
HAL Id: hal-01418914
https://hal.science/hal-01418914v1

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What Else Is Decidable about Integer Arrays?
Peter Habermehl, Radu Iosif, Tomáš Vojnar

To cite this version:
Peter Habermehl, Radu Iosif, Tomáš Vojnar. What Else Is Decidable about Integer Arrays?. Foun-
dations of Software Science and Computational Structures, 11th International Conference, FOSSACS
2008, Mar 2008, Budapest, Hungary. �10.1007/978-3-540-78499-9_33�. �hal-01418914�

https://hal.science/hal-01418914v1
https://hal.archives-ouvertes.fr

What else is decidable about integer arrays?

Peter Habermehl1, Radu Iosif2, and Tomáš Vojnar3

1 LSV, ENS Cachan, CNRS, INRIA; 61 av. du Président Wilson, F-94230 Cachan, France,

e-mail:haberm@liafa.jussieu.fr
2 VERIMAG,CNRS, 2 av. de Vignate, F-38610 Gières, France, e-mail:iosif@imag.fr

3 FIT BUT, Božetěchova 2, CZ-61266, Brno, Czech Republic, e-mail: vojnar@fit.vutbr.cz

Abstract. We introduce a new decidable logic for reasoning about infinite arrays

of integers. The logic is in the ∃∗∀∗ first-order fragment and allows (1) Presburger

constraints on existentially quantified variables, (2) difference constraints as well

as periodicity constraints on universally quantified indices, and (3) difference

constraints on values. In particular, using our logic, one can express constraints

on consecutive elements of arrays (e.g. ∀i . 0≤ i < n→ a[i+1] = a[i]−1) as well

as periodic facts (e.g. ∀i . i≡2 0→ a[i] = 0). The decision procedure follows the

automata-theoretic approach: we translate formulae into a special class of Büchi

counter automata such that any model of a formula corresponds to an accepting

run of the automaton, and vice versa. The emptiness problem for this class of

counter automata is shown to be decidable, as a consequence of earlier results on

counter automata with a flat control structure and transitions based on difference

constraints. We show interesting program properties expressible in our logic, and

give an example of invariant verification for programs that handle integer arrays.

1 Introduction

Arrays are a fundamental data structure in computer science. They are used in all mod-
ern imperative programming languages. To verify software which manipulates arrays, it
is essential to have a sufficiently powerful logic, which can express meaningful program
properties, arising as verification conditions within, e.g., inductive invariant checking,
or verification of pre- and post-conditions. In order to have an automatic decision pro-
cedure for the program verification problems, one needs a decidable logic.

In this paper, we develop a logic of arrays indexed by integer numbers, and having
integers as values. To be as general as possible, and also to avoid having to deal explic-
itly with expressions containing out-of-bounds array accesses, we interpret formulae
over both-ways infinite arrays. Bounded arrays can then be conveniently expressed in
the logic by restricting indices to be within given bounds.

Properties that are typically expressed about arrays in a program are (existentially
quantified) boolean combinations of formulae of the form ∀i.G → V , where G is a
guard expression containing constraints over the universally quantified index variables
i (which often range in between some existentially quantified bounds), and V is a value

expression containing constraints over array values. Based on examples, we identified
two types of array properties which seem to appear quite often in programs: (1) proper-
ties relating consecutive elements of an array, e.g. ∀i . l1 ≤ i < l2→ a[i+ 1] = a[i]−1,
which states the fact that each value of a between two bounds l1 and l2 is less than
its predecessor by one, (2) properties stating periodic facts, e.g. ∀i . i≡2 0→ a[i] = 0,
stating that all even elements of array a are equal to 0.

In the absence of specific syntactic restrictions, a logic with such an expressive
power can be easily shown to be undecidable, as one can encode the histories of a 2-
counter machine [13] as models of a formula over arrays. From this reduction, one can
derive two restrictions leading to decidability. The first restriction forbids references to
a[i] and a[i+1] in the same formula, which is considered in the work of Bradley, Manna,
and Sipma [5]. The second restriction, considered in this paper, allows only array for-
mulae ∀i.G→V in which V does not contain disjunctions. We have chosen the second
option, mainly to retain the possibility of relating consecutive arrays elements, i.e. a[i]
and a[i+ 1], which appears to be important for expressing properties of programs.

We introduce a new logic LIA (Logic on Integer Arrays) in the ∃∗∀∗ first-order
fragment. The logic LIA is essentially the set of existentially quantified boolean com-
binations of (1) array formulae of the form ∀i . ϕ(k, i)→ ψ(k, i,a), where i is a set of
index variables, a (resp.k) is a set of existentially quantified array (resp. array-bound)
variables; ϕ is a formula on index variables with difference as well as periodicity con-
straints on variables i wrt. the array-bounds k, and ψ is a difference constraint on array
terms, and (2) Presburger Arithmetic formulae on array-bound variables. In Appendix
B, we give an example program showing the usefulness of this logic to express verifi-
cation conditions.

In this paper, we prove the decidability of the logic LIA using the classical idea of
the connection between logic and automata [18]: from a formula ϕ of the logic, we build
an automaton Aϕ, such that ϕ is satisfiable if and only if Aϕ is not empty. Decidability
of the logic follows from the decidability of the emptiness problem for the class of au-
tomata that is deployed. To this end, we define a new class of counter automata, called
FBCA (bi-infinite Flat Büchi Counter Automata). These are counter automata running
to the infinity in both left and right directions, equipped with a Büchi acceptance condi-
tion. For an arbitrary formula ϕ of LIA, we give the construction of an FBCA Aϕ whose
runs correspond to models of ϕ: the value of the counter xa at a given point i in an exe-
cution of Aϕ corresponds to the value of a[i] in a model of ϕ. We prove the decidability
of LIA by showing that the emptiness problem for FBCA is decidable by extending
known results [6, 4] on flat counter automata with difference bound constraints.

Related work. In the seminal paper [12], the read and write functions from/to arrays
and their logical axioms were introduced. A decision procedure for the quantifier-free
fragment of the theory of arrays was presented in [10]. Since then, various decidable
logics on arrays have been considered—e.g., [17, 11, 9, 16, 1, 7]. These logics include
working with various predicates (reasoning about sortedness, permutations, etc.) and in
terms of various arithmetic (usually Presburger) constraints on array indices and/or val-
ues of array entries. However, unlike our logic, most of these works consider quantifier
free formulae. In these cases, nested array reads (like a[a[i]]) are allowed, which is not
the case in our logic.

In [5], an interesting logic, within the ∃∗∀∗ fragment, is developed. Unlike our deci-
sion procedure based on automata theory, the decision procedure of [5] is based on the
fact that the universal quantification can be replaced by a finite conjunction. The result
is parameterised in the sense of allowing an arbitrary decision procedure to be used for
the data stored in arrays. However, compared to our results, [5] does not allow modulo
constraints (allowing to speak about periodicity in the array values), general difference
constraints on universally quantified indices (only i− j ≤ 0 is allowed), nor reasoning

2

about array entries at a fixed distance (i.e. reasoning about a[i] and a[i + k] for a con-
stant k and a universally quantified index i). The authors of [5] give also interesting
undecidability results for extensions of their logic. For example, they show that relating
adjacent array values (a[i] and a[i+ 1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within ∃∗∀∗ formulae is also allowed in
[2], where decidability is obtained based on a small model property. Unlike [5] and our
work, [2] allows a hierarchy-restricted form of array nesting. However, similar to the
restrictions presented above, neither modulo constraints on indices nor reasoning about
array entries at a fixed distance are allowed. A similar restriction not allowing to express
properties of consecutive elements of arrays then appears also in [3] where a quite
general ∃∗∀∗ logic on multisets of elements with associated data values is considered.

Remark. For space reasons, all proofs are deferred to Appendix D.

2 Counter Automata

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote a
formula as ϕ(x1, ...,xn), we assume FV (ϕ)⊆ {x1, ...,xn}. For ϕ(x), we denote by ϕ[t/x]
the formula in which each occurrence of x is replaced by a term t. Given a formula
ϕ, we denote by |= ϕ the fact that ϕ is logically valid, i.e. it holds in every structure
corresponding to its signature. By σ : Z→ Z, σ(n) = n + 1, we denote the successor
function on integers. In the following, we work with two sets of arithmetic formulae:
difference bound matrices (DBM) and Presburger Arithmetic (PA).

