
HAL Id: hal-01418915
https://hal.science/hal-01418915

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logic of Singly Indexed Arrays
Peter Habermehl, Radu Iosif, Tomáš Vojnar

To cite this version:
Peter Habermehl, Radu Iosif, Tomáš Vojnar. A Logic of Singly Indexed Arrays. Logic for Program-
ming, Artificial Intelligence, and Reasoning, 15th International Conference, LPAR 2008„ Nov 2008,
Doha, Qatar. �10.1007/978-3-540-89439-1_39�. �hal-01418915�

https://hal.science/hal-01418915
https://hal.archives-ouvertes.fr

A Logic of Singly Indexed Arrays!

Peter Habermehl1, Radu Iosif2, and Tomáš Vojnar3

1 LSV, ENS Cachan, CNRS, INRIA; 61 av. du Président Wilson, F-94230 Cachan, France
and LIAFA, University Paris 7, Case 7014, 75205 Paris Cedex 13, haberm@liafa.jussieu.fr

2 VERIMAG, CNRS, 2 av. de Vignate, F-38610 Gières, France, e-mail:iosif@imag.fr
3 FIT BUT, Božetěchova 2, CZ-61266, Brno, Czech Republic, e-mail: vojnar@fit.vutbr.cz

Abstract. We present a logic interpreted over integer arrays, which allows dif-
ference bound comparisons between array elements situated within a constant
sized window. We show that the satisfiability problem for the logic is undecidable
for formulae with a quantifier prefix {∃,∀}∗∀∗∃∗∀∗. For formulae with quantifier
prefixes in the ∃∗∀∗ fragment, decidability is established by an automata-theoretic
argument. For each formula in the ∃∗∀∗ fragment, we can build a flat counter
automaton with difference bound transition rules (FCADBM) whose traces cor-
respond to the models of the formula. The construction is modular, following the
syntax of the formula. Decidability of the ∃∗∀∗ fragment of the logic is a conse-
quence of the fact that reachability of a control state is decidable for FCADBM.

1 Introduction

Arrays are commonplace data structures in most programming languages. Reasoning
about programs with arrays calls for expressive logics capable of encoding pre- and
post-conditions as well as loop invariants. Moreover, in order to automate program ver-
ification, one needs tractable logics whose satisfiability problems can be answered by
efficient algorithms.

In this paper, we present a logic of integer arrays based on universally quanti-
fied comparisons between array elements situated within a constant sized window, i.e.,
quantified boolean combinations of basic formulae of the form ∀i . !(i) → a 1[i+ k1]−
a2[i+ k2] ≤ m where ! is a positive boolean combination of bound and modulo con-
straints on the index variable i, a1 and a2 are array symbols, and k1,k2,m ∈ Z are inte-
ger constants. Hence the name of Single Index Logic (SIL). Note that SIL can also be
viewed as a fragment of Presburger arithmetic extended with uninterpreted functions
mapping naturals to integers.

The main idea in defining the logic is that only one universally quantified index may
be used on the right hand side of the implication within a basic formula. According
to [10], this restriction is not a real limitation of the expressive power of the logic
since a formula using two or more universally quantified variables in a difference bound
constraint on array values can be equivalently written in the form above, by introducing
fresh array symbols. This technique has been detailed in [10].

Working directly with singly-indexed formulae allows to devise a simple and ef-
ficient decision procedure for the satisfiability problem of the ∃∗∀∗ fragment of SIL,
! The work was supported by the French Ministry of Research (RNTL project AVERILES),
the Czech Grant Agency (projects 102/07/0322, 102/05/H050), the Czech-French Barrande
project MEB 020840, and the Czech Ministry of Education by project MSM 0021630528.

based on a modular translation of formulae into deterministic flat counter automata
with difference bound transition rules (FCADBM). This is possible due to the fact that
deterministic FCADBM are closed under union, intersection and complement, when
considering their sets of traces.

The satisfiability problem for ∃∗∀∗-SIL is thus reduced to checking reachability of
a control state in an FCADBM. The latter problem has been shown to be decidable
first in [6], by reduction to the satisfiability problem of Presburger arithmetic. Later on,
the method described in [4] reduced this problem to checking satisfiability of a linear
Diophantine system, leading to the implementation of the FLATA toolset [7].

Universally quantified formulae of the form ∀i . !(i) → "(i) are a natural choice
when reasoning about arrays as one usually tend to describe facts that must hold for
all array elements (array invariants). A natural question is whether a more complex
quantification scheme is possible, while preserving decidability. In this paper, we show
that the satisfiability problem for the class of formulae with quantifier prefixes of the
form ∀∗∃∗∀∗ is already undecidable, providing thus a formal reason for the choice of
working with existentially quantified boolean combinations of universal basic formulae.
The contribution of this paper is hence three-fold:
– we show that the satisfiability problem for the class of formulae with quantifier
prefixes of the form ∀∗∃∗∀∗ is undecidable,

– we define a class of counter automata that is closed under union, intersection and
complement of their sets of traces,

– we provide a decision procedure for the satisfiability problem within the fragment
of formulae with alternation depth of at most one, based on a modular, simple, and
efficient translation of formulae into counter automata.
The practical usefulness of the SIL logic is shown by giving a number of examples

of properties that are recurrent in programs handling array data structures.

Related Work. The saga of papers on logical theories of arrays starts with the seminal
paper [15], in which the read and write functions from/to arrays and their logical axioms
were introduced. A decision procedure for the quantifier-free fragment of the theory of
arrays was presented in [12]. Since then, various quantifier-free decidable logics on
arrays have been considered—e.g., [17, 13, 11, 16, 1, 8].

In [5], an interesting logic, within the ∃∗∀∗ quantifier fragment, is developed. Unlike
our decision procedure based on automata theory, the decision procedure of [5] is based
on a model-theoretic observation, allowing to replace universal quantification by a finite
conjunction. The decidability of their theory depends on the decidability of the base
theory of array values. However, compared to our results, [5] does not allow modulo
constraints (allowing to speak about periodicity in the array values) nor reasoning about
array entries at a fixed distance (i.e., reasoning about a[i] and a[i+k] for a constant k and
a universally quantified index i). The authors of [5] give also interesting undecidability
results for extensions of their logic. For example, they show that relating adjacent array
values (a[i] and a[i+1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within ∃∗∀∗ formulae is also allowed
in [2], where decidability is obtained based on a small model property. Unlike [5] and
our work, [2] allows a hierarchy-restricted form of array nesting. However, similar to
the restrictions presented above, neither modulo constraints on indices, nor reasoning
about array entries at a fixed distance are allowed. A similar restriction not allowing to

2

express properties of consecutive elements of arrays appears also in [3], where a quite
general ∃∗∀∗ logic on multisets of elements with associated data values is considered.

