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Abstract. In this paper we study the reachability problem for parametric flat

counter automata, in relation with the satisfiability problem of three fragments

of integer arithmetic. The equivalence between non-parametric flat counter au-

tomata and Presburger arithmetic has been established previously by Comon and

Jurski [5]. We simplify their proof by introducing finite state automata defined

over alphabets of a special kind of graphs (zigzags). This framework allows one

to express also the reachability problem for parametric automata with one control

loop as the existence of solutions of a 1-parametric linear Diophantine systems.

The latter problem is shown to be decidable, using a number-theoretic argument.

Finally, the general reachability problem for parametric flat counter automata

with more than one loops is shown to be undecidable, by reduction from Hilbert’s

Tenth Problem [9].

1 Introduction

Flat counter automata [5, 6, 3, 4] have been extensively studied, as an important class

of infinite-state systems, for which the reachability problem is decidable. The results

obtained so far have been used in a number of successful verification tools, like FAST

[2], LASH [18] or TREX [1].

Comon and Jurski show in [5] that the reachability problem for a flat counter au-

tomaton can be expressed in Presburger arithmetic, given that the automata have tran-

sition guards that are conjunctions of relations of the form x− y ≤ c, where x and y

denote either the current or the future (primed) values of the counters, and c is an in-

teger constant. To our knowledge, their result concerns the most general class of flat

counter automata, considered so far.

The contributions of the present paper are many fold. First, we give an alternative,

easier, proof of the result of [5], using finite state automata defined over alphabets of

graphs (zigzags). Second, we consider a more general class of flat counter automata,

in which, besides integer constants, parameters are also allowed to occur in transitions.

This class is useful in modeling open programs, whose behavior is parameterized by

some input values, e.g. procedures in a larger program. The reachability problem in the

latter class of automata amounts to checking satisfiability of Diophantine systems [12].

Third, we give an effective decision procedure for the following problem: given

a linear system with unknowns x1, . . . ,xn, the coefficients being polynomials of any
degree in m, is there a constant c ∈ N, such that the system resulting from substituting
m with c has a positive solution? This result gives an effective algorithm to decide

reachability for parametric counter automata with one control loop, whereas in the case

of more than one control loop, the reachability problem for such systems is undecidable.



1.1 Related Work

Work on the decidability of reachability problems for counter automata starts with the

negative result of Minsky [14] regarding two counter machines. The two most studied

restrictions of this model are the reversal bounded 2-way counter machines [10] and

the flat counter automata [5, 6, 3]. The class of flat counter automata that is closest to

the one considered in this paper is the one studied by Comon and Jurski [5], where the

transition relations are conjunctions of inequalities of the form x− y ≤ c, with c ∈ Z.
Their result is that the set of reachable configurations for such automata is definable in

Presburger arithmetic. Our result considers parametric transition relations of the form

x− y ≤ f (z), and defines the set of reachable configurations as solutions of a linear
Diophantine system with one parameter. Decision procedures for this class of systems

have been independently found by O. Ibarra and Z. Dang in [11], using a result from

the theory of reversal-bounded counter automata, and by Y. Matiyasevich [13]. The

latter result uses a similar number theoretic argument, but the proof is based on a more

involved case analysis.

2 Preliminaries

Let x = {x1, . . . ,xk} be a finite set of variables (counters) ranging over Z, and x ′ =
{y′ | y ∈ x} be the corresponding set of primed variables. For any counter y, we denote
by y′ its value at the next computational step. In what follows we will abusively use
the name of a variable to denote its value also. The (compulsory) occurrence of a set of

variables x in a logical formula ! is denoted as !(x). By 〈Z[x],+, ·〉 we denote the ring
of polynomials, and by 〈linZ[x],+〉 the monoid of linear polynomials, with variables x
and integer coefficients. For a closed formula !, we write |= ! meaning that it is valid,

i.e. equivalent to true.