A difference bound matrix (DBM) formula is a conjunction of inequalities of the
form x−y≤ c, x≤ c, or x≥ c, where c∈Z is a constant. If there is no constraint between
x and y, we may explicitly write x− y≤ ∞. In the following, Z∞ denotes Z∪{∞}. Let
z = {z1, . . . ,zn} be a designated set of variables, called parameters. A parametric DBM

formula is a conjunction of a DBM formula with atomic propositions of the forms x≤
f (z) or x≥ f (z), where f is a linear combination of parameters, i.e. f = a0 + ∑n

i=1 aizi

for some ai ∈ Z, 0≤ i≤ n.
A Presburger arithmetic (PA) formula is a disjunction of conjunctions of either

linear constraints of the form ∑n
i=1 aixi + b≥ 0 or modulo constraints ∑n

i=1 aixi + b≡ c

mod d, where ai,b,c,d ∈ Z, c≥ 0 and d > 0, are constants. It is well-known that every
formula of the arithmetic of integers with addition 〈Z,≥,+,0,1〉 can be written in this
form, by quantifier elimination [15]. Clearly, every DBM formula is also in PA.

A counter automaton is a tuple A = 〈x,Q,−→〉, where x is a finite set of counters,

ranging over Z, Q a finite set of control states, and −→ the transition relation, given by

rules q
ϕ(x,x′)
−−−−→ q′, where ϕ is an arithmetic formula relating current values of counters

x to their future values x′. A configuration of a counter automaton A is a pair (q,ν)
where q ∈ Q is a control state, and ν : x→ Z is a valuation of the counters in x. For
a configuration c = (q,ν), we designate by val(c) = ν the valuation of the counters in
c. A configuration (q′,ν′) is an immediate successor of (q,ν) if and only if A has a

transition rule q
ϕ(x,x′)
−−−−→ q′ such that |= ϕ(ν(x),ν′(x′)). A configuration c is a successor

of another configuration c′ if and only if there exists a sequence of configurations c =
c0c1 . . .cn = c′ such that, for all 0≤ i < n, ci+1 is an immediate successor of ci. Given
two control states q,q′ ∈Q, a run of A from q to q′ is a finite sequence of configurations

3

c0c1 . . .cn with c0 = (q,ν), cn = (q′,ν′) for some valuations ν,ν′ : x→ Z, and ci+1 is an
immediate successor of ci, for all 0≤ i < n.

Let S be a set. A bi-infinite sequence of S is a function β : Z→ S.4 We denote by
ωSω the set of all bi-infinite sequences over S. A bi-infinite Büchi counter automaton is
a tuple A = 〈x,Q,L,R,−→〉, where x is a finite set of counters, Q is a finite set of control

states, L,R ⊆ Q are the left-accepting and right-accepting states, and −→ is a transition

relation, defined in the same way as for counter automata.
A run of a bi-infinite Büchi automaton A is a bi-infinite sequence of configurations

. . .c−2c−1c0c1c2 . . . such that, for all i ∈ Z, ci+1 is an immediate successor of ci. A
run r is left-accepting iff there exists a state q ∈ L and an infinite decreasing sequence
of integers . . . < i2 < i1 < 0 such that for all j ∈ N, we have r(i j) = (q,ν j) for some
valuations ν j of the counters of A. Symmetrically, a run is right-accepting iff there ex-
ists a state q ∈ R and an infinite increasing sequence of integers 0 < i0 < i1 < i2 < .. .
such that for all j ∈ N, we have r(i j) = (q,ν j), for some valuations ν j of the coun-
ters of A. A run is accepting iff it is both left- and right-accepting. The set of all
accepting runs of A is denoted as R (A). If r ∈ R (A) is a run of A, we define by
val(r) = . . .val(r(−1))val(r(0))val(r(1)) . . . the bi-infinite sequence of valuations in
r, and V (A) = {val(r) | r ∈ R (A)}.

Lemma 1. For any FBCA A, we have r ∈ R (A) if and only if r◦σ ∈ R (A).

A control path in a counter automaton A is a finite sequence q0q1 . . .qn of control

states such that, for all 0 ≤ i < n, there exists a transition rule qi
ϕi−→ qi+1. A cycle is

a control path starting and ending in the same control state. An elementary cycle is a
cycle in which each state, except the first one, appears only once. A counter automaton
is said to be flat iff each control state belongs to at most one elementary cycle.

Decidability and Closure Properties of FBCA We consider in the following the class
of bi-infinite Büchi counter automata which are flat, and whose elementary cycles are
labelled with parametric DBM formulae. We call this class FBCA in the following. We
prove that the emptiness problem for FBCA is decidable, using results of [4], and their
extensions, that can be found in Appendix A.

Lemma 2. The emptiness problem is decidable for the class of FBCA.

The FBCA class is also effectively closed under the operations of union and inter-
section. However, before proceeding, we need to elucidate the meaning of these opera-
tions for counter automata. If z⊆ x is a subset of the counters in x, let ν↓z denote the re-
striction of ν to the domain z. For some subset z⊂ x of the counters of A, and s∈V (A),
we define the restriction operator on sequences s ↓z= . . .val(s(−1)) ↓z val(s(0)) ↓z

val(s(1)) ↓z . . ., and V (A) ↓z= {s ↓z | s ∈ V (A)}. Symmetrically, for z ⊃ x, we de-
fine the extension operator on sequences V (A)↑z= {v ∈ ω(z 4→ Z)ω | v↓x∈ V (A)}.

A class of counter automata is said to be closed under union and intersection if
there exist operations 5 and ⊗ such that, for any two FBCA Ai = 〈xi,Qi,Li,Ri,→i〉,

4 In the early literature [14], a bi-infinite sequence is defined as the equivalence class of all

compositions β◦σn ◦σ−m for arbitrary n,m∈N. This is because a bi-infinite sequence remains

the same if shifted left or right. For simplicity reasons, here we formally distinguish the bi-

infinite sequences β, β◦σn , and β◦σ−n.

4

i = 1,2, we have that V (A15A2) = V (A1)↑x1∪x2
∪ V (A2)↑x1∪x2

and V (A1⊗A2) =
V (A1) ↑x1∪x2

∩ V (A2) ↑x1∪x2
, respectively. The class is said to be effectively closed

under union and intersection if these operators are effectively computable.

Proposition 1. Let A = 〈x,Q,L,R,−→〉 be a FBCA. Let Ac = 〈x,Q,Lc,Rc,−→〉 be the

FBCA such that (1) for all q ∈ L and q′ ∈Q, q′ belongs to the same elementary cycle as

q iff q′ ∈ Lc, (2) for all q ∈ R and q′ ∈ Q, q′ belongs to the same elementary cycle as q

iff q′ ∈ Rc. Then we have that R (A) = R (Ac).

Assuming w.l.o.g. that Q1 ∩Q2 8= /0, the union is defined as A1 5A2 = 〈x1 ∪ x2,Q1 ∪
Q2,L1 ∪ L2,R1 ∪ R2,→1 ∪ →2〉. The product is defined as A1⊗ A2 = 〈x1 ∪ x2,Q1×

Q2,Lc
1×Lc

2,R
c
1×Rc

2,−→〉, where−→ is as follows: (q1,q′1)
ϕ1 ∧ ϕ2−−−−→ (q2,q′2) iff q1

ϕ1−→ q2 is

a transition rule of A1 and q′1
ϕ2−→ q′2 is a transition rule of A2. Here Lc

i and Rc
i , denote the

extended left-accepting and right-accepting sets of Ai, from Proposition 1, for i = 1,2.

Lemma 3. The class of FBCA is effectively closed under union and intersection.

3 A Logic for Integer Arrays

In this section we define the Logic of Integer Arrays (LIA) that we use to specify
properties of programs handling arrays of integers.

Syntax We consider three types of variables. The array-bound variables (k, l) appear
within the so-called array-bound terms. These terms can be used to define the intervals
of the indices, and also as static references inside arrays. The index (i, j) and array (a,b)
variables are used to build array terms. Fig. 1 shows the syntax of the logic LIA. We use
the ; symbol to denote the boolean value true. In the following, we will use f ≤ i≤ g

instead of f ≤ i ∧ i ≤ g, i < f instead of i ≤ f − 1, and i = f instead of f ≤ i ≤ f .
Intuitively, our logic is the set of existentially quantified boolean combinations of:

1. Array formulae of the form ∀i . ϕ(k, i) → ψ(k, i,a), where k is a set of array-
bound variables, i is a set of index variables, a is a set of array variables, ϕ is
an arithmetic formula on index variables, and ψ is an arithmetic formula on array
terms. In particular, ψ is a DBM formula, and ϕ is composed of atomic propositions
of the form either f ≤ i, i≤ f , i− j ≤ n, i≡s t, where f is a linear combination of
array-bound variables, n ∈ Z, and 0 ≤ t < s. Both k and a variables are free in the
array formulae, but they can be existentially quantified at the top-most level.