The closest in spirit to the present paper is our previous work in [10]. There, we es-
tablished decidability of formulae in the ∃∗∀∗ quantifier prefix class when references to
adjacent array values (e.g., a[i] and a[i+1]) are not used in disjunctive terms. However,
there are two essential differences between this work and the one reported in [10].

On one hand, the basic propositions from [10], allowing multiple universally quanti-
fied indices could not be translated directly into counter automata. This led to a complex
elimination procedure based on introducing new array symbols, which produces singly-
indexed formulae. However, the automata resulting from this procedure are not closed
under complement. Therefore, negation had to be eliminated prior to reducing the for-
mula to the singly-indexed form, causing further complexity. In the present work, we
start directly with singly-indexed formulae, convert them into automata, and compose
the automata directly using boolean operators (union, intersection, complement).

On the other hand, using universally quantified array property formulae as building
blocks for the formulae, although intuitive, is not formally justified in [10]. Here, we
prove that alternating quantifiers to a depth more than two leads to undecidability.

Roadmap. The paper is organised as follows. Section 2 introduces the necessary no-
tions on counter automata and defines the class of FCADBM. Section 3 defines the
logic SIL. Next, Section 4 gives the undecidability result for the entire logic, while
Section 5 proves decidability of the satisfiability for the ∃∗∀∗ fragment, by translation
to deterministic FCADBM. Finally, Section 6 presents some concluding remarks. For
space reasons, most of the proofs are deferred to [9].

2 Counter Automata
Given a formula #, we denote by FV (#) the set of its free variables. If we denote
a formula as #(x1, ...,xn), we assume FV (#) ⊆ {x1, ...,xn}. For #(x), we denote by
#[t/x] the formula in which each free occurrence of x is replaced by a term t. Given
a formula #, we denote by |= # the fact that # is logically valid, i.e., it holds in every
structure corresponding to its signature.

A difference bound matrix (DBM) formula is a conjunction of inequalities of the
forms (1) x− y ≤ c, (2) x ≤ c, or (3) x ≥ c, where c ∈ Z is a constant. We denote
by * (true) the empty DBM. It is well-known that the negation of a DBM formula is
equivalent to a finite disjunction of pairwise disjoint DBM formulae since, e.g., ¬(x−
y≤ c) ⇐⇒ y− x≤−c−1 and ¬(x≤ c) ⇐⇒ x≥ c+1. In particular, the negation of
* is the empty disjunction, denoted as ⊥ (false).

A counter automaton (CA) is a tuple A= 〈x,Q, I,−→,F〉 where:
– x is a finite set of counters ranging over Z,
– Q is a finite set of control states,
– I ⊆Q is a set of initial states,
– −→ is a transition relation given by a set of rules q #(x,x′)−−−−→ q′ where # is an arithmetic
formula relating current values of counters x to their future values x ′ = {x′ | x ∈ x},

– F ⊆ Q is a set of final states.

A configuration of a counter automaton A is a pair (q,$) where q ∈ Q is a control
state, and $: x→Z is a valuation of the counters in x. For a configuration c= (q,$), we

3

designate by val(c) = $ the valuation of the counters in c. A configuration (q ′,$′) is an

immediate successor of (q,$) if and only if A has a transition rule q #(x,x′)−−−−→ q′ such that
|= #($(x),$′(x′)). A configuration c is a successor of another configuration c ′ if and
only if there exists a finite sequence of configurations c= c1c2 . . .cn = c′ such that, for
all 1 ≤ i < n, ci+1 is an immediate successor of ci. Given two control states q,q′ ∈ Q,
a run of A from q to q ′ is a finite sequence of configurations c1c2 . . .cn with c1 = (q,$),
cn = (q′,$′) for some valuations $,$′ : x→ Z, and ci+1 is an immediate successor of ci,
for all 1≤ i< n. Let R (A) denote the set of runs of A from some initial state q 0 ∈ I to
some final state q f ∈ F , and Tr(A) = {val(c1)val(c2) . . .val(cn) | c1c2 . . .cn ∈ R (A)}
be its set of valuation traces. If z ⊆ x is a subset of the counters of A and $: x→ Z is
a valuation of its counters, let $↓z be the restriction of $ to the counters in z. If c= (q,$)
is a configuration of A, we denote c↓z= (q,$↓z) and Tr(A)↓z= {val(c1)↓z val(c2)↓z
. . .val(cn)↓z | c1c2 . . .cn ∈ R (A)}.

A counter z ∈ x is called a parameter of A if and only if, for each % = $ 1 . . .$n ∈
Tr(A), we have $1(z) = . . . = $n(z), in other words the value of the counter does not
change during any run of A.

A control path in a counter automaton A is a finite sequence q 1q2 . . .qn of control
states such that, for all 1 ≤ i < n, there exists a transition rule qi

#i−→ qi+1. A cycle is
a control path starting and ending in the same control state. An elementary cycle is
a cycle in which each state appears only once, except for the first one, which appears
both at the beginning and at the end. A counter automaton is said to be flat iff each
control state belongs to at most one elementary cycle.

A counter automatonA is said to be deterministic if and only if (1) it has exactly one
initial state, and (2) for each pair of transition rules with the same source state q #−→ q′

and q &−→ q′′, we have |= ¬(#∧&). It is easy to prove that, given a deterministic counter
automaton A, for each sequence of valuations $ 1$2 . . .$n ∈ Tr(A) there exists exactly
one control path q1q2 . . .qn such that (q0,$1)(q1,$2) . . . (qn−1,$n) ∈ R (A).

