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What else is decidable about integer arrays?

We introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the ∃ * ∀ * first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular, using our logic, one can express constraints on consecutive elements of arrays (e.g. ∀i .

-1) as well as periodic facts (e.g. ∀i . i ≡ 2 0 → a[i] = 0). The decision procedure follows the automata-theoretic approach: we translate formulae into a special class of Büchi counter automata such that any model of a formula corresponds to an accepting run of the automaton, and vice versa. The emptiness problem for this class of counter automata is shown to be decidable, as a consequence of earlier results on counter automata with a flat control structure and transitions based on difference constraints. We show interesting program properties expressible in our logic, and give an example of invariant verification for programs that handle integer arrays.

Introduction

Arrays are a fundamental data structure in computer science. They are used in all modern imperative programming languages. To verify software which manipulates arrays, it is essential to have a sufficiently powerful logic, which can express meaningful program properties, arising as verification conditions within, e.g., inductive invariant checking, or verification of pre-and post-conditions. In order to have an automatic decision procedure for the program verification problems, one needs a decidable logic.

In this paper, we develop a logic of arrays indexed by integer numbers, and having integers as values. To be as general as possible, and also to avoid having to deal explicitly with expressions containing out-of-bounds array accesses, we interpret formulae over both-ways infinite arrays. Bounded arrays can then be conveniently expressed in the logic by restricting indices to be within given bounds.

Properties that are typically expressed about arrays in a program are (existentially quantified) boolean combinations of formulae of the form ∀i.G → V , where G is a guard expression containing constraints over the universally quantified index variables i (which often range in between some existentially quantified bounds), and V is a value expression containing constraints over array values. Based on examples, we identified two types of array properties which seem to appear quite often in programs: [START_REF] Armando | Uniform Derivation of Decision Procedures by Superposition[END_REF] properties relating consecutive elements of an array, e.g. ∀i . l 1 ≤ i < l 2 → a[i + 1] = a[i] -1, which states the fact that each value of a between two bounds l 1 and l 2 is less than its predecessor by one, [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF] properties stating periodic facts, e.g. ∀i . i ≡ 2 0 → a[i] = 0, stating that all even elements of array a are equal to 0.

In the absence of specific syntactic restrictions, a logic with such an expressive power can be easily shown to be undecidable, as one can encode the histories of a 2counter machine [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF] as models of a formula over arrays. From this reduction, one can derive two restrictions leading to decidability. The first restriction forbids references to a[i] and a[i+ 1] in the same formula, which is considered in the work of Bradley, Manna, and Sipma [START_REF] Bradley | What 's Decidable About Arrays?[END_REF]. The second restriction, considered in this paper, allows only array formulae ∀i.G → V in which V does not contain disjunctions. We have chosen the second option, mainly to retain the possibility of relating consecutive arrays elements, i.e. a[i] and a[i + 1], which appears to be important for expressing properties of programs.

We introduce a new logic LIA (Logic on Integer Arrays) in the ∃ * ∀ * first-order fragment. The logic LIA is essentially the set of existentially quantified boolean combinations of (1) array formulae of the form ∀i . ϕ(k, i) → ψ(k, i, a), where i is a set of index variables, a (resp.k) is a set of existentially quantified array (resp. array-bound) variables; ϕ is a formula on index variables with difference as well as periodicity constraints on variables i wrt. the array-bounds k, and ψ is a difference constraint on array terms, and (2) Presburger Arithmetic formulae on array-bound variables. In Appendix B, we give an example program showing the usefulness of this logic to express verification conditions.

In this paper, we prove the decidability of the logic LIA using the classical idea of the connection between logic and automata [START_REF] Thomas | Automata on Infinite Objects[END_REF]: from a formula ϕ of the logic, we build an automaton A ϕ , such that ϕ is satisfiable if and only if A ϕ is not empty. Decidability of the logic follows from the decidability of the emptiness problem for the class of automata that is deployed. To this end, we define a new class of counter automata, called FBCA (bi-infinite Flat Büchi Counter Automata). These are counter automata running to the infinity in both left and right directions, equipped with a Büchi acceptance condition. For an arbitrary formula ϕ of LIA, we give the construction of an FBCA A ϕ whose runs correspond to models of ϕ: the value of the counter x a at a given point i in an execution of A ϕ corresponds to the value of a[i] in a model of ϕ. We prove the decidability of LIA by showing that the emptiness problem for FBCA is decidable by extending known results [START_REF] Comon | Multiple Counters Automata, Safety Analysis and Presburger Arithmetic[END_REF][START_REF] Bozga | Flat Parametric Counter Automata[END_REF] on flat counter automata with difference bound constraints.

Related work. In the seminal paper [START_REF] Mccarthy | Towards a Mathematical Science of Computation[END_REF], the read and write functions from/to arrays and their logical axioms were introduced. A decision procedure for the quantifier-free fragment of the theory of arrays was presented in [START_REF] King | A Program Verifier[END_REF]. Since then, various decidable logics on arrays have been considered-e.g., [START_REF] Suzuki | Verification Decidability of Presburger Array Programs[END_REF][START_REF] Mateti | A Decision Procedure for the Correctness of a Class of Programs[END_REF][START_REF] Jaffar | Presburger Arithmetic with Array Segments[END_REF][START_REF] Stump | A Decision Procedure for an Extensional Theory of Arrays[END_REF][START_REF] Armando | Uniform Derivation of Decision Procedures by Superposition[END_REF][START_REF] Ghilardi | Decision Procedures for Extensions of the Theory of Arrays[END_REF]. These logics include working with various predicates (reasoning about sortedness, permutations, etc.) and in terms of various arithmetic (usually Presburger) constraints on array indices and/or values of array entries. However, unlike our logic, most of these works consider quantifier free formulae. In these cases, nested array reads (like a[a[i]]) are allowed, which is not the case in our logic.

In [START_REF] Bradley | What 's Decidable About Arrays?[END_REF], an interesting logic, within the ∃ * ∀ * fragment, is developed. Unlike our decision procedure based on automata theory, the decision procedure of [START_REF] Bradley | What 's Decidable About Arrays?[END_REF] is based on the fact that the universal quantification can be replaced by a finite conjunction. The result is parameterised in the sense of allowing an arbitrary decision procedure to be used for the data stored in arrays. However, compared to our results, [START_REF] Bradley | What 's Decidable About Arrays?[END_REF] does not allow modulo constraints (allowing to speak about periodicity in the array values), general difference constraints on universally quantified indices (only ij ≤ 0 is allowed), nor reasoning about array entries at a fixed distance (i.e. reasoning about a[i] and a[i + k] for a constant k and a universally quantified index i). The authors of [START_REF] Bradley | What 's Decidable About Arrays?[END_REF] give also interesting undecidability results for extensions of their logic. For example, they show that relating adjacent array values (a[i] and a[i + 1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within ∃ * ∀ * formulae is also allowed in [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF], where decidability is obtained based on a small model property. Unlike [START_REF] Bradley | What 's Decidable About Arrays?[END_REF] and our work, [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF] allows a hierarchy-restricted form of array nesting. However, similar to the restrictions presented above, neither modulo constraints on indices nor reasoning about array entries at a fixed distance are allowed. A similar restriction not allowing to express properties of consecutive elements of arrays then appears also in [START_REF] Bouajjani | A Generic Framework for Reasoning About Dynamic Networks of Infinite-State Processes[END_REF] where a quite general ∃ * ∀ * logic on multisets of elements with associated data values is considered.

Remark. For space reasons, all proofs are deferred to Appendix D.

Counter Automata

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote a formula as ϕ(x 1 , ..., x n ), we assume FV (ϕ) ⊆ {x 1 , ..., x n }. For ϕ(x), we denote by ϕ[t/x] the formula in which each occurrence of x is replaced by a term t. Given a formula ϕ, we denote by |= ϕ the fact that ϕ is logically valid, i.e. it holds in every structure corresponding to its signature. By σ : Z → Z, σ(n) = n + 1, we denote the successor function on integers. In the following, we work with two sets of arithmetic formulae: difference bound matrices (DBM) and Presburger Arithmetic (PA).

A difference bound matrix (DBM) formula is a conjunction of inequalities of the form x-y ≤ c, x ≤ c, or x ≥ c, where c ∈ Z is a constant. If there is no constraint between x and y, we may explicitly write xy ≤ ∞. In the following, Z ∞ denotes Z ∪ {∞}. Let z = {z 1 , . . . , z n } be a designated set of variables, called parameters. A parametric DBM formula is a conjunction of a DBM formula with atomic propositions of the forms x ≤ f (z) or x ≥ f (z), where f is a linear combination of parameters, i.e. f = a 0 + ∑ n i=1 a i z i for some a i ∈ Z, 0 ≤ i ≤ n.

A Presburger arithmetic (PA) formula is a disjunction of conjunctions of either linear constraints of the form ∑ n i=1 a i x i + b ≥ 0 or modulo constraints ∑ n i=1 a i x i + b ≡ c mod d, where a i , b, c, d ∈ Z, c ≥ 0 and d > 0, are constants. It is well-known that every formula of the arithmetic of integers with addition Z, ≥, +, 0, 1 can be written in this form, by quantifier elimination [START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF]. Clearly, every DBM formula is also in PA.

A counter automaton is a tuple A = x, Q, -→ , where x is a finite set of counters, ranging over Z, Q a finite set of control states, and -→ the transition relation, given by rules q ϕ(x,x ) ----→ q , where ϕ is an arithmetic formula relating current values of counters x to their future values x . A configuration of a counter automaton A is a pair (q, ν) where q ∈ Q is a control state, and ν : x → Z is a valuation of the counters in x. For a configuration c = (q, ν), we designate by val(c) = ν the valuation of the counters in c. A configuration (q , ν ) is an immediate successor of (q, ν) if and only if A has a transition rule q ϕ(x,x ) ----→ q such that |= ϕ(ν(x), ν (x )). A configuration c is a successor of another configuration c if and only if there exists a sequence of configurations c = c 0 c 1 ...c n = c such that, for all 0 ≤ i < n, c i+1 is an immediate successor of c i . Given two control states q, q ∈ Q, a run of A from q to q is a finite sequence of configurations c 0 c 1 ...c n with c 0 = (q, ν), c n = (q , ν ) for some valuations ν, ν : x → Z, and c i+1 is an immediate successor of c i , for all 0 ≤ i < n.

Let S be a set. A bi-infinite sequence of S is a function β : Z → S. 4 We denote by ω S ω the set of all bi-infinite sequences over S. A bi-infinite Büchi counter automaton is a tuple A = x, Q, L, R, -→ , where x is a finite set of counters, Q is a finite set of control states, L, R ⊆ Q are the left-accepting and right-accepting states, and -→ is a transition relation, defined in the same way as for counter automata.

A run of a bi-infinite Büchi automaton A is a bi-infinite sequence of configurations ... c -2 c -1 c 0 c 1 c 2 ... such that, for all i ∈ Z, c i+1 is an immediate successor of c i . A run r is left-accepting iff there exists a state q ∈ L and an infinite decreasing sequence of integers . . . < i 2 < i 1 < 0 such that for all j ∈ N, we have r(i j ) = (q, ν j ) for some valuations ν j of the counters of A. Symmetrically, a run is right-accepting iff there exists a state q ∈ R and an infinite increasing sequence of integers 0 < i 0 < i 1 < i 2 < . . . such that for all j ∈ N, we have r(i j ) = (q, ν j ), for some valuations ν j of the counters of A. A run is accepting iff it is both left-and right-accepting. The set of all accepting runs of A is denoted as R (A). If r ∈ R (A) is a run of A, we define by val(r) = ...val(r(-1))val(r(0))val(r(1)) ... the bi-infinite sequence of valuations in r, and

V (A) = {val(r) | r ∈ R (A)}. Lemma 1. For any FBCA A, we have r ∈ R (A) if and only if r • σ ∈ R (A).
A control path in a counter automaton A is a finite sequence q 0 q 1 ...q n of control states such that, for all 0 ≤ i < n, there exists a transition rule q i ϕ i -→ q i+1 . A cycle is a control path starting and ending in the same control state. An elementary cycle is a cycle in which each state, except the first one, appears only once. A counter automaton is said to be flat iff each control state belongs to at most one elementary cycle.