2. PA formulae on array-bound variables.

Examples To accustom the reader with the logic, we consider several properties of
interest that can be stated about arrays. For instance, a strictly increasing ordering of a

up to a certain bound is defined as ∃k ∀i . 0 ≤ i < k→ a[i]− a[i + 1]≤ −1. The fact
that the first k elements of array a are below the first l elements of array b at distance
5 is defined as ∃k, l ∀i, j . 0 ≤ i < k ∧ 0 ≤ j < l → a[i]− b[j] ≤ −5. Equality of two
arrays up to a certain bound can be expressed as ∃n∀i . 0≤ i < n→ a[i] = b[i]. The use
of modulo constraints as guards for indices allows one to express periodic facts, e.g.
∀i, j . i ≡2 0 ∧ j ≡2 1→ a[i] ≤ a[j], meaning that any value at some even position is

5

n,m,s,t . . . ∈ Z constants (0≤ t < s)
k, l, . . . ∈ BVar array-bound variables

i, j, . . . ∈ IVar index variables

a,b, . . . ∈ AVar array variables

B := n | k | B+B | B−B array-bound terms

I := i | I +n index terms

A := a[I] | a[B] array terms

G := B≤ I | I ≤ B | I− I ≤ n | I ≡s t | G∨G | G∧G guard expressions

V := A≤ B | B≤ A | A−A≤ n | V ∧V value expressions

C := B≤ n | B≡s t array-bound constraints

P := ;→V | G→V | ∀i . P array properties

U := P | C | ¬U | U ∨ U | U ∧ U universal formulae

F := P | ∃k . F | ∃a . F LIA formulae

Fig. 1. Syntax of the logic LIA

less than or equal to any value at some odd position in a. Appendix B shows that to
prove the correctness of an array merging program, such properties are needed.

Semantics The logic LIA is interpreted on both-ways infinite arrays. This allows to
conveniently deal with out-of-bound reference situations quite common in programs
handling arrays. One can prevent and/or check for out-of-bound references by introduc-
ing explicit existentially quantified array-bound variables for array variables. Let ϕ(k,a)
be any formula of LIA. A valuation is a pair of partial functions5 〈ι,µ〉, with ι : BVar∪
IVar→Z⊥, associating an integer value with every free integer variable, and µ : AVar→
ωZω
⊥, associating a bi-infinite sequence of integers with every array symbol a ∈ a. The

valuation ι is extended in the standard way to array-bound terms (ι(B)) and index terms
(ι(I)). By Iι,µ(A), we denote the value of the array term A given by the valuation 〈ι,µ〉.
The semantics of a formula ϕ is defined in terms of the forcing relation |= as follows:

Iι,µ(a[I]) = µ(a, ι(I))
Iι,µ(a[B]) = µ(a, ι(B))

〈ι,µ〉 |= A≤ B ⇐⇒ Iι,µ(A)≤ ι(B)
〈ι,µ〉 |= A1−A2 ≤ n ⇐⇒ Iι,µ(A1)− Iι,µ(A2)≤ n

〈ι,µ〉 |= ∀i . G→V ⇐⇒ ∀ n ∈ Z . 〈ι[i← n],µ〉 |= G→V

〈ι,µ〉 |= ∃a . ψ ⇐⇒ ∃ β ∈ ωZω . 〈ι,µ[a← β]〉 |= ψ

For space reasons, we do not give here a full definition. However, the missing rules are
standard in first-order arithmetic. A model of ϕ(k,a) is a valuation 〈ι,µ〉 such that the
formula obtained by interpreting each variable k ∈ k as ι(k), and each array variable
a ∈ a as µ(a) is logically valid: 〈ι,µ〉 |= ϕ. We define [[ϕ]] = {〈ι,µ〉 | 〈ι,µ〉 |= ϕ}. A
formula is satisfiable if and only if [[ϕ]] 8= /0.

An Undecidability Result The reason behind the restriction that array terms may
not occur within disjunctions in value expressions (cf. Fig. 1) is that, without it, the
logic becomes undecidable. The essence of the proof is that an array formula ∀i.G→
V1 ∨ . . . ∨ Vn, for n > 1, corresponds to n nested loops in a counter automaton. Unde-
cidability is shown by reduction from the halting problem for 2-counter machines [13].

Lemma 4. The logic obtained by extending LIA with disjunctions within the value

expressions is undecidable.

5 The symbol ⊥ is used to denote that a partial function is undefined at a given point.

6

Note that having more than one nested loop is a necessary condition for undecidability
of 2-counter machines since a flat 2-counter machine would trivially fall into the class
of decidable counter machines from [6, 4].

4 Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiability problem for LIA is that, for
any formula of LIA, there exists an FBCA Aϕ such that ϕ has a model if and only if
Aϕ has an accepting run. More precisely, each array variable in ϕ has a corresponding
counter in Aϕ, and given any model of ϕ that associates integer values to all array entries,
Aϕ has a run such that the values of the counters at different points of the run match the
values of the array entries at corresponding indices in the model. Since, by Lemma 2,
the emptiness problem is decidable for FBCA, this leads to decidability of LIA.

In order to build automata from LIA formulae, we first normalize them into existen-
tially quantified positive boolean combinations of simple array property formulae (cf.
Fig. 1). Second, each such array property formula is translated into an FBCA. The final
automaton Aϕ is defined recursively on the structure of the normalized formulae, with
the 5 and ⊗ operators being the counterparts for the ∨ and ∧ connectives, respectively.

4.1 Normalization of Formulae

The goal of this step is to transform any formula written using the syntax of Figure 1
into a formula of the following normal form.

∃k∃a .
_

p

(
^

q

φpq(a,k)
)

∧θp(k) (NF)

where a is a set of array variables, k is a set of integer variables, and

– θp is a conjunction of terms of the forms: (i) g(k) ≥ 0, or (ii) g(k) ≡s t, with g

being a linear combination of the variables in k, and 0≤ t < s,
– φpq is a formula of the following forms, for some m ∈ N, 0≤ t < s, 0≤ v < u, and

p ∈ Z, q ∈ Z∞:

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t→ a[i]∼ h(k) (F1)

The (F1) formulae bind all values of a in some interval by some linear combination
h of variables in k.

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t→ a[i]−b[i+ p]∼ q (F2)

The (F2) formulae relate all values of a and b in the same interval such that the
distance between the indices of a and b, respectively, is constant.

∀i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i≤ g1

l ∧
VK2

k=1 f 2
k ≤ j ∧

VL2
l=1 j ≤ g2

l ∧
i− j ≤ p ∧ i≡s t ∧ j ≡u v→ a[i]−b[j]∼ q

(F3)

The (F3) formulae relate all values of a with all values of b within two (possi-
bly equal) intervals. The case when p = ∞ corresponds to the situation when no
constraint i− j ≤ p with p ∈ Z is used.

Lemma 5. A formula of LIA can be equivalently written into the form (NF).

7

In the following, we refer to the matrix of ϕ as to the formula obtained by forgetting
the existential quantifier prefix from the (NF) form of ϕ.

4.2 Formulae and Constraint Graphs

In [6, 4], the set of runs of a flat counter automaton is represented by an unbounded
constraint graph. Here, we view the models of a formula as a constraint graph both
left- and right-infinite. These constraint graphs are then seen as executions of FBCA,
relating in this way models of formulae to runs of automata.

Let ϕ(k,a) be a formula of type (F1)-(F3), and ι : k→ Z a valuation of its array-
bound variables k. For the rest of this section, we fix the valuation ι, and we denote by
ϕι the formula obtained from ϕ by replacing each occurrence of k ∈ k by the value ι(k).