Let z = {z1, . . . ,zl} be a set of parameter variables, disjoint from x. A relation

!(x,x′,z) that can be written as a finite conjunction of the form:
^
xi− x j ≤ "i j ∧

^
x′m− xn ≤ #mn∧

^
xp− x′q ≤ $pq∧

^
x′r− x′s ≤ %rs

with 1 ≤ i, j,m,n, p,q,r,s ≤ k, and "i j,#mn,$pq,%rs ∈ linZ[z], is said to be an affine
relation. Note the formal difference between variables (x) and parameters (z) in !:
variables are bound to occur both unprimed and primed, whereas parameters can only

occur unprimed in formulae.

A parametric counter automaton is a tuple A= 〈x,z,Q,%,q0〉, where x is the set of
working counters, z is the set of parameters, Q is the set of control states, q 0 ∈ Q is

the initial state, and % is the set of transitions of the form: q
!(x,x′,z)−−−−−→ q′, where ! is an

affine relation. A configuration of A is a tuple c = 〈q,xz〉 consisting of a control state,
and a set of integer values for the counters and parameters. A run of the automaton is

a sequence of configurations, c0,c1,c2, . . . ,cn, ci = 〈qi,xiz〉, such that x0 = 0, i.e. the

counters are initially set to zero, and qi
!(xi,xi+1,z)−−−−−−→ qi+1, for all 0≤ i< n. Note that the

values of the parameters are not modified throughout the run. A control state q is said

to be reachable in A if and only if A has a run ending in a configuration 〈q,xz〉.
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A control state r is said to be the successor of a state q if and only if there exists

configurations 〈q,xz〉−→〈r,x′z〉, for some x,x′ ∈Zk, z∈Zl . A control path is a sequence

of control states q1,q2, . . . ,qn such that, for all 0≤ i< n, qi+1 is a successor of qi. The

path is said to be non-trivial if n > 0. A cycle is a non-trivial control path starting and

ending with the same state. A counter automaton is said to be flat (FCA) if and only

if each control state belongs to at most one cycle. A control state with two or more

successors (in the sense mentioned above) is said to be a branching state. A branching

state with exactly two successors is said to be a 2-branching state. A FCA is said to be

linear (LFCA) if and only if the only branching states are 2-branching, and every cycle

contains at most one such state. Notice that every FCA can be effectively turned into a

finite union of LFCA, the only branching state that is not 2-branching, being the initial

state.

It is well-known that the class of affine relations is closed under composition, de-

fined as (!1 ◦ !2)(x,x′,z) = ∃y !1(x,y,z) ∧ !2(y,x′,z). In other words, the exis-
tential quantifiers can be eliminated1, the result being written as another affine rela-

tion. As a consequence, we can assume without losing generality, that each control

path q1
!1−→ q2 . . .qn−1

!n−1−−−→ qn, with no incoming edges, is equivalent to a transition

q1
!1◦...◦!n−1−−−−−−→ qn. By applying this transformation to the whole counter automaton, we

obtain a counter automaton in normal form.

Given a counter automaton A= 〈x,z,Q,%,q0〉 and a control state q ∈ Q, the reach-

ability problem asks whether q is reachable in A. As we show in the following, this

problem can be defined in various subfragments of the arithmetic of integer numbers.

Moreover, we can show equivalence of these logical theories with different subclasses

of flat counter automata. The latter are obtained by restricting the number of parameters

and loops on a control path. We denote by FCA(p,n) the class of flat counter automata
with at most p parameters that occur in the transition relations, and with at most n cycles

on each linear component.

3 The Arithmetic of Integers

The undecidability of first-order arithmetic of integers 〈Z,+, ·,0,1〉 occurs as a conse-
quence of Gödel’s Incompleteness Theorem [8]. Moreover, the existential fragment, i.e.

Hilbert’s Tenth Problem [9] was proved undecidable by Y. Matiyasevich [12]. On the

positive side, the decidability of the arithmetic of integer numbers with addition and

successor function 〈Z,≥,+,0,1〉 has been shown by M. Presburger [17].
Let us first introduce the theories of Presburger arithmetic [17] and parametric linear

Diophantine systems. Presburger arithmetic 〈Z,≥,+,0,1〉 is the theory of first-order
logic of addition and successor function (S(x) = x+ 1). The interpretation of logical
variables is the set of integers Z, and the meaning of the function symbols 0,1,+ is the

natural one.