Decidability and Closure Properties of FBCA We consider in the following the class of bi-infinite Büchi counter automata which are flat, and whose elementary cycles are labelled with parametric DBM formulae. We call this class FBCA in the following. We prove that the emptiness problem for FBCA is decidable, using results of [START_REF] Bozga | Flat Parametric Counter Automata[END_REF], and their extensions, that can be found in Appendix A.

Lemma 2. The emptiness problem is decidable for the class of FBCA.

The FBCA class is also effectively closed under the operations of union and intersection. However, before proceeding, we need to elucidate the meaning of these operations for counter automata. If z ⊆ x is a subset of the counters in x, let ν↓ z denote the restriction of ν to the domain z. For some subset z ⊂ x of the counters of A, and s ∈ V (A), we define the restriction operator on sequences s ↓ z = ...val(s(-1))

↓ z val(s(0)) ↓ z val(s(1)) ↓ z ..., and V (A) ↓ z = {s ↓ z | s ∈ V (A)}. Symmetrically, for z ⊃ x, we de- fine the extension operator on sequences V (A) ↑ z = {v ∈ ω (z → Z) ω | v ↓ x ∈ V (A)}.
A class of counter automata is said to be closed under union and intersection if there exist operations and ⊗ such that, for any two FBCA

A i = x i , Q i , L i , R i , → i , i = 1, 2, we have that V (A 1 A 2 ) = V (A 1 ) ↑ x 1 ∪x 2 ∪ V (A 2 ) ↑ x 1 ∪x 2 and V (A 1 ⊗ A 2 ) = V (A 1 ) ↑ x 1 ∪x 2 ∩ V (A 2 ) ↑ x 1 ∪x 2 ,
respectively. The class is said to be effectively closed under union and intersection if these operators are effectively computable. Proposition 1. Let A = x, Q, L, R, -→ be a FBCA. Let A c = x, Q, L c , R c ,-→ be the FBCA such that (1) for all q ∈ L and q ∈ Q, q belongs to the same elementary cycle as q iff q ∈ L c , (2) for all q ∈ R and q ∈ Q, q belongs to the same elementary cycle as q iff q ∈ R c . Then we have that R

(A) = R (A c ). Assuming w.l.o.g. that Q 1 ∩ Q 2 = /
0, the union is defined as

A 1 A 2 = x 1 ∪ x 2 , Q 1 ∪ Q 2 , L 1 ∪ L 2 , R 1 ∪ R 2 , → 1 ∪ → 2 . The product is defined as A 1 ⊗ A 2 = x 1 ∪ x 2 , Q 1 × Q 2 , L c 1 × L c 2 , R c 1 × R c 2 , -→
, where -→ is as follows: (q 1 , q 1 )

ϕ 1 ∧ ϕ 2 ----→ (q 2 , q 2 ) iff q 1 ϕ 1 -→ q 2 is a transition rule of A 1 and q 1 ϕ 2 -→ q 2 is a transition rule of A 2 .
Here L c i and R c i , denote the extended left-accepting and right-accepting sets of A i , from Proposition 1, for i = 1, 2.

Lemma 3. The class of FBCA is effectively closed under union and intersection.

A Logic for Integer Arrays

In this section we define the Logic of Integer Arrays (LIA) that we use to specify properties of programs handling arrays of integers.

Syntax We consider three types of variables. The array-bound variables (k, l) appear within the so-called array-bound terms. These terms can be used to define the intervals of the indices, and also as static references inside arrays. The index (i, j) and array (a, b) variables are used to build array terms. Fig. 1 shows the syntax of the logic LIA. We use the symbol to denote the boolean value true. In the following, we will use

f ≤ i ≤ g instead of f ≤ i ∧ i ≤ g, i < f instead of i ≤ f -1, and i = f instead of f ≤ i ≤ f .
Intuitively, our logic is the set of existentially quantified boolean combinations of:

1. Array formulae of the form ∀i . ϕ(k, i) → ψ(k, i, a), where k is a set of arraybound variables, i is a set of index variables, a is a set of array variables, ϕ is an arithmetic formula on index variables, and ψ is an arithmetic formula on array terms. In particular, ψ is a DBM formula, and ϕ is composed of atomic propositions of the form either f ≤ i, i ≤ f , ij ≤ n, i ≡ s t, where f is a linear combination of array-bound variables, n ∈ Z, and 0 ≤ t < s. Both k and a variables are free in the array formulae, but they can be existentially quantified at the top-most level.

PA formulae on array-bound variables.

Examples To accustom the reader with the logic, we consider several properties of interest that can be stated about arrays. For instance, a strictly increasing ordering of a up to a certain bound is defined as ∃k ∀i .

0 ≤ i < k → a[i] -a[i + 1] ≤ -1.
The fact that the first k elements of array a are below the first l elements of array b at distance 5 is defined as ∃k, l ∀i, j .

0 ≤ i < k ∧ 0 ≤ j < l → a[i] -b[ j] ≤ -5.
Equality of two arrays up to a certain bound can be expressed as ∃n∀i .

0 ≤ i < n → a[i] = b[i].
The use of modulo constraints as guards for indices allows one to express periodic facts, e.g. ∀i, 1. Syntax of the logic LIA less than or equal to any value at some odd position in a. Appendix B shows that to prove the correctness of an array merging program, such properties are needed.

j . i ≡ 2 0 ∧ j ≡ 2 1 → a[i] ≤ a[ j],
B := n | k | B + B | B -B array-bound terms I := i | I + n index terms A := a[I] | a[B] array terms G := B ≤ I | I ≤ B | I -I ≤ n | I ≡ s t | G ∨ G | G ∧ G guard expressions V := A ≤ B | B ≤ A | A -A ≤ n | V ∧V value expressions C := B ≤ n | B ≡ s t array-bound constraints P := → V | G → V | ∀i . P array properties U := P | C | ¬U | U ∨ U | U ∧ U universal formulae F := P | ∃k . F | ∃a . F LIA formulae Fig.
Semantics The logic LIA is interpreted on both-ways infinite arrays. This allows to conveniently deal with out-of-bound reference situations quite common in programs handling arrays. One can prevent and/or check for out-of-bound references by introducing explicit existentially quantified array-bound variables for array variables. Let ϕ(k, a) be any formula of LIA. A valuation is a pair of partial functions5 ι, µ , with ι : BVar ∪ IVar → Z ⊥ , associating an integer value with every free integer variable, and µ : AVar → ω Z ω ⊥ , associating a bi-infinite sequence of integers with every array symbol a ∈ a. The valuation ι is extended in the standard way to array-bound terms (ι(B)) and index terms (ι(I)). By I ι,µ (A), we denote the value of the array term A given by the valuation ι, µ .

The semantics of a formula ϕ is defined in terms of the forcing relation |= as follows:

I ι,µ (a[I]) = µ(a, ι(I)) I ι,µ (a[B]) = µ(a, ι(B)) ι, µ |= A ≤ B ⇐⇒ I ι,µ (A) ≤ ι(B) ι, µ |= A 1 -A 2 ≤ n ⇐⇒ I ι,µ (A 1 ) -I ι,µ (A 2 ) ≤ n ι, µ |= ∀i . G → V ⇐⇒ ∀ n ∈ Z . ι[i ← n], µ |= G → V ι, µ |= ∃a . ψ ⇐⇒ ∃ β ∈ ω Z ω . ι, µ[a ← β] |= ψ
For space reasons, we do not give here a full definition. However, the missing rules are standard in first-order arithmetic. A model of ϕ(k, a) is a valuation ι, µ such that the formula obtained by interpreting each variable k ∈ k as ι(k), and each array variable a ∈ a as µ(a) is logically valid: ι, µ |= ϕ. We define

[[ϕ]] = { ι, µ | ι, µ |= ϕ}. A formula is satisfiable if and only if [[ϕ]] = / 0.
An Undecidability Result The reason behind the restriction that array terms may not occur within disjunctions in value expressions (cf. Fig. 1) is that, without it, the logic becomes undecidable. The essence of the proof is that an array formula ∀i.G → V 1 ∨ ... ∨ V n , for n > 1, corresponds to n nested loops in a counter automaton. Undecidability is shown by reduction from the halting problem for 2-counter machines [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF].

Lemma 4. The logic obtained by extending LIA with disjunctions within the value expressions is undecidable.

Note that having more than one nested loop is a necessary condition for undecidability of 2-counter machines since a flat 2-counter machine would trivially fall into the class of decidable counter machines from [START_REF] Comon | Multiple Counters Automata, Safety Analysis and Presburger Arithmetic[END_REF][START_REF] Bozga | Flat Parametric Counter Automata[END_REF].

Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiability problem for LIA is that, for any formula of LIA, there exists an FBCA A ϕ such that ϕ has a model if and only if A ϕ has an accepting run. More precisely, each array variable in ϕ has a corresponding counter in A ϕ , and given any model of ϕ that associates integer values to all array entries, A ϕ has a run such that the values of the counters at different points of the run match the values of the array entries at corresponding indices in the model. Since, by Lemma 2, the emptiness problem is decidable for FBCA, this leads to decidability of LIA.

In order to build automata from LIA formulae, we first normalize them into existentially quantified positive boolean combinations of simple array property formulae (cf. Fig. 1). Second, each such array property formula is translated into an FBCA. The final automaton A ϕ is defined recursively on the structure of the normalized formulae, with the and ⊗ operators being the counterparts for the ∨ and ∧ connectives, respectively.

Normalization of Formulae

The goal of this step is to transform any formula written using the syntax of Figure 1 into a formula of the following normal form. ∃k∃a .

_ p q φ pq (a, k) ∧ θ p (k) (NF)
where a is a set of array variables, k is a set of integer variables, and θ p is a conjunction of terms of the forms: (i) g(k) ≥ 0, or (ii) g(k) ≡ s t, with g being a linear combination of the variables in k, and 0 ≤ t < s, -φ pq is a formula of the following forms, for some m ∈ N, 0 ≤ t < s, 0 ≤ v < u, and

p ∈ Z, q ∈ Z ∞ : ∀i . K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t → a[i] ∼ h(k) (F1)
The (F1) formulae bind all values of a in some interval by some linear combination h of variables in k.

∀i .

K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t → a[i] -b[i + p] ∼ q (F2)
The (F2) formulae relate all values of a and b in the same interval such that the distance between the indices of a and b, respectively, is constant. ∀i, j .

V K 1 k=1 f 1 k ≤ i ∧ V L 1 l=1 i ≤ g 1 l ∧ V K 2 k=1 f 2 k ≤ j ∧ V L 2 l=1 j ≤ g 2 l ∧ i -j ≤ p ∧ i ≡ s t ∧ j ≡ u v → a[i] -b[ j] ∼ q (F3)
The (F3) formulae relate all values of a with all values of b within two (possibly equal) intervals. The case when p = ∞ corresponds to the situation when no constraint ij ≤ p with p ∈ Z is used.

Lemma 5. A formula of LIA can be equivalently written into the form (NF).

In the following, we refer to the matrix of ϕ as to the formula obtained by forgetting the existential quantifier prefix from the (NF) form of ϕ.

Formulae and Constraint Graphs

In [START_REF] Comon | Multiple Counters Automata, Safety Analysis and Presburger Arithmetic[END_REF][START_REF] Bozga | Flat Parametric Counter Automata[END_REF], the set of runs of a flat counter automaton is represented by an unbounded constraint graph. Here, we view the models of a formula as a constraint graph both left-and right-infinite. These constraint graphs are then seen as executions of FBCA, relating in this way models of formulae to runs of automata.

Let ϕ(k, a) be a formula of type (F1)-(F3), and ι : k → Z a valuation of its arraybound variables k. For the rest of this section, we fix the valuation ι, and we denote by ϕ ι the formula obtained from ϕ by replacing each occurrence of k ∈ k by the value ι(k).