The formula ϕι can be thus represented by a weighted directed graph Gι,ϕ, in which
each node (a,n) represents the array entry a[n], for some a ∈ a and n ∈ Z, and there is
a path of weight w between nodes (a,n) and (b,m) iff the constraint a[n]−b[m]≤ w is
implied by ϕι. In the next section, we will show that these graphs are in a one-to-one
correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one needs to pay attention to the
following issue. Consider, e.g., the formula ∀i, j.i− j ≤ 3∧ i ≡2 0∧ j ≡2 1→ a[i]−
b[j]≤ 5. The constraint graph of this formula needs to have a path of weight 5 between,
e.g., a[0] and b[1], a[0] and b[3], a[0] and b[5], etc. As one can easily notice, the span
of such paths is potentially unbounded. Since we would like this graph to represent
a computation of a flat counter automaton, it is essential to define it as a sequence
composed of (a possibly unbounded number of) repetitions of a finite number of (finite)
sub-graphs (see, e.g., Fig. 2(a) or Fig. 2(b)). To this end, we introduce intermediary
nodes which are connected between themselves with 0 arcs such that, for each non-
local constraint of the form a[n]−b[m]≤w where |n−m| can be arbitrarily large, there
exists exactly one path of weight w through these nodes. E.g., in Fig. 2(a), there is a path

(a,0)
5
−→ (tϕ,−3)

0
−→ . . .

0
−→ (tϕ,1)

0
−→ (b,1) for the constraint a[0]−b[1]≤ 5, another path

(a,0)
5
−→ (tϕ,−3)

0
−→ . . .

0
−→ (tϕ,3)

0
−→ (b,3) for the constraint a[0]−b[3]≤ 5, etc.

Formally, the constraint graph of ϕ is Gι,ϕ = 〈V,E〉 with the set of vertices V =
(A ∪ T ∪ {ζ})×Z, where A = {a,b} are the array symbols in ϕ, T = {tϕ} are the
auxiliary symbols (tracks), and ζ is a special symbol (zero track). The set of edges E

is defined based on the type of ϕ, i.e. (F1)-(F3). For space reasons, we give here only
the definitions for formulae of type (F3), which are the most interesting. Formulae (F1)
and (F2) are treated in Appendix C. In general, for all types of formulae, we have:

E ⊃ {(ζ,k)
0
−→ (ζ,k + 1) | k ∈ Z} ∪ {(ζ,k + 1)

0
−→ (ζ,k) | k ∈ Z}

i.e., the value of the zero track stays constant.

Constraint graphs for (F3) formulae Let ϕ be the formula below, where 0 ≤ s < t,
0≤ u < v, p ∈ Z∞, and q ∈ Z :

∀i, j .
K1̂

k=1

f 1
k ≤ i ∧

L1̂

l=1

i≤ g1
l ∧ i≡s t

︸ ︷︷ ︸

φ1

∧
K2̂

k=1

f 2
k ≤ j ∧

L2̂

l=1

j ≤ g2
l ∧ j ≡u v

︸ ︷︷ ︸

φ2

∧ i− j ≤ p→ a[i]−b[j]∼ q

Let φ1(i,k) and φ2(j,k) be the subformulae defining the ranges of i and j, respectively,
and P 1

ι = {n ∈ Z | |= φ1
ι[n/i]}, P 2

ι = {n ∈ Z | |= φ2
ι[n/ j]}, be these ranges under

8

the valuation ι. Let T≤ = {(tϕ,k)
0
−→ (tϕ,k + 1) | ∃n ∈ P 1

ι ∃m ∈ P 2
ι . n−m ≤ p} and

T≤ = {(tϕ,k)
0
−→ (tϕ,k− 1) | ∃n ∈ P 1

ι ∃m ∈ P 2
ι . n−m ≥ p}. Note that T≤ and T≥ are

empty is the precondition of ϕ is not satisfiable. The set of edges E is defined by the
following case split:

1. If p < ∞, we consider two cases, based on the direction of a[i]−b[j]∼ q:

(a) for a[i]−b[j]≤ q, we have (Fig. 2(a)):

E ⊃ {(a,k)
q
−→ (tϕ,k− p) | k ∈ P 1

ι } ∪ {(tϕ,k)
0
−→ (b,k) | k ∈ P 2

ι }∪ T≤

(b) for a[i]−b[j]≥ q, we have:

E ⊃ {(b,k)
−q
−→ (tϕ,k + p) | k ∈ P 2

ι } ∪ {(tϕ,k)
0
−→ (a,k) | k ∈ P 1

ι }∪ T≥

2. If p = ∞, we consider again two cases, based on the direction of a[i]−b[j]∼ q:

(a) for a[i]−b[j]≤ q, we have (Fig. 2(b)):

E ⊃ {(a,k)
q
−→ (tϕ,k) | k ∈ P 1

ι } ∪ {(tϕ,k)
0
−→ (b,k) | k ∈ P 2

ι } ∪ T≤ ∪ T≥

(b) for a[i]−b[j]≥ q, we have:

E ⊃ {(b,k)
−q
−→ (tϕ,k) | k ∈ P 2

ι } ∪ {(tϕ,k)
0
−→ (a,k) | k ∈ P 1

ι } ∪ T≤ ∪ T≥

Nothing else is in E .

ι(l1) ι(u1)

a

b

tϕ 0

5 5 5

ι(u2)ι(l2)

0 0 00000
0 0 0

(a) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i− j≤ 3∧ i≡2

0∧ j ≡2 1→ a[i]−b[j]≤ 5

ι(l1)

a
5 5

ι(u1)

tϕ

b

00 0

0

ι(l2) ι(u2)

000

0

(b) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i≡2

0∧ j ≡2 1→ a[i]−b[j]≤ 5

Fig. 2. Examples of constraint graphs for (F3) formulae

Relating constraint graphs and models of formulae Let us point out the correspon-
dence between constraint graphs and models of formulae of the forms (F1)-(F3), i.e. if
the vertices of a constraint graph for a formula ϕ can be labelled in a consistent way,
then from the labelling one can extract a model for ϕ and vice versa. This proves the
correctness of the construction for constraint graphs, using the additional tracks.

Let ϕ(k,a) be a formula of the forms (F1)-(F3), ι : k→ Z a valuation of the array-
bound variables in ϕ, and Gι,ϕ = (V,E) its corresponding constraint graph. A labelling

Lab : V → Z of Gι,ϕ is called consistent if and only if (1) for all edges v1
k
−→ v2 ∈ E , we

have Lab(v1)−Lab(v2)≤ k and (2) Lab((ζ,n)) = 0 for all n ∈ Z.

Lemma 6. Let ϕ(k,a) be a formula of the form (F1)-(F3). Then, for all valuations

ι : k→ Z and µ : a→ ωZω, we have that 〈ι,µ〉 |= ϕ if and only if there exists a

consistent labelling Lab of Gι,ϕ such that µ(a, i) = Lab((a, i)), for all a ∈ a and i ∈ Z.

9

4.3 From Formulae to Counter Automata

In this section, we describe the construction of an FBCA Aϕ corresponding to a formula
ϕ such that (1) each run of Aϕ corresponds to a model of ϕ, and (2) for each model of ϕ,
Aϕ has at least one corresponding run. In this way, we effectively reduce the satisfiability
problem for LIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structure of the formulae. For the
rest of this section, let ϕ be a formula, k the set of array-bound variables in ϕ, and
a the set of array variables in ϕ, i.e. FV (ϕ) = k∪ a. Suppose that ϕ is the matrix of
a formula in the normal form (NF), i.e. ϕ :

W

i∈I θi(k)∧
V

j∈J ψi j(k,a), where θi are
PA constraints and ψi j are formulae of types (F1)-(F3). The automaton Aϕ is defined as
U

i∈I Aθi
⊗

N

j∈J Aψi j , where5 and⊗ are the union and intersection operators on FBCA.
The construction of counter automata Aψi j for the formulae ψi j of type (F1)-(F3) relies
on the definition of the constraint graphs in Section 4.2. Namely, each accepting run of
Aψi j gives a consistent valuation of the constraint graph of ψi j.

Counter Automata Templates. To simplify the definition of counter automata, we
note that each constraint graph for the basic formulae of type (F1)-(F3) is composed
of horizontal, vertical, and diagonal edges, which are defined in roughly the same way
for all types of formulae (cf. Section 4.2). We take advantage of this fact, and we start
by defining three types of counter automata templates, which are subsequently used to
define the counter automata for the basic formulae.6 More precisely, the automata for
(F1)-(F3) formulae will be defined as⊗-products of particular instances of the automata
templates for the horizontal, vertical, and diagonal edges of the appropriate constraint
graphs. In the following definitions, we assume the existence of a special counter xτ

(tick), incremented by each transition rule, i.e. we suppose that the constraint x′τ = xτ +1
is implicitly in conjunction with each formula labelling a transition rule. Intuitively, the
role of the xτ counter is to synchronism all automata composed by the ⊗-product on a
common current position.