A Diophantine equation is a formula of the form P(x) = 0, where P ∈ Z[x] is a
polynomial of the form P(x) = &mi=1 aiti(x)+ a0, and ti are multiplicative terms of the

1 By e.g. the Fourrier-Motzkin procedure.
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form 'k
l=1x

il
l , with i1, . . . , il ∈ N. The equation is said to be linear with parameter x j,

1≤ j ≤ k, if for every multiplicative term of the form above, we have &
l ,= j

l∈{1...k} il ≤ 1.
In other words, the only variable that can occur at a power greater than one is x j, and

moreover, all multiplicative terms contain at most one variable, other than x j. Note that

any Diophantine linear equation with parameter m can be equivalently written as:

n

&
i=1

pi(m)xi+ p0(m) = 0 (1)

where pi ∈ Z[m], 0 ≤ i ≤ n are polynomials of arbitrary degree in m. In the follow-

ing, we denote byD[m] the set of positive boolean combinations of linear Diophantine
equations with one parameter, namely m.

In this paper we show that the following problems are inter-reducible:

– the reachability for the class FCA(0,n) (flat counter automata without parameters
with any number of loops) and satisfiability of Presburger arithmetic, and

– the reachability for the class FCA(p,1) (flat counter automata with any number of
parameters and one loop) and satisfiability ofD[m].

Notice that the notion of parameter changes its meaning, depending on whether we are

referring to counter automata, or Diophantine systems.

For the first point, it is already known that, given an arbitrary open Presburger for-

mula !(x), one can build a flat counter automaton that generates exactly the values
x ∈ Z satisfying !. This is a direct consequence of the fact that the set of such values is
semilinear [7].

To complete the picture, we show the undecidability of the reachability problem

for the class FCA(p,n) with unrestricted number of parameters (p) and loops (n), by
reduction from Hilbert’s Tenth Problem [9].

4 From FCA to Integer Arithmetic

In this section we develop the framework used to define the reachability problem of a

FCA as a formula of either Presburger arithmetic, orD[m]. Given a FCA A= 〈x,z,Q,%,q 0〉,
and a state q ∈ Q, the idea is to build an arithmetic formula (A,q(x,x′,z) such that,
for every x,x′ ∈ Zk, z ∈ Zl , there is a run in A from 〈q0,xz〉 to 〈q,x′z〉 if and only
if |= (A,q(x,x′,z). The reachability problem for A and q reduces then to checking the
validity of the formula ∃x∃z . (A,q(0,x,z).

In order to define (A,q, we first observe that each A∈ FCA(p,n) is a union of disjoint
linear flat counter automata, each being composed of a sequence of cycles, connected by

non-trivial control paths. Without loss of generality, we will assume that A is in normal

form, i.e. each control path with no incoming edges and no branching has been reduced

to one transition, by composing the transition relations along the way. It follows that

(A,q(x,x′,z) is of the following form:

∃y1...n∃y′1...n
_

i

)i1(x,y1,z)∧
^

1≤ j<mi

[
*i j(yj,y′j,z)∧)i j(y′j,yj+1,z)

]
∧x′ = ymi
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where mi ≤ n, )i j are the affine relations corresponding to the transitions between cy-

cles, and *i j represent the transitive closures of the cycle relations, in the following

sense: if q
!(x,x′,z)−−−−−→ q is a cycle, then the transitive closure of ! is the relation between

the input and output values of the counters, after any number of iterations through the

cycle. Since )i j are affine relations, it follows that (A,q is a formula in the language of

〈Z,≥,+,0,1〉, if *i j belong to the same language. Moreover, for mi = 1, (A,q is a for-

mula ofD[m] if *i j are. It is therefore sufficient to analyze the definability of (A,q when

A has only one transition of the form q
!(x,x′,z)−−−−−→ q. In the following developments, we

will silently assume that this is indeed the case.

4.1 Constraint Graph Execution Model

In general, an affine relation !(x,x ′,z) can be represented as a directed weighted graph
whose set of vertices is the set of variables x∪ x ′, and there is an edge with weight "
from x to y if and only if there is an explicit constraint x−y≤" in !, where " ∈ linZ[z].

