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Abstract. We address the verification problem of programs manipulating one-
selector linked data structures. We propose a new automated approach for check-
ing safety and termination for these programs. Our approach is based on using
counter automata as accurate abstract models: control states correspond to ab-
stract heap graphs where list segments without sharing are collapsed, and coun-
ters are used to keep track of the number of elements in these segments. This
allows to apply automatic analysis techniques and tools for counter automata in
order to verify list programs. We show the effectiveness of our approach, in par-
ticular by verifying automatically termination of some sorting programs.

1 Introduction
The design of automatic verificationmethods for programsmanipulating dynamic linked
data structures is a challenging problem. Indeed, the analysis of the behaviour of such
programs requires reasoning about complex transformations of data structures involv-
ing both creation and deletion of objects as well as modifications of the links between
them (pointer manipulations). The heap of such programs may have in fact an arbitrary
size and shape (a graph structure). There are several approaches for tackling this prob-
lem addressing different subclasses of programs and using different kinds of formalisms
for representing and reasoning about infinite sets of heap structures, e.g., [19, 17, 21, 8].

We consider in this paper the class of programs manipulating linked data structures
with a single data-field selector. It corresponds to programs manipulating linked lists
with the possibility of sharing and circularities. We propose a new approach for the au-
tomatic verification of such programs which is mainly based on using counter automata
as accurate abstract (infinite-state) models. These models can be used for checking both
safety properties and termination of the considered programs using techniques such as
(abstract) symbolic reachability analysis (for safety and invariance checking) and auto-
matic generation of decreasing ranking functions (for termination checking).

Let us present in more details the proposed approach.We start from the observation
that if we do not consider garbage (parts of the heap not reachable from the pointer
variables of the program), the heap graph is always a finite collection of graphs of a
special form close to a tree: it is either a tree (where edges are directed towards the
root) or a set of trees having all their roots connected to a simple cycle. The number of
such graphs is infinite, but it can be proved that for each of them, the number of vertices
where sharing occurs is bounded by the number of pointer variables of the program.
! This work was supported in part by the French Ministry of Research (ACI project Securité
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Then, for data-insensitive programs (i.e., programs not accessing nor modifying
the data stored in lists as, e.g., a list reversal program), a natural abstraction consists
in mapping each sequence of elements between two sharing points into an abstract
sequence of some (fixed) bounded size. However, for each given value of the bound, this
abstraction is obviously not precise in general. In order to define a precise abstraction,
we need in fact to reason about the size of each sequence between two sharing points.
This leads to the idea of using counters in order to keep this information in the abstract
model (and therefore to use counter automata as abstract models).

In fact, considering counter automata-based models has several advantages. Not
only does it allow to define accurate abstractions, it allows us also to handle quantita-
tive properties depending on the sizes of some parts of the heap. Thus, we can handle
programs with integer variables whose value is somehow related to the contents of the
lists (e.g., to their length). Moreover, it provides a powerful way for checking termi-
nation which typically requires reasoning about decreasing values (e.g., the size of the
part of the list to be treated).

A first contribution of the paper is to define an abstraction mapping from data-
insensitive programs to counter automata for which we prove that the (concrete) pro-
gram and its abstraction are bisimilar. This result is interesting since it means that our
abstraction preserves all properties of the class of data-insensitive programs. The con-
trol states of the built automaton correspond to abstract shapes (heap graphs where
sequences between shared points are reduced to single vertices), and each transition
corresponds to the execution of a program statement. It represents a modification in
the shape together with a modification on the counters (attached to vertices abstracting
sequences between sharing nodes).

The control structure of the built counter automata can be arbitrary in general. How-
ever, it turns out that these automata have an important property: we prove that if we
consider the evolution of the sum of all counters, the effect of executing any control loop
is to increment this sum by a constant which depends on the program. We use this fact
to establish a new decidability result for list programs: for every given (data-insensitive)
list program, if the control structure of the generated counter automaton has no nested
loops, the verification problems of safety properties and termination are both decidable.

Subsequently, we go further by considering the issue of data-sensitivity. We con-
sider the class of programs manipulating objects ranging over a potentially infinite data
domain supplied with an ordering relation, and we assume that the only allowed oper-
ation on these data values is the comparison w.r.t. this ordering relation. This class of
programs includes, for instance, sorting programs. We extend our previous abstraction
principle to the heap graphs of these programs by taking into account (in addition to
the size) some information about the order of the elements in the abstracted sequences
between sharing points, and we provide a construction which associates with each pro-
gram a counter automaton-based abstract model. We show that this abstraction is sound
w.r.t. the choice of ordering predicates.

Finally, we show the application of our approach on three examples of programs (list
reversal, insertion sort, and bubble sort). We have derived systematically their counter
automata models, and then we used (1) our ARMC tool [9] (and some compile-time
techniques) for checking safety properties, and (2) the Terminator tool based on [12]
for termination.



