] concentrates mostly on in-breadth counting
of nodes with applications on verifying consistency of XML documents. Our work
gives the possibility of in-depth counting in order to express balancing of recur-
sive tree structures. It is worth noticing that similar computation models, such
as alternating multi-tape and counter automata, have undecidable emptiness
problems in the presence of two or more 1-letter input tapes, or, equivalently,
non-increasing counters [13]. This result improves on early work on alternating
multi-tape automata recognizing 1-letter languages [9]. However, restricting the
number of counters is problematic for obtaining closure of automata under in-
tersection. The solution is to let the actions of the counters depend exclusively
on the input tree alphabet, in other words, encode them directly in the input, as
size functions. This solution can be seen as a generalization of Visibly Pushdown
Languages [1] to trees, for singleton stack alphabets. The general case, with more
than one stack symbol, is a subject of future work.

1.1 Running Example

In this section, we introduce our verification methodology for programs using
balanced trees. Several data structures based on balanced trees are commonly
used, e.g. AVL trees. Here, we will use as a running example red-black trees,
which are binary search trees whose nodes are colored by red or black. They
are approximately balanced by constraining the way nodes can be colored. The
constraints insure that no maximal path can be more than twice as long as any
other path. Formally, a node contains an element of an ordered data domain, a
color, a left and right pointer and a pointer to its parent. A red-black tree is a
binary search tree that satifies the following properties:

1. Every node is either red or black.
2. The root is black.

3

nil nil nil nil

nil nil

nil nil8

10

18

15 19

27

5

y

x

x

y

α β

γ α

β γ
RightRotate(T,y)

LeftRotate(T’,x)

(a) (b)

T: T’:

Fig. 1. (a) A red-black tree—nodes 10, 15, and 19 are red, (b) the left and right tree
rotation

3. Every leaf is black.
4. If a node is red, both its children are black.
5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 1 (a). Because of the last
condition, it is obvious that the set of red-black trees is not regular, i.e. not
recognisable by standard tree automata [6]. The main operations on balanced
trees are searching, insertion, and deletion. When implementing the last two
operations, one has to make sure that the trees remain balanced. This is usually
done using tree rotations (Figure 1 (b)) which can change the number of black
nodes on a given path. The pseudo-code of the inserting operation is the following
(see [7]):

RB-Insert(T,x):

Tree-Insert(T,x); % Inserts a new leaf node x

x->color = red;

while (x != root && x->parent->color == red) {

if (x->parent == x->parent->parent->left) {

if (x->parent->parent->right->color == red) {

x->parent->color = black; % Case 1

x->parent->parent->right->color = black;

x->parent->parent->color = red;

x = x->parent->parent; }

else {

if (x == x->parent->right) { % Case 2

x = x->parent;

LeftRotate(T,x) }

x->parent->color = black; % Case 3

x->parent->parent->color = red;

RightRotate(T,x->parent->parent); }}

else % same as above with right and left exchanged

root->color = black;

For this program, we want to show that after an insertion of a node, a red-black
tree remains a red-black tree. In this paper, we restrict ourselves to calculating

4

the effects of program blocks which preserve the tree structure of the heap. This
is not the case in general since pointer operations can temporarily break the tree
structure, e.g. in the code for performing a rotation. The operations we handle
are the following:

1. tests on the tree structure (like x->parent == x->parent->parent->left),
2. changing data of a node (as, e.g., recoloring of a node x->color = red),
3. left or right rotation (Figure 1 (b)),
4. moving a pointer up or down a tree structure (like x = x->parent->parent),
5. low-level insertion/deletion, i.e. the physical addition/removal of a node

to/from a suitable place that is then followed by the re-balancing opera-
tions.

2 Preliminaries

In this paper, we work with the set D of all boolean combinations of formulae
of the form x − y ⋄ c or x ⋄ c, for some c ∈ Z and ⋄ ∈ {≤,≥}. We introduce
the equality sign as syntactic sugar, i.e. x − y = c ⇐⇒ x − y ≤ c ∧ x − y ≥ c.
Notice that negation can be eliminated from any formula of D, since x − y 6≤
c ⇐⇒ x− y ≥ c+ 1, and so on. Also, any constraint of the form x− y ≥ c can
be equivalently written as y − x ≤ −c. For a closed formula ϕ, we write |= ϕ

meaning that it is valid, i.e. equivalent to true.
A ranked alphabet Σ is a set of symbols together with a function # : Σ → N.