2.1 Flat Counter Automata with DBM Transition Rules

In the rest of the paper, we use the class of flat counter automata with DBM transition
rules (FCADBM). They are defined to be flat counter automata where each transition
in a cycle is labelled by a DBM formula and each transition not in a cycle is labelled
by a conjunction of a DBM formula with a (possibly empty) conjunction of modulo
constraints on parameters of the form z≡ s t where 0≤ t < s.

An extension of this class has been studied in [10]. Using results of [6, 4], [10]
shows that, given a CA A= 〈x,Q, I,−→,F〉 in the class it considers and a pair of control
states q,q′ ∈ Q, the set Vq,q′ = {($,$′) ∈ (x 4→ Z)2 | A has a run from (q,$) to (q′,$′)}
is Presburger-definable. As an immediate consequence, the emptiness problem for A,
i.e., Tr(A) ?= /0, is decidable.

Theorem 1. The emptiness problem for FCADBM is decidable.

In this section, we show that deterministic FCADBM are closed under union, inter-
section, and complement of their sets of traces. Let Ai = 〈x,Qi,{q0i},→i,Fi〉, i = 1,2,

4

be two deterministic FCADBM with the same set of counters. Note that this is not a re-
striction as one can add unrestricted counters without changing the behaviour of a CA.
We first show closure under intersection by defining the CA A1⊗A2 = 〈x,Q1×Q2,
{(q01,q02)},→, F1× F2〉 where (q1,q2)

#−→ (q′1,q′2) ⇐⇒ q1
&1→1 q′1, q2

&2→2 q′2, and
|= #↔ &1∧&1. The next lemma proves the correctness of our construction.
Lemma 1. For any two deterministic FCADBM Ai = 〈x,Qi,{qi0},→i,Fi〉, i = 1,2,
A1⊗A2 is a deterministic FCADBM, and Tr(A1⊗A2) = Tr(A1)∩Tr(A2).

Let A = 〈x,Q, I,−→,F〉 be a deterministic FCADBM. Then we define A = 〈x,Q∪
{qs}, I,→′,(Q\F)∪{qs}〉 where qs :∈Q is a fresh sink state. The transition relation→′

is defined as follows. For a control state q ∈ Q, let OA(q) =
W
q
#−→q′

#.4 Then, we have:

– qs
*→′qs, q

#→′q′ for each q #→ q′, and
– q &i→′qs, for all 1≤ i≤ k, where&i are (unique) conjunctions of DBMs and modulo
constraints5 such that |=¬OA(q)↔

Wk
i=1&i and |=¬(&i∧& j) for i := j, 1≤ i, j≤ k.

Flatness of A is a consequence of the fact that the only cycle of A, which did not exist
in A, is the self-loop around qs. That is, the newly added transitions do not create new
cycles. It is immediate to see thatA is deterministic wheneverA is. The following lemma
formalises correctness of the complement construction, proving thus that deterministic
FCADBM are effectively closed under union6, intersection, and complement of their
sets of traces.

Lemma 2. Given a deterministic FCADBM A = 〈x,Q,{q0},→,F〉, for any finite se-
quence of valuations % ∈ (x 4→ Z)∗, we have % ∈ Tr(A) if and only if % :∈ Tr(A).

3 A Logic of Integer Arrays

3.1 Syntax
We consider three types of variables. The array-bound variables (k, l) appear within the
bounds that define the intervals in which some property is required to hold. Let BVar
denote the set of bound variables. The index (i, j) and array (a,b) variables are used
in array terms. Let IVar denote the set of integer variables and AVar denote the set of
array variables. All variable sets are supposed to be finite and of known cardinality.

Fig. 1 shows the syntax of the Single Index Logic SIL. The term |a| denotes the
length of an array variable a. We use the symbol * to denote the boolean value true.
In the following, we will write f ≤ i ≤ g instead of f ≤ i ∧ i ≤ g, i < f instead of
i ≤ f − 1, i = f instead of f ≤ i ≤ f , #1 ∨#2 instead of ¬(¬#1 ∧¬#2), and ∀i . "(i)
instead of ∀i . *→ "(i). If "1(k1), . . . , "n(kn) are array-bound terms with free variables
k1, . . . ,kn ∈BVar, respectively, we write any DBM formula# on terms a1["1], . . . ,an["n],
as a shorthand for (

Vn
k=1 ∀ j . j = "k → ak[j] = lk)∧#[l1/a1["1], . . . , ln/an["n]], where

l1, . . . , ln are fresh array-bound variables.
4 If q has no immediate successors, then OA(q) is false by default.
5 The negation of z≡s t with t < s is equivalent to

W
t ′∈{0,...,s−1}\{t} z≡s t ′.

6 The FCADBM whose set of traces is the union of the sets of traces of two given FCADBM
A1, A2 can be obtained simply as A1⊗A2.

5

n,m, p . . . ∈ Z constants
k, l, . . . ∈ BVar array-bound variables
i, j, . . . ∈ IVar index variables
a,b, . . . ∈ AVar array variables
∼ ∈ {≤,≥}

B := n | k+n | |a|+n array-bound terms
G := * | i− j ≤ n | i≤ B | B≤ i | i≡s t | G∧G | G∨G guard expressions (0≤ t < s)
V := a[i+n] ∼ B | a[i+n]−b[i+m] ∼ p |

i−a[i+n] ∼ m | V ∧V value expressions
C := B∼ n | B−B≤ n | B≡s t array-bound constraints (0≤ t < s)
P := ∀i . G→V array properties
F := P |C | ¬F | F ∧ F | F ∨ F | ∃i . F formulae

Fig. 1. Syntax of the Single Index Logic

For reasons that will be made clear later on, we allow only one index variable to oc-
cur within the right hand side of the implication in an array property formula ∀i . !→ ",
i.e., we require FV (")∩ IVar = {i}. Hence the name Single Index Logic (SIL). Note
that this does not restrict the expressive power w.r.t. the logic considered in [10]. One
can always circumvent this restriction by using the method from [10] based on adding
new array symbols together with a transitive (increasing, decreasing, or constant) con-
straint on their adjacent values. This way a relation between arbitrarily distant entries
a[i] and b[j] is decomposed into a sequence of relations between neighbouring entries
of a, b, and entries of the auxiliary arrays. However this transformation would greatly
complicate the decision procedure, hence we prefer to avoid it here.