The formula ϕ ι can be thus represented by a weighted directed graph G ι,ϕ , in which each node (a, n) represents the array entry a[n], for some a ∈ a and n ∈ Z, and there is a path of weight w between nodes (a, n) and (b, m) iff the constraint a[n]b[m] ≤ w is implied by ϕ ι . In the next section, we will show that these graphs are in a one-to-one correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one needs to pay attention to the following issue. Consider, e.g., the formula ∀i, j.i

-j ≤ 3 ∧ i ≡ 2 0 ∧ j ≡ 2 1 → a[i] - b[ j] ≤ 5.
The constraint graph of this formula needs to have a path of weight 5 between, e.g., a[0] and b [START_REF] Armando | Uniform Derivation of Decision Procedures by Superposition[END_REF], a[0] and b [START_REF] Bouajjani | A Generic Framework for Reasoning About Dynamic Networks of Infinite-State Processes[END_REF], a[0] and b [START_REF] Bradley | What 's Decidable About Arrays?[END_REF], etc. As one can easily notice, the span of such paths is potentially unbounded. Since we would like this graph to represent a computation of a flat counter automaton, it is essential to define it as a sequence composed of (a possibly unbounded number of) repetitions of a finite number of (finite) sub-graphs (see, e.g., Fig. 2(a) or Fig. 2(b)). To this end, we introduce intermediary nodes which are connected between themselves with 0 arcs such that, for each nonlocal constraint of the form a[n]b[m] ≤ w where |n -m| can be arbitrarily large, there exists exactly one path of weight w through these nodes. E.g., in Fig. 2(a), there is a path (a, 0)

5 -→ (t ϕ , -3) 0 -→ ... 0 -→ (t ϕ , 1) 0 -→ (b, 1) for the constraint a[0]-b[1] ≤ 5, another path (a, 0) 5 -→ (t ϕ , -3) 0 -→ ... 0 -→ (t ϕ , 3) 0 -→ (b, 3) for the constraint a[0] -b[3] ≤ 5, etc.
Formally, the constraint graph of ϕ is G ι,ϕ = V, E with the set of vertices V = (A ∪ T ∪ {ζ}) × Z, where A = {a, b} are the array symbols in ϕ, T = {t ϕ } are the auxiliary symbols (tracks), and ζ is a special symbol (zero track). The set of edges E is defined based on the type of ϕ, i.e. (F1)-(F3). For space reasons, we give here only the definitions for formulae of type (F3), which are the most interesting. Formulae (F1) and (F2) are treated in Appendix C. In general, for all types of formulae, we have:

E ⊃ {(ζ, k) 0 -→ (ζ, k + 1) | k ∈ Z} ∪ {(ζ, k + 1) 0 -→ (ζ, k) | k ∈ Z}
i.e., the value of the zero track stays constant.

Constraint graphs for (F3) formulae Let ϕ be the formula below, where 0

≤ s < t, 0 ≤ u < v, p ∈ Z ∞ , and q ∈ Z : ∀i, j . K 1 k=1 f 1 k ≤ i ∧ L 1 l=1 i ≤ g 1 l ∧ i ≡ s t φ 1 ∧ K 2 k=1 f 2 k ≤ j ∧ L 2 l=1 j ≤ g 2 l ∧ j ≡ u v φ 2 ∧ i -j ≤ p → a[i] -b[ j] ∼ q
Let φ 1 (i, k) and φ 2 ( j, k) be the subformulae defining the ranges of i and j, respectively, and

P 1 ι = {n ∈ Z | |= φ 1 ι [n/i]}, P 2 ι = {n ∈ Z | |= φ 2 ι [n/ j]}, be these ranges under the valuation ι. Let T ≤ = {(t ϕ , k) 0 -→ (t ϕ , k + 1) | ∃n ∈ P 1 ι ∃m ∈ P 2 ι . n -m ≤ p} and T ≤ = {(t ϕ , k) 0 -→ (t ϕ , k -1) | ∃n ∈ P 1 ι ∃m ∈ P 2 ι . n -m ≥ p}.
Note that T ≤ and T ≥ are empty is the precondition of ϕ is not satisfiable. The set of edges E is defined by the following case split:

1. If p < ∞, we consider two cases, based on the direction of a[i]b[ j] ∼ q:

(a) for a[i]b[ j] ≤ q, we have (Fig. 2(a)):

E ⊃ {(a, k) q -→ (t ϕ , k -p) | k ∈ P 1 ι } ∪ {(t ϕ , k) 0 -→ (b, k) | k ∈ P 2 ι } ∪ T ≤ (b) for a[i] -b[ j] ≥ q, we have: E ⊃ {(b, k) -q -→ (t ϕ , k + p) | k ∈ P 2 ι } ∪ {(t ϕ , k) 0 - → (a, k) | k ∈ P 1 ι } ∪ T ≥ 2. If p = ∞, we consider again two cases, based on the direction of a[i] -b[ j] ∼ q: (a) for a[i] -b[ j]
≤ q, we have (Fig. 2(b)): Relating constraint graphs and models of formulae Let us point out the correspondence between constraint graphs and models of formulae of the forms (F1)-(F3), i.e. if the vertices of a constraint graph for a formula ϕ can be labelled in a consistent way, then from the labelling one can extract a model for ϕ and vice versa. This proves the correctness of the construction for constraint graphs, using the additional tracks. Let ϕ(k, a) be a formula of the forms (F1)-(F3), ι : k → Z a valuation of the arraybound variables in ϕ, and

E ⊃ {(a, k) q -→ (t ϕ , k) | k ∈ P 1 ι } ∪ {(t ϕ , k) 0 -→ (b, k) | k ∈ P 2 ι } ∪ T ≤ ∪ T ≥ (b) for a[i] -b[ j] ≥ q, we have: E ⊃ {(b, k) -q -→ (t ϕ , k) | k ∈ P 2 ι } ∪ {(t ϕ , k) 0 -→ (a, k) | k ∈ P 1 ι } ∪ T ≤ ∪ T ≥ Nothing else is in E. ι(l 1 ) ι(u 1 ) a b t ϕ 0 5 5 5 ι(u 2 ) ι(l 2 ) 0 0 0 0 0 0 0 0 0 0 (a) ∀i, j.l 1 ≤ i ≤ u 1 ∧l 2 ≤ j ≤ u 2 ∧i-j ≤ 3∧i ≡ 2 0 ∧ j ≡ 2 1 → a[i] -b[ j] ≤ 5 ι(l 1 ) a 5 5 ι(u 1 ) t ϕ b 0 0 0 0 ι(l 2 ) ι(u 2 ) 0 0 0 0 (b) ∀i, j.l 1 ≤ i ≤ u 1 ∧l 2 ≤ j ≤ u 2 ∧i ≡ 2 0 ∧ j ≡ 2 1 → a[i] -b[ j] ≤ 5
G ι,ϕ = (V, E) its corresponding constraint graph. A labelling Lab : V → Z of G ι,ϕ is called consistent if and only if (1) for all edges v 1 k -→ v 2 ∈ E, we have Lab(v 1 ) -Lab(v 2 ) ≤ k and (2) Lab((ζ, n)) = 0 for all n ∈ Z.
Lemma 6. Let ϕ(k, a) be a formula of the form (F1)-(F3). Then, for all valuations ι : k → Z and µ : a → ω Z ω , we have that ι, µ |= ϕ if and only if there exists a consistent labelling Lab of G ι,ϕ such that µ(a, i) = Lab((a, i)), for all a ∈ a and i ∈ Z.

From Formulae to Counter Automata

In this section, we describe the construction of an FBCA A ϕ corresponding to a formula ϕ such that (1) each run of A ϕ corresponds to a model of ϕ, and (2) for each model of ϕ, A ϕ has at least one corresponding run. In this way, we effectively reduce the satisfiability problem for LIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structure of the formulae. For the rest of this section, let ϕ be a formula, k the set of array-bound variables in ϕ, and a the set of array variables in ϕ, i.e. FV (ϕ) = k ∪ a. Suppose that ϕ is the matrix of a formula in the normal form (NF), i.e. ϕ :

W i∈I θ i (k) ∧ V j∈J ψ i j (k, a)
, where θ i are PA constraints and ψ i j are formulae of types (F1)-(F3). The automaton A ϕ is defined as

U i∈I A θ i ⊗ N j∈J A ψ i j
, where and ⊗ are the union and intersection operators on FBCA. The construction of counter automata A ψ i j for the formulae ψ i j of type (F1)-(F3) relies on the definition of the constraint graphs in Section 4.2. Namely, each accepting run of A ψ i j gives a consistent valuation of the constraint graph of ψ i j .

Counter Automata Templates. To simplify the definition of counter automata, we note that each constraint graph for the basic formulae of type (F1)-(F3) is composed of horizontal, vertical, and diagonal edges, which are defined in roughly the same way for all types of formulae (cf. Section 4.2). We take advantage of this fact, and we start by defining three types of counter automata templates, which are subsequently used to define the counter automata for the basic formulae. 6 More precisely, the automata for (F1)-(F3) formulae will be defined as ⊗-products of particular instances of the automata templates for the horizontal, vertical, and diagonal edges of the appropriate constraint graphs. In the following definitions, we assume the existence of a special counter x τ (tick), incremented by each transition rule, i.e. we suppose that the constraint x τ = x τ + 1 is implicitly in conjunction with each formula labelling a transition rule. Intuitively, the role of the x τ counter is to synchronism all automata composed by the ⊗-product on a common current position.

The template for the horizontal edges. Let a be an array symbol, dir ∈ {left, right, bi} be a direction parameter, and φ be a formula on array-bound variables. Let x k be the set {x k | k ∈ FV (φ)}. We define the template H(a, dir, φ) = x, Q, L, R, -→ , where:

-x = {x a } ∪ x k . These counters will have the same names in all instances of H.

-Q = {q L , q R , p L , p R }. The control states are required to have fresh names in every instance of

H. L = {q L , p L } and R = {q R , p R }. -q L ξ -→ q L , q R ξ -→ q R , q L φ(x k ) ∧ ξ -----→ q R , p L -→ p L , p R -→ p R , and p L ¬φ(x k ) ----→ p R .
In the above, φ(x k ) is the formula obtained by replacing each occurrence of an arraybound variable k ∈ FV (φ) by its corresponding counter

x k . The formula ξ(x a , x a ) is x a - x a ≤ 0 if dir = right, x a -x a ≤ 0 if dir = left, and x a = x a if dir = bi.
Moreover, for each transition rule, we assume the conjunction V k∈FV (φ) x k = x k to be added implicitly to the labelling formula, i.e. the value of an x k counter stays constant throughout a run. The x k parameters are used within guards of the form x τ ∼ f (x k ), where ∼∈ {≤, ≥} and f is a linear combination of x k , in order to mark the position of the array boundaries, during the run of the automata.

If, for a given valuation of the parameters x k , the formula φ holds, then any accepting run of (any instance of) H visits q L infinitely often on the left, and q R infinitely often on the right. Otherwise, if for the given valuation of x k , φ does not hold, the instance automata have a run that goes infinitely often through p L on the left, and through p R on the right. In this case, the automata do not impose any constraints on x a .

The template for the diagonal edges. Let a, b be array symbols, q ∈ Z, p, s ∈ N + , t ∈ [0, s -1], and dir ∈ {left, right} be a direction parameter. In the following, we refer to the sets L = {l 1 , . . . , l K } and U = {u 1 , . . . , u L } of lower, and respectively upper bounds, where l i and u j are linear combinations of array-bound variables, and let

x k = {x k | k ∈ S K i=1 FV (l i ) ∪ S L
j=1 FV (u j )}. Further, we assume that L ∪ U = / 0 -we deal with the case of L ∪ U = / 0 later on. We define the template D(a, b, p, q, s,t, L, U, dir) = x, Q, L, R, -→ , where:

-x = {x a , x b } ∪ x k ∪ {x i | 1 ≤ i < p}.
The counters x a , x b , and x k will have the same names in all instances of D. On the other hand, the counters x i , 1 ≤ i < p, will have fresh names in every instance of D. The x i counters are used for splitting diagonal edges that span over more than one position, into series of diagonal edges connecting only adjacent positions.7 

-Q = {q L , q R } ∪ {q i | 0 ≤ i < s} ∪ {q j i | 0 ≤ j < s, j + 1 ≤ i < j + p}.
The control states are required to have fresh names in every instance of D.

Let L = {q L } ∪ {q i | 0 ≤ i < s} and R = {q R } ∪ {q i | 0 ≤ i < s}.
q L -→ q L , q R -→ q R , and q L ¬(∃i . ----------------------------→ q (i+1) mod s , for all 0 ≤ i < s. -----------------------→ q i i+1 , for all 0 ≤ i < s.