For f ∈ Σ, the value #(f) is said to be the arity of f . We denote by Σn the
set of all symbols of arity n from Σ. Let λ denote the empty sequence. A tree t
over an alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions:

– dom(t) is a finite prefix-closed subset of N∗, and
– for each p ∈ dom(t), if #(t(p)) = n > 0 then {i | pi ∈ dom(t)} = {1, . . . , n}.

A subtree of t starting at position p ∈ dom(t) is a tree t|p defined as t|p(q) =
t(pq) if pq ∈ dom(t), and undefined otherwise. Given a set of positions P ⊆ N

∗,
we define the frontier of P as the set fr(P) = {p ∈ P | ∀i ∈ N pi 6∈ P}. For a
tree t, we use fr(t) as a shortcut for fr(dom(t)). We denote by T (Σ) the set of
all trees over the alphabet Σ.

Definition 1. Given two trees t : N∗ → Σ and t′ : N∗ → Σ′, a function h :
dom(t) → dom(t′) is said to be a tree mapping between t and t′ if the following
hold:

– h(λ) = λ, and
– for any p ∈ dom(t), if #(t(p)) = n > 0 then there exists a prefix-closed set
Q ⊆ N

∗ such that pQ ⊆ dom(t′) and h(pi) ∈ fr(pQ) for all 1 ≤ i ≤ n.

A size function (or measure) associates to every tree t ∈ T (Σ) an integer
|t| ∈ Z. Size functions are defined inductively on the structure of the tree. For

5

each f ∈ Σ, if #(f) = 0 then |f | is a constant cf , otherwise, for #(f) = n, we
have:

|f(t1, . . . , tn)| =

b1|t1|+ c1 if |= δ1(|t1|, . . . , |tn|)
. . .

bn|tn|+ cn if |= δn(|t1|, . . . , |tn|)

where b1, . . . , bn ∈ {0, 1}, c1, . . . , cn ∈ Z, and δ1, . . . , δn ∈ D, all depending on
f . In order to have a consistent definition, it is required that δ1, . . . , δn define a
partition of Nn, i.e. |= ∀x1 . . . ∀xn

∨

1≤i≤n δi ∧
∧

1≤i<j≤n ¬(δi ∧ δj).
4 A sized

alphabet (Σ, |.|) is a ranked alphabet with an associated size function.

A tree automaton with size constraints (TASC) over a sized alphabet (Σ, |.|)
is a 3-tuple A = (Q,∆,F) where Q is a finite set of states, F ⊆ Q is a
designated set of final states, and ∆ is a set of transition rules of the form

f(q1, . . . , qn)
ϕ(|1|,...,|n|)
−−−−−−−→ q, where f ∈ Σ, #(f) = n, and ϕ ∈ D is a formula

with n free variables. For constant symbols a ∈ Σ, #(a) = 0, the automaton has
unconstrained rules of the form a −→ q.

A run of A over a tree t : N∗ → Σ is a mapping π : dom(t) → Q such that,
for each position p ∈ dom(t), where q = π(p), we have:

– if #(t(p)) = n > 0 and qi = π(pi), 1 ≤ i ≤ n, then ∆ has a rule

t(p)(q1, . . . , qn)
ϕ(|1|,...,|n|)
−−−−−−−→ q and |= ϕ(|t|p1|, . . . , |t|pn|),

– otherwise, if #(t(p)) = 0, then ∆ has a rule t(p) −→ q.

A run π is said to be accepting, if and only if π(λ) ∈ F . As usual, the language
of A, denoted as L(A) is the set of all trees over which A has an accepting run.

As an example, let us consider a TASC recognising the set of all balanced
red-black trees. Let Σ = {red, black, nil} with #(red) = #(black) = 2 and
#(nil) = 0. First, we define the size function to be the maximal number of
black nodes from the root to a leaf: |nil| = 1, |red(t1, t2)| = max(|t1|, |t2|), and
|black(t1, t2)| = max(|t1|, |t2|)+1. Let Arb = ({qb, qr}, ∆, {qb}) with ∆ = {nil −→

qb, black(qb/r, qb/r)
|1|=|2|
−−−−→ qb, red(qb, qb)

|1|=|2|
−−−−→ qr}. By using qx/y within the

left-hand side of a transition rule, we mean the set of rules in which either qx or
qy take the place of qx/y.

3 Closure Properties and Decidability of TASC

This section is devoted to the closure of the class of TASC under the opera-
tions of union, intersection and complement. The decidability of the emptiness
problem is also proved.