Notice also that one can compare an array value with an array-bound variable, or
with another array value on the right hand side of an implication in an array property
formula ∀i . !→ ", but one cannot relate two or more array values with array-bound
parameters in the same expression. Allowing more complex comparisons between array
values would impact upon the decidability result reported in Section 5. For the same
reason, disjunctive terms are not allowed on the right hand side of implications in array
properties: Intuitivelly, allowing disjunctions in value expressions would allow one to
code 2-counter machines with possibly nested loops (as shown already in [10]).

Let " be a value expression written in the syntax of Fig. 1 (starting with the V non-
terminal). Let B(") be the formula defined inductively on the structure of " as follows:
– B(a[i+n]≤ B) = B(B≤ a[i+n]) = 0≤ i+n< |a|
– B(i−a[i+n]≤ m) = B(a[i+n]− i≤ m) = 0≤ i+n< |a|
– B(a[i+n]−b[i+m]≤ p) = 0≤ i+n< |a| ∧ 0≤ i+m< |b|
– B("1∧"2) = B("1)∧B("2)

Intuitively,B(") is the conjunction of all sanity conditions needed in order for the array
accesses in " to occur within proper bounds.

3.2 Semantics
Let us fix AVar= {a1,a2, . . . ,ak} as the set of array variables for the rest of this section.
A valuation is a pair of partial functions 〈',µ〉 where ' : BVar∪ IVar→ Z⊥ associates

6

an integer value with every free integer variable, and µ : AVar→ Z∗ associates a finite
sequence of integers with every array symbol a ∈ AVar. If % ∈ Z ∗ is such a sequence,
we denote by |%| its length and by % i its i-th element.

By I',µ(t), we denote the value of the term t under the valuation 〈',µ〉. The semantics
of a formula # is defined in terms of the forcing relation |= as follows:

I',µ(|a|) = |µ(a)|
I',µ(a[i+n]) = µ(a)'(i)+n

〈',µ〉 |= a[i+n]≤ B ⇐⇒ I',µ(a[i+n])≤ '(B)
〈',µ〉 |= A1−A2 ≤ n ⇐⇒ I',µ(A1)− I',µ(A2) ≤ n
〈',µ〉 |= ∀i . G→V ⇐⇒ ∀ n ∈ Z . 〈'[i← n],µ〉 |= G∧B(V) →V

〈',µ〉 |= ∃i . F ⇐⇒ 〈'[i← n],µ〉 |= F for some n ∈ N

Notice that the semantics of an array property formula ∀i .G→V ignores all values
of i for which the array accesses ofV are undefined since we consider only the values of
i fromZ that satisfy the safety assumptionB(V). For space reasons, we do not give here
a full definition of the semantics. However, the missing rules are standard in first-order
arithmetic. A model of a SIL formula #(k,a) is a valuation 〈',µ〉 such that the formula
obtained by interpreting each variable k ∈ k as '(k) and each array variable a ∈ a as
µ(a) is logically valid: 〈',µ〉 |= #. We define [[#]] = {〈',µ〉 | 〈',µ〉 |= #}. A formula is
said to be:
– satisfiable if and only if [[#]] := /0, and
– valid if and only if [[#]] = (BVar∪ IVar→ Z⊥)× (AVar→ Z∗)

With these definitions, the satisfiability problem asks, given a formula # if it has at least
one model. Without losing generality, for the satisfiability problem, we can assume that
the quantifier prefix of # (in prenex normal form) does not start with ∃. Dually, the
validity problem asks whether a given formula holds on every possible model. Symmet-
rically, for the validity problem, one can assume w.l.o.g. that the quantifier prefix of the
given formula does not start with ∀.

3.3 Examples
We now illustrate the syntax, semantics, and use of the logic SIL on a number of ex-
amples. For instance, the formula ∀i . a[i] = 0 is satisfied by all functions µ mapping a
to a finite sequence of 0’s, i.e., µ(a) ∈ 0∗. It is semantically equivalent to ∀i . 0 ≤ i <
|a| → a[i] = 0, in which the range of i has been made explicit.

The formula ∀i . 0≤ i< k→ a[i] = 0 is satisfied by all pairs 〈',µ〉 where µ maps a
to a sequence whose first '(k) elements (if they exist) are 0, i.e., µ(a) ∈ {0n | 1 ≤ n<
'(k)} ∪ 0'(k)Z∗. It is semantically equivalent to ∀i . 0≤ i<min(|a|,k) → a[i] = 0.

The capability of SIL to relate array entries at fixed distances (missing in many
decidable logics such as those considered in [2, 5, 3]) is illustrated on a bigger example
below. The modulo constraints on the index variables can then be used to state periodic
facts. For instance, the formula ∀i . i≡2 0→ a[i] = 0∧∀i . i≡2 1→ a[i] = 1 describes
the set of arrays a in which the elements on even positions have the value 0, and the
elements on odd positions have the value 1.

The logic SIL also allows direct comparisons between indices and values. For in-
stance, the formula ∀i . a[i] = i+ 1 is satisfied by all arrays a which are of the form

7

1234 Alternatively, this can be specified as a[0] = 1 ∧ ∀i . a[i+1] = a[i]+1 where
a[0] = 1 is a shorthand for ∀i . i= 0→ a[i] = 1. Further, the set of arrays in which the
value at position n is between zero and n can be specified by writing ∀i . 0 ≤ a[i] < i,
which cannot be described without an explicit comparison between indices and values
(unless a comparison with an additional array describing the sequence 1234 . . . is used).

Checking verification conditions for array manipulating programs. The decision proce-
dure for checking satisfiability of SIL formulae, described later on, can be used for dis-
charging verification conditions of various interesting array-manipulating procedures.
As a concrete example, let us consider the procedure for an in-situ left rotation of arrays,
given below. We annotate the procedure (using double braces) with a pre-condition,
post-condition, and a loop invariant. We distinguish below logical variables from pro-
gram variables (typeset in print). The variable a 0 is a logical variable that relates the
initial values of the array a with the values after the rotation.