V l∈L i≥l(x k ) ∧ V u∈U i≤u(x k ) ∧ i≡ s t) -------------------------→ q R . -q L V l∈L x τ ≥l(x k )-1 ∧ ( W l∈L x τ =l(x k )-1) ∧ x τ +1≡ s i -----------------------------→ q i , for all 0 ≤ i < s. -q i V l∈L x τ ≥l(x k ) ∧ V u∈U x τ <u(x k ) ∧ ξ i [x a /x 0 ,x b /x p ]
-q i W u∈U x τ =u(x k ) ∧ x τ ≡ s i ∧ ξ i [x a /x 0 ,x b /x p ]
-

q i W u∈U x τ =u(x k ) ∧ x τ ≡ s i ∧ ξ i [x a /x 0 ,x b /x p ]
-----------------------→ q R , for all 0 ≤ i < s, if p = 1.

-

q j i ξ i [x a /x 0 ,x b /x p ]
--------→ q j i+1 , for all 0 ≤ j < s, j < i < j + p -1.

q j j+p-1

ξ i [x a /x 0 ,x b /x p ]
--------→ q R , for all 0 ≤ j < s, if p > 1.

In the above, l(x k ) and u(x k ) denote the expressions l and u in which each occurrence of an array-bound variable k is replaced by its corresponding parameter x k . As before, for each transition rule, we assume the conjunction V k∈FV (φ) x k = x k to be added implicitly to the labelling formula, i.e. we require that the value of an x k counter stays constant throughout the run. The formulae ξ i are defined as follows:

-

if dir = right, ξ i = V k∈K i x k -x k+1 ≤ α k , for K i = {k | 0 ≤ k < p, i ≡ s k + t}, α 0 = q and α k = 0, k > 0, -if dir = left, ξ i = V k∈K i x k-1 -x k ≤ α k , K i = {k | 1 ≤ k ≤ p, k + i ≡ s t}, α 1 = q and α k = 0, k > 1.
Finally, for the case L = U = / 0, we define any instance of D(a, b, p, q, s,t, / 0, / 0, dir) to be A 1 ⊗ A 2 , where A 1 is an instance of D(a, b, p, q, s,t, / 0, {0}, dir) and A 2 is an instance of D(a, b, p, q, s,t, {0}, / 0, dir).

q L q R q 1 q 1 2 q 0 1 q 0 2 q 1 3 x a -x 1 ≤ 5 xτ ≥ l1 -4 ∧ xτ = l1 -4 x τ ≥ l 1 -4 ∧ x τ = l 1 -4 x 1 -x 2 ≤ 0 x τ ≥ l 1 -3 ∧ x τ < u 1 -3 q 0 ∧x τ ≡ 2 0 x τ = u 1 -3 x a -x 1 ≤ 5 x 1 -x2 ≤ 0 x 1 -x 2 ≤ 0 ∧ x τ ≡ 2 1 x τ = u 1 -3∧ ∧x a -x 1 ≤ 5 ∧x 2 -x tϕ ≤ 0 ∧x 1 -x 2 ≤ 0 x τ ≥ l 1 -3 ∧ x τ < u 1 -3 ∧x 2 -x tϕ ≤ 0 ∧ x 2 -x t ϕ ≤ 0 ∧ x τ + 1 ≡ 2 1 ∧ xτ + 1 ≡2 0 ∧x a -x 1 ≤ 5 ∧ x 2 -x tϕ ≤ 0 ¬(∃i . l 1 ≤ i ≤ u 1 ∧ i ≡ 2 0)
Fig. 3. The FBCA for the diagonal edges in the formula ϕ : ∀i, j.l

1 ≤ i ≤ u 1 ∧ l 2 ≤ j ≤ u 2 ∧ i -j ≤ 3∧i ≡ 2 0∧ j ≡ 2 1 → a[i]-b[ j] ≤ 5 from Fig. 2(a) obtained as D(a,t ϕ , 3, 5, 2, 0-3, {l 1 -3}, {u 1 - 3}, left).
To understand the formula ξ 0 on the transition from q 0 to q 1 , note that the constraint i ≡ s k +t in the definition of the set K 0 instantiates to 0 ≡ 2 k -3, and hence K 0 = {1, 3}. A similar reasoning applies for the other transitions.

The construction can be understood by considering an accepting run of (any instance of) D. Let us consider the case in which there exists a value i in between the bounds that satisfies also the modulo constraint. If this is not the case, there will be an accepting run that takes the transition q L ¬(∃i . -------------------------→ q R exactly once.

V l∈L i≥l(x k ) ∧ V u∈U i≤u(x k ) ∧ i≡ s t)
Since the run is accepting, it must visit a state from L infinitely often on the left, and a state from R infinitely often on the right. There are three cases: (1) L = / 0 and U = / 0, (2) L = / 0 and U = / 0, and (3) L = / 0 and U = / 0. In the case (1), a bi-infinite run will visit q L infinitely often on the left, and q R , infinitely often on the right. Notice that the run cannot visit the loop q 0 -→ ... -→ q s-1 infinitely often, due to the presence of both lower and upper bounds on x τ . In the case (2), the run cannot take any of the transitions q L -→ q i , 0 ≤ i < s, due to the emptiness of L, which makes the guard unsatisfiable. Hence the only possibility for an accepting bi-infinite run is to visit the states q 0 -→ ... -→ q s-1 infinitely often on the left. Due to the presence of the upper bound on x τ , the run cannot stay forever inside this loop, and must exit via one of the q i -→ q i i+1 (or q i -→ q R for p = 1) transitions, getting trapped into q R on the right. Case (3) is symmetric to [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF].

Note that, in all cases, due to the modulo tests on x τ in the entry and exit of the main loop q 0 -→ ... -→ q s-1 on any accepting run, whenever a state q i , 0 ≤ i < s, is visited, the value of the x τ counter must equal i modulo s. Note also that the role of the q j i states is to describe constraints corresponding to edges that start inside the given interval bounds and lead above its upper bound (or vice versa). The number of such edges is bounded.

We do not use the same construction at the beginning of the interval, as the templates are applied such that none of the edges represented goes below the lower bounds.

Template for the vertical edges. Let a, b be array symbols, q ∈ Z, p, s ∈ N + , and t ∈ [0, s -1]. We again refer to the sets L = {l 1 ,...,l K } and U = {u 1 ,...,u L } of lower, and respectively upper bounds, where l i and u j are linear combinations of array-bound variables. Also, let

x k = {x k | k ∈ S K i=1 FV (l i ) ∪ S L
j=1 FV (u j )}. Further, we assume that L ∪ U = / 0 -we deal with the case of L ∪ U = / 0 later on. We define the template V (a, b, p, q, s,t, L, U) = x, Q, L, R, -→ , where:

-x = {x a , x b } ∪ x k . The counters x a , x b , x k have the same names in all instances of V . -Q = {q L , q R } ∪ {q i | 0 ≤ i < s}.
The control states are required to have fresh names in every instance of

V . L = {q L } ∪ {q i | 0 ≤ i < s} and R = {q R } ∪ {q i | 0 ≤ i ≤ s}.
q L -→ q L , q R -→ q R , and q L ¬(∃i .

V l∈L i≥l(x k ) ∧ V u∈U i≤u(x k ) ∧ i≡ s t) -------------------------→ q R . -q L V l∈L x τ ≥l(x k )-1 ∧ W l∈L x τ +1=l(x k ) ∧ x τ +1≡ s i ----------------------------→ q i , 0 ≤ i < s. -q i V l∈L x τ ≥l(x k ) ∧ V u∈U x τ <u(x k ) ∧ x a -x b ≤q
-------------------------→ q (i+1) mod s , 0 ≤ i < s and i ≡ s t.

-

q i V l∈L x τ ≥l(x k ) ∧ V u∈U x τ <u(x k )
------------------→ q (i+1) mod s , 0 ≤ i < s and i ≡ s t.

-

q i W u∈U x τ =u(x k ) ∧ x τ ≡ s i ∧ x a -x b ≤q --------------------→ q R , 0 ≤ i < s and i ≡ s t. -q i W u∈U x τ =u(x k ) ∧ x τ ≡ s i -------------→ q R , 0 ≤ i < s and i ≡ s t.
In the above, l(x k ) and u(x k ) denote the expressions l and u in which each occurrence of an array-bound variable k is replaced by the parameter x k . As before, for each transition rule, we assume the conjunction V k∈FV (φ) x k = x k to be added implicitly to the labelling formula, i.e. the value of an x k counter stays constant throughout the run. Finally, if L = U = / 0, we define any instance of V (a, b, p, q, s,t, / 0, / 0) as A 1 ⊗ A 2 , where A 1 is an instance of V (a, b, p, q, s,t, / 0, {0}) and A 2 is an instance of V (a, b, p, q, s,t, {0}, / 0). The intuition behind the construction of V is similar to the one of D.

Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for the basic formulae. This is done by composing instances of templates, using the ⊗ operator for intersection (cf. Section 2). For space reasons, we only give here the construction of the FBCA for (F3) formulae. The formulae of type (F1), (F2), and PA constraints on array-bound variables are treated analogously in Appendix C. Let ϕ be the (F3)-type formula: ∀i, j .

K 1 k=1 f 1 k ≤ i ∧ L 1 l=1 i ≤ g 1 l ∧ K 2 k=1 f 2 k ≤ j ∧ L 2 l=1 j ≤ g 2 l ∧ i -j ≤ ∧ i ≡ s t ∧ j ≡ u v φ → a[i] -b[ j] ∼ q where 0 ≤ s < t and 0 ≤ u < v. Let L i = { f i 1 , . . . , f i K i } and U i = {g i 1 ,.
..,g i L i }, for i = 1, 2, respectively. By φ we denote the precondition of ϕ. The automaton A ϕ is defined as

A ϕ = A 1 ⊗ A 2 ⊗ A 3 , where A 1 , A 2 , A 3 are instantiated according to Table 1. p ∼ A 1 A 2 A 3 ∞ ≤ V (a,t ϕ , q, s,t, L 1 , U 1 ) H(t ϕ , bi, ∃i, j.φ) V (t ϕ , b, 0, u, v, L 2 , U 2 ) ∞ ≥ V (b,t ϕ , -q, u, v, L 2 , U 2 ) H(t ϕ , bi, ∃i, j.φ) V (t ϕ , a, 0, s,t, L 1 , U 1 ) 0 ≤ V (a,t ϕ , q, s,t, L 1 , U 1 ) H(t ϕ , right, ∃i, j.φ) V (t ϕ , b, 0, u, v, L 2 , U 2 ) 0 ≥ V (b,t ϕ , -q, u, v, L 2 , U 2 ) H(t ϕ , left, ∃i, j.φ) V (t ϕ , a, 0, s,t, L 1 , U 1 ) > 0 ≤ D(a,t ϕ , p, q, s,t -p, L 1 -p, U 1 -p, left) H(t ϕ , right, ∃i, j.φ) V (t ϕ , b, 0, u, v, L 2 , U 2 ) > 0 ≥ D(b,t ϕ , p, -q, u, v, L 2 , U 2 , right) H(t ϕ , left, ∃i, j.φ) V (t ϕ , a, 0, s,t, L 1 , U 1 ) < 0 ≤ D(a,t ϕ , -p, q, s,t, L 1 , U 1 , right) H(t ϕ , right, ∃i, j.φ) V (t ϕ , b, 0, u, v, L 2 , U 2 ) < 0 ≥ D(b,t ϕ , -p, -q, u, v + p, L 2 + p, U 2 + p, left) H(t ϕ , left, ∃i, j.φ) V (t ϕ , a, 0, s,t, L 1 , U 1 )
Table 1. The instantiation table for (F3) formulae. Note that in some lines, we shift the original bounds appearing in the formula in order to be able to re-use the prepared templates that do not explicitly deal with edges leaving from within the given bounds and going below the lower bound. Due to the way the templates are constructed, the shifting preserves the semantics of the formula -instead of edges going below the lower bound of a certain interval, we obtain the same edges just going above the upper bound of the shifted interval, which our templates are prepared for. Given a set of integers S and an integer p, we use the notation S + p for {s + p | s ∈ S}

From Formulae to Counter Automata

Given a formula ϕ(k, a) which is a positive boolean combination of formulae of types (F1)-(F3) and PA constraints on the array-bound variables k, let A ϕ be the automaton defined inductively on the structure of ϕ as follows:

-if ϕ is of type (F1)-(F3), or a PA constraint on k, then A ϕ is as in Section 4.4, -if ϕ = ψ 1 ∧ ψ 2 , then A ϕ = A ψ 1 ⊗ A ψ 2 , -if ϕ = ψ 1 ∨ ψ 2 , then A ϕ = A ψ 1 A ψ 2 .
Let r ∈ R (A ϕ ) be an accepting run of A ϕ and δ(r) = val(r(0))(x τ ) be the value of the x τ (tick) counter at position 0 on r. We denote by η(r) = r • σ -δ(r) the centered run obtained from r by shifting it such that the value of x τ at position 0 is also 0. By Lemma 1, r is an accepting run of A ϕ if and only if η(r) is. Notice that r induces the following valuations on k and a, respectively: ι r (k) = val(η(r)(0))(x k ), for all k ∈ k, and µ r (a, i) = val(η(r)(i))(x a ), for all a ∈ a and i ∈ Z.