An n-step execution of q
!(x,x′,z)−−−−−→ q is represented by a constraint graph Gn

!, defined as

the minimal graph whose set of vertices is
Sn
i=0 x

i, where xi = {yi |y ∈ x} and, for all
0≤ i< n, there is an edge labeled ":

– from xi to yi, if there is a constraint x− y≤ " in !.
– from xi+1 to yi+1, if there is a constraint x′ − y′ ≤ " in !.
– from xi to yi+1, if there is a constraint x− y′ ≤ " in !.
– from xi+1 to yi, if there is a constraint x′ − y≤ " in !.

For example, Figure 1 shows the constraint graph for the transition relation! : x 1−x′2≤
z1∧ x′2− x3 ≤ z2∧ x3− x′1 ≤ z3∧ x1− x′3 ≤ z4. Intuitively, the nodes x

i in the execution

graph represent the possible values of the counters after i steps of execution. Define

G+
! =

S
n>0G

n
!. We say that a path in G

+
! stretches between n and m, for some n≤m, if

the path contains at least one node from x i, for each n≤ i≤ m.

xn1

xn2

z1

z2

x11

x12

z1

z2
. . .

z1

z2

x22

x23

x01

x02

x03

x21

z3z3 z3
z4 z4 z4

xn3x13

xn−11

xn−12

xn−13

Fig. 1. Constraint Graph for x1−x′2 ≤ z1∧ x′2−x3 ≤ z2∧ x3−x′1 ≤ z3∧ x1−x′3 ≤ z4

If , : xi
"1−→ . . .

"m−→ y j, 0 ≤ i, j,≤ n is a path in Gn
!, let -(,) denote the sum of all

labels along the path, i.e. -(,) = &mk=1"k. Notice that -(,) ∈ linZ[z], for any constant
m ∈ N. Clearly, we have xi− y j ≤ -(,). We define min{xi −→ y j} = min{-(,) | , :
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xi
"1−→ . . .

"m−→ y j}. By convention, if there are no paths inGn
!, between x

i and y j, we take

min{xi −→ y j}=+. On the other hand, if the set of paths between x i and x j doesn’t have

a minimal element, we take min{xi −→ y j} = −+. Notice that this can only be the case
if Gn

! has a cycle labeled only with constants, whose sum is less than zero. With the

latter notation, we have xi− y j ≤min{xi −→ y j}. Moreover, this is the strongest relation
involving the values of x and y at the execution times i and j, respectively. Notice that

the satisfiability of any constraint between xi and y j entails the absence of negative

cycles from Gn
!. The relation between the input and output values of the counters, after

n steps is:

^

x,y∈x
x− y≤min{x0 −→ y0} ∧ x′ − y′ ≤min{xn −→ yn} ∧

x− y′ ≤min{x0 −→ yn} ∧ x′ − y≤min{xn −→ y0} (2)

The next step is to define the functions min{xi −→ y j}, i, j ∈ {0,n} using the arithmetic
of integers. These functions are definable in 〈Z,≥,+,0,1〉, if ! has no parameters, and
in D[m], otherwise. The reduction method, based on weighted finite automata, is the
same in both cases, and will be presented in the rest of this section.

4.2 The Even and Odd Automata

In the following, we work with a simplified (yet equivalent) form of the transition re-

lation !(x,x′,z). Namely, all constraints of the form x− y≤ " are replaced by x− t ′ ≤
" ∧ t ′ − y ≤ 0, and all constraints of the form x ′ − y′ ≤ " are replaced by x′ − t ≤
" ∧ t − y′ ≤ 0, by introducing fresh variables t ,∈ x. In other words, we can assume
without loss of generality that the constraint graph corresponding to ! is bipartite, i.e.

it does only contain edges from x and x ′ and viceversa.
As previously mentioned, the presence of any cycle of negative weight within G n

!

indicates that the constraints represented by Gn
! are not satisfiable, i.e. the automaton

has no run of length n or greater. On the other hand, a path that has a cycle of positive

weight is not minimal, as one can obtain a path of smaller weight by eliminating the

cycle. So, in principle, we need one tool for recognizing cycles of negative weight,

and another one for recognizing acyclic paths within G+
! . Both tools will be finite state

automata with weighted transitions, defined on two different alphabets.