{{ |a| = |a0| ∧∀ j.a[j] = a0[j] }}
x=a[0];
for (i=0; i < |a|-1; i++)
{{ x = a0[0]∧∀ j.0≤ j < i→ a[j] = a0[j+1]∧∀ j.i≤ j < |a| → a[j] = a0[j] }}
a[i]=a[i+1];

a[|a|-1]=x;
{{ a[|a|−1] = a0[0]∧∀ j.0≤ j < |a|−1→ a[j] = a0[j+1]) }}

To check (partial) correctness of the procedure, one needs to check three verifica-
tion conditions out of which we discuss one here (the others are similar). Namely, we
consider checking the loop invariant, which requires checking validity of the formula:

x = a0[0]∧∀ j.0≤ j < i→ a[j] = a0[j+1] ∧ ∀ j.i≤ j < |a| → a[j] = a0[j] ∧
i < |a|−1∧|a′| = |a| ∧i′ = i+1∧x′ = x∧a′[i] = a[i+1]∧∀ j. j := i→ a′[j] = a[j]

−→
x′ = a0[0]∧∀ j.0≤ j < i′ → a′[j] = a0[j+1] ∧ ∀ j.i′ ≤ j < |a′| → a′[j] = a0[j]

Primed variables denote the values of program variables after one iteration of the loop.
Checking validity of this formula amounts to checking that its negation is unsatisfiable.
The latter condition is expressible in the decidable fragment of SIL. Note that the con-
ditions used above refer to adjacent array positions, which could not be expressed in the
logics defined in [2, 5, 3].

4 Undecidability of the Logic SIL
In this section, we show that the satisfiability problem for the ∀∗∃∗∀∗ fragment of SIL is
undecidable, by reducing from the Hilbert’s Tenth Problem [14]. In the following, Sec-
tion 5 proves the decidability of the satisfiability problem for the fragment of boolean
combinations of universally quantified array property formulae—the satisfiability of the
∀∗ fragment is proven. Since the leading existential prefix is irrelevant when one speaks
about satisfiability, referring either to ∀∗∃∗∀∗ or to ∃∗∀∗∃∗∀∗ makes no difference in
this case. However, the question concerning the validity problem for the ∃ ∗∀∗ fragment
of SIL is still open.

8

First, we show that multiplication and addition of strictly positive integers can be
encoded using formulae of ∀∗∃∗∀∗-SIL. Let x,y,z ∈ N, with z> 0. We define:

#1(j) : a2[j] > 0∧a3[j] > 0∧a1[j+1] = a1[j]+1∧a2[j+1] = a2[j]−1∧
∧ a3[j+1] = a3[j]

#2(j) : a2[j] = 0∧a3[j] > 0∧a1[j+1] = a1[j]∧a2[j+1] = y∧a3[j+1] = a3[j]−1

#x=yz(a1,a2,a3,n1,n2) : n1 < n2∧a1[n1] = 0∧a2[n1] = y∧a3[n1] = z∧a1[n2] = x∧
∧ a3[n2] = 0∧∀i.(n1 ≤ i< n2 →∃ j.i≤ j < n2∧#2(j)∧∀k.(i ≤ k < j→ #1(k)))

Notice that #x=yz is in the ∀∗∃∗∀∗ quantifier fragment of SIL.

Lemma 3. #x=yz(a1,a2,a3,n1,n2) is satisfiable if and only if x= yz.

Proof. We first suppose that x = yz and give a model of #x=yz(a1,a2,a3,n1,n2). We
choose n1 = 0 and n2 = (y+1)z. Then, we choose a1[n2] = x, a2[n2] = y and a3[n2] = 0.
Furthermore, for all j such that 0 ≤ j < z and for all i such that 0 ≤ i ≤ y, we choose
a1[i+ j(y+1)] = i+ jy, a2[i+ j(y+1)] = y− i and a3[i+ j(y+1)] = z− j. Then, it is
easy to check that this is a model of #x=yz(a1,a2,a3,n1,n2).

Let us consider now a model of #x=yz(a1,a2,a3,n1,n2). We show that this implies
x= yz. A model of n1 < n2∧a1[n1] = 0∧a2[n1] = y∧a3[n1] = z∧a1[n2] = x∧a3[n2] =
0∧∀i.(n1 ≤ i< n2→∃ j.i≤ j< n2∧#2(j)∧∀k.(i≤ k< j→ #1(k))) assigns values to
n1 and n2 and defines array values for a1, a2, and a3 between bounds n1 and n2. Clearly,
a1[n1] = 0, a2[n1] = y, a3[n1] = z, a1[n2] = x, and a3[n2] = 0. Due to their definition,
#1(j) and #2(j) cannot be true at the same point j since |= #1(j) → a2[j] > 0 and
|= #2(j) → a2[j] = 0.

Since the subformula ∀i.(n1 ≤ i < n2 → ∃ j.i ≤ j < n2 ∧#2(j)∧∀k.(i ≤ k < j →
#1(k))) holds, it is then clear that there exists points j1, . . . , jl with l > 0 and n1 ≤ j1 <
j2 < · · · < jl = n2− 1 such that #2(j) holds at all of these points. Furthermore, at all
intermediary points k not equal to one of the j i’s, #1(k) has to be true. This implies
that l must be equal to z (since #1(k) imposes a3[k+1] = a3[k] whereas #2(j) imposes
a3[j+1] = a3[j]−1).

Let us examine the intermediary points between n1 and j1. Due to a1[n1] = 0,
a2[n1] = y, a3[n1] = z and #1(k) being true for all k such that n1 ≤ k < j1 as well as
#2(j1) being true, we must have j1 = y+ n1, and, for all k such that n1 < k ≤ j1, we
have a1[k] = k−n1, a2[k] = y− k+n1, and a3[k] = z. Furthermore, since #2(j1) is true,
we have a1[j1 + 1] = y, a2[j1 + 1] = y, and a3[j1 + 1] = z− 1. We can continue this
reasoning with the intermediary points between j1 and j2 and so on up to jl . At the
end we get a3[jl +1] = 0 and a1[jl +1] = a1[n2] = yl. Since l = z and a1[n2] = x, this
implies x= yz. >?

Next, we define:

#3(j) : a2[j] > 0∧a1[j+1] = a1[j]+1∧a2[j+1] = a2[j]−1

#x=y+z(a1,a2,n1,n2) : n1 < n2∧a1[n1] = y∧a2[n1] = z∧a1[n2] = x∧a2[n2] = 0 ∧
∧ ∀k.n1 ≤ k < n2→ #3(k)

9

Lemma 4. #x=y+z(a1,a2,n1,n2) is satisfiable if and only if x= y+ z.