The template for the horizontal edges. Let a be an array symbol, dir∈ {left,right,bi}
be a direction parameter, and φ be a formula on array-bound variables. Let xk be the set
{xk | k ∈ FV (φ)}. We define the template H(a,dir,φ) = 〈x,Q,L,R,−→〉, where:

– x = {xa}∪xk. These counters will have the same names in all instances of H.
– Q = {qL,qR, pL, pR}. The control states are required to have fresh names in every

instance of H. L = {qL, pL} and R = {qR, pR}.

– qL
ξ
−→ qL, qR

ξ
−→ qR, qL

φ(xk) ∧ ξ
−−−−−→ qR, pL

;
−→ pL, pR

;
−→ pR, and pL

¬φ(xk)
−−−−→ pR.

In the above, φ(xk) is the formula obtained by replacing each occurrence of an array-
bound variable k ∈ FV (φ) by its corresponding counter xk. The formula ξ(xa,x′a) is xa−
x′a ≤ 0 if dir = right, x′a−xa ≤ 0 if dir = left, and x′a = xa if dir = bi. Moreover, for
each transition rule, we assume the conjunction

V

k∈FV (φ) x′k = xk to be added implicitly
to the labelling formula, i.e. the value of an xk counter stays constant throughout a run.
The xk parameters are used within guards of the form xτ∼ f (xk), where∼∈ {≤,≥} and
f is a linear combination of xk, in order to mark the position of the array boundaries,
during the run of the automata.

6 By template we mean a class of counter automata which all share the same structure.

10

If, for a given valuation of the parameters xk, the formula φ holds, then any accept-
ing run of (any instance of) H visits qL infinitely often on the left, and qR infinitely often
on the right. Otherwise, if for the given valuation of xk, φ does not hold, the instance
automata have a run that goes infinitely often through pL on the left, and through pR on
the right. In this case, the automata do not impose any constraints on xa.

The template for the diagonal edges. Let a,b be array symbols, q ∈ Z, p,s ∈ N+,
t ∈ [0,s− 1], and dir ∈ {left,right} be a direction parameter. In the following, we
refer to the sets L = {l1, . . . , lK} and U = {u1, . . . ,uL} of lower, and respectively upper
bounds, where li and u j are linear combinations of array-bound variables, and let xk =
{xk | k ∈

SK
i=1 FV (li) ∪

SL
j=1 FV (u j)}. Further, we assume that L∪U 8= /0 – we deal

with the case of L∪U = /0 later on. We define the template D(a,b, p,q,s,t,L,U,dir) =
〈x,Q,L,R,−→〉, where:

– x = {xa,xb}∪xk∪{xi | 1 ≤ i < p}. The counters xa,xb, and xk will have the same
names in all instances of D. On the other hand, the counters xi, 1 ≤ i < p, will
have fresh names in every instance of D. The xi counters are used for splitting
diagonal edges that span over more than one position, into series of diagonal edges
connecting only adjacent positions.7

– Q = {qL,qR}∪ {qi | 0 ≤ i < s}∪ {q
j
i | 0 ≤ j < s, j + 1 ≤ i < j + p}. The control

states are required to have fresh names in every instance of D. Let L = {qL}∪
{qi | 0≤ i < s} and R = {qR}∪{qi | 0≤ i < s}.

– qL
;
−→ qL, qR

;
−→ qR, and qL

¬(∃i .
V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

V

l∈L xτ≥l(xk)−1 ∧ (
W

l∈L xτ=l(xk)−1) ∧ xτ+1≡si
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi, for all 0≤ i < s.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk) ∧ ξi[xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, for all 0≤ i < s.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−→ qi

i+1, for all 0≤ i < s.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−→ qR, for all 0≤ i < s, if p = 1.

– q
j
i

ξi[xa/x0,xb/xp]
−−−−−−−−→ q

j
i+1, for all 0≤ j < s, j < i < j + p−1.

– q
j
j+p−1

ξi [xa/x0,xb/xp]
−−−−−−−−→ qR, for all 0≤ j < s, if p > 1.

In the above, l(xk) and u(xk) denote the expressions l and u in which each occurrence of
an array-bound variable k is replaced by its corresponding parameter xk. As before, for
each transition rule, we assume the conjunction

V

k∈FV (φ) x′k = xk to be added implicitly
to the labelling formula, i.e. we require that the value of an xk counter stays constant
throughout the run. The formulae ξi are defined as follows:

– if dir = right, ξi =
V

k∈Ki
xk− x′k+1 ≤ αk, for Ki = {k | 0 ≤ k < p, i ≡s k + t},

α0 = q and αk = 0, k > 0,

7 For instance, the constraint a[i]− b[i + 3] ≤ 5 can be split to a[i]− x1[i + 1] ≤ 5, x1[i + 1]−
x2[i+2]≤ 0, and x2[i+2]−b[i+3]≤ 0. The constraints for array values of neighboring indices

can then be conveniently expressed by using the current and future values of the appropriate

counters (e.g., for our example constraint, xa− x′1 ≤ 5, x1− x′2 ≤ 0, and x2− x′b ≤ 0, which of

course appear on subsequent transitions of the appropriate FBCA).

11

– if dir = left, ξi =
V

k∈Ki
x′k−1− xk ≤ αk, Ki = {k | 1 ≤ k ≤ p, k + i≡s t}, α1 = q

and αk = 0, k > 1.

Finally, for the case L = U = /0, we define any instance of D(a,b, p,q,s,t, /0, /0,dir) to
be A1⊗A2, where A1 is an instance of D(a,b, p,q,s,t, /0,{0},dir) and A2 is an instance
of D(a,b, p,q,s,t,{0}, /0,dir).

qL qR

q1 q1
2

q0
1 q0

2

q1
3

x′a− x1 ≤ 5

; ;

xτ ≥
l1−

4∧xτ = l1−
4

xτ ≥ l1 −4∧xτ = l1 −4

x′1− x2 ≤ 0

xτ ≥ l1−3∧xτ < u1−3

q0
∧xτ ≡2 0
xτ = u1−3

x ′
a − x1 ≤ 5

x
′
1
− x2
≤ 0

x′1− x2 ≤ 0∧xτ ≡2 1

xτ = u1−3∧

∧x′a− x1 ≤ 5
∧x′2− xtϕ ≤ 0

∧x′1− x2 ≤ 0 xτ ≥ l1−3∧xτ < u1−3

∧x′2− xtϕ ≤ 0

∧x ′
2 − xtϕ ≤ 0

∧xτ +1≡
2 1

∧xτ +1≡2 0

∧x′a− x1 ≤ 5∧x′2− xtϕ ≤ 0

¬(∃i . l1 ≤ i≤ u1∧ i ≡2 0)

Fig. 3. The FBCA for the diagonal edges in the formula ϕ : ∀i, j.l1≤ i≤ u1∧ l2 ≤ j≤ u2∧ i− j≤
3∧ i≡2 0∧ j≡2 1→ a[i]−b[j]≤ 5 from Fig. 2(a) obtained as D(a,tϕ,3,5,2,0−3,{l1−3},{u1−
3},left). To understand the formula ξ0 on the transition from q0 to q1, note that the constraint

i≡s k+t in the definition of the set K0 instantiates to 0≡2 k−3, and hence K0 = {1,3}. A similar

reasoning applies for the other transitions.

The construction can be understood by considering an accepting run of (any instance
of) D. Let us consider the case in which there exists a value i in between the bounds that
satisfies also the modulo constraint. If this is not the case, there will be an accepting run

that takes the transition qL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR exactly once.

Since the run is accepting, it must visit a state from L infinitely often on the left, and
a state from R infinitely often on the right. There are three cases: (1) L 8= /0 and U 8= /0, (2)
L = /0 and U 8= /0, and (3) L 8= /0 and U = /0. In the case (1), a bi-infinite run will visit qL

infinitely often on the left, and qR, infinitely often on the right. Notice that the run cannot
visit the loop q0 −→ . . . −→ qs−1 infinitely often, due to the presence of both lower and

upper bounds on xτ. In the case (2), the run cannot take any of the transitions qL −→ qi,

0 ≤ i < s, due to the emptiness of L, which makes the guard unsatisfiable. Hence the
only possibility for an accepting bi-infinite run is to visit the states q0 −→ . . . −→ qs−1

infinitely often on the left. Due to the presence of the upper bound on xτ, the run cannot
stay forever inside this loop, and must exit via one of the qi −→ qi

i+1 (or qi −→ qR for

p = 1) transitions, getting trapped into qR on the right. Case (3) is symmetric to (2).