Intuitively, a word w of length n represents a path , between, say, x 0 and xn, with

x,y ∈ x, as follows: the wi symbol represents simultaneously all edges of , that involve
only nodes from xi ∪ xi+1, 0 ≤ i < m. Note that, for a path from x0 to yn, coded by a

word w, the number of times the wi symbol is traversed by the path is odd, whereas for

a path from x0 to y0, or from xn to yn, this number is even. Hence the names of even and

odd automata.

Given an affine relation !(x,x ′,z), the even alphabet of !, denoted as .e!, is the set
of all graphs satisfying the following conditions, for each G ∈ . e

!:

1. the set of nodes of G is x∪x′,
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2. for any x,y ∈ x∪x′, there is an edge with label " from x to y, only if the constraint

x− y≤ " occurs in !.
3. the in-degree and out-degree of each node are at most one.

4. the number of edges from x to x ′ equals the number of edges from x ′ to x.

The odd alphabet of !, denoted by .o!, is defined in the same way, with the exception
of the last condition:

4. the difference between the number of edges from x to x ′ and the number of edges
from x′ to x is either 1 or −1.

Let .
e,o
! = .e! ∪.o!. Since, by the previous assumption, no G ∈ .

e,o
! contains edges

of the form x
"−→ y or x′

"−→ y′, the number of edges in all symbols of .e! is even, while the

number of edges in all symbols of .o! is odd. The label of G, is the sum of the weights
that occur on its edges. Clearly the weight of a path through G+

! is the weight of the

word it is represented by. We denote by -(w) the weight of a word w ∈ .
e,o
!

∗
. Notice

that -(w) ∈ linZ[z], for any given w ∈ .
e,o
!

∗
, where z is the set of parameters of !.

Given the set of counters x= {x1, . . . ,xk}, the even and odd automata share the same
transition table, except for the alphabet, which is .e! for the former, and .

o
! for the latter.

Precisely, we have A
e,o
! = 〈Q,%〉, whereQ= {l,r, lr,rl,⊥}k, and q G−→ q′ if the following

conditions hold, for all 1≤ i≤ k:

– qi = l iff G has one edge whose destination is xi, and no other edge involving xi.

– q′i = l iff G has one edge whose source is x ′i, and no other edge involving xi.
– qi = r iff G has one edge whose source is xi, and no other edge involving xi.

– q′i = r iff G has one edge whose destination is x ′i, and no other edge involving xi.
– qi = lr iffG has exactly two edges involving xi, one having xi as source, and another

as destination.

– q′i = rl iffG has exactly two edges involving x ′i, one having x
′
i as source, and another

as destination.

– q′i ∈ {lr,⊥} iff G has no edge involving x ′i.
– qi ∈ {rl,⊥} iff G has no edge involving xi.
– G has at least one edge between x and x ′.

The odd automaton for != x1− x′2 ≤ z1∧x′2− x3 ≤ z2∧x3− x′1 ≤ z3∧x1− x′3 ≤ z4
is depicted in Figure 2 (a). An example of a run of this automaton is given in Figure

2 (b). Intuitively, qi j = l means that the node xij of G
+
! is traversed from right to left

by a path, and no other path comes across this node. Also, q i j = lr means that there is

a path coming into xij from x
i+1 (left), and leaving also towards x i+1 (right), while no

other path comes across this node. The transitions of A
e,o
! capture the necessary (yet not

sufficient) conditions for a word in .
e,o
!

∗
to represent a path in G+

! . Suppose that A
e,o
!

has a run , : q1
G1−→ q2

G2−→ . . .qn−1
Gn−1−−−→ qn. By G(,)we shall denote, in the following,

the graph associated with the run, i.e. the graph whose nodes are q i j, and there is an

edge from qi j to qi+1h if and only if qi
Gi−→ qi+1 and Gi has an edge from x j to x

′
h, for

all 1≤ i≤ n, 1≤ j,h≤ k. The edges from qi+1h to qi j are defined symmetrically. Each

7



lr

rl

r

⊥
r

⊥

r

⊥
⊥

⊥

r

⊥

lr

⊥
r

⊥
rl

r

r

⊥

lr

r

rl

⊥

⊥

⊥

r

. . .