For an arbitrary valuation ν ∈ V (A ϕ ), there exists r ∈ R (A ϕ ) such that ν = val(r).

Let M ϕ (ν) = ι r , µ r be the valuation of the free variables in ϕ that correspond to r. One can see now that M ϕ defines a function M ϕ :

V (A ϕ ) → (k → Z) × (a → ω Z ω ). 8
Theorem 1. Let ϕ(k, a) be a positive boolean combination of formulae of types (F1)-(F3) and PA constraints on the array-bound variables k, and A ϕ be the automaton defined in the previous. Then, M ϕ (

V (A ϕ )) = [[ϕ]].
The proof is by induction on the structure of ϕ. For the base case, we use the correspondence between models and constraint graphs of formulae (F1)-(F3) (Lemma 6). The inductive step follows as a consequence of the fact that the class of FBCA is closed under union and intersection (Lemma 3). The main result of the paper is the following:

Corollary 1. The logic LIA is decidable.
The proof of Corollary 1 uses the normalization step (cf. Lemma 5) to rewrite any formula of LIA into the form (NF), and applies Theorem 1 to the matrix of the formula (i.e. the formula obtained by skipping the existential quantifier prefix).

Conclusions and Future Work

We present a new decidable logic for reasoning about properties of programs handling integer arrays. This logic allows to relate adjacent array values, as well as to express periodic facts relating all values situated at equidistant positions. We establish decidability of this logic following the automata-theoretic approach. To this end, we define a new class of Büchi automata with counters, for which emptiness is decidable, and translate each formula into a corresponding automaton.

Future work will include the study of the complexity of our decision procedure and its implementation. We furthermore plan to develop invariant generation methods in order to give automatic correctness proofs for programs with integer arrays.

∀ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k = 0 ∧ l = 0 ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . c [i] = c[i]) -→ n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c [i] ≤ c [ j]) ∧ (∀i, j . 0 ≤ i, j < n → a [i] ≤ b [ j])
However, checking the validity of the above formula is equal to checking that its negation, which clearly fits our logic, is unsatisfiable:

∃ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k = 0 ∧ l = 0 ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . c [i] = c[i]) ∧ (n ≤ 0 ∨ k > n ∨ l < 2k ∨ l > 2k ∨ (∃i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 ∧ c [i] > c [ j]) ∨ (∃i, j . 0 ≤ i, j < n ∧ a [i] > b [ j]))
To see this, note that the existentially quantified index variables in the last two lines of the above formula can be given unique names and the appropriate quantifiers moved to the prefix of the formula.

To check the effect of the loop body, i.e. the assignments c

[l] = a[k], c[l+1] = b[k],
k++, and l+=2 which are executed provided that k<n, we have to prove that the following holds:

∀ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c[i] ≤ c[ j]) ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k < n ∧ k = k + 1 ∧ l = l + 2 ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . i < l → c [i] = c[i]) ∧ (∀i . i > l + 1 → c [i] = c[i]) ∧ c [l] = a[k] ∧ c [l + 1] = b[k] -→ n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c [i] ≤ c [ j]) ∧ (∀i, j . 0 ≤ i, j < n → a [i] ≤ b [ j])
Again, checking the validity of the above formula is equal to checking that its negation, is unsatisfiable:

∃ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c[i] ≤ c[ j]) ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k < n ∧ k = k + 1 ∧ l = l + 2 ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . i < l → c [i] = c[i]) ∧ (∀i . i > l + 1 → c [i] = c[i]) ∧ c [l] = a[k] ∧ c [l + 1] = b[k] ∧ (n ≤ 0 ∨ k > n ∨ l < 2k ∨ l > 2k ∨ (∃i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 ∧ c [i] > c [ j]) ∨ (∃i, j . 0 ≤ i, j < n ∧ a [i] > b [ j]))
Finally, in order to check the finalisation of the loop (i.e. the exit of the loop when k ≥ n), one has to check the validity of the following formula:

∀ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c[i] ≤ c[ j]) ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k ≥ n ∧ k = k ∧ l = l ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . c [i] = c[i]) ∧ -→ n > 0 ∧ (∀i, j . 0 ≤ i, j < 2n ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c [i] ≤ c [ j])
Like in the previous cases, checking the validity of the above formula is equal to checking that its negation is unsatisfiable:

∃ a,a , b, b , c, c , n, n , k, k , l, l . n > 0 ∧ k ≤ n ∧ l = 2k ∧ (∀i, j . 0 ≤ i, j < 2k ∧ i ≡ 2 0 ∧ j ≡ 2 1 → c[i] ≤ c[ j]) ∧ (∀i, j . 0 ≤ i, j < n → a[i] ≤ b[ j]) ∧ k ≥ n ∧ k = k ∧ l = l ∧ n = n ∧ (∀i . a [i] = a[i]) ∧ (∀i . b [i] = b[i]) ∧ (∀i . c [i] = c[i]) ∧ ∧ (n ≤ 0 ∨ (∃i, j . 0 ≤ i, j < 2n ∧ i ≡ 2 0 ∧ j ≡ 2 1 ∧ c [i] > c [ j]))
C Constraint Graphs and Counter Automata for (F1) and (F2)

Here we define the constraint graphs for formulae of type (F1) and (F2) and the corresponding counter automata as well as the automaton for Presburger bound constraint formulae.

C.1 Constraint graphs

Formulae of type (F1) Let ϕ be the formula ∀i .

K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t φ → a[i] ∼ h(k)
where 0 ≤ t < s.

Let P ι = {n ∈ Z | |= φ ι [n/i]}.
The set of edges E is defined by the following case split:

1. If the right hand side of the implication is a[i] ≤ h(k), we have (cf. Figure 4):

E ⊃ {(a, k) h(k) --→ (ζ, k) | k ∈ P ι } 2.
Otherwise, if the right hand side of the implication is a[i] ≥ h(k), we have:

E ⊃ {(ζ, k) -h(k) ---→ (a, k) | k ∈ P ι } Nothing else is in E. 0 0 0 0 0 0 a ζ h(k) h(k) h(k) L ι U ι Fig. 4. Constraint graph for ∀i . l ≤ i ≤ u ∧ i ≡ 2 0 → a[i] ≤ h(k)
Formulae of type (F2) Let ϕ be the formula:

∀i . K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t φ → a[i] -b[i + p] ∼ q
where 0 ≤ s < t, p ∈ N, and q ∈ Z.

Let P ι = {n ∈ Z | |= φ ι [n/i]}.
The set of edges E is defined by the following case split:

1. If the right hand side of the implication is a[i]b[i + p] ≤ q, we have (cf. Fig. 5):

E ⊃ {(a, k) q -→ (b, k + p) | k ∈ P ι } a b 5 5 5 L ι U ι Fig. 5. Constraint graph for ∀i.l ≤ i ≤ u ∧ i ≡ 2 0 → a[i] -b[i + 3] ≤ 5
2. If the right hand side of the implication is a

[i] -b[i + p] ≥ q, then E ⊃ {(b, k + p) -q -→ (a, k) | k ∈ P ι }
Nothing else is in E.

C.2 Counter Automata

Formulae of type (F1) Let ϕ be ∀i .

K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t → a[i] ∼ h(k) where 0 ≤ t < s. Let L = { f 1 ,..., f K } and U = {g 1 , . . . , g L }. Then we define A ϕ = A 1 ⊗ A 2 ,
where A 1 and A 2 are instantiated according to Table 2

(a). (a) ∼ A 1 A 2 ≤ V (a, ζ, h, s,t, L, U) H(ζ, bi, ) ≥ V (a, ζ, -h, s,t, L, U) H(ζ, bi, ) (b) p ∼ A ϕ 0 ≤ V (a, b, q, s,t, L, U) 0 ≥ V (b, a, -q, s,t, L, U) > 0 ≤ D(a,
b, p, q, s,t, L, U, right) > 0 ≥ D(b, a, p, -q, s,t, L, U, left) < 0 ≤ D(a, b, -p, q, s,t + p, L + p, U + p, left) < 0 ≥ D(b, a, -p, -q, s,t + p, L + p, U + p, right)

Table 2. The instantiation table for (F1) and (F2) formulae

Formulae of type (F2) Let ϕ be the formula :

∀i . K k=1 f k ≤ i ∧ L l=1 i ≤ g l ∧ i ≡ s t → a[i] -b[i + p] ∼ q
where 0 ≤ s < t. As previously, we denote L = { f 1 , . . . , f K } and U = {g 1 , . . . , g L }. The instantiation of A ϕ is done according to the value of p and ∼ as described in Table 2(b). 9Given a set of integers S and an integer p we use the notation S + p for {s + p | s ∈ S}.

Counter Automata for Array-Bound Constraints. The FBCA A θ for a Presburger constraint θ on array-bound variables is

A θ = x k , Q, L, R, -→ , where x k is the set {x k | k ∈ FV (θ)}, Q = {q L , q R }, L = {q L }, R = {q R }, and - →= {q L -→ q L , q L θ(x k )
---→ q R , q R -→ q R }, and θ(x k ) denotes the formula θ in which each occurrence of an arraybound variable k ∈ FV (θ) is replaced by its corresponding parameter x k .

D Proofs

Proof of Lemma 1 Let A = x, Q, L, R, -→ . "⇒" r is left-accepting iff there exists an infinite decreasing sequence ... i 3 < i 2 < i 1 < 0 of positions in r, visiting a control state from L. This implies that i 3 -1 < i 2 -1 < i 1 -1 < 0 visits the same control state, hence r • s is left-accepting. r is right-accepting iff there exists an infinite increasing sequence 0 < j 1 < j 2 < j 3 < . . . of positions in r, which visits a control state from R. But this implies that 0 < j 2 -1 < j 3 -1 < . . . visits the same state from R, hence r • s is rightaccepting. "⇐" This direction follows a similar argument.

Proof of Lemma 2

The proof uses the results of Appendix A, namely Lemmas 7 and 8. Let A = x, Q, L, R, -→ be a FBCA. W.l.o.g. we can assume that any control state q ∈ L ∪ R belongs to exactly one elementary cycle. For, if q does not belong to a cycle, it cannot occur infinitely often on a run. Moreover, if q belongs to two or more elementary cycles, then A is not flat, in contradiction with the definition of FBCA. Let l ∈ L and r ∈ R be fixed for the rest of this proof. We construct a Presburger formula Φ l,r which is satisfiable if and only if there exists a bi-infinite run that visits l infinitely often on the left and r infinitely often on the right. Let γ be the elementary cycle to which l belongs, and ← γ be the cycle obtained by reversing each transition q ϕ -→ q into q ϕ -→ q, where ϕ is obtained from ϕ by interchanging the occurrences of the counters in x with x , and vice versa. Let I l, ← γ (x) be the Presburger formula defining the set of valuations ν for which there exists an infinite computation along ← γ starting in (l, ν). Let δ be the elementary cycle to which r belongs, and I r,δ (x) be the Presburger formula defining the set of valuations ν for which there exists an infinite computation along δ starting in (r, ν). The formula encoding the existence of a bi-infinite run that visits l infinitely often on the left and r infinitely often on the right, is the following:

Φ l,r : ∃x∃x . I l, ← γ (x) ∧ R l,r (x, x ) ∧ I r,δ (x )
The proof that Φ l,r is satisfiable if and only if R (A) = / 0 comes as an immediate consequence of the meaning of the I l, ← γ , R l,r and I r,δ formulae.

Proof of Proposition 1 The direction R (A) ⊆ R (A c ) is trivial, since L ⊆ L c and R ⊆ R c .
To prove the fact that R (A) ⊇ R (A c ), let r be an accepting run of A c . Then there exists a state q ∈ L c that repeats infinitely often on the left in r. There are two situations: either q ∈ L, in which case r is directly left-accepting for A, or there exists a state q ∈ L which belongs to the same elementary cycle as q in A. By the flatness of A, this means that q will be visited infinitely often on the left as well. Analogously, one proves that r is a right-accepting run of A.