Note that, in all cases, due to the modulo tests on xτ in the entry and exit of the main
loop q0 −→ . . .−→ qs−1 on any accepting run, whenever a state qi, 0≤ i < s, is visited, the

value of the xτ counter must equal i modulo s. Note also that the role of the q
j
i states is

to describe constraints corresponding to edges that start inside the given interval bounds
and lead above its upper bound (or vice versa). The number of such edges is bounded.

12

We do not use the same construction at the beginning of the interval, as the templates
are applied such that none of the edges represented goes below the lower bounds.

Template for the vertical edges. Let a,b be array symbols, q ∈ Z, p,s ∈ N+, and t ∈
[0,s− 1]. We again refer to the sets L = {l1, . . . , lK} and U = {u1, . . . ,uL} of lower,
and respectively upper bounds, where li and u j are linear combinations of array-bound
variables. Also, let xk = {xk | k ∈

SK
i=1 FV (li) ∪

SL
j=1 FV (u j)}. Further, we assume

that L∪U 8= /0 – we deal with the case of L∪U = /0 later on. We define the template
V (a,b, p,q,s,t,L,U) = 〈x,Q,L,R,−→〉, where:

– x = {xa,xb}∪xk. The counters xa,xb, xk have the same names in all instances of V .

– Q = {qL,qR}∪{qi | 0≤ i < s}. The control states are required to have fresh names
in every instance of V . L = {qL}∪{qi | 0≤ i < s} and R = {qR}∪{qi | 0≤ i≤ s}.

– qL
;
−→ qL, qR

;
−→ qR, and qL

¬(∃i .
V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

V

l∈L xτ≥l(xk)−1 ∧
W

l∈L xτ+1=l(xk) ∧ xτ+1≡si
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi, 0≤ i < s.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk) ∧ xa−xb≤q
−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i < s and i≡s t.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk)
−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i < s and i 8≡s t.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ xa−xb≤q
−−−−−−−−−−−−−−−−−−−−→ qR, 0≤ i < s and i≡s t.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si
−−−−−−−−−−−−−→ qR, 0≤ i < s and i 8≡s t.

In the above, l(xk) and u(xk) denote the expressions l and u in which each occurrence of
an array-bound variable k is replaced by the parameter xk. As before, for each transition
rule, we assume the conjunction

V

k∈FV (φ) x′k = xk to be added implicitly to the labelling
formula, i.e. the value of an xk counter stays constant throughout the run. Finally, if
L = U = /0, we define any instance of V (a,b, p,q,s,t, /0, /0) as A1⊗A2, where A1 is an
instance of V (a,b, p,q,s,t, /0,{0}) and A2 is an instance of V (a,b, p,q,s,t,{0}, /0). The
intuition behind the construction of V is similar to the one of D.

4.4 Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for the basic formulae. This is
done by composing instances of templates, using the ⊗ operator for intersection (cf.
Section 2). For space reasons, we only give here the construction of the FBCA for (F3)
formulae. The formulae of type (F1), (F2), and PA constraints on array-bound variables
are treated analogously in Appendix C. Let ϕ be the (F3)-type formula:

∀i, j .
K1̂

k=1

f 1
k ≤ i ∧

L1̂

l=1

i≤ g1
l ∧

K2̂

k=1

f 2
k ≤ j ∧

L2̂

l=1

j ≤ g2
l ∧ i− j ≤ ∧ i≡s t ∧ j ≡u v

︸ ︷︷ ︸

φ

→ a[i]−b[j]∼ q

where 0≤ s < t and 0≤ u < v. Let Li = { f i
1, . . . , f i

Ki
} and Ui = {gi

1, . . . ,g
i
Li
}, for i = 1,2,

respectively. By φ we denote the precondition of ϕ. The automaton Aϕ is defined as
Aϕ = A1⊗A2⊗A3, where A1, A2, A3 are instantiated according to Table 1.

13

p ∼ A1 A2 A3

∞ ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,bi,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
∞ ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,bi,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
0 ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
0 ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
> 0 ≤ D(a,tϕ, p,q,s,t− p,L1− p,U1− p,left) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
> 0 ≥ D(b,tϕ, p,−q,u,v,L2,U2,right) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
< 0 ≤ D(a,tϕ,−p,q,s,t,L1,U1,right) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
< 0 ≥ D(b,tϕ,−p,−q,u,v+ p,L2 + p,U2 + p,left) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)

Table 1. The instantiation table for (F3) formulae. Note that in some lines, we shift the original

bounds appearing in the formula in order to be able to re-use the prepared templates that do not

explicitly deal with edges leaving from within the given bounds and going below the lower bound.

Due to the way the templates are constructed, the shifting preserves the semantics of the formula

– instead of edges going below the lower bound of a certain interval, we obtain the same edges

just going above the upper bound of the shifted interval, which our templates are prepared for.

Given a set of integers S and an integer p, we use the notation S+ p for {s+ p | s ∈ S}

4.5 From Formulae to Counter Automata

Given a formula ϕ(k,a) which is a positive boolean combination of formulae of types
(F1)-(F3) and PA constraints on the array-bound variables k, let Aϕ be the automaton
defined inductively on the structure of ϕ as follows:

– if ϕ is of type (F1)-(F3), or a PA constraint on k, then Aϕ is as in Section 4.4,
– if ϕ = ψ1∧ψ2, then Aϕ = Aψ1⊗Aψ2 ,
– if ϕ = ψ1∨ψ2, then Aϕ = Aψ1 5Aψ2 .

Let r ∈ R (Aϕ) be an accepting run of Aϕ and δ(r) = val(r(0))(xτ) be the value of

the xτ (tick) counter at position 0 on r. We denote by η(r) = r ◦σ−δ(r) the centered

run obtained from r by shifting it such that the value of xτ at position 0 is also 0. By
Lemma 1, r is an accepting run of Aϕ if and only if η(r) is. Notice that r induces the
following valuations on k and a, respectively: ιr(k) = val(η(r)(0))(xk), for all k ∈ k,
and µr(a, i) = val(η(r)(i))(xa), for all a ∈ a and i ∈ Z.

For an arbitrary valuation ν ∈ V (Aϕ), there exists r ∈ R (Aϕ) such that ν = val(r).
Let Mϕ(ν) = 〈ιr,µr〉 be the valuation of the free variables in ϕ that correspond to r. One
can see now that Mϕ defines a function Mϕ : V (Aϕ)→ (k 4→ Z)× (a 4→ ωZω).8

Theorem 1. Let ϕ(k,a) be a positive boolean combination of formulae of types (F1)-

(F3) and PA constraints on the array-bound variables k, and Aϕ be the automaton

defined in the previous. Then, Mϕ(V (Aϕ)) = [[ϕ]].

The proof is by induction on the structure of ϕ. For the base case, we use the cor-
respondence between models and constraint graphs of formulae (F1)-(F3) (Lemma 6).
The inductive step follows as a consequence of the fact that the class of FBCA is closed
under union and intersection (Lemma 3). The main result of the paper is the following:

Corollary 1. The logic LIA is decidable.

8 By definition, for each ν ∈ V (Aϕ) there exist valuations ιr and µr, so Mϕ is defined for all

ν ∈ V (Aϕ). Let r1,r2 ∈ R (Aϕ) be two runs such that val(r1) = val(r2) = ν. We have δ(r1) =
δ(r2), therefore η(r1) = η(r2), which leads to ιr1 = ιr2 and µr1 = µr2 .

14

The proof of Corollary 1 uses the normalization step (cf. Lemma 5) to rewrite any
formula of LIA into the form (NF), and applies Theorem 1 to the matrix of the formula
(i.e. the formula obtained by skipping the existential quantifier prefix).

5 Conclusions and Future Work

We present a new decidable logic for reasoning about properties of programs handling
integer arrays. This logic allows to relate adjacent array values, as well as to express pe-
riodic facts relating all values situated at equidistant positions. We establish decidability
of this logic following the automata-theoretic approach. To this end, we define a new
class of Büchi automata with counters, for which emptiness is decidable, and translate
each formula into a corresponding automaton.