Proof. Similar to Lemma 3. >?

We are now ready to reduce from the Hilbert’s Tenth Problem [14]. Given a Dio-
phantine system S, we construct a SIL formula (S which is satisfiable if and only if
the system has a solution. Without loss of generality, we can suppose that all variables
in S range over strictly positive integers. Then S can be equivalently written as a sys-
tem of equations of the form x = yz and x = y+ z by introducing fresh variables. Let
{x1, . . . ,xk} be the variables of these equations. We enumerate separately all equations
of the form x= yz and those of the form x = y+ z. Let nm be the number of equations
of the form x= yz and na the number of equations of the form x= y+ z.

Let (S be the following SIL formula with three array symbols (a 1,a2 and a3):

∃x1 . . .∃xk∃m11 . . .∃m1nm+na∃m
2
1 . . .∃m2nm+na

nm+na−1^

i=1
m2i < m1i+1∧

nm̂

i=1
#i∧

nâ

i=1
#′i

where the formulae #i and #′
i are defined as follows: Let xi1 = xi2xi3 be the i-th mul-

tiplicative equation. Then, #i = #xi1=xi2xi3 (a1,a2,a3,m
1
i ,m2i). Let xi1 = xi2 + xi3 be the

i-th additive equation. Then, # ′
i = #xi1=xi2+xi3 (a1,a2,m

1
nm+i,m2nm+i).

Lemma 5. A Diophantine system S has a solution if and only if the corresponding
formula (S is satisfiable.

Proof. The Diophantine system S is equivalently written as a conjunction of equations
of the form x = yz and x = y+ z using variables {x1, . . . ,xk}. Then, the Diophantine
system has a solution if and only if all equations of the form x = yz and x = y+ z
have a common solution. Since all pairs m1i and m2i denote disjoint intervals and using
Lemmas 3 and 4, we have that all equations of the form x = yz and x = y+ z have
a common solution if and only if (S is satisfiable. >?

5 Decidability of the Satisfiability Problem for ∃∗∀∗-SIL

We show that the set of models of a boolean combination# of universally quantified ar-
ray property formulae of SIL corresponds to the set of runs of an FCADBM A #, defined
inductively on the structure of the formula. More precisely, each array variable in # has
a corresponding counter in A#, and given any model of # that associates integer values
to all array entries, A# has a run in which the values of the counters at different points
of the run match the values of the array entries at corresponding positions in the model.
Since the emptiness problem is decidable for FCADBM, this leads to decidability of
the satisfiability problem for ∃∗∀∗-SIL (or equivalently, for ∀∗-SIL).

5.1 Normalisation

Before describing the translation of ∃∗∀∗-SIL formulae into counter automata, we need
to perform a simple normalisation step. Let #(k,a) be a SIL formula in the ∃∗∀∗ frag-
ment i.e., an existentially quantified boolean combination of (1) DBM conditions or

10

modulo constraints on array-bound variables k and array length terms |a|, a ∈ a, and
(2) array properties of the form ∀i . !(i,k, |a|) → "(i,k,a)7. Without losing generality,
we assume that the sanity condition B(") is explicitly conjoined to the guard of every
array property i.e., each array property is of the form ∀i . !∧B(") → ".

A guard expression is a conjunction of array-bound expressions i∼ ", ∼ ∈ {≤,≥},
or modulo constraints i ≡s t where " is a an array bound term, and s,t ∈ N such that
0 ≤ t < s. For a guard ! and an integer constant c ∈ Z, we denote by !+ c the guard
obtained by replacing each array-bound expression i∼ b by i∼ b+ c and each modulo
constraint i≡s t by i≡s t ′ where 0≤ t ′ < s and t ′ ≡s t+ c.

The normalisation consists in performing the following steps in succession:

1. Replace each array property subformula ∀i .
W
j ! j →

V
k"k by the equivalent con-

junction
V
j,k ∀i . ! j → "k where ! j are guard expressions and "k are either a[i+n]∼

", a[i+ n]− b[i+m]∼ p, or i− a[i+ n]∼ m, where m,n, p ∈ Z, ∼∈ {≤,≥} and "
is an array bound term.

2. Simplify each newly obtained array property subformula as follows:

∀i . !→ a[i+n]∼ " ! ∀i . !+n→ a[i] ∼ "

∀i . !→ i−a[i+n]∼m ! ∀i . !+n→ i−a[i]∼ m+n
∀i . !→ a[i+n]−b[i+m]∼ p ! ∀i . !+n→ a[i]−b[i+m−n]∼ p if m≥ n
∀i . !→ a[i+n]−b[i+m]∼ p ! ∀i . !+m→ b[i]−a[i+n−m]∼− p if m< n

where:
– ∼∈ {≤,≥} and∼ is ≥ (≤) if ∼ is ≤ (≥), respectively, and
– " is an array-bound term, and m,n, p ∈ Z.

3. For each array property& : ∀i . !(i)→ "(i), let B& = {b1, . . . ,bn} be the set of array-
bound terms occurring in !. Then replace& by the disjunction

W
1≤i, j≤n

V
1≤k≤n bi≤

bk ≤ b j ∧& (one considers all possible cases of minimal and maximal values for
array-bound terms), and simplify all subformulae of the form

V
j i≤ b j (

V
j i≥ b j)

from ! to exactly one upper (lower) bound, according to the current conjunctive
clause. If the lower and upper bound that appear in ! are inconsistent with the
chosenminimal and maximal value added by the transformation to& (i.e., the lower
bound is assumed to be bigger than the upper one), we replace & in the concerned
conjunctive clause by * as it is trivially satisfied.

4. Rewrite each conjunction
V
j i≡s j t j occurring within the guards of array property

formulae into
V
j i≡S

S·t j
s j where S is the least common multiple of s j , and simplify

the conjunction either to false (in which case the array property subformula is vac-
uously true), or to a formula i ≡S t. In case there is no modulo constraint within
a guard, for uniformity reasons, conjoin the guard with the constraint i≡ 1 0.