Proof of Lemma 3 The proof for closure under union is trivial. We will give the proof for closure under intersection in the following.

Let A i = x i , Q i , L i , R i , → i , i = 1, 2 be two FBCA, and A = x, Q, L, R, -→ be their product, i.e. A = A 1 ⊗ A 2 .
1. We first prove that A belongs to the class FBCA. For this we need to show that each control state of A belongs to at most one elementary cycle. For an arbitrary state (q, q ) ∈ Q 1 × Q 2 , let pr 1 ((q, q )) = q, pr 2 ((q, q )) = q and for an arbitrary cycle γ in A, let pr i (γ) denote the corresponding cycles in A i , obtained by projection of the i-th control state, i = 1, 2. Suppose that there is a control state (q, q ) ∈ Q 1 × Q 2 that belongs to (at least) two different elementary cycles, γ and δ. Then q belongs to pr 1 (γ) and pr 1 (δ) in A 1 , and q belongs to pr 2 (γ) and pr 2 (δ) in A 2 . Since, by the hypothesis A 1 and A 2 are flat, then pr i (γ) and pr i (δ) must be (possibly trivial) unfoldings of the same elementary cycle ε i in A i , for i = 1, 2, respectively. In other words, pr i (γ) = k i • ε i and

pr i (δ) = l i • ε i , for i = 1, 2 and k i , l i ∈ N.
Let m be the least common multiple of |ε 1 | and |ε 2 |, and n i = m |ε i | , for i = 1, 2. Let α be the cycle in A obtained by the composition of the two cycles obtained by iterating ε 1 n 1 times, and ε 2 n 2 times, respectively, i.e. pr i (α) = n i • ε i , i = 1, 2. Since ε i are elementary cycles of A i , it follows that α is the smallest cycle of A with the property that pr i (α) is an unfolding of ε i . Hence γ and δ, must both be either α or unfoldings of α, contradicting the assumption that they were different elementary cycles of A.

To prove that the elementary cycles of A are labelled with (parametric) DBM formulae only, notice that any cycle of A is a composition of two (unfoldings of) cycles in A 1 and A 2 . Since both component cycles are labelled with DBM formulae, and the label of the transitions of A is the conjunction of the labels of the transitions in A 1 , A 2 , it follows that the resulting cycle is labelled with DBM formulae as well.

2. Second, we prove that

V (A) = V (A 1 ) ↑ x 1 ∪x 2 ∩ V (A 2 ) ↑ x 1 ∪x 2 . Let s ∈ V (A 1 )↑ x 1 ∪x 2 ∩ V (A 2 )↑ x 1 ∪x 2 be a bi-infinite sequence of counter valuations. From the definition of V (.), there exist r 1 ∈ R (A 1 ) and r 2 ∈ R (A 2 ) such that val(r 1 ) = s ↓ x 1 and val(r 2 ) = s ↓ x 2 .
Let i ∈ Z be an arbitrary position, and r 1 (i) = (q 1 , ν 1 ), r 1 (i + 1) = (q 1 , ν 1 ), r 2 (i) = (q 2 , ν 2 ), r 2 (i + 1) = (q 2 , ν 2 ) be successive configurations of r 1 and r 2 , respectively, where ν 1 , ν 1 : x 1 → Z and ν 2 , ν 2 : x 2 → Z are valuations of x 1 , x 2 . Then there exist transition rules q 1

ϕ 1 (x 1 ,x 1 ) -----→ q 1 in A 1 , and q 2 ϕ 2 (x 2 ,x 2 ) -----→ q 2 in A 2 , such that ϕ 1 (ν 1 (x 1 ), ν 1 (x 1 ))
and ϕ 2 (ν 2 (x 2 ), ν 2 (x 2 )) are both valid. Hence, by construction of A, there exists a transition rule (q 1 , q 2 )

ϕ 1 ∧ϕ 2 ---→ (q 1 , q 2 ), such that ϕ 1 ∧ ϕ 2 is satisfied by (ν 1 ∪ ν 1 ) ↑ x 1 ∪x 2 ∩(ν 2 ∪ ν 2 )↑ x 1 ∪x 2 .
In this way, one can build a bi-infinite run r of A, such that val(r) = s. It remains to be proven that this run is an accepting run of A.

Since r i is an accepting run of A i , then by Proposition 1, it is also an accepting run of A c i , for i = 1, 2. By the flatness of A 1 , and, implicitly of A c 1 , there exist a sequence σ 1 of states from L c 1 that repeats infinitely often to the left of r 1 , i.e. there exists a position k 1 ∈ Z, such that the restriction of r 1 to (-∞, k 1 ] is of the form ... σ 1 σ 1 . Analogously, there exists a sequence σ 2 of states from L c 2 , and a position k 2 ∈ Z such that the restriction of r 2 to (-∞, k 2 ] is of the form ... σ 2 σ 2 . Then, the restriction of r to (-∞, min(k 1 , k 2 )] is of the form ... σσ, where σ is a sequence of pairs (q, q ) ∈ L c 1 × L c 2 . Hence there exists such a pair repeating infinitely often to the left in r, i.e. r is left-accepting. Analogously, one proves that r is right-accepting.

We have proved that

V (A) ⊇ V (A 1 ) ↑ x 1 ∪x 2 ∩ V (A 2 ) ↑ x 1 ∪x 2 . The direction V (A) ⊆ V (A 1 ) ↑ x 1 ∪x 2 ∩ V (A 2 ) ↑ x 1 ∪x 2 is proved using a similar argument.
Proof of Lemma 4 This can be proven by a reduction from the halting problem for 2-counter automata [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF]. A 2-counter machine with non-negative counters c 1 , c 2 is a sequential program: 0 : ins 0 ; 1 :

ins 1 ; ••• ; n : ins n ;
where ins n is a halt instruction and ins i with i = 0, 1, ••• , n are instructions of the following two types, for 0 ≤ k, k 1 , k 2 ≤ n, and 1 ≤ j ≤ 2:

1. c j = c j + 1; goto k; 2. if c j = 0 then goto k 1 else (c j = c j -1; goto k 2 );

We give a formula ϕ such that the machine halts iff the formula is satisfiable. ϕ uses three arrays a 1 , a 2 and a 3 . a 1 (resp. a 2 ) contains values of counter 1 (resp. 2) and a 3 contains the control location. Each instruction k : ins k is translated into a formula ϕ k (i) having a parameter i. We give the translation for instructions concerning counter c 1 . Instructions concerning counter c 2 are encoded in a similar way. Instructions of the form k : c 1 = c 1 + 1; goto k are translated into:

ϕ k (i) : a 3 [i] = k ∧ a 1 [i + 1] = a 1 [i] + 1 ∧ a 2 [i + 1] = a 2 [i] ∧ a 3 [i + 1] = k
Instructions of the form k : if c j = 0 then goto k 1 else (c j = c j -1; goto k 2 ) are translated into:

ϕ k (i) : (a 3 [i] = k ∧ a 1 [i] = 0 ∧ a 1 [i + 1] = a 1 [i] ∧ a 2 [i + 1] = a 2 [i] ∧ a 3 [i + 1] = k 1 ) ∨(a 3 [i] = k ∧ a 1 [i] > 0 ∧ a 1 [i + 1] = a 1 [i] -1 ∧ a 2 [i + 1] = a 2 [i] ∧ a 3 [i + 1] = k 2 )
Now the formula ϕ is given as

∃a 1 , a 2 , a 3 ∃m.∀i.((0 ≤ i ≤ m -1) → (a 3 [0] = 0 ∧ n-1 _ j=0 ϕ j (i) ∧ a 3 [m] = n))
The models of the formula are exactly the halting runs of the counter machine in m steps. a 1 [i] (resp. a 2 [i]) is the value of counter c 1 (resp. c 2 ) after i steps and a 3 [i] is the corresponding control location. a 3 [0] = 0 and a 3 [m] = n make sure that the machine starts at the initial control location 0 and goes to the halting location n and W n-1 j=0 ϕ j (i) insures that counter values and control locations stored in two consecutive positions (i and i + 1) in the arrays a 1 , a 2 and a 3 correspond to values in a run of the machine. Then it is clear, that the machine halts iff ϕ is satisfiable.

Note that one can easily give a formula using just one array. This is done by interleaving the three arrays and using the modulo constraints to access the counter values and the control locations.

Proof of Lemma 5

We show how a formula, written in the syntax of Figure 1, can be transformed into an equivalent formula of the form (NF), by applying the steps below:

1. Put the left-hand sides of the subformulae ∀i . ϕ(i) → ψ(i) into disjunctive normal form, and then split both the left-hand and right-hand sides by applying exhaustively the following equivalence preserving transformations:

∀i . ϕ 1 ∨ ϕ 2 → ψ ⇐⇒ ∀i . ϕ 1 → ψ ∧ ∀i . ϕ 2 → ψ ∀i . ϕ → ψ 1 ∧ ψ 2 ⇐⇒ ∀i . ϕ → ψ 1 ∧ ∀i . ϕ → ψ 2
The resulting formula will have only conjunctions of atomic formulae on the lefthand side of the implications and only atomic formulae on the right hand side of the implications.

2. Put the entire formula into disjunctive normal form, treating the implications ∀i . ϕ(i) → ψ as atomic propositions, and distribute the existential prefix to each disjunctive clause. 3. Eliminate negated implications using the equivalence ¬ ∀i . ϕ → ψ ⇐⇒ ∃k . ϕ ∧ ( → ¬ψ[k/i]). Notice that, because of the previous step, ψ is an atomic DBM formula involving array terms, hence ¬ψ can be written equivalently without negation. We move the existential quantifier to the prefix of existential quantifiers of the formula, renaming the index variables i by some fresh array-bound variables k. We make ϕ a part of θ p . The newly introduced implication is not preceded by a universal quantifier (as expected by the normal form we use), but this will be taken care of by the next step. 4. For each implication of the form ∀i . ϕ(k, i) → ψ(a, k, i), such that ψ contains an array term a[ f (k)] where f (k) is a linear combination of array-bound variables, introduce a fresh universally quantified index variable j, and rewrite the whole implication as ∀i ∪ { j} .

ϕ ∧ j = f (k) → ψ[ j/ f (k)]
. This step ensures that array terms are indexed only by universally quantified index variables. 5. Normalise all DBM subformulae of the premises ϕ of the array subformulae ∀i . ϕ → ψ. This step computes also the transitive closure of the DBMs, making explicit all dependencies between indices. For each pair of constraints ij ≤ n and ji ≤ -m occurring in a conjunction within the premise of an implication of the form ∀i . ϕ → ψ, either it is the case that nm < 0, in which case replace the whole implication by true, or else nm ≥ 0, in which case replace both constraints by W l∈[m,n] ij = l 10 and eliminate i from the implication subformula, by replacing each occurrence of i by j + l. This step ensures that no constraints of the form m ≤ ij ≤ n are left within the formula. (b) ij + n ≤ p with ij ≤ pn, (c) i + n ≡ s t with i ≡ s t , where 0 ≤ t < t and t ≡ s t + n.

It can be easily checked that the formula obtained after applying the normalisation steps is in the form (NF), and that is equivalent to the initial formula, since every transformation preserves logical equivalence.

Proof of Lemma 6

We carry out the proof separately for ϕ being of type (F1)-(F3).

(F1) ϕ : ∀i . --→ (ζ, n) with n ∈ P ι where P ι is the set given in the construction of G ι,ϕ . Any n ∈ P ι satisfies the precondition of ϕ. Since (ι, µ) is a model of ϕ, we have that

V K k=1 f k ≤ i ∧ V L l=1 i ≤ g l ∧ i ≡ s t → a[i] ∼ h(k) where 0 ≤ t < s "⇒" By the construction of G ι,ϕ = (V, E), we have V = {a, ζ} × Z. Define Lab : V → Z as Lab((a, n)) = µ(a, n) and Lab((ζ, n)) = 0 for all n ∈ Z.
µ(a, n) -0 ≤ h(k), which implies Lab((a, n)) -Lab((ζ, n)) ≤ h(k).
"⇐" This direction follows from a similar argument.