Future work will include the study of the complexity of our decision procedure and
its implementation. We furthermore plan to develop invariant generation methods in
order to give automatic correctness proofs for programs with integer arrays.

References

1. A. Armando, S. Ranise, and M. Rusinowitch. Uniform Derivation of Decision Procedures

by Superposition. In Proc of CSL’01, LNCS 2142, 2001.
2. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.Zuck. Parameterized Verification with Automati-

cally Computed Inductive Assertions. In CAV’01, LNCS 2102. Springer, 2001.
3. A. Bouajjani, Y. Jurski, and M. Sighireanu. A Generic Framework for Reasoning About

Dynamic Networks of Infinite-State Processes. In TACAS’07, LNCS 4424. Springer, 2007.
4. M. Bozga, R. Iosif, and Y. Lakhnech. Flat Parametric Counter Automata. In Proc. of

ICALP’06, LNCS 4052. Springer, 2006.
5. A.R. Bradley, Z. Manna, and H.B. Sipma. What ’s Decidable About Arrays? In Proc. of

VMCAI’06, LNCS 3855. Springer, 2006.
6. H. Comon and Y. Jurski. Multiple Counters Automata, Safety Analysis and Presburger Arith-

metic. In Proc. of CAV’98, LNCS 1427. Springer, 1998.
7. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision Procedures for Extensions of

the Theory of Arrays. Annals of Mathematics and Artificial Intelligence, 50, 2007.
8. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays? Technical

Report TR-2007-8, Verimag, 2007.
9. J. Jaffar. Presburger Arithmetic with Array Segments. Inform. Proc. Letters, 12, 1981.

10. J. King. A Program Verifier. PhD thesis, Carnegie Mellon University, 1969.
11. P. Mateti. A Decision Procedure for the Correctness of a Class of Programs. Journal of the

ACM, 28(2), 1980.
12. J. McCarthy. Towards a Mathematical Science of Computation. In IFIP Congress, 1962.
13. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
14. M. Nivat and D. Perrin. Ensembles reconnaissables de mots biinfinis. Canad. J. Math.,

38:513–537, 1986.
15. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du

Premier Congrès des Mathématiciens des Pays Slaves, pages 92–101, Warsaw, Poland, 1929.
16. A. Stump, C.W. Barrett, D.L. Dill, and J.R. Levitt. A Decision Procedure for an Extensional

Theory of Arrays. In Proc. of LICS’01, 2001.
17. N. Suzuki and D. Jefferson. Verification Decidability of Presburger Array Programs. Journal

of the ACM, 27(1), 1980.
18. W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science,

volume B: Formal Models and Semantics. Elsevier, 1990.

15

A Extensions of Flat Counter Automata

In [6, 4] it is shown that given a flat counter automaton A = 〈x,Q,−→〉, and a loop γ on

a control state q ∈ Q, labelled with DBM formulae only, one can effectively build a
PA formula Ψq,γ(y,x,x′) which is satisfied by all triples 〈n,v,v′〉, where there exists an
execution corresponding to n loop iterations, in which the initial values of the counters
are v and the final values are v′. Based on this, we prove two important lemmas whose
proofs can be found in [8].

Lemma 7. If any control loop of A is labelled by a parametric DBM formula, then for

any two control states q,q′ ∈ Q, one can effectively build a PA formula Rq,q′(x,x′) such

that, for any two configurations (q,ν) and (q′,ν′), (q′,ν′) is a successor of (q,ν) if and

only if |= Rq,q′(ν(x),ν′(x′)).

Lemma 8. Given a control loop γ labelled by a parametric DBM formula, and a control

state q on γ, one can effectively build a PA formula Iq,γ(x), such that, for any configura-

tion (q,ν), there exists an infinite computation along γ, starting with (q,ν) if and only

if |= Iq,γ(ν(x)).

B Verification Conditions for an Array Merging Example

Consider the following program that takes two arrays a and b, and merges their first n

elements by alternating elements from a with elements from b. Suppose, moreover, that
the first n elements of a are less than or equal to the first n elements of b. The resulting
array will have all its first n elements on even positions less than or equal to the first n

elements on odd positions.

{{ n > 0 ∧ ∀i, j . 0≤ i, j < n→ a[i]≤ b[j] }}
for (k=0, l=0; k < n; k++, l+=2)
{{ n > 0 ∧ k≤ n ∧ l = 2k ∧
∀i, j . 0≤ i, j < 2k ∧ i≡2 0 ∧ j≡2 1→ c[i]≤ c[j] ∧
∀i, j . 0≤ i, j < n→ a[i]≤ b[j] }}

{ c[l] = a[k];
c[l + 1] = b[k]; }

{{ n > 0 ∧ ∀i, j . 0≤ i, j < 2n ∧ i≡2 0 ∧ j≡2 1→ c[i]≤ c[j] }}

The pre-, post-condition, and loop invariant needed for the proof of this program are
annotated directly into the program text using double curly braces. We show in the
following that the verification conditions to be checked to prove the correctness of the
program fall into our logic, and so they are decidable.

We need to check three verification conditions corresponding to the initialisation of
the loop, the loop body, and the finalisation of the loop.

The initialisation consists of the two unconditional assignment statements k=0 and
l=0. We need to check that the following formula is logically valid (we use primed
names of variables to distinguish the current and future values of the variables):

16

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ (∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧ k′ = 0 ∧ l′ = 0 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i])
−→
n′ > 0 ∧ k′ ≤ n′ ∧ l′ = 2k′ ∧
(∀i, j . 0≤ i, j < 2k′ ∧ i≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[j]) ∧
(∀i, j . 0≤ i, j < n→ a′[i]≤ b′[j])

However, checking the validity of the above formula is equal to checking that its nega-
tion, which clearly fits our logic, is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ (∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧ k′ = 0 ∧ l′ = 0 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i])
∧
(n′ ≤ 0 ∨ k′ > n′ ∨ l′ < 2k′ ∨ l′ > 2k′ ∨
(∃i, j . 0≤ i, j < 2k′ ∧ i≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[j]) ∨
(∃i, j . 0≤ i, j < n ∧ a′[i] > b′[j]))

To see this, note that the existentially quantified index variables in the last two lines of
the above formula can be given unique names and the appropriate quantifiers moved to
the prefix of the formula.

To check the effect of the loop body, i.e. the assignments c[l] = a[k], c[l+1] = b[k],
k++, and l+=2 which are executed provided that k<n, we have to prove that the follow-
ing holds:

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ k ≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i≡2 0 ∧ j ≡2 1→ c[i]≤ c[j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧
k < n ∧ k′ = k +1 ∧ l′ = l +2 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧
(∀i . i < l→ c′[i] = c[i]) ∧ (∀i . i > l +1→ c′[i] = c[i]) ∧
c′[l] = a[k] ∧ c′[l +1] = b[k]
−→
n′ > 0 ∧ k′ ≤ n′ ∧ l′ = 2k′ ∧
(∀i, j . 0≤ i, j < 2k′ ∧ i≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[j]) ∧
(∀i, j . 0≤ i, j < n→ a′[i]≤ b′[j])

Again, checking the validity of the above formula is equal to checking that its negation,
is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ k ≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i≡2 0 ∧ j ≡2 1→ c[i]≤ c[j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧
k < n ∧ k′ = k +1 ∧ l′ = l +2 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧
(∀i . i < l→ c′[i] = c[i]) ∧ (∀i . i > l +1→ c′[i] = c[i]) ∧
c′[l] = a[k] ∧ c′[l +1] = b[k]
∧

17

(n′ ≤ 0 ∨ k′ > n′ ∨ l′ < 2k′ ∨ l′ > 2k′ ∨
(∃i, j . 0≤ i, j < 2k′ ∧ i≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[j]) ∨
(∃i, j . 0≤ i, j < n ∧ a′[i] > b′[j]))

Finally, in order to check the finalisation of the loop (i.e. the exit of the loop when k ≥
n), one has to check the validity of the following formula:

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ k ≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i≡2 0 ∧ j ≡2 1→ c[i]≤ c[j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧
k ≥ n ∧ k′ = k ∧ l′ = l ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i]) ∧
−→
n′ > 0 ∧ (∀i, j . 0≤ i, j < 2n′ ∧ i≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[j])

Like in the previous cases, checking the validity of the above formula is equal to check-
ing that its negation is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l, l′.
n > 0 ∧ k ≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i≡2 0 ∧ j ≡2 1→ c[i]≤ c[j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[j]) ∧
k ≥ n ∧ k′ = k ∧ l′ = l ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i]) ∧
∧
(n′ ≤ 0 ∨ (∃i, j . 0≤ i, j < 2n′ ∧ i≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[j]))

C Constraint Graphs and Counter Automata for (F1) and (F2)

Here we define the constraint graphs for formulae of type (F1) and (F2) and the cor-
responding counter automata as well as the automaton for Presburger bound constraint
formulae.