4 For technical reasons related to the decidability of the emptiness problem for TASC,
we do not allow arbitrary linear combinations of |ti| in the definition of |f(t1, . . . , tn)|.

6

3.1 Closure Properties

A TASC is said to be deterministic if, for every input tree, the automaton has
at most one run. For every TASC A, we can effectively construct a deterministic
TASC Ad such that L(A) = L(Ad). Concretely, let A = (Q,∆,F) and GA be the
set of all guards labeling the transitions from ∆ and GnA = {ϕ ∈ GA | ||FV (ϕ)|| =
n} where n ∈ N and ||FV (ϕ)|| denotes the number of free variables in ϕ. Without
loss of generality, we assume that any guard ϕ labeling a transition of A of the

form f(q1, . . . , qn)
ϕ
−→ q has exactly n free variables.5 Define BnA as the set of all

conjunctions of formulae from GnA and their negations. Let BA =
⋃

n∈N
BnA∪{⊤}.

With this notation, define Ad = (Qd, ∆d, Fd) where Qd = P(Q) × BA, Fd =
{〈s, ϕ〉 ∈ Qd | s ∩ F 6= ∅}, and:

f(〈s1, ϕ1〉 . . . 〈sn, ϕn〉)
ϕ
−→ 〈s, ϕ〉 ∈ ∆d

iff

s ⊆ {q|f(q1, . . . , qn)
ψ
−→ q ∈ ∆, qi ∈ si} and s 6= ∅

ϕ =
∧

{ψ|f(q1, . . . , qn)
ψ
−→ q ∈ ∆, qi ∈ si, q ∈ s} ∧

∧

{¬ψ|f(q1, . . . , qn)
ψ
−→ q ∈ ∆, qi ∈ si, q ∈ Q \ s}

a −→ 〈s,⊤〉 ∈ ∆d iff s = {q |a −→ q ∈ ∆}

Notice that Ad has no states of the form 〈s,⊥〉 since they would necessarily
be unreachable. The following theorem proves that non-deterministic and deter-
ministic TASC recognize exactly the same languages.

Theorem 1. Ad is deterministic and L(Ad) = L(A).

Determinisation is crucial to show closure of TASC under language comple-
mentation. However, given a deterministic TASC A, the construction of a TASC
recognizing the language T (Σ) \ L(A) is fairly standard [6], using the fact that
D is closed under negation. One needs to first build the complete TASC, i.e. in
which each input leads to one state, and then switch between accepting and non-
accepting states. Fairly standard is also the union of TASC, i.e. given A1 and A2,
one can build a TASC A∪ recognizing L(A1) ∪ L(A2) by simply merging their
(supposedly disjoint) sets of states and transitions. The TASC A∩ recognizing
intersection of languages, i.e. L(A1)∩L(A2), is the automaton whose set of states
is the cartesian product of the sets of states of A1 and A2, and the transitions

are of the form f((q′1, q
′′
1), . . . , (q

′
n, q

′′
n))

ϕ′∧ϕ′′

−−−−→
A∩

(q′, q′′), for f(q′1, . . . , q
′
n)

ϕ′

−−→
A1

q′

and f(q′′1 , . . . , q
′′
n)

ϕ′′

−−→
A2

q′′. For more details, we refer the reader to the full version

of the paper [10].

5 We can add conjuncts of the form xi = xi for all missing variables.

7

3.2 Emptiness

In this section, we give an effective method for deciding emptiness of a TASC. In
fact, we address the slightly more general problem: given a TASC A = (Q,∆,F)
we construct, for each state q ∈ Q, an arithmetic formula φq(x) in one variable
that precisely characterizes the sizes of the trees whose roots are labeled with q
by A, i.e. |= φq(n) iff ∃t |t| = n and t

∗
−→
A
q. As it will turn out, the φq formulae

are expressible in Presburger arithmetic, therefore satisfiability is decidable [14].
This entails the decidability of the emptiness problem, which can be expressed
as the satisfiability of the disjunction

∨

q∈F φq.
In order to construct φq, we shall translate our TASC into an Alternating

Pushdown System (APDS) [3] whose stack encodes the value of one integer
counter. An APDS is a triple S = (Q,Γ, δ, F) where Q is the set of control
locations, Γ is the stack alphabet, F is the set of final control locations, and δ
is a mapping from Q×Γ into P(P(Q×Γ ∗)). Notice that APDS do not have an
input alphabet since we are interested in the behaviors they generate, rather than
the accepted languages. A run of the APDS is a tree t : N∗ → (Q×Γ ∗) satisfying
the following property: for any p ∈ dom(t), if t(p) = 〈q, γw〉, then {t(pi) | 1 ≤ i ≤
#(t(p))} = {〈q1, w1w〉, . . . , 〈qn, wnw〉} where {〈q1, w1〉, . . . , 〈qn, wn〉} ∈ δ(q, γ).
The run is accepting if all control locations occuring on the frontier are final.