(F2) ϕ : ∀i . -→ (b, n + p) with n ∈ P ι where P ι is the set given in the construction of G ι,ϕ . Since (ι, µ) is a model of ϕ, then for all n ∈ P ι , we have µ(a, n)µ(b, n + p) ≤ q, which implies Lab((a, n)) -Lab((b, n + p)) ≤ q.

V K k=1 f k ≤ i ∧ V L l=1 i ≤ g l ∧ i ≡ s t → a[i] -b[i + p] ∼ q where 0 ≤ s < t, p ∈ N, q ∈ Z. "⇒" By the construction of G ι,ϕ = (V, E), we have V = {a, b, ζ} × Z. Define Lab : V → Z as Lab((a, n)) = µ(a, n), Lab((b, n)) = µ(b, n),
"⇐" This direction follows from a similar argument.

(F3) ϕ : ∀i, j .

V K 1 k=1 f 1 k ≤ i ∧ V L 1 l=1 i ≤ g 1 l ∧ V K 2 k=1 f 2 k ≤ j ∧ V L 2 l=1 j ≤ g 2 l ∧ i -j ≤ p ∧ i ≡ s t ∧ j ≡ u v → a[i] -b[ j] ∼ q where 0 ≤ s < t, 0 ≤ u < v, p ∈ Z ∞ , and q ∈ Z.
Let us assume first that p < ∞ and that ∼ is ≤, the other cases being very similar.

Let the sets P 1 ι and P 2 ι be defined as in the construction of the constraint graph G ι,ϕ .

"⇒" By the construction of ι such that kl ≤ p. This allows us to define Lab((t ϕ , n)) = µ(a, n + p)q for n + p ∈ P 1 ι , Lab((t ϕ , n)) = µ(b, n) for n ∈ P 2 ι and Lab((t ϕ , n)) = 0 for all other n ∈ Z.

G ι,ϕ = (V, E), we have V = {a, b, ζ,t ϕ } × Z. First of all, we define Lab : V → Z as Lab((a, n)) = µ(a, n), Lab((b, n)) = µ(b, n),
As there is no n such that n + p ∈ P 1 ι and n ∈ P 2 ι and as there are no arcs linking nodes of t ϕ × Z, it can be easily checked that the labelling is consistent.

Second, we consider the case where T ≤ = / 0. In such a case, there exist k ∈ P 1 ι and l ∈ P 2 ι such that kl ≤ p. Thus, P 2 ι is not empty, and by definition it is finite, hence it has a maximum element.

Then, we define Lab((t ϕ , n)) as follows: For n ≤ max(P

2 ι ), Lab((t ϕ , n)) = min{µ(b, i) | i ∈ P 2 
ι and i ≥ n}. For n > max(P 2 ι ), we define the labelling inductively as follows:

If n + p ∈ P 1 ι , then Lab((t ϕ , n)) = max(Lab((t ϕ , n-1)), µ(a, n+ p)-q), otherwise Lab((t ϕ , n)) =
Lab((t ϕ , n -1)). It remains to show that min{µ(b, i) | i ∈ P 2 ι and i ≥ n} exists and that Lab is consistent.

Since µ is a model, we have µ(a, k )µ(b, j) ≤ q for all j ∈ P 2 ι with kj ≤ p. This implies that the set {µ(b, i) | i ∈ P 2 ι and i ≥ n} is bounded from below. Therefore min{µ(b, i) | i ∈ P 2 ι and i ≥ n} exists. To show that Lab is consistent, we consider all edges of G ι,ϕ . For edges linking nodes from ζ × Z, we have trivially Lab

((ζ, n)) -Lab((ζ, n + 1)) ≤ 0 and Lab((ζ, n + 1)) -Lab((ζ, n)) ≤ 0.
For edges of T ≤ , we have by definition of the labelling of t ϕ × Z that Lab((t ϕ , n)) ≤ Lab((t ϕ , n+1)) for all n ∈ Z. Indeed, for n ≤ max(P 2 ι ), we set

Lab(t ϕ , n) = min{µ(b, i) | i ∈ P 2 ι and i ≥ n}. Notice that, for n 1 ≤ n 2 we have Lab(t ϕ , n 1 ) ≤ Lab(t ϕ , n 2 ). For n > max(P 2 ι ), we set Lab(t ϕ , n) = Lab(t ϕ , n -1). For edges in {(a, k) q -→ (t ϕ , k -p) | k ∈ P 1 ι }, we consider two cases. If k -p > max(P 2 
ι ), then by definition of the labelling, we have that Lab((a, k)) = µ(a, k) and Lab((t ϕ , k-p)) = max(Lab((t ϕ , n-1)), µ(a, k)-q). Therefore, Lab((a, k))-Lab((t ϕ , kp)) ≤ q. If k-p ≤ max(P 2 ι ), then by definition of the labelling, we have that Lab((a, k)) = µ(a, k) and Lab((t ϕ , kp)) = min{µ(b, i) | i ∈ P 2 ι and i ≥ k -p}. Let m ∈ P 2 ι be such that µ(b, m) = Lab((t ϕ , kp)). Since µ is a model, we have µ(a, k)µ(b, m) ≤ q. This implies Lab((a, k)) -Lab((t ϕ , kp)) ≤ q.

Finally, for edges in {(t ϕ , k) 0 -→ (b, k) | k ∈ P 2 ι }, we have by definition of the labelling that Lab((t ϕ , k)) -Lab((b, k)) ≤ 0. "⇐" Let Lab be a consistent labelling of G ι,ϕ and µ a valuation such that µ(a, i) = Lab((a, i)) for all a ∈ a and i ∈ Z. Let i, j such that

V K 1 k=1 f 1 k ≤ i ∧ V L 1 l=1 i ≤ g 1 l ∧ V K 2 k=1 f 2 k ≤ j ∧ V L 2 l=1 j ≤ g 2 l ∧ i -j ≤ p ∧ i ≡ s t ∧ j ≡ u v.
By the construction of G ι,ϕ , there are edges (a, i) q -→ (t ϕ , ip), (t ϕ , i) 0 -→ (t ϕ , i + 1),..., (t ϕ , j -1) 0 -→ (t ϕ , j) and (t ϕ , j) 0 -→ (b, j).

By the fact that Lab is consistent, we have Lab((a, i)) -Lab((b, j)) ≤ q which implies that µ(a, i)µ(b, j) ≤ q.

D.1 Proof of Theorem 1

To proof the main theorem we give first several lemmas. The following two lemmas relate the control states visited by an accepting run of A ϕ , with its positions. "⊇" Now, we show that [[ϕ]] ⊆ M ϕ (V (A ϕ )). This is, given a model of ϕ, we have to show that the counter automaton A ϕ has a corresponding accepting run. Let ι, µ be a model of ϕ. Because of Lemma 6, there exists a consistent labelling Lab of the constraint graph G ι,ϕ with µ(a, i) = Lab((a, i)) and µ(b, i) = Lab((b, i)) for all i ∈ Z. It remains to show that A ϕ has a run corresponding to the labelling Lab. It is enough to show that the three automata A 1 , A 2 , and A 3 have runs corresponding to the same labelling Lab. That is, there are runs r 1 0 of A 1 , r 2 0 of A 2 , r 3 0 of A 3 such that val(r 1 0 (i))(x a ) = Lab((a, i)) and val(r 3 0 (i))(x b ) = Lab((b, i)) for all i ∈ Z as well as val(r 1 0 (i))(x t ϕ ) = val(r 2 0 (i))(x t ϕ ) = val(r 3 0 (i))(x t ϕ ) = Lab((t ϕ , i)) for all i ∈ Z.

We define a bi-infinite sequence ν : Z → ({x a , x b , x t ϕ }∪{x k |k ∈ k}∪{x j | j ∈ {1, ..., p-1}} → Z) of valuations of the counters of A ϕ such that :

-∀k ∈ k∀i ∈ Z.ν(i)(x k ) = ι(k) -∀i ∈ Z.ν(i)(x a ) = L((a, i)) and ν(i)(x b ) = L((b, i)) -∀i ∈ Z.ν(i)(x t ϕ ) = L((t ϕ , i)) -∀ j ∈ {1, ..., p -1}∀i ∈ Z.ν(i)(x j ) = L((a, i + j))q Now, as ν corresponds in the needed way to Lab, it remains to show that each automaton A 1 , A 2 , A 3 has runs corresponding to ν (taking into account the relevant counters only). Let L i,ι = max{ι(

f i k ) | 1 ≤ k ≤ K i } and U i,ι = min{ι(g i l ) | 1 ≤ l ≤ L i } for i = 1, 2. Let P 1 ι = {k | L 1,ι ≤ k ≤ U 1,ι ∧ k ≡ s t} and P 2 ι = {k | L 2,ι ≤ k ≤ U 2,ι ∧ k ≡ u v}.
-The run r 1 0 of the automaton A 1 is composed of three parts. The "left-accepting part", the "middle part", and the "right-accepting" part. There are two cases to consider depending on the emptiness or non-emptiness of the set P 1 ι .

• If P 1 ι is empty, then the run is constructed in the following way: The leftaccepting part goes through the transition q L -→ q L , then the middle part is the transition q L ¬(∃i . -------------------------→ q R taken at an arbitrary point. The right-accepting part goes through the transition q R -→ q R . Since there are no constraints (up to choosing the values of the parameters k), the run can be trivially chosen to correspond to ν.

• If P 1 ι is not empty, then the left-accepting part goes through the transition q L -→ q L until one of the guards of the outgoing transitions is satisfied, which happens when x τ reaches the value L 1,ι -1p. The run then continues to one of the q i states, namely the one for which x τ + 1 ≡ s i. The middle part of the run then goes through the states {q i | 0 ≤ i < s} till x τ reaches the value U 1,ιp -1. Subsequently, the run continues through the states q j i to q R where it loops forever. Within the run, the constraints that are to be satisfied when taking a transition from a q i state include:

1. x ax 1 ≤ q, which can be satisfied as in the sequence ν of valuations that the run needs to follow, the value of x 1 equals x aq, 2. x k-1x k ≤ 0 for 1 < k < p, which can be satisfied as in the sequence of valuations ν to be followed, all x k-1 and x k have the same value, and 29 3. x p-1x t ϕ ≤ 0. This last kind of constraints is tested at the moments when the value of x τ corresponds to an index l when a diagonal arc arrives to t ϕ . At that moment, in the sequence ν of valuations that we try to follow, x p-1 has the value of L((a, l + p))q, and from the fact that the labelling is consistent (and hence L((a, l + p)) -L((t ϕ , l)) ≤ q), it is clear that the last kind of constraints can be satisfied too. Hence, there is an accepting run corresponding to the bi-infinite sequence ν of valuations. A similar reasoning applies when passing through the states q j i .

-The runs r 2 0 of A 2 and r 3 0 of A 3 are constructed in a similar way.

Before proceeding with the proof of Theorem 1, let us first introduce some notation.

Let x be an arbitrary set of variables, interpreted over some domain D, and I ⊆ x → D be a set of valuations. For some superset y ⊃ x of the set of variables, we define I ↑ y = {ι : y → D | ι ↓ x ∈ I }. If x 1 , y 1 and x 2 , y 2 are sets of variables interpreted over domains D 1 and D 2 , respectively, x 1 ⊆ y 1 , x 2 ⊆ y 2 , and I 12 ⊆ x 1 → D 1 × x 2 → D 2 is a set of pairs of valuations, let I 12 ↑ y 1 ,y 2 = { ι 1 , ι 2 | ι 1 :

y 1 → D 1 , ι 2 : y 2 → D 2 , ι 1 ↓ x 1 , ι 2 ↓ x 2 ∈ I 12 }.
The proof is by induction on the structure of ϕ. Lemma 11 takes care about the cases of ϕ being of type (F1)-(F3). If ϕ is a PA constraint on k, the proof is immediate.