(a)

r

rl

lr

(b)

Fig. 2. The Odd Automaton for x1−x′2 ≤ z1∧ x′2−x3 ≤ z2∧ x3−x′1 ≤ z3∧ x1−x′3 ≤ z4

node in G(,) is labeled by a symbol from {l,r, lr,rl,⊥}, and we write, e.g. q i j = l,

meaning that qi j is labeled with l. We denote by -(,) the weight of the run ,, defined
as -(,) = -(G(,)).

Lemma 1. Let , : q1
G1−→ q2

G2−→ . . .qn−1
Gn−1−−−→ qn be a run of A

e,o
! . Then each node qi j,

1≤ i≤ n, 1≤ j≤ k, from G(,), has at most one predecessor and at most one successor.

For some 1 ≤ i, j ≤ k, let Aei j = 〈Ae,o! ,Q0,F〉 be the (non-deterministic) even au-
tomaton, defined over .e!, where:

Q0 =
{
{q | qi = r, q j = l and qh ∈ {lr,⊥}, 1≤ h≤ k, h ,∈ {i, j}} if i ,= j

{q | qi = q j = lr and qh ∈ {lr,⊥}, 1≤ h≤ k, h ,= i} otherwise

is the set of initial states, and F = {rl,⊥}k. In the case when i= j, we denote Aei j by A
e
i .

Lemma 2. For any 1≤ i, j ≤ k, i ,= j, Aei j has an accepting run of length at most m if

and only if there exists a path in G+
! , from x0i to x

0
j , that stretches between 0 and some

n ≤ m. Moreover, if G+
! does not have cycles of negative weight, the minimal weight

among all paths from x0i to x
0
j , stretching from 0 to some n ≤ m, equals the minimal

weight among all accepting runs of length at most m.

Lemma 3. For any 1≤ i≤ k, Aei has an accepting run of negative weight if and only if

there exists a cycle of negative weight in G+
! .

For some 1≤ i, j≤ k, let Aoi j = 〈Ae,o! ,Q0,F〉 be the (non-deterministic) odd automa-
ton, defined over .o!, where:

Q0 = {q | qi = r and qh ∈ {lr,⊥}, 1≤ h≤ k, h ,= i}
F = {q | q j = r and qh ∈ {rl,⊥}, 1≤ h≤ k, h ,= j}

8



An example of an odd automaton is given in Figure 2 (a). For i= 1 the initial states are

〈r,⊥, lr〉 and 〈r,⊥,⊥〉. For j = 3 the final state is 〈⊥,⊥,r〉. An accepting run of Ao13 is
shown in Figure 2 (b).

Lemma 4. For any 1≤ i, j≤ k, Aoi j has an accepting run of length m if and only if there

exists a path in G+
! , from x0i to x

m
j . Moreover, if G

+
! does not have cycles of negative

weight, then the minimal weight among all paths from x0i to x
m
j equals the minimal

weight among all accepting runs of length m.

4.3 Defining Minimal Accepting Runs

Given a finite automaton with linear weights on transitions, we consider the problem of

defining the set of accepting runs of a given length and of minimal weight. This solves

the previous problem of defining the functions min{x i −→ y j}, in order to compute the
input-output relation for an FCA.

Let A = 〈Q,q0,%,F〉 be a given finite automaton, and - : Q×Q −→ linZ[z] be a
weight function associating each transition q−→ r a linear expression -(q,r) ∈ linZ[z].
If % has no transition q−→ r, we take -(q,r) = 0. Now associate with any pair of states

q,r ∈ Q a variable xqr and take x to be the set {xqr | q,r ∈ Q}. Intuitively, xqr is the
number of times the transition q−→ r occurs within a run. Hence we take as an implicit

condition the fact that all such xqr range over positive integers. The formula character-

izing an accepting run of length l and weight w is:

/A(l,w) 0= ∃x
_

q f∈F
!q f (x) ∧ &

q,r∈Q
xqr = l ∧ &

q,r∈Q
xqr-(q,r) = w (3)

where !q f (x) expresses the necessary and sufficient conditions in order for x to corre-
spond to a valid run of A ending with q f . The definition of !q f in Presburger arithmetic

follows a method described in [5], which is based on the fact that the set of states Q of

A is finite.