RelatedWork. Programs manipulating singly-linked lists have gained a lot of attention
within the past two years, as shown by the fairly large number of recent publications on
the subject [4, 6, 18, 3, 8]. Interestingly, the idea of abstracting away all the list segments
with no incoming edges is common to many of these works, even though they are
independent and use different approaches and frameworks (e.g., static analysis [18],
predicate abstraction [3] symbolic reachability analysis [4] and proof search [6]). The
fact that the number of sharing points in abstract heap structures is bounded by the
number of variables in the program is also behind the techniques proposed in [18, 8].

In [10], the authors use an abstract shape model with counters, but their concerns
are mostly related to the decidability of a specification logic. The approach that is the
closest to ours is [4]. However, it is rather pointed towards showing particular properties
such as absence of segmentation faults and memory leak errors, than checking general
safety properties, and the work does not address the problem of verifying termination.
Moreover, the work reported in [4] offers less automation of the verification than ours.
Recently, the same authors have started independently a work [15] on automatic con-
struction of models based on counter automata similar to our approach. The use of
ordering predicates in order to handle sorting programs is similar to the one considered
in [14, 21] based on the shape analysis approach. Termination is tackled by works such
as [22, 3]. In all of these works, ranking functions must be given manually, whereas our
approach is fully automated.

2 Programs with Lists

In this section we define a model for programs manipulating dynamic list data struc-
tures. We consider that lists are implemented using reference (pointer) data types with
one selector (next) field, as it is the case in most object-oriented imperative program-
ming languages (e.g., Java, C, C++). For the time being we consider programs without
recursion or concurrency constructs, therefore all variables are assumed to be global. In
addition to the list data structures, the programs can have integer variables. Examples
of such programs include: list reversals, list insertion procedures, sorting procedures,
programs counting the elements in a list, etc.

2.1 Syntactic Definitions

We consider imperative programs working with a set of pointer variables PVar and a
set of integer counter variables IVar. The pointer variables refer to list cells. Point-
ers can be used in assignments such as u := null, u:= w and u := w.next, se-
lector updates u.next := w and u.next := null, and new cell creation u:= new.
Counters can be incremented i := i + 1, decremented i := i - 1 and reset i :=
0. The control structure is composed of iteration (while) statements and conditionals
(if-then-else). The guards of the control constructs are pointer equality u = w, data
comparisons u.data <= v.data, zero tests for counters i = 0 and boolean combina-
tions of the above. A program is said to be data insensitive if it does not use guards
of the form u.data <= v.data. A program is said to be flat if the body of any of its
while loops does not contain (while) statements nor conditionals (if-then-else).



1: while i != null do
2: k := i.next;
3: i.next := j;
4: j := i;
5: i := k;
6: od

Fig. 1. List Reversing

An example is the list reversal program in Figure 1.
To simplify the definition of the operational semantics
below, we consider that all programs are precompiled
as follows. Each pointer assignment of the form u: =
new, u := w or u := w.next is immediately preceded
by an assignment of the form u := null. A pointer as-
signment of the form u := u.next is turned into v :=
u; u := null; u := v.next, possibly introducing a
fresh variable v. Each pointer assignment of the form
u.next := w is immediately preceded by u.next := null. In addition, the programs
are allowed to increment, decrement and reset the counter variables that range over in-
tegers. Conditional statements involve two kinds of tests: structural tests u = v and u =
null testing for equality and definedness of pointer variables, comparisons of the data
stored in the lists u.data ≤ v.data, and zero tests i = 0.

2.2 Concrete Operational Semantics

In order to define the concrete semantics of programs with lists, we have to formalize
the notion of heap. In principle, a heap is a graph in which each node has at most
one successor. In addition, some nodes are designated by special labels (variables from
PVar). If all the edges are reversed, one can imagine a heap as a set of disjoint trees, in
which, for each tree there might be an extra edge from an arbitrary node back to the root.

In the rest of the paper, for a set A we denote by A⊥ the set A∪{⊥}. The element⊥
is used to denote that a (partial) function is undefined at a given point, e.g., f (x) = ⊥.
Also, for a function f we denote by f ↓A the projection of f on A i.e. f ∩A×A.

Definition 1. Let 〈D,)〉 be an infinite totally ordered set, and PVar a set of pointer
variables. A heap is a tuple H = 〈N,S,V,D〉, where N is a finite set of nodes, S :N→N⊥
is a successor function, V : PVar→ N⊥ is a function associating nodes with variables,
and D : N → D is a function associating each node with a data element.

The set of all heaps using variables from PVar is denoted by H (PVar). We denote
S(n1) = n2 in H by n1 −→

H
n2, and u −→

H
n : ∃m . V (u) = m ∧ m −→

H
n. H might be

omitted when it is clear from the context. We denote by ∗−→
H
the reflexive and transitive

closure of−→
H
. A node n is said to be a cut point in H, denoted as cutH(n), if either it has

two predecessors or it is pointed to by a variable. Formally, cutH(n) : ∃n1,n2 ∈ N . n1 !=
n2∧S(n1) = S(n2) = n ∨ ∃u ∈Var . V (u) = n.