7 An array property formula with more than one universally quantified index vari-
able occurring in the guard can be equivalently written as an array property for-
mula whose guard has exactly one universally quantified index variable. Indeed,
a formula of the form ∀i1, . . . , in . !(i1, . . . , in,k, |a|) → "(i1,k,a) is equivalent to
∀i1 . ((∃i2, . . . , in . !(i1, . . . , in,k, |a|)) → "(i1,k,a)) and then the existential quantifiers in
(∃i2, . . . , in . !(i1, . . . , in,k, |a|)) can be eliminated possibly adding modulo constraints on k,
|a| and i1.

11

5. Transform each array property subformula of the form

∀i . f ≤ i≤ g∧ i≡s t −→ a[i]−b[i+m]∼ n

where m> 1, n ∈ Z, and 0≤ t < s into the following conjunction:

∀i . f ≤ i≤ g∧ i≡s t −→ a[i]−)1[i+1]∼ 0 ∧
Vm−2
j=1 ∀i. f + j ≤ i≤ g+ j∧ i≡s (t+ j)mod s −→) j[i]−) j+1[i+1]∼ 0 ∧

∀i . f +m−1≤ i≤ g+m−1∧ i≡s (t+m−1)mod s −→)m−1[i]−b[i+1]∼ n

where)1,)2, . . . ,)m−1 are fresh array variables. Figure 2 depicts this transformation
for ∼=≤ – the case ∼=≥ is similar.

...

g

0 0 0 0
0 0 0 0

f
a
)1
)2

b

f +m

)m−1 n n n n
g+m

Fig. 2. Adding fresh array variables to array property formulae ∀i . f ≤ i∧ i ≤ g ∧ i ≡s t →
a[i]−b[i+m] ≤ n

The result of the normalisation step is a boolean combination of (1) DBM conditions
or modulo constraints on array-bound variables k and array length terms |a|, a ∈ a and
(2) array properties of the following form:

∀i . f ≤ i≤ g ∧ i≡s t → "

where f and g are array-bound terms, s,t ∈ N, 0≤ s< t, and " is one of the following:

(1) a[i] ∼ ", (2) i−a[i]∼ n, (3) a[i]−b[i+1]∼ n

where ∼∈ {≤,≥}, n ∈ Z, and " is an array-bound term.
We need the following definition to state the normal form lemma. If X ⊆ AVar is

a set of array variables, then µ↓X represents the restriction of µ : AVar→ Z∗ to the vari-
ables in X . For a formula # of SIL, we denote by [[#]]↓X the set {〈',µ↓X〉 | 〈',µ〉 |= #}.
Lemma 6. Let #(k,a) be a formula of ∃∗∀∗-SIL and *(k,a, t) be the formula obtained
from # by normalisation where t is the set of fresh array variables added during nor-
malisation. Then we have [[#]] = [[*]]↓a.

5.2 Translating Normalised Formulae into FCADBM.
Let #(k,a) be an ∃∗∀∗-SIL formula that is already normalised as in the previous. The
automaton encoding the models of # is in fact a product A# = A#⊗ Atick, where A#
is defined inductively on the structure of #, and Atick is a generic FCADBM, defined
next. Both A# and Atick (and, implicitly A#) work with the set of counters x= {xk | k ∈
k} ∪{ x|a| | a ∈ a} ∪ {xa | a ∈ a} ∪ {xtick}, where:

12

– xk and x|a| are parameters corresponding to array-bound variables, i.e., their values
do not change during the runs of A#,

– xa are counters corresponding to the array symbols, and
– xtick is a special counter that is initialised to zero and incremented by each transition.

The main intuition behind the automata construction is that, for each model 〈',µ〉 of #,
there exists a run of A# such that, for each array symbol a ∈ a, the value µ(a)n equals
the value of xa when xtick equals n, for all 0 ≤ n < |a|. The reason behind defining
A# as the product of A# and Atick is that the use of negation within #, which involves
complementation on the automata level, may not affect the flow of ticks, just the way
they are dealt with within the guards. For this reason, A# can only read x), while Atick is
the one updating it.

Formally, let Atick = 〈x,{q0,qtick},{q0},→tick,{qtick}〉, where

q0
xtick=0 ∧ x′tick=xtick+1 ∧

V
k∈k x′k=xk ∧

V
a∈a x′|a|=x|a|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qtick

and

qtick
x′tick=xtick+1 ∧

V
k∈k x′k=xk ∧

V
a∈a x′|a|=x|a|−−−−−−−−−−−−−−−−−−−−−−−−−→ qtick

are the only transitions rules. The construction of A# is recursive on the structure of #:

– if # is a DBM constraint or modulo constraint + on array-bound terms, let A # =

〈x,{q0,q1},{q0},−→,{q1}〉 where the transitions rules are q1
*−→ q1 and q0

+−→ q1,

and + is obtained from the constraint + by replacing all occurrences of k ∈ k by x k,
and all occurrences of |a|, a ∈ a, by x |a|.

– if #= ¬&, let A# = A&,
– if #= &1∧&2, let A# = A&1⊗A&2 ,
– if #= &1∨&2, let A# = A&1⊗A&2 .
– if # is an array property, A# is defined below, according to the type of the value
expression occurring on the right hand side of the implication.

Let # : ∀i . f ≤ i ≤ g ∧ i ≡s t → " be an array property subformula after normal-
isation. Figure 3 gives the counter automaton A# for such a subformula. The formal
definition of A# = 〈x,Q, I,−→,F〉 follows:

– Q= {qi | 0≤ i< s} ∪ {ri | 0≤ i< s} ∪{ q f}, I = {q0}, and F = {q f }.
– the transition rules of A# are as follows, for all 0≤ i< s:

qi
xtick< f−1−−−−−−→ q(i+1)mod s qi

xtick= f−1−−−−−−→ r(i+1)mod s

ri
f≤xtick≤g−−−−−−→ r(i+1)mod s if i := t rt

" ∧ f≤xtick≤g−−−−−−−−→ r(t+1)mod s

ri
xtick>g−−−−→ q f q f

*−→ q f

q0
xtick=0 ∧ " ∧ f≤xtick≤g−−−−−−−−−−−−−−→ r1mod s if t = 0 q0

xtick=0 ∧ f≤xtick≤g−−−−−−−−−−−→ r1mod s if t := 0
Here " is defined by:

13

• "
,= xa ∼ " if " is a[i] ∼ " where " is obtained from " by replacing each occur-

rence of k ∈ k by xk and each occurrence of |a| by x |a|, a ∈ a,
• "

,= xtick− xa ∼ n if " is i−a[i]∼ n, and
• "

,= xa− x′b ∼ n if " is a[i]−b[i+1]∼ n.
Further, f (g) are obtained from f (g) by replacing each k ∈ k by x k and each |a|,
a ∈ a, by x|a|, respectively.
Notice that A# is always deterministic. This is because the automata for array prop-

erty formulae are deterministic in the use of the xtick counter, complementation pre-
serves determinism, and composition of two deterministic FCADBM results in a deter-
ministic FCADBM.