Notice that, if A does not have parameters, /A is already a formula in the language

of 〈Z,≥,+,0,1〉, hence we can already define the minimal weight m among all runs

of length n by the following formula: /A(n,m) ∧ ∀z [z ≤ m→ ¬/A(n,z)]. However,
this is not the case when A has parameters, due to the multiplicative terms of the form

xqr-(q,r) that occur within /A. However, it is possible to build from /A, a formula of
D[m] defining minimal runs.

Lemma 5. Given a finite automaton A = 〈Q,q0,%,F〉, and a weight function - : Q×
Q −→ linZ[z] associating each transition a linear expression, it is possible build a
formula 1A(l,w,z) ∈ D[m] such that, for any values l ∈ N and w,z ∈ Z, |= 1A if and

only if w is the weight of the minimal among all accepting runs of length l.

Intuitively, the parameter m occurring in the formula 1 A ∈ D[m] above, represents
the number of iterations of one control loop in the original parametric FCA. It is thus

possible to define the reachability problem for single loop automata in D[m]. As we
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show in Section 5, the problem concerning the existence of solutions for such systems is

decidable, hence the decidability of the reachability problem for the class of FCA(p,1).
However, for an arbitrary number of loops, one can reduce Hilbert’s Tenth Problem

to the reachability problem. In the light of [12] The following Lemma entails unde-

cidability of the reachability problem for parametric FCA with unrestricted number of

loops.

Lemma 6. Given a Diophantine system S(x), it is possible to build a parametric FCA
A = 〈y,z,Q,%,q0〉 such that x ⊆ z, such that, for some control state q ∈ Q, and for all

x ∈ Z, we have |= S(x) if and only if there exists a run of A 〈q0,0z〉 −→ . . . −→ 〈q,yz〉

5 Solving Parametric Linear Diophantine Systems

In this section we give a proof for the decidability of the class of formulaeD[m]. For a
given system, let D denote the maximum degree of all equations, and V is the number

of variables in the system. It is known that Diophantine systems become undecidable

for (D≥ 4∧V ≥ 2)∨ (D≥ 2∧V ≥ 9) [15]. For either D= 1 or V = 1 the systems are

decidable. We are unaware of any previously published decidability results for the case

2≤D< 4∧2≤V < 9. The problem considered here has been independently solved by
O. Ibarra and Z. Dang in [11], using a property of reversal bounded counter machines.

Another proof has been suggested to us by Y. Matiyasevich [13], using a more involved

case analysis. Our proof is more concise, due to a result of L. Pottier [16].

Let us fix a linear Diophantine system with parameter m, i.e. a system of the form

{&nj=1 pi j(m)x j +qi(m) = 0}ri=1, with pi j,qi ∈ Z[m]. We are interested in the existence
of a solution m,x1, . . . ,xn in natural numbers, although this is not a restriction. 2 We
denote by A(m) the matrix [pi j(m)].

Let us consider first that the system is homogeneous, i.e. qi(m) is the zero polyno-
mial, for all 1≤ i≤ n. The general case will be dealt with in the following, by adding a

new variable xn+1, replacing each occurrence of qi(m) by qi(m)xn+1, and looking only
after solutions in which xn+1 = 1. Let P(m) be the greatest common divisor of all pi j(m)
with respect to (symbolic) polynomial division, i.e. obtained by applying Euclid’s al-

gorithm in Z[m]. Since P(m) is a polynomial in one variable, its set of roots is finite
and effectively computable. If P(m0) = 0 for some m0 ∈ Z, then 〈m0,x1, . . . ,xn〉 is a
solution of the system A(m)x = 0, for any choice of x 1, . . . ,xn ∈ Z. Thus, we assume
in the following that P(m) ,= 0, for all m ∈ N, in other words that, for no value of m,
pi j(m) will all become zero at the same time.
Next, we are interested in the minimal solutions of the system. For a given m ∈

N, a solution (x1, . . . ,xn) is said to be minimal if it is a least solution with respect to
the pointwise ordering on Nn: (u1, . . . ,un) 4 (v1, . . . ,vn) ⇐⇒ ui ≤ vi, 1 ≤ i ≤ n. The

following Theorem has been proved in [16]:

Theorem 1. For a fixed m0 ∈ N, let x1, . . . ,xn be any minimal solution of A(m0)x= 0.
Then, for all 1 ≤ i ≤ n, we have: xi ≤ (n− r0)

(
&i, j ai j(m0)

r0

)r0
, where r0 is the rank of

A(m0).
2 The satisfiability problem for integers can be reduced to 2n+1 instances of the same problem
on natural numbers, by performing a case split on the signs of m,x1, . . . ,xn.
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LetC> 0 be the maximal absolute value of all coefficients of a i j(m), 1≤ i≤ r, 1≤ j≤
n, and K ≥ 0 be the maximum degree of these polynomials. The following is a direct
consequence of Theorem 1:

Corollary 1. For a fixed m0 ≥ max(C,n,r), let x1, . . . ,xn be any minimal solution of
A(m0)x= 0. Then, for all 1≤ i≤ n, we have xi ≤ m

(K+3)r+1
0 .

Hence, one can enumerate all 0 ≤ m < max(C,n,r), and stop as soon as a solution
of the linear Diophantine system A(m)x = 0 has been found. Otherwise, for any m ≥
max(C,n,r) the solution x1, . . . ,xn can be represented in basem using at mostM= (K+
3)r+1 digits. Let (xi)m =&Mj=02i jm

j, with 0≤ 2i j <m be the polynomial representing

xi in base m. The entire system A(m)x= 0 can be now represented in base m, as will be
explained in the following.

First, we write the system as a set of equations of the form P(m,x1, . . . ,xn) =
Q(m,x1, . . . ,xn), with all coefficients of P and Q being positive. Since m was assumed
to be greater that C, the maximal value of all coefficients c of the system, we have

(c)m = c. The operations of addition, multiplication by a constant 0 < c < m, and

multiplication by m, respectively, can be defined now using Presburger arithmetic. Let

(d)m = &Mi=0 %im
i, (e)m = &Mi=0 3im

i and ( f )m = &Mi=0 /im
i, with 0 ≤ %i,3i,/i < m. We

have:

( f )m = (d)m+(e)m ⇐⇒
_

r∈{0}×{0,1}k−1×{0}

M̂

i=0
%i+ 3i+ ri = /i+mri+1

(e)m = c(d)m ⇐⇒
_

r∈{0}×{0,...,c−1}k−1×{0}

M̂

i=0
c%i+ ri = 3i+mri+1

(e)m = m(d)m ⇐⇒ %M = /0 = 0∧
M−1̂

i=0
%i = /i+1

The result of applying this transformation to the system A(m)x= 0 is a formula4 A(m,2)
in Presburger arithmetic, defining all minimal solutions of the original system (x i)m =
&Mj=02i jm

j, for m ≥ max(C,n,r), with 2 = {2i j | 1 ≤ i ≤ n, 1 ≤ j ≤ r}. The original
system has a solution (m,x1, . . . ,xn) if and only if, for some m ∈ N, it has a minimal
solution (xm1 , . . . ,xmn ). Hence 4A(m,2) is satisfiable. Dually, if 4A(m,2) is satisfiable,
we can construct a solution (not necessarily minimal) of A(m)x= 0.

The non-homogeneous case is handled in the proof of the following:

Theorem 2. The satisfiability problem for linear parametric Diophantine systemsD[m]
is decidable.

Theorem 2, together with the results of the previous section entail the main result:

Corollary 2. The reachability problem for single loop parametric flat counter automata

FCA(p,1) is decidable.

The strength of this result is highlighted by Lemma 6, which entails the undecidability

of the reachability problem for FCA(p,n)with p> 0 parameters, and sufficiently many
control loops.
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6 Conclusions

We have studied a generalization of the flat counter automata considered by Comon

and Jurski in [5], obtained by adding parameters to the transition relations. We reduce

the reachability problem for these automata to either Presburger arithmetic, in the non-

parametric case, and to linear Diophantine systems with one parameter, for single-loop

automata with multiple parameters. The existence of solutions for the latter class of

systems is shown to be decidable. This entails the decidability of the reachability prob-

lem for counter automata with parameters and one control loop, while in general, this

problem is undecidable for flat automata with more than one control loop.

Acknowledgements: The authors wish to thank YuriMatiyasevich andOscar Ibarra
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