For the inductive case ϕ = ψ 1 ∧ ψ 2 , let k i and a i , be the sets of array-bound and array variables of ψ i , for i = 1, 2, respectively. We have by Lemma 3, that:

V (A ψ 1 ⊗ A ψ 2 ) = V (A ψ 1 ) ↑ x 1 ∪x 2 ∩ V (A ψ 2 ) ↑ x 1 ∪x 2
where x 1 are the counters of A ψ 1 and x 2 are the counters of A ψ 2 . Applying M ϕ to this equality, we obtain:

M ϕ (V (A ψ 1 ⊗ A ψ 2 )) = M ϕ (V (A ψ 1 ) ↑ x 1 ∪x 2 ) ∩ M ϕ (V (A ψ 2 ) ↑ x 1 ∪x 2 )
since M ϕ is defined point wise on sets of runs. By the induction hypothesis, we have M ψ i (V (A ψ i )) = [[ψ i ]], for i = 1, 2. It is easy to see that, M ϕ (V (A ψ i )↑ x 1 ∪x 2 ) = [[ψ i ]]↑ k 1 ∪k 2 ,a 1 ∪a 2 , for i = 1, 2. Hence, we have:

M ϕ (V (A ψ 1 ⊗ A ψ 2 )) = [[ψ 1 ]] ↑ k 1 ∪k 2 ,a 1 ∪a 2 ∩ [[ψ 2 ]] ↑ k 1 ∪k 2 ,a 1 ∪a 2 = [[ψ 1 ∧ ψ 2 ]]
The proof for the case ϕ = ψ 1 ∨ ψ 2 follows a similar argument.
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  and Lab((ζ, n)) = 0 for all n ∈ Z. To show that Lab is consistent, let ∼ be ≤, the other case being symmetric. Let us consider any edge from E. For edges linking nodes from ζ × Z, we have trivially Lab((ζ, n)) -Lab((ζ, n + 1)) ≤ 0 and Lab((ζ, n + 1)) -Lab((ζ, n)) ≤ 0. The only other edges in G ι,ϕ are of the form (a, n) q

  and Lab((ζ, n)) = 0 for all n ∈ Z. It remains to define Lab for t ϕ × Z.Let us consider first the case where T ≤ = / 0. Then, there do not exist k ∈ P 1 ι and l ∈ P 2

V

  l∈L i≥l(x k ) ∧ V u∈U i≤u(x k ) ∧ i≡ s t)

  meaning that any value at some even position is

	n, m, s,t ... ∈ Z	constants (0 ≤ t < s)
	k, l,...	∈ BVar	array-bound variables
	i, j,...	∈ IVar	index variables
	a, b,...	∈ AVar	array variables

  To show that Lab is consistent, let ∼ be ≤, the other case being symmetric. Let us consider any edge from E. For

edges linking nodes from ζ × Z, we have trivially Lab((ζ, n)) -Lab((ζ, n + 1)) ≤ 0 and Lab((ζ, n + 1)) -Lab((ζ, n)) ≤ 0. The only other edges in G ι,ϕ are of the form (a, n) h(k)

In the early literature[START_REF] Nivat | Ensembles reconnaissables de mots biinfinis[END_REF], a bi-infinite sequence is defined as the equivalence class of all compositions β•σ n •σ -m for arbitrary n, m ∈ N. This is because a bi-infinite sequence remains the same if shifted left or right. For simplicity reasons, here we formally distinguish the biinfinite sequences β, β • σ n , and β • σ -n .

The symbol ⊥ is used to denote that a partial function is undefined at a given point.

By template we mean a class of counter automata which all share the same structure.

For instance, the constraint a[i]b[i + 3] ≤ 5 can be split to a[i]x 1 [i + 1] ≤ 5, x 1 [i + 1]x 2 [i+2] ≤ 0, and x 2 [i+2]-b[i+3] ≤ 0.The constraints for array values of neighboring indices can then be conveniently expressed by using the current and future values of the appropriate counters (e.g., for our example constraint, x ax 1 ≤ 5, x 1x 2 ≤ 0, and x 2x b ≤ 0, which of course appear on subsequent transitions of the appropriate FBCA).

By definition, for each ν ∈ V (A ϕ ) there exist valuations ι r and µ r , so M ϕ is defined for all ν ∈ V (A ϕ ). Let r 1 , r 2 ∈ R (A ϕ ) be two runs such that val(r 1 ) = val(r 2 ) = ν. We have δ(r 1 ) = δ(r 2 ), therefore η(r 1 ) = η(r 2 ), which leads to ι r 1 = ι r 2 and µ r 1 = µ r 2 .

Note that in the last two lines of Table2(b), we shift the original bounds appearing in the formula in order to be able to re-use the prepared templates that do not explicitly deal with edges leaving from within the given bounds and going below the lower bound. Due to the way the templates are constructed, the shifting preserves the semantics of the formula -instead of edges going below the lower bound of a certain interval, we obtain the same edges just going above the upper bound of the shifted interval, which our templates are prepared for.

A Extensions of Flat Counter Automata

In [START_REF] Comon | Multiple Counters Automata, Safety Analysis and Presburger Arithmetic[END_REF][START_REF] Bozga | Flat Parametric Counter Automata[END_REF] it is shown that given a flat counter automaton A = x, Q, -→ , and a loop γ on a control state q ∈ Q, labelled with DBM formulae only, one can effectively build a PA formula Ψ q,γ (y, x, x ) which is satisfied by all triples n, v, v , where there exists an execution corresponding to n loop iterations, in which the initial values of the counters are v and the final values are v . Based on this, we prove two important lemmas whose proofs can be found in [START_REF] Habermehl | What else is decidable about integer arrays?[END_REF].

Lemma 7. If any control loop of A is labelled by a parametric DBM formula, then for any two control states q, q ∈ Q, one can effectively build a PA formula R q,q (x, x ) such that, for any two configurations (q, ν) and (q , ν ), (q , ν ) is a successor of (q, ν) if and only if |= R q,q (ν(x), ν (x )).

Lemma 8. Given a control loop γ labelled by a parametric DBM formula, and a control state q on γ, one can effectively build a PA formula I q,γ (x), such that, for any configuration (q, ν), there exists an infinite computation along γ, starting with (q, ν) if and only if |= I q,γ (ν(x)).

B Verification Conditions for an Array Merging Example

Consider the following program that takes two arrays a and b, and merges their first n elements by alternating elements from a with elements from b. Suppose, moreover, that the first n elements of a are less than or equal to the first n elements of b. The resulting array will have all its first n elements on even positions less than or equal to the first n elements on odd positions.

The pre-, post-condition, and loop invariant needed for the proof of this program are annotated directly into the program text using double curly braces. We show in the following that the verification conditions to be checked to prove the correctness of the program fall into our logic, and so they are decidable.

We need to check three verification conditions corresponding to the initialisation of the loop, the loop body, and the finalisation of the loop.

The initialisation consists of the two unconditional assignment statements k=0 and l=0. We need to check that the following formula is logically valid (we use primed names of variables to distinguish the current and future values of the variables):

p} be an instance of the diagonal template D(a, b, p, q, s,t, L, U, dir), and r 0 be any normalised accepting run of A. Supposing that L ∪ U = / 0, for all k ∈ Z, we have that, if either r 0 (k) = (q j i , ν) or r 0 (k) = (q i , ν) for some valuation ν of the counters in A, then ν(k) ≡ s i.

Proof. Follows easily from (1) the fact that to enter and to leave the states {q i | 0 ≤ i < s} a guard checking the modulo constraint has to be satisfied and (2) the fact that if L ∪ U = / 0, then an accepting run has to either enter or leave the states {q i | 0 ≤ i < s} due to the presence of guards in the transitions.

stance of the vertical template V (a, b, p, q, s,t, L, U), and r 0 be any normalised accepting run of A. Supposing that L ∪ U = / 0 for all k ∈ Z, we have that, if r 0 (k) = (q i , ν) for some valuation ν, then ν(k) ≡ s i.

Proof. Like the proof of Lemma 9.

The following lemma is the basis of theorem 1.

Lemma 11. Let ϕ(k, a) be a formula of the form (F1)-(F3) and A ϕ the corresponding automaton, as defined in Section 4. [START_REF] Bozga | Flat Parametric Counter Automata[END_REF].

Proof. We only give the proof for the most difficult case, i.e. formulae of the form (F3). For the other formulae, it is similar. Let us have a formula ϕ : ∀i, j .

We give the proof for p > 0 and ∼=≤. The other cases are very similar. Let A ϕ be the automaton corresponding to ϕ. We have A ϕ = A 1 ⊗ A 2 ⊗ A 3 where A 1 is an instance of D(a,t ϕ , p, q, s,tp, L 1p, U 1p, left), A 2 is an instance of H(t ϕ , right, φ), and A 3 is an instance of V (t ϕ , b, 0, u, v, L 2 , U 2 ). We suppose that L 1 ∪ U 1 = / 0 and L 2 ∪ U 2 = / 0. The other cases are treated in a similar way.

Let r be an accepting run of A ϕ and r 0 be the normalised run corresponding to r. Let ι r : k → Z and µ r : {a, b} × Z → Z be the valuations of the free variables of ϕ corresponding to the run r 0 . Let G ι r ,ϕ = (V, E) be the constraint graph corresponding to ϕ for the valuation of the bound variables ι r . We show below that starting from the run r 0 , we can define a consistent labelling Lab of G ι r ,ϕ . Thanks to Lemma 6 which implies that the labelling Lab corresponds to a model, this is enough to prove that

By construction, the run r 0 of the automaton

The labelling Lab is defined as follows: Lab((a, i)) = µ r (a, i), Lab((b, i)) = µ r (b, i), and Lab((t ϕ , i)) = val(r 0 (i))(x t ϕ ) for all i ∈ Z. We show in the following that Lab is

We have to consider several cases depending on the left and rightaccepting states visited by the runs r i 0 . Let

1. The run r 1 0 is left-accepting using q L and right-accepting using q R and goes through the states {q i | 0 ≤ i < s}. We now show that Lab is consistent.

(a) Let us consider an edge (a, k) q -→ (t ϕ , kp) for some k ∈ P 1,ι r . We have to show that Lab((a, k)) -Lab((t ϕ , kp)) ≤ q. Due to the structure of the automaton A 1 , we have for each k ∈ P 1,ι r that r 1 0 (kp) = (q i , ν) for some i. Furthermore, i ≡ s tp due to Lemma 9. Then, the construction of the automaton insures that in any run, the p transitions following q i are such that val(r 1 0 (k))(x a )val(r 1 0 (kp))(x t ϕ ) ≤ q. This holds due to the roles of the additional counters {x i | 1 ≤ i < p} from the definition of D. This implies directly Lab((a, k)) -Lab((t ϕ , kp)) ≤ q.

(b) Let us consider an edge (t ϕ , k) 0 -→ (b, k) for some k ∈ P 2,ι r . We have to show that Lab((t ϕ , k)) -Lab((b, k)) ≤ 0. If P 2,ι r is not empty, then the run r 3 0 must go through the states {q i | 0 ≤ i < s} but it cannot stay there all the time. We have for each k ∈ P 2,ι r that r 3 0 (k) = (q i , ν) with i ≡ u v due to Lemma 10. Then, the transition following q i of the automaton ensures that val(r 3 0 (k))(x t ϕ )val(r 3 0 (k))(x b ) ≤ 0. This implies directly Lab((t ϕ , k)) -Lab((b, k)) ≤ 0. (c) Let us consider the edges T ≤ . The accepting run r 2 0 either goes through q L and q R or p L and p R . In the latter case, this means that the guard φ is not satisfied. Therefore, by definition, T ≤ is empty. In the former case, we have x t ϕx t ϕ ≤ 0 for each transition of A 2 . This gives val(r 2 0 (k))(x t ϕ )val(r 2 0 (k + 1))(x t ϕ ) ≤ 0 for all k ∈ Z, which implies Lab((t ϕ , k)) -Lab((t ϕ , k + 1)) ≤ 0 for all k ∈ Z.

The run r 1

0 is left-accepting using the state q L and right-accepting using the state q R and does not go through {q i | 0 ≤ i < s}. In this case, the run goes through the transition q L ¬(∃i . -------------------------→ q R . This means that P 1,ι r is empty and diagonal edges are trivially consistent. The other edges are shown to be consistent as in the cases 1(b) and 1(c). 3. The run r 1 0 is left-accepting using a state in {q i | 0 ≤ i < s} and right-accepting using q R . In this case, Lemmas 9 and 10 can still be applied in a similar way to the first case to show that the labelling is consistent. 4. The run r 1 0 is left-accepting using the state q L and right-accepting using {q i | 0 ≤ i < s}. Symmetric to the previous case. 5. The run r 1 0 is left-accepting using a state in {q i | 0 ≤ i < s} and right-accepting using {q i | 0 ≤ i < s}. This is impossible because L 1 ∪ U 1 = / 0 implies that an accepting run must either enter or leave the states {q i | 0 ≤ i < s} due to the presence of guards in the transitions.