>

rs−2 r2

r1rs−1

r0q0 q f

qs−2 q2

qs−1 q1

xtick < f −1

f ≤ xtick ≤ g∧"

xtick > g

xtick = f −1
f ≤ xtick ≤ g

rtrt+1

Fig. 3. The FCADBM for the formula ∀i . f ≤ i≤ g ∧ i≡s t → "

Let #(k,a) be a normalised ∃∗∀∗-SIL formula, andA# = A#⊗Atick be the determin-
istic FCADBM whose construction was given in the previous. We define the following
relation between valuations 〈',µ〉 ∈ [[#]] and traces % ∈ Tr(A#), denoted 〈',µ〉 ≡ %, iff:
1. for all k ∈ k, '(k) = %0(xk),
2. for all a ∈ a, '(|a|) = %0(x|a|) = |µ(a)| ≤ |%| and µ(a)i = %i(xa), 0≤ i< |µ(a)|.
The following lemma establishes correctness of our construction:
Lemma 7. Let #(k,a) be a normalised ∃∗∀∗-SIL formula, andA# be its corresponding
FCADBM. Then for each valuation 〈',µ〉 ∈ [[#]] there exist a trace %∈ Tr(A#) such that
〈',µ〉 ≡ %. Dually, for each trace % ∈ Tr(A#) there exists a valuation 〈',µ〉 ∈ [[#]] such
that 〈',µ〉 ≡ %.

Theorem 2. The satisfiability problem is decidable for the ∃∗∀∗ fragment of SIL.
Proof. Let #(k,a) be a formula of ∃∗∀∗-SIL. By normalisation, we obtain a formula
*(k,a, t) where t is the set of fresh array variables added during normalisation. Then,
by Lemma 6, we have [[#]] = [[*]]↓a. To check satisfiability of #, it is therefore enough
to check satisfiability of *. By Lemma 7, * is satisfiable if and only if the language of
the corresponding automaton A* is not empty. This is decidable by Theorem 1. >?

14

6 Conclusion

In this paper we have introduced a logic over integer arrays based on universally quan-
tified difference bound constraints on array elements situated within a constant sized
window. We have shown that the logic is undecidable for formulae with quantifier pre-
fix in the language ∀∗∃∗∀∗, and that the ∃∗∀∗ fragment is decidable. This is shown with
an automata-theoretic argument by constructing, for a given formula, a corresponding
equivalent counter automaton whose emptiness problem is decidable. The translation of
formulae into counter automata takes advantage of the fact that only one index is used
in the difference bound constraints on array values, making the decision procedure for
the logic simple and efficient. Future work involves automatic invariant generation for
programs handling arrays, as well as implementation and experimental evaluation of
the method.

References
1. A. Armando, S. Ranise, and M. Rusinowitch. Uniform Derivation of Decision Procedures
by Superposition. In Proc. of CSL’01, volume 2142 of LNCS. Springer, 2001.

2. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.Zuck. Parameterized Verification with Automati-
cally Computed Inductive Assertions. In Proc. of CAV’01, volume 2102 of LNCS. Springer,
2001.

3. A. Bouajjani, Y. Jurski, and M. Sighireanu. A Generic Framework for Reasoning About
Dynamic Networks of Infinite-State Processes. In Proc. of TACAS’07, volume 4424 of LNCS.
Springer, 2007.

4. M. Bozga, R. Iosif, and Y. Lakhnech. Flat Parametric Counter Automata. In Proc. of
ICALP’06, volume 4052 of LNCS. Springer, 2006.

5. A.R. Bradley, Z. Manna, and H.B. Sipma. What’s Decidable About Arrays? In Proc. of
VMCAI’06, volume 3855 of LNCS. Springer, 2006.

6. H. Comon and Y. Jurski. Multiple Counters Automata, Safety Analysis and Presburger Arith-
metic. In Proc. of CAV’98, volume 1427 of LNCS. Springer, 1998.

7. The FLATA Toolset. http://www-verimag.imag.fr/˜async/FLATA/flata.html.
8. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision Procedures for Extensions of
the Theory of Arrays. Annals of Mathematics and Artificial Intelligence, 50, 2007.

9. P. Habermehl, R. Iosif, and T. Vojnar. A Logic of Singly Indexed Arrays. Technical Report
TR-2008-9, Verimag, 2008.

10. P. Habermehl, R. Iosif, and T. Vojnar. What Else Is Decidable About Integer Arrays? In
Proc. of FOSSACS’08, volume 4962 of LNCS. Springer, 2008.

11. J. Jaffar. Presburger Arithmetic with Array Segments. Information Processing Letters, 12,
1981.

12. J. King. A Program Verifier. PhD thesis, Carnegie Mellon University, 1969.
13. P. Mateti. A Decision Procedure for the Correctness of a Class of Programs. Journal of the

ACM, 28(2), 1980.
14. Yuri Matiyasevich. Enumerable Sets are Diophantine. Journal of Sovietic Mathematics,

11:354–358, 1970.
15. J. McCarthy. Towards a Mathematical Science of Computation. In IFIP Congress, 1962.
16. A. Stump, C.W. Barrett, D.L. Dill, and J.R. Levitt. A Decision Procedure for an Extensional

Theory of Arrays. In Proc. of LICS’01, 2001.
17. N. Suzuki and D. Jefferson. Verification Decidability of Presburger Array Programs. Journal

of the ACM, 27(1), 1980.

15