The idea behind the reduction is that any bottom-up run of a TASC on a
given input tree can be mapped (in the sense of Definition 1) onto a top-down run
of an APDS. The simulation invariant is that, the size of a subtree from the run
of the TASC is encoded by the corresponding stack in the run of the APDS. Next,
we use the construction of [3] to calculate, for the given set of configurations σ,
the set pre∗q(σ) of configurations with control state q that have a successor set in

σ, i.e. c = 〈q, w〉
∗
−→ C ⊆ σ. It is shown in [3] that if σ is a regular language, then

so is pre∗(σ), and the alternating finite automaton recognizing the latter can
be constructed in time polynomial in the size of the APDS. Hence, the Parikh
images of such pre∗q(σ) sets are semilinear sets definable by Presburger formulae.
In our case, σ = {〈q, ǫ〉 | q ∈ F} is a finite set where ǫ is the (encoding of the)
empty stack. Using a unary encoding of the counter (as a stack), we obtain the
needed formulae φq(x). For a detailed explanation, the reader is referred to [10].

Lemma 1. For each TASC A = (Q,∆,F) over a sized alphabet (Σ, |.|) there
exists an APDS SA = (QA, Γ, δ, FA) such that:

1. for any tree t ∈ T (Σ) and any run π : dom(t) → Q of A on t, there exists
an accepting run ρ : N∗ → (QA×N) of SA and a one-to-one tree mapping h
between π and ρ such that:

∀p ∈ dom(t) ∃q ∈ QA . ρ(h(p)) = 〈q, |t|p|〉 (1)

2. for any accepting run ρ : N∗ → (QA×N) of SA there exists a tree t ∈ T (Σ),
a run π : dom(t) → Q of A on t and a one-to-one tree mapping h between π
and ρ satisfying (1).

Moreover, SA can be effectively constructed from the description of A.

8

As a remark, the decidability of the emptiness problem for TASC can be
also proved via a reduction to the class of tree automata with one memory [5]
by encoding the size of a tree as a unary term, by using essentially the same
idea as in the reduction to APDS. The complexity of the emptiness problem can
be furthermore analyzed using the double exponential bound of the emptiness
problem for tree automata with one memory, and is considered as further work.

4 Semantics of Tree Updates

As explained in Section 1.1, there are three types of operations that commonly
appear in procedures used for balancing binary trees after an insertion or dele-
tion: (1) navigation in a tree, i.e. testing or changing the position a pointer
variable is pointing to in the tree, (2) testing or changing certain data fields
of the encountered tree nodes, such as the color of a node in a red-black tree,
and (3) tree rotations. In addition, one has to consider the physical insertion or
deletion to/from a suitable position in the tree as an input for the re-balancing.

It turns out that the TASC defined in Section 2 are not closed with respect
to the effect of some of the above operations, in particular the ones that change
the balance of subtrees (the difference between the size of the left and right
subtree at a given position in the tree). Therefore, we now introduce a subclass
of TASC called restricted TASC (rTASC) which we show to be closed with
respect to all the needed operations on balanced trees. Moreover, rTASC are
closed with respect to intersection and union, amenable to determinisation and
minimization, though not closed with respect to complementation. The idea is to
use rTASC to express loop invariants and pre- and post-conditions of programs as
well as to perform the necessary reachability computations. TASC are then used
in the associated language inclusion checks. Notice that, since rTASC are not
closed under negation, inclusion of rTASC cannot be directly decided. Therefore
we have to appeal to the more general result concerning the decidability of
inclusion between TASC.