The state of a program with lists is a triple 〈l, !,H〉 where l ∈ Lab is the cur-
rent program label, ! : IVar → Z is the current valuation of counter variables, and
H ∈H (PVar) is the current heap configuration. Each assignment modifies the state as
follows: 〈l, !,H〉 l:s;l′−−→ 〈l′, !′,H ′〉, where l ′ is the label of the next statement, !′ is the
new valuation of counters, computed as usual, and H ′ is a heap configuration such that
H s−→ H ′, in conformance with the rules in Figure 2. Due to lack of space, the missing
rules are deferred to the extended version of the paper [7].

The semantics described here is based on garbage collection. As a result of re-
moving a node from the heap, other nodes might become unreachable from the pointer



variables. This set of nodes, whose lifetime depends exclusively on n ∈ N, is denoted as
depH(n). After each step, these nodes are removed.

Herr is a special sink heap configuration, attained as the result of a null pointer
dereference. A pointer equality test u = v evaluates to true in a heap H = 〈N,S,V 〉 if
and only if V (u) =V (v). Also, u= null is true if and only if V (u) = ⊥.

V (u) = ⊥

H u := null−−−−−−→ H
C1

∃w ∈ PVar \{u} . w ∗−→
H
V (u)

H u := null−−−−−−→ 〈N,S,V [u→⊥],D〉
C2

V (u) = n ∈ N ∀w ∈ PVar \{u} . ¬w ∗−→
H
n N′ = N \depH (n)

H u := null−−−−−−→ 〈N′,S↓N ′ ,V ↓N ′ ,D↓N ′ 〉
C3

Fig. 2. Concrete Semantics of Heap Updates

3 Counter Automata
A counter automaton with n counters is a tuple A = 〈Q,X ,→〉, where Q is a finite
set of control states, X = {x1, . . . ,xn} are the counter variables and →∈ Q×"×Q
are the transitions, where " is the set of Presburger formulae [20] with free variables
from {xi,x′i | 1 ≤ i ≤ n}. A configuration of a counter automaton with n counters is a
tuple 〈q,#〉, where # is a mapping from X to N. The set of all configurations is de-
noted by C . The transition relation C−→⊆ C ×C is defined by (q,#) C−→ (q′,#′) iff there

exists a transition q $−→ q′ such that if % is an assignment of the free variables of $
(FV ($)) where %(x) = #(x) and %(x′) = #′(x), we have that $(FV ($)%) holds and
#(x) = #′(x), for all variables x with x′ !∈ FV ($). A run of A is a sequence of configu-
rations (q0,#0),(q1,#1),(q2,#2) . . . such that (qi,#i)

C−→ (qi+1,#i+1), for each i≥ 0.
The following definition introduces a novel class of counter automata that is useful

for our purposes:

Definition 2. Let A = 〈Q,X ,→〉 be a counter automaton, where X = {x1, . . . ,xn} are
counter variables that range over non-negative integers. A is said to be linear if all
its transitions are of the form: $(X) ∧

V
1≤i≤n x′i = fi(X), where $ is a formula of

Presburger arithmetic, and fi = &nj=1 ai jx j + bi, 1 ≤ i ≤ n are linear functions with
integer coefficients. Moreover, A is said to be positive if ai j ≥ 0, for all 1≤ i, j ≤ n. A
is also said to be restrictive if, there exists a constant ' ∈ N such that for each control
state q ∈Q, on each run ( that visits q, the sum of values taken by the counters, &ni=1 xi,
increases by at most ' between any two consecutive times when the control state is q.

The control graph of a counter automaton A is the graph having as vertices the set
Q of control states, and, for any two states q and q ′, there is an edge between q and
q′ in the control graph if and only if there exists a transition q $−→ q′ in A. A counter
automaton is said to be flat if its control graph has no nested loops. We can prove:

Theorem 1. The problems of reachability and termination for flat linear positive re-
strictive counter automata are decidable.



4 Abstract Semantics of Programs with Lists

A common way of representing heaps compactly, consists in mapping an entire list seg-
ment with no incoming edges into a special (abstract) node. This idea constitutes also
the basis of our abstraction. Let N be a set of abstract nodes and X be a set of counter
variables, one for each node. We shall first define the abstract structure of heaps.

Definition 3. An abstract structure is a tuple H = 〈N,S,V 〉, where:

– N ⊆N is the set of abstract nodes, and
– S : N → N⊥, V : PVar→ N⊥, are the successor and variable mappings,

An abstract structure is moreover said to be in normal form if, for each n ∈ N, there
exists u ∈ PVar such that u ∗−→

H
n, and n is a cut point in H.

Intuitively, each abstract node corresponds to a set of concrete nodes, and the counter
associated with it in X keeps track of the number of nodes in this set. For abstract struc-
tures in normal form, we do not allow sequences of successive abstract node that are
neither pointed by a variable, nor have the indegree greater than one. This condition
is needed in order to ensure that any such abstract structure defined over a finite set of
variables is finite.H (PVar) denotes the set of all abstract structures with variables from
PVar. A result similar to the following has been also proved in [4, 18]:

Lemma 1. Let PVar = {u1, . . . ,un} be a set of variables, and H = 〈N,S,V 〉 be an
abstract structure in normal form such that dom(V)⊆ PVar. Then, ||N||≤ 2n (cf. [18]).
As a consequence, the number of such heaps is bounded asymptotically by (2n) 2n, and
the bound is tight.