A restricted alphabet is a sized alphabet consisting only of nullary and binary
symbols and a size function of the form |f(t1, t2)| = max(|t1|, |t2|)+a with a ∈ Z

for binary symbols. A restricted TASC is a TASC with a restricted alphabet and

with binary rules only of the form f(q1, q2)
|1|−|2|=b
−−−−−−→ q with b ∈ Z. Notice that

any conjunction of guards of an rTASC and their negations reduces either to
false, or to only one formula of the same form, i.e. |1| − |2| = b. Using this fact,
one can show that the intersection of two rTASC is again an rTASC, and that
applying the determinisation of Section 3.1 to an rTASC yields another rTASC.
Moreover, the intersection of an rTASC with a classical tree automaton is again
an rTASC.6 Clearly, rTASC are not closed under complementation, as inequality
guards are not allowed.

4.1 Representing Sets of Memory Configurations

Let us consider a finite set of pointer variables V = {x, y, . . .} and a disjoint
finite set of data values D, e.g. D = {red, black}. In the following, we let Σ =

6 A bottom-up tree automaton can be seen as a TASC in which all guards are true.

9

q1 q2

q3q4

q5

s1
s2

s3 = (s1 >= s2) ? (s1 + b1) : (s2 + b1)s4

f

g

[ϕ3: s1 = s2 + a1]

[ϕ5: s4 = s3 + a2]

s5 = (s4 >= s3) ? (s4 + b2) : (s3 + b2)

q4 q1

s4 s1
g

q2

s’5
f

s2

s’3

[ϕ’3]

[ϕ’5]r1:

r2:

h

q6

h

qd
6

(r1,r2)

(r1,r2)
dr1,r2q’3

q’5

x:

Fig. 2. Left rotation on an rTASC

P(V ∪ D ∪ {nil}) where nil indicates a null pointer value. The arity function
is defined as follows: #(f) = 2 if nil 6∈ f , and #(f) = 0 otherwise. For a tree
t ∈ T (Σ) and a variable x ∈ V, we say that a position p ∈ dom(t) is pointed to
by x if and only if x ∈ t(p).

For the rest of this section, let A = (Q,∆,F) be an rTASC over Σ. We
say that A represents a set of memory configurations if and only if, for each
t ∈ L(A) and each x ∈ V, there is at most one p ∈ dom(t) such that x ∈ t(p).
This condition can be ensured by the construction of A: let Q = Q × P(V)

and ∆ consist only of rules of the form f(〈q1, v1〉, 〈q2, v2〉)
ϕ
−→ 〈q, v〉 where (1)

v = (f ∪ v1 ∪ v2) ∩ V and (2) f ∩ v1 = f ∩ v2 = v1 ∩ v2 = ∅. Intuitively,
a control state 〈q, v〉 ”remembers” all variables encountered by condition (1),
while condition (2) ensures that no variable is encountered twice.

4.2 Modeling Tree Rotations

Let x ∈ V be a fixed variable. We shall construct an rTASC A′ = (Q′, ∆′, F ′)
that describes the set of trees that are the result of the left rotation of a tree from
L(A) applied at the node pointed to by x. The case of the right tree rotation is
very similar.7 In the description, we will be referring to Figure 2 illustrating the
problem.

Let Rx = {(r1, r2) ∈ ∆2 | x ∈ g ∧ r1 : f(q1, q2)
ϕ3

−→ q3 ∧ r2 : g(q4, q3)
ϕ5

−→ q5}
be the set of all the pairs of automata rules that can yield a rotation, and be
modified because of it. Other rules may then have to be modified to reflect the
change in one of their left hand side states, e.g. the change of q5 to q′3 in the
h-rule in Figure 2, or to reflect the change in the balance that may result from
the rotation, i.e. a change in the difference of the sizes of the subtrees of some
node. We discuss later what changes in the balance can appear after a rotation,
and Lemma 2 proves that the set D of the possible changes in the balance in

7 In fact, it can be implemented by temporarily swapping the child nodes in the
involved rules, doing a left rotation, and then swapping the child nodes again.

10

the described trees is finite. The automaton A′ can thus be constructed from A

as follows:

1. Q′ = Q∪Rx ∪ (Rx ×D)∪ (Q×D) where we add new states for the rotated
parts and to reflect the changes in the balance.

2. ∆′ = ∆ ∪∆r ∪ β(∆ ∪∆a) where:
– ∆r is the smallest set such that for all (r1, r2) ∈ Rx where r1 : f(q1, q2)

ϕ3

−→

q3 and r2 : g(q4, q3)
ϕ5

−→ q5, contains the rules g(q4, q1)
ϕ′

5−→ q′5 and

f(q′5, q2)
ϕ′

3−→ q′3 where q′5 = (r1, r2) and q
′
3 = (r1, r2)

dr1,r2 . Here, we use

(r1, r2)
dr1,r2 as a shorthand for 〈(r1, r2), dr1,r2〉. The value dr1,r2 ∈ Z

represents the change in the balance caused by the rotation based on r1,
r2. We describe the computation of ϕ′

3, ϕ
′
5, and dr1,r2 below.