Let us define now a first abstraction function, denoted by ' s, that maps concrete
heaps into abstract structures. Given a concrete heap H = 〈N,S,V,D〉, let !H ⊆ N×N
be a relation on the set of nodes, defined as: n1!H n2 : n1 −→

H
n2∧¬cut(n2). We denote

by ∼H the reflexive, symmetric and transitive closure of !H . The H subscript shall be
further omitted for simplicity. For a node n ∈ N, we denote by [n] the equivalence class
of n with respect to ∼, also referred to as a list segment. The quotient heap H /∼ =
〈N/∼,S/∼,V/∼〉 is defined as follows:

– N/∼ = {[n] | n ∈ N},
– for all n,m ∈ N, S/∼([n]) = [m] iff ∃n0 ∈ [n] ∃m0 ∈ [m] . S(n0) = m0∧ cutH(m0),
– for all u ∈ PVar, n ∈ N, V/∼(u) = [n] iff V (u) ∈ [n], and
– S/∼ and V/∼ are undefined, otherwise.

Note that S/∼ and V/∼ are well defined partial functions. For assume that for some
n ∈ N, S/∼ maps [n] into two different equivalence classes, call them [m] and [p]. This
would imply the existence of two nodes n1,n2 ∈ [n] such that n1

∗−→m0 and n2
∗−→ p0, for

some m0 ∈ [m] and some p0 ∈ [p]. Since either n1
∗−→ n2, or n2

∗−→ n1, there must exist a
node in [n] with two distinct direct successors, which contradicts the well-formedness
of S. The argument for V/∼ is straightforward.



Definition 4. Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ = 〈N/∼,S/∼,V/∼〉 its
quotient. An abstract structure H = 〈N,S,V 〉 is said to be a structural abstraction of
H if and only if there exists a bijective function ) : N/∼ ∪ {⊥}→ N ∪ {⊥} such that
)(⊥) = ⊥, and for all u ∈ PVar: S()([n])) = )(S/∼([n])) and V (u) = )(V/∼(u)).

Two abstract structures that differ only in the naming of nodes and counter variables
are semantically equivalent, in the sense that they are abstractions of the same set of
concrete heaps. In practice, this increases the number of abstract structures generated
by a symbolic state exploration tool. This problem can be overcome by choosing a
canonical representation of abstract structures, as described in, e.g., [16].

We define the structural abstraction function 's : H (PVar)→H (PVar), 's(H) =
H, iff H is the canonical representative of a structural abstraction of H. Dually, the
concretisation of an abstract structure H is the set of concrete heaps whose structural
abstraction is H, i.e. *s(H) = {H | 's(H) = H}.

Note that according to Definition 4, 's(H) is an abstract structure in normal form.
For reasons that will become clear later, we need to extend the notion of concretisation
to abstract structures not in normal form. Let H = 〈N,S,V 〉 be an abstract structure not
necessarily in normal form, and # : N → N a mapping of nodes to natural numbers. By
#(H)we denote the set of concrete heaps obtained by replacing each node n∈N by a list
segment of length #(n), and data arbitrarily chosen fromD. In particular, mapping one
node into zero makes the node disappear in the concretization, and all its predecessors
automatically point to its successor. Then, *s(H) =

S
{#(H) | # : N → N}. Notice that

if H is in normal form, the two definitions coincide.

4.1 Data Insensitive Programs
This section is devoted to the description of counter automata that abstract the behaviour
of the programs with lists. We formalize the correctness of our construction by proving
bisimulation between the semantics of a list program and the semantics of a counter au-
tomaton. This entails the strong preservation of temporal logic properties. In particular,
safety and termination are strongly preserved by the counter automaton, meaning that
one can accept and/or refute them based on the behaviour of the latter.

Consider a list programwith k pointer variables and l counter variables, i.e. ||PVar||=
k and ||IVar|| = l. We construct a counter automaton A = 〈Q,X ,

s−→〉 with 2k+ l coun-
ters as follows. The control states Q of the counter automaton are elements of the set
Lab× (H (PVar)∪{Herr}). Let N =

S
{N | 〈N,S,V 〉 ∈H (PVar)} be the set of nodes

used in the structural abstraction. The counters are X = {xn | n ∈ N }∪ IVar, one for
each node, and including the counter variables from the original program. The transi-
tions are given by the triples q $−→ q′ with q = 〈l,H〉, q′ = 〈l′,H ′〉 such that there is a

statement l : s; l′ in the program and the relation H $−→
s
H ′ is described by the structural

rules in Figure 3. Due to lack of space, the missing rules are deferred to the extended
version of the paper [7].

In order to simplify the treatment of the different cases, we have introduced two
low-level operations, that perform merging and splitting of abstract nodes (Figure 3).
Intuitively, we need to perform merging of two abstract nodes n and m (µ(H,n,m)) in
order to re-normalize the abstract structure, after a destructive update.



Lemma 2. If H = 〈N,S,V 〉 is an abstract structure, and n,m ∈ N such that S(n) = m
and m is not a cut point in H, then *s(H) = *s(µ(H,n,m)).

In the case of u := w.next, we need to split (%(H,n,m)) the abstract node n, into
two nodes n and m, based on whether the value of its corresponding counter is greater
than one or one (xn = 1, xn > 1).
Lemma 3. If H = 〈N,S,V 〉 is an abstract structure, and n ∈ N, m !∈ N, then *s(H) =
*s(%(H,n,m)).

The semantics of conditional tests (u = v and u = null) is similar to the concrete
case. More details of the translation can be found in the list reversal example in Fig. 4.

∃w ∈Var \{u} V (w) =V (u) != ⊥

H true−−−−→
u:=null

〈N,S,V [u→⊥]〉
A2

V (u) = n ∈ N ∀w ∈ Var \ {u} . V (w) != n
∃m, p ∈ N \{n} . p != m ∧ S(m) = S(p) = n

H true−−−−→
u:=null

〈N,S,V [u→⊥]〉
A′2

V (u) = n ∈ N ∀w ∈Var \{u} . V (w) != n
∃m ∈ N \ {n} . S(m) = n
∀p ∈ N \ {n} . S(p) != n

H
x′m=xm+xn−−−−−−→
u:=null

µ(〈N,S,V [u→⊥]〉,m,n)
A′′2

V (u) = n ∈ N ∀w ∈ Var \ {u} . w ! ∗−→
H

n

S(n) ∈ {⊥,n} N′ = N \{n}

H true−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w ! ∗−→
H

n

S(n) = m ∈ N \ {n}
∃w ∈Var \{u} . V (w) = m N′ = N \{n}

H true−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w ! ∗−→
H

n

S(n) = m ∈ N \ {n}
∀w ∈ Var \ {u} . V (w) != m
∃p,q ∈ N \{n} . p != q∧S(p) = m∧S(q) = m
N′ = N \ {n}

H true−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′′3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w ! ∗−→
H

n

S(n) = m ∈ N \{n}
∀w ∈Var \{u} . V (w) != m
∃p ∈ N \ {n,m} . S(p) = m
∀q ∈ N \{n, p} . S(q) != m N′ = N \{n}

H
x′p=xp+xm−−−−−−→
u:=null

µ(〈N′,S↓N ′ ,V ↓N ′ 〉, p,m)
A′′′3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w ! ∗−→
H

n

S(n) =m ∈ N \{n}
∀w ∈ Var \ {u} . V (w) != m
∀p ∈ N \ {n,m} . S(p) != m
N′ = N \ {n,m}

H true−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′′′′3

Fig. 3. Counter Automaton Semantics LetH += 〈N,S,V 〉. The merging function is µ : H (Var)×
N ×N → H (Var) given by µ(H,n,m) = 〈N′,S ↓N ′ [n→ S(m)],V 〉 where N′ = N \ {m}. The
splitting function is % : H (Var)×N ×N → H (Var) given by %(H,n,m) = 〈N ∪ {m},S′,V 〉
where S′ =

(
S\{(n, p) | n−→

H
p}

)
∪ {(m, p) | n−→

H
p} ∪ {(n,m)}.

Now we can state the main theorem of this section. Given a data insensitive pro-
gram P, let 〈S ,

c−→〉 be its concrete semantics with set of states S = Lab× (IVar →

Z)×H (PVar) and c−→ its transition relation. Let S = Q× (X → Z) be the set of all

configurations of the corresponding counter automaton and s−→ its transition relation.

Theorem 2. 〈S ,
c−→〉 and 〈S ,

s−→〉 are bisimilar.
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Fig. 4. Non-circular List Reversal

List Reversal Example
Figure 4 shows the counter
automaton for the list re-
versal program from Fig-
ure 1, started with a non-
circular list pointed to by
i, as input. The counter
variable corresponding to
each abstract node is de-
picted inside the node it-
self. For space reasons,
only the control states
where branching occurs
are depicted.

4.2 Ordered Data Programs

In this section we complete the definition of abstraction for programs with lists, by
introducing an abstraction for heaps containing data from an ordered domain 〈D,)〉.
More precisely, we need to abstract the order relations that may occur inside a list
segment, and between two list segments.

Definition 5. Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ its quotient w.r.t. !
relation. If R ⊆ N×N is any relation on the set of nodes define, for any [n], [m] ∈ N/∼:

– oR([n]) iff ∀n1,n2 ∈ [n] . n1 != n2 ∧ n1! n2⇒ n1 R n2
– [n] )R

f f [m] iff hd([n]) R hd([m])
– [n] )R

f a [m] iff ∀n1 ∈ [m] . hd([n]) R n1
– [n] )R

a f [m] iff ∀n1 ∈ [n] . n1 R hd([n])
– [n] )R

aa [m] iff ∀n1 ∈ [n] ∀n2 ∈ [m] . n1 R n2

For a concrete heap H = 〈N,S,V,D〉, the relation c ⊆ N×N is defined as n1 c n2 :
D(n1))D(n2). Then, oc([n]) is true for a list segment [n] iff all its elements are ordered
w.r.t. ). Similarly, [n] )c

8 [m] for 8 ∈ { f f , f a,a f ,aa} iff the first (all) element(s) of [n]
is (are) less than the first (all) element(s) of [m].