– ∆a is the set of rules that could be applied just above the position where
a rotation takes place. For each (r1, r2) ∈ Rx, we take all rules from ∆

that have q5 within the left hand side and add them to ∆a, with (r1, r2)
substituted for q5.

– β (described in detail in Section 4.3) is the function that implements the
necessary changes in the guards and input/output states (adding the
d-component) of the rules due to the changes in the balance.

3. F ′ = (F ×D)∪ Fr. Here, Fr captures the case where q′3 becomes accepting,
i.e. the right child of the node previously labeled by q3 becomes the root of
the entire tree.

Suppose that ϕ3 is |t1| = |t2| + a1 and let us denote the sizes of the sub-
trees read at q1 and q2 before the rotation by s1 and s2, respectivelly. Let the
size function associated with f be |f(t1, t2)| = max(|t1|, |t2|) + b1, and let s3
denote the size of the subtree labeled by q3 before the rotation. Also, suppose
that ϕ5 is |t1| = |t2| + a2 and let us denote the size of the sub-tree read at
q4 before the rotation as s4. Finally, let the size function associated with g be
|g(t1, t2)| = max(|t1|, |t2|) + b2, and let s5 denote the size of the subtree labeled
by q5 before the rotation. We denote s′5 and s′3 the sizes obtained at q′5 and q′3
after the rotation.

The key observation that allows us to compute ϕ′
3, ϕ

′
5, and dr1,r2 is that due

to the chosen form of guards and sizes, we can always compute any two of the
sizes s1, s2, s4 from the remaining one. Indeed,

– for a1 ≥ 0, we have s3 = s1 + b1 = s2 + a1 + b1 = s4 − a2, whereas
– for a1 < 0, we have s3 = s2 + b1 = s1 − a1 + b1 = s4 − a2.

Computing ϕ′
3, ϕ

′
5, and dr1,r2 is then just a complex exercise in case splitting.

Notice that all the cases can be distinguished statically according to the mutual
relations of the constants a1, b1, a2, and b2. In the case of ϕ′

5, we obtain the
following:

1. For a1 ≥ 0, we have s4 = s1 + b1 + a2, and so ϕ′
5 relating a subtree of size

s4 and s1 (cf. Figure 2) is |t1| = |t2|+ b1 + a2.
2. For a1 < 0, we have s4 = s1−a1+b1+a2, and so ϕ′

5 is |t1| = |t2|−a1+b1+a2.

11

q1 q2

q3

s1 s2

s3 = (s1 >= s2) ? (s1 + b) : (s2 + b)

f

[ϕ: s1 = s2 + a]

d

d’

q2

s’1 s2

s’3 = (s’1 >= s2) ? (s’1 + b) : (s2 + b)

f

[ϕ’: s’1 = s2 + a + d]

qd
1

qd’
3

Fig. 3. Propagation of changes in the balance in an rTASC

4.3 Propagating Changes in the Balance through rTASC

As said, tree updates such as recoloring or rotations may introduce changes
in the balance at certain points. These changes may affect the balance at all
positions above the considered node. The role of the β function is to propagate
a change in balance d upwards in the trees recognized by the rTASC. The way β
changes a set of rules is illustrated in Figure 3. For every d ∈ D, every input rule

f(q1, q2)
ϕ
−→ q3 is changed to two rules f(qd1 , q2)

ϕ′

−→ qd
′

3 and f(q1, q
d
2)

ϕ′′

−−→ qd
′′

3

corresponding to the cases when the change in the balance originates from the
left or the right. Since we consider just one rotation in every tree (at a given
node pointed to by the pointer variable x), the change can never come from both
sides. The new guards are ϕ′ : |t1| = |t2|+ a+ d and ϕ′′ : |t1| = |t2|+ a− d. Let
us further analyse the changes in the balance propagated upwards after d comes
from the bottom.

Suppose the change in balance is coming from the left as in Figure 3. We
distinguish the cases of a ≥ 0 and a < 0. (1) For a ≥ 0, the original size at q3
is s3 = s1 + b where s1 is the original size at q1. After the change d happens
at q1, i.e. s

′
1 − s1 = d, we have the following subcases: (1.1) For a + d ≥ 0,

we have s′3 = s′1 + b, i.e. d′ = d, and so we have the same change in the size
at q3 as at q1. (1.2) For a + d < 0, we have s′3 = s2 + b = s1 − a + b, and
hence d′ = −a. (2) For a < 0, s3 = s2 + b. In this case, (2.1) for a + d ≥ 0,
s′3 = s′1+b = s1+d+b = s2+a+d+b, and so d′ = a+d, and (2.2) for a+d < 0,
s′3 = s2 + b, and thus d′ = 0. The case of the change in the balance coming from
the right is similar.

When a change d in the size happens at a child node, at its parent, the change
is either eliminated, d′ or d′′ is 0, stays the same, d′ or d′′ equals d, becomes −|a|
(note that a ≥ 0 for d′ = −a, and a < 0, for d′′ = a), or finally, becomes −|a|+d.
We can now close our construction by showing that the set D of possible changes
in the sizes is finite.

Lemma 2. For an rTASC A over a set of variables V and a variable x ∈ V,
the set D of the possible changes in the balance generated by a left tree rotation
at x is finite.

Note that when we allow the use of two different constants b1f and b2f in the
size function for binary nodes, the resulting class of automata will not be closed

12

with respect to left or right rotations. It may happen that the changes in the
balance could diverge, thus we would need an infinite number of compensating
constants to be used for the different heights of the possible trees.

4.4 Other Operations on Sets of Trees Described by rTASC

It remains to show that in addition to tree rotations, rTASC are closed with
respect to all the other needed operations on balanced trees listed in Section 1.1.
Showing this fact is relatively simple, and so due to space limitations, we omit
an exact description of this issue here and refer the reader to the full paper.
In general, the remaining operations may be implemented by intersecting the
given rTASC with a classical tree automaton encoding all the trees that fulfill
a certain condition (such as x->parent->left == x or x->parent->color ==

red) and/or doing certain limited changes to the given rTASC. This includes
changing the symbols read in certain rules (e.g., removing x from the symbol read
in a certain rule and adding it to the symbol read in another rule when we move
the pointer variable x in the tree) and adding, removing, and modifying certain
simple rules to express the low-level insertion/deletion of nodes. Afterwards, we
may possibly have to apply the function β from the previous section when the
tree balance is changed.

To give an intuition on how an rTASC encoding a certain condition on point-
ers may look like, let us present the tree automaton describing the trees that fulfill
the condition x->parent->left == x. We will have rules f → q1 and g → q2 for
every f, g ∈ Σ such that x ∈ g \ f . We recall that Σ = P(V ∪ D ∪ {nil}). Then,
we have rules f(q1, q1) → q1, g(q1, q1) → q2, f(q2, q1) → q3, f(q3, q1) → q3,
and f(q1, q3) → q3, with q3 being the only accepting state. Here, the pointer
referencing pattern gets simply captured in the rule f(q2, q1) → q3. An inter-
section with the described tree automaton may be used to implement the if

statement testing the given condition. Intersections with similar tree automata
may be used to isolate rules where certain changes of data, pointer locations, or
insertion/deletion of a new node should happen.

5 Case Study: Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main
loop in procedure RB-Insert. (Note that all the steps are normally to be done
fully automatically.) This invariant is needed to prove the correctness of the
insertion procedure given in Section 1.1 that is, given a valid red-black tree as
input to the procedure, the output is also a valid red-black tree. The invariant
is the conjunction of the following facts:

1. x is pointing to a non-null node in the tree.
2. If a node is red, then (i) its left son is either black or pointed to by x, and

(ii) its right son is either black or pointed to by x. This condition is needed
as during the re-balancing of the tree, a red node can temporarily become a
son of another red node.

13

3. The root is either black or x is pointing to the root.

4. If x is not pointing to the the root and points to a node whose father is red,
then x points to a red node.

5. Each maximal path from the root to a leaf contains the same number of
black nodes. This is the last condition from the definition of red-black trees
from Section 1.1.