Definition 6. An abstract heap is a tuple H̃ = 〈H,o,) f f ,) f a,)a f ,)aa〉, where H =
〈N,S,V 〉 is an abstract structure, o⊆N is a unary ordering predicate, and) f f , f a,a f ,aa⊆
N×N are binary ordering predicates.

An abstract heap H̃ = 〈H,o,) f f ,) f a,)a f ,)aa〉 sharing the same structure H =
〈N,S,V 〉 as another abstract heap H̃ ′ = 〈H,o′,)′

f f ,)′
f a,)′

a f ,)′
aa〉, is said to be more

precise, denoted as H̃ 9 H̃ ′, if and only if, for each n,m ∈ N we have o(n) ⇐ o ′(n) and
n )8 m⇐ n )′

8 m, for all 8 ∈ { f f , f a,a f ,aa}. Intuitively, the absence of a predicate
indicates incertitude w.r.t. the concrete ordering configuration. For instance if o(n) does
not hold, this means that in the concrete setting, n “represents” a list segment that may
or may not be ordered.



Given a set S of abstract heaps sharing the same structure, we denote by ;S the least
upper bound, and by <S the greatest lower bound of S, with respect to 9. Note that ;
and < are undefined for sets of abstract heaps that have different structures. The domain
of abstract heaps is denoted by 〈H̃ (PVar),9〉.

Definition 7. Let H = 〈N,S,V,D〉 be a concrete heap with data from the ordered do-
main 〈D,)〉 and H/∼ = 〈N/∼,S/∼,V∼〉 its quotient. An abstract heap H̃ = 〈H,o,) f f
,) f a,)a f ,)aa〉 is said to be an abstraction of H if and only if 's(H) = H and for all
[n], [m] ∈ N/∼, 8 ∈ { f f , f a,a f ,aa}: o()([n]))⇒ oc([n]) and )([n]))8 )([m])⇒ [n])c

8
[m] where ) is the bijection from Definition 4.

We define ' : H (PVar) → H̃ (PVar) as '(H) = <{H̃ | H̃ is an abstraction of H}.
Note that all abstract heaps that are abstractions of H share the same structure, hence
< is defined for this set. The concretization function is * : H̃ (PVar) → P (H̃ (PVar)),
defined as *(H̃) = {H | '(H) 9 H̃}. Clearly, *(H̃1) ⊆ *(H̃2) if H̃1 9 H̃2, but the dual
does not necessarily hold.

4.3 Counter Automata Semantics with Ordering Predicates
Taking ordering predicates o,) f f , f a,a f ,aa into account refines our notion of counter au-
tomaton, previously introduced. The counter automaton defined in this section keeps
track of the ordering information, allowing one to verify properties related to the order-
ing of lists, as it is the case for sorting programs, e.g., insertsort, bubblesort, etc.

A counter automaton with ordering predicates is Aa = 〈Qa,X ,
a−→〉. The set of control

states is defined now as Qa = Lab× (H̃ (PVar)∪{Herr}), and the set of configurations
is Sa = Qa × (X → N), with the usual notation. In addition to updating the abstract
structure, the transition relation a−→ has to also update the ordering predicates. Our goal
is to define the “best transformer” in the sense of [13]. More precisely, our loss of
information is only due to the choice of ordering predicates, the definition of a−→ does
not introduce further imprecision. Theorem 4 below formalizes this statement.

In order to achieve completeness of the abstract operational semantics, we have
designed our abstract state transformer function in two stages. The first stage yields
the actual change of the predicates, and the second one is an operation of “saturation”
whose goal is to add all the predicates that can be derived from the existing ones, on
a given abstract heap, without changing the corresponding set of concrete heaps. For
the remainder of this section, we fix an abstract heap H̃ = 〈H,o,) f f ,) f a,)a f ,)aa〉,
with its abstract structure H = 〈N,S,V 〉, and let H̃ ′ be just like H̃, except that all the
components of the tuples are primed.

Let us begin by the presentation of the second stage. Given an abstract heap H̃, we
define the saturation of H̃ to be the most precise abstract heap whose concretization is
the concretization of H̃. More precisely, H̃0 is the saturation of H̃ if and only if H̃0 =
<{H̃ ′ | *(H̃) = *(H̃ ′)}. An abstract heap H̃ is said to be saturated if and only if H̃ =
<{H̃ ′ | *(H̃) = *(H̃ ′)}. Unfortunately, this definition does not allow one to effectively
check that H̃ ′ is the saturation of H̃ for arbitrary abstract heaps. The problem is that the
set *(H̃) is infinite. To overcome this problem, we introduce “syntactical” saturation
rules in Fig. 5. The closure of an abstract heap H̃ w.r.t. these rules is denoted as sat(H̃).