For presentation purposes, if no guard is specified on a binary rule, we assume
it to be |1| = |2|. Also, we denote singleton sets by their unique element, e.g.
{red} by red, and dx stands for {d, x}, where d ∈ {red, black, nil}. The loop
invariant is given by the following rTASC Ainv:

F = {qrx, qbx, q
′
bx}, ∆ = {nil −→ qb, red(qb, qb) −→ qr, black(qb/r, qb/r) −→ qb,

blackx(qb/r, qb/r) −→ qbx, black(qbx/rx, qb/r) −→ q′bx, black(q
′
bx/rx, qb/r) −→ q′bx,

black(qb/r, q
′
bx/rx) −→ q′bx, black(qb/r, q

′
bx/rx) −→ q′bx, redx(qb, qb) −→ qrx,

red(q′bx, qb) −→ q′rx, red(qb, q
′
bx) −→ q′rx, red(qrx, qb) −→ q′rx, red(qb, qrx) −→ q′rx}

Intuitively, qb labels black nodes and qr red nodes which do not have a node
pointed to by x below them. qbx and qrx mean the same except that they label
a node which is pointed to by x. Primed versions of qbx and qrx are used for
nodes which have a subnode pointed to by x. For a complete calculus of the loop
postcondition, the reader is referred to [10].

6 Conclusions

We have presented a method for semi-algorithmic verification of programs that
manipulate balanced trees. The approach is based on specifying program pre-
conditions, post-conditions, and invariants as sets of trees recognized by a novel
class of extended tree automata called TASC. TASC come with interesting clo-
sure properties and a decidable emptiness problem. Moreover, the semantics of
tree-updating programs can be effectively represented as modifications on the
internal structures of TASC. The framework has been validated on a case study
consisting of the node insertion procedure in a red-black tree. Precisely, we verify
that given a balanced red-black tree on the input to the insertion procedure, the
output is again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more
case studies. An interesting subject for further research is then extending the
method to a fully automatic one. For this, a suitable acceleration method for
the reachability computation on TASC is needed. Also, it is interesting to try
to generalize the method to handle even the internals of low-level manipulations
that temporarily break the tree shape of the considered structures (e.g., by lifting
the technique to work over tree automata extended with routing expressions
describing additional pointers over the tree backbone).

14

Acknowledgment. We would like to thank Eugene Asarin, Ahmed Bouajjani,
Yassine Lakhnech, and Tayssir Touili for their valuable comments.

References

1. R. Alur and P. Madhusudan. Visibly Pushdown Languages. In Proceedings of

STOC’04. ACM Press, 2004.
2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Ver-

ifying Red-Black Trees. In Proc. of COSMICAH’05, 2005.
3. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-

tomata: Application to Model-Checking. In Proceedings of CONCUR ’97, volume
1243 of LNCS. Springer, 1997.

4. C. Calcagno, P. Gardner, and U. Zarfaty. Context Logic and Tree Update. In
Proceedings of POPL’05. ACM Press, 2005.

5. H. Comon and V. Cortier. Tree Automata with One Memory, Set Constraints and
Cryptographic Protocols. Theoretical Computer Science, 331, 2005.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. Release October 1, 2002.

7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

8. S. Dal Zilio and D. Lugiez. Multitrees Automata, Presburger’s Constraints and
Tree Logics. Technical Report 08-2002, LIF, 2002.

9. D. Geidmanis. Unsolvability of the Emptiness Problem for Alternating 1-way
Multi-head and Multi-tape Finite Automata over Single-letter Alphabet. In Com-

puters and Artificial Intelligence, volume 10, 1991.
10. P. Habermehl, R. Iosif, and T. Vojnar. Automata-based Verification of Programs

with Tree Updates. Technical Report TR-2005-16, Verimag, 2005.
11. A. Moeller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Pro-

ceeedings of PLDI’01. ACM Press, 2001.
12. S. Parduhn. Algorithm Animation Using Shape Analysis with Special Regard to

Binary Trees. Technical report, Universität des Saarlandes, 2005.
13. H. Petersen. Alternation in Simple Devices. In Proceedings of ICALP’95, volume

944 of LNCS. Springer, 1995.
14. M. Presburger. Über die Vollstandigkeit eines Gewissen Systems der Arithmetik.

Comptes Rendus du I Congrés des Pays Slaves, Warsaw, 1929.
15. M.O. Rabin. Decidability of Second Order Theories and Automata on Infinite

Trees. Transactions of American Mathematical Society, 141, 1969.
16. R. Rugina. Quantitative Shape Analysis. In Proceedings of SAS’04, volume 3148

of LNCS. Springer, 2004.
17. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued

Logic. TOPLAS, 24(3), 2002.
18. H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in Trees for

Free. In Proceedings of ICALP’04, volume 3142 of LNCS. Springer, 2004.

15