Weakening
1. n)aa m ⇒ n)a f m
2. n)aa m ⇒ n) f a m
3. n)a f m ⇒ n) f f m
4. n) f a m ⇒ n) f f m

Reflexivity
9. n) f f n

Transitivity
5. n) f f m ∧ m) f f p ⇒ n) f f p
6. n)a f m ∧ m) f f p ⇒ n)a f p
7. n) f f m ∧ m) f a p ⇒ n) f a p
8. n)a f m ∧ m) f a p ⇒ n)aa p

Order
10. n)aa n ⇒ o(n)
11. o(n) ⇒ n) f a n

Fig. 5. Saturation rules

The saturation rules need to be applied with the following premises. Let ( H̃,#) be a
configuration of the counter automaton, and n an abstract node of H̃.

– if #(xn) = 1, then it must be the case that o(n) and n)8 n, 8 ∈ { f f , f a,a f ,aa} all
hold in H̃. The reason is that list segments of size one are ordered and in all possible
ordering relations with themselves.

– if #(xn) = 2 and n ) f a n, then o(n) must also hold in H̃. In a list segment of size
two, if the first element is less than the second, then the segment must be ordered.

The generated counter automaton will test, at each step, for each node n ∈ N, that x n =
1,2 and update the ordering predicates accordingly.

The next Theorem shows the soundness and completeness of the saturation rules.

Theorem 3. Given an abstract heap H̃, we have sat(H̃) = <{H̃ ′ | *(H̃ ′) = *(H̃)}.
We define now how the change of abstract predicates is performed.Most of the rules

affecting only the abstract structure of the state are very similar with the data insensitive
case. To be more precise, all rules from Fig. 3, with the exception of the ones that use the
merging (µ) or the splitting (%) functions,will just maintain the same predicates between
the source and destination of the transition. For example, if we had V (u) = V (w) = n
and n ) f a m, then the result of applying the statement u := null is V ′ = V [u→ ⊥]
and n)′

f a m. The remaining rules are dealt with by introducing ordered versions of the
merging and splitting functions, called µo and %o, respectively. As a general rule, the
new merging and splitting operations are performed on saturated abstract heaps, and
another saturation is applied to the result in order to maintain the desired precision.

Let n,m ∈ N be such that S(n) = m and m is not a cut point in H. We recall that the
result of µ(H,n,m) in this case is the abstract structure in which n takes the place of both
n and m. Then, µo(H̃,n,m) = 〈µ(H,n,m),o′,)′

f f ,)′
f a,)′

a f ,)′
aa〉 where o′,)′

f f , f a,a f ,aa
are the (unique) relations on N and N×N satisfying the following constraints, for all
p ∈ N \ {m}, q,r ∈ N \ {n} and 8 ∈ { f f , f a,a f ,aa}:

o(n) ∧ o(m) ∧ n)aa m⇔ o′(n) o(q) ⇔ o′(q) and q)8 r⇔ q)′
8 r

n) f f p⇔ n)′
f f p p) f f n⇔ p)′

f f n
p) f a n ∧ p) f a m⇔ p)′

f a n n) f a q⇔ n)′
f a q

n)a f p ∧ m)a f p⇔ n)′
a f p q)a f n⇔ q)′

a f n
n)aa p ∧ m)aa p⇔ n)′

aa p p)aa n ∧ p)aa m⇔ p)′
aa n

Lemma 4. Let H̃= 〈H,o,) f f ,) f a,)a f ,)aa〉 ∈ H̃ (PVar) be a saturated abstract heap,
where H = 〈N,S,V 〉 ∈ H (PVar), and n,m ∈ N such that S(n) = m and m is not a cut
point in H. Then, '(*(H̃)) = '(*(µo(H̃,n,m))).



The splitting operation on abstract structures replaces one node n with two nodes
n and m, such that m becomes the successor of n and the previous successor of n be-
comes the successor of m. In addition, the effect of the split operation on the order-
ing predicates is modeled by the rules given in the following. Formally, % o(H̃,n,m) =
〈%(H,n,m),o′,)′

f f ,)′
f a,)′

a f ,)′
aa〉, where o′,)′

f f , f a,a f ,aa are the (unique) relations on
N and N×N that satisfy the following constraints, for all p ∈ N \{n}, q,r ∈ N \{p,n},
and all 8 ∈ { f f , f a,a f ,aa}:

o′(n), n)′
8 n, 8 ∈ { f f , f a,a f ,aa}

o(n) ⇔ n)′
aa m ∧ o′(m) n)aa n⇔ n)′

aa m ∧ m)′
aa n ∧ m)′

aa m
n) f f p⇔ n)′

f f p p) f f n⇔ p)′
f f n

n) f a p⇔ n)′
f a p p) f a n⇔ p)′

f a n ∧ p)′
f a m

n)a f p⇔ n)′
a f p ∧ m)′

a f p p)a f n⇔ p)′
a f n

n)aa p⇔ n)′
aa p ∧ m)′

aa p p)aa n⇔ p)′
aa n ∧ p)′

aa m
o(q) ⇔ o′(q) q)8 r⇔ q)′

8 r

The first conditions concerning o ′(n) and n)′
8 n are due to the fact that the actual size

of the list segment represented by n is one, i.e. a split operation separates the head from
the tail of a list segment. The following Lemma formalizes the correctness % o:

Lemma 5. Let H̃= 〈H,o,) f f ,) f a,)a f ,)aa〉 ∈ H̃ (PVar) be a saturated abstract heap,
where H= 〈N,S,V 〉 ∈H(PVar), n∈N andm !∈N ′. Then,'(*(H̃))='(*(%o(H̃,n,m))).

A conditional test involving data u.data ≤ w.data evaluates true in the abstract
heap H̃ if and only if V (u) ) f f V (w) holds on sat(H̃). Otherwise, such tests introduce
non-determinism in the generated counter automaton. Therefore, the semantics of the
counter automaton is a simulation of the semantics of the original program, but not a
bisimulation anymore.

Theorem 4. Let 〈l, !,H〉 ∈ S be a concrete program state. Then, there exists 〈l ′, !′,H ′〉 ∈
S such that 〈l, !,H〉 c−→ 〈l′, !′,H ′〉 if only if there exists an abstract state 〈l, H̃ ′,#′〉 ∈ Sa
such that 〈l,'(H),#〉 a−→ 〈l′,H̃ ′,#′〉 and H ′ ∈ *(H̃ ′).

The following is a consequence of Theorems 1, 2 and 4.

Corollary 1. For every program with lists, if its counter automaton is flat, then safety
and termination are decidable properties.

Notice that the number of objects created by a single loop iteration in a flat list pro-
gram is always bounded by a constant, therefore its counter automaton is restrictive.
The linear and positive conditions can be established by inspection of the form of the
transitions in the abstract semantics4. If this automaton is moreover flat, we can ap-
ply Theorem 1. The result does not give us a purely syntactic criterion for decidability
of verification of list manipulating programs but still allows us to decide whether the
program falls into a significant decidable fragment or not.
4 Notice that the only negative coefficients in the transition relations are the base coefficients.



5 Experimental Results
In order to obtain experimental evidence about how our techniques behave in practice,
we have applied them to several non-trivial procedures manipulating singly-linked lists.
In particular, we have considered a procedure for reversing lists, whose behaviour we
have studied both for an acyclic as well as cyclic input, and then two procedures for
sorting lists, namely InsertSort and BubbleSort.

For all the examples, we generated (by hand—an implementation of the transla-
tion procedure is our future work) the corresponding counter automata. Sizes of the
automata—after some trivial simplifications joining sequences of states with no varia-
tion in the underlying heap graph—varied as follows: (1) 15 states and 3 counters for
reversing acyclic lists (no optimizations were used in this case), (2) 11 states and 3
counters for reversing cyclic lists, (3) 88 states and 6 counters for InsertSort, and (4)
149 states and 7 counters for BubbleSort (we considered the more practical version of
the sort with a pointer remembering the already sorted part of the list). For list reversing,
no ordering predicates were used.

As for the safety properties of the considered programs, we checked that there are no
null pointer assignments, no elements are lost, the shape is preserved, and—in the case
of the sorting algorithms—that the result is sorted. These properties may be checked by
generating a symbolically encoded set of the reachable configurations of the counter au-
tomaton corresponding to the program. Using an implementation of the abstract regular
model checking technique [9] based on LASH automata libraries [1], the verification
took 10 sec for the acyclic list reversion case study and 0.5 sec for cyclic list reversion
on a Pentium 4 machine with a 2.6 GHz processor.

Moreover, let us note that all the above properties may often be checked already
at the counter automaton extraction phase. The checking is mostly straightforward. A
slight complication is just checking that no elements of the list are lost via the u.next
:= w operations. However, even here a simple (fully automatable) heuristic may be
used. When we generate a counter automaton state containing a new abstract heap and
we can grant that some of its nodes have size one (e.g., after a u := w.next statement),
we remember this fact. Later when we again encounter such a heap and we cannot stat-
ically guarantee that the appropriate nodes have size one, we may drop the information.
Then, when we see that an u.next := w operation is performed on a node for which
we remembered that its size is one, we know that we do not loose any list elements. If
this is not the case, we have to analyse the dynamic behaviour of the counter automaton
and check whether it may actually happen that we loose some elements. In all our ex-
amples, however, we were able to perform all the checks (and thus verify the described
safety properties) statically (i.e. at the counter automaton extraction phase).

In addition to checking safety properties, we have also fully-automatically checked
that all the considered programs terminate. For checking termination, we analysed the
generated counter automata using the tool described in [12]. On the same machine as
above, we were able to check termination in 4 sec for reversing acyclic lists, 1.5 sec for
reversing cyclic lists, 90 sec for InsertSort, and 150 sec for BubbleSort.

6 Conclusion
We have presented an approach for automatic verification of programs with 1-selector
dynamic linked structures. It is based on using counter automata as accurate abstract
models for such programs. These infinite-state models can be handled using various



advanced techniques and tools which have been designed recently for their automatic
analysis (e.g., [1, 2, 5]), and in particular concerning checking termination and liveness
properties (e.g., [12, 11]). Indeed, using counters referring to the sizes of parts of the
heap structure (e.g., list segments) of a program is a powerful means for dealing with
quantitative reasoning about programs, and in particular about their termination. Our
future work naturally includes extending this approach to more general linked structures
such as doubly linked lists, tree-like structures, etc.
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