C.1 Constraint graphs

Formulae of type (F1) Let ϕ be the formula

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t

︸ ︷︷ ︸

φ

→ a[i]∼ h(k)

where 0≤ t < s. Let Pι = {n ∈ Z | |= φι[n/i]}.
The set of edges E is defined by the following case split:

1. If the right hand side of the implication is a[i]≤ h(k), we have (cf. Figure 4):

E ⊃ {(a,k)
h(k)
−−→ (ζ,k) | k ∈ Pι}

2. Otherwise, if the right hand side of the implication is a[i]≥ h(k), we have:

E ⊃ {(ζ,k)
−h(k)
−−−→ (a,k) | k ∈ Pι}

Nothing else is in E .

18

0 0 0 00 0

a

ζ

h(k) h(k)h(k)

Lι Uι

Fig. 4. Constraint graph for ∀i . l ≤ i≤ u ∧ i≡2 0→ a[i]≤ h(k)

Formulae of type (F2) Let ϕ be the formula:

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t

︸ ︷︷ ︸

φ

→ a[i]−b[i+ p]∼ q

where 0≤ s < t, p ∈N, and q ∈ Z. Let Pι = {n ∈ Z | |= φι[n/i]}.

The set of edges E is defined by the following case split:

1. If the right hand side of the implication is a[i]−b[i+ p]≤ q, we have (cf. Fig. 5):

E ⊃ {(a,k)
q
−→ (b,k + p) | k ∈ Pι}

a

b

5 5 5

Lι Uι

Fig. 5. Constraint graph for ∀i.l ≤ i≤ u∧ i≡2 0→ a[i]−b[i+3]≤ 5

2. If the right hand side of the implication is a[i]− b[i + p] ≥ q, then E ⊃ {(b,k +

p)
−q
−→ (a,k) | k ∈ Pι}

Nothing else is in E .

C.2 Counter Automata

Formulae of type (F1) Let ϕ be

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t→ a[i]∼ h(k)

where 0 ≤ t < s. Let L = { f1, . . . , fK} and U = {g1, . . . ,gL}. Then we define Aϕ =
A1⊗A2, where A1 and A2 are instantiated according to Table 2(a).

19

(a)

∼ A1 A2

≤ V (a,ζ,h,s,t,L,U) H(ζ,bi,;)
≥ V (a,ζ,−h,s,t,L,U) H(ζ,bi,;)

(b)

p ∼ Aϕ

0 ≤ V (a,b,q,s,t,L,U)
0 ≥ V (b,a,−q,s,t,L,U)
> 0 ≤ D(a,b, p,q,s,t,L,U,right)
> 0 ≥ D(b,a, p,−q,s,t,L,U,left)
< 0 ≤ D(a,b,−p,q,s,t + p,L+ p,U+ p,left)
< 0 ≥ D(b,a,−p,−q,s,t + p,L+ p,U+ p,right)

Table 2. The instantiation table for (F1) and (F2) formulae

Formulae of type (F2) Let ϕ be the formula :

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i≤ gl ∧ i≡s t→ a[i]−b[i+ p]∼ q

where 0≤ s < t. As previously, we denote L = { f1, . . . , fK} and U = {g1, . . . ,gL}. The
instantiation of Aϕ is done according to the value of p and∼ as described in Table 2(b).9

Given a set of integers S and an integer p we use the notation S + p for {s+ p | s ∈ S}.

Counter Automata for Array-Bound Constraints. The FBCA Aθ for a Presburger
constraint θ on array-bound variables is Aθ = 〈xk,Q,L,R,−→〉, where xk is the set

{xk | k ∈ FV (θ)}, Q = {qL,qR}, L = {qL}, R = {qR}, and −→= {qL
;
−→ qL,qL

θ(xk)
−−−→

qR,qR
;
−→ qR}, and θ(xk) denotes the formula θ in which each occurrence of an array-

bound variable k ∈ FV (θ) is replaced by its corresponding parameter xk.

D Proofs

Proof of Lemma 1 Let A = 〈x,Q,L,R,−→〉. “⇒” r is left-accepting iff there exists an

infinite decreasing sequence . . . i3 < i2 < i1 < 0 of positions in r, visiting a control state
from L. This implies that i3−1 < i2−1 < i1−1 < 0 visits the same control state, hence
r ◦ s is left-accepting. r is right-accepting iff there exists an infinite increasing sequence
0 < j1 < j2 < j3 < .. . of positions in r, which visits a control state from R. But this
implies that 0 < j2−1 < j3−1 < .. . visits the same state from R, hence r ◦ s is right-
accepting. “⇐” This direction follows a similar argument. BC

9 Note that in the last two lines of Table 2(b), we shift the original bounds appearing in the

formula in order to be able to re-use the prepared templates that do not explicitly deal with

edges leaving from within the given bounds and going below the lower bound. Due to the way

the templates are constructed, the shifting preserves the semantics of the formula – instead of

edges going below the lower bound of a certain interval, we obtain the same edges just going

above the upper bound of the shifted interval, which our templates are prepared for.

20

Proof of Lemma 2 The proof uses the results of Appendix A, namely Lemmas 7 and 8.
Let A = 〈x,Q,L,R,−→〉 be a FBCA. W.l.o.g. we can assume that any control state q ∈

L∪R belongs to exactly one elementary cycle. For, if q does not belong to a cycle, it
cannot occur infinitely often on a run. Moreover, if q belongs to two or more elementary
cycles, then A is not flat, in contradiction with the definition of FBCA. Let l ∈ L and
r ∈ R be fixed for the rest of this proof. We construct a Presburger formula Φl,r which is
satisfiable if and only if there exists a bi-infinite run that visits l infinitely often on the
left and r infinitely often on the right.

Let γ be the elementary cycle to which l belongs, and
←
γ be the cycle obtained by

reversing each transition q
ϕ
−→ q′ into q′

ϕ′
−→ q, where ϕ′ is obtained from ϕ by inter-

changing the occurrences of the counters in x with x′, and vice versa. Let I
l,
←
γ
(x) be

the Presburger formula defining the set of valuations ν for which there exists an infinite

computation along
←
γ starting in (l,ν).

Let δ be the elementary cycle to which r belongs, and Ir,δ(x) be the Presburger
formula defining the set of valuations ν for which there exists an infinite computation
along δ starting in (r,ν). The formula encoding the existence of a bi-infinite run that
visits l infinitely often on the left and r infinitely often on the right, is the following:

Φl,r : ∃x∃x′ . I
l,
←
γ
(x) ∧ Rl,r(x,x′) ∧ Ir,δ(x

′)

The proof that Φl,r is satisfiable if and only if R (A) 8= /0 comes as an immediate conse-
quence of the meaning of the I

l,
←
γ

, Rl,r and Ir,δ formulae. BC

Proof of Proposition 1 The direction R (A)⊆R (Ac) is trivial, since L⊆ Lc and R⊆ Rc.
To prove the fact that R (A)⊇ R (Ac), let r be an accepting run of Ac. Then there exists
a state q∈ Lc that repeats infinitely often on the left in r. There are two situations: either
q∈ L, in which case r is directly left-accepting for A, or there exists a state q′ ∈ L which
belongs to the same elementary cycle as q in A. By the flatness of A, this means that q′

will be visited infinitely often on the left as well. Analogously, one proves that r is a
right-accepting run of A. BC

Proof of Lemma 3 The proof for closure under union is trivial. We will give the proof
for closure under intersection in the following.

Let Ai = 〈xi,Qi,Li,Ri,→i〉, i = 1,2 be two FBCA, and A = 〈x,Q,L,R,−→〉 be their

product, i.e. A = A1⊗A2.

1. We first prove that A belongs to the class FBCA. For this we need to show that
each control state of A belongs to at most one elementary cycle. For an arbitrary state
(q,q′) ∈ Q1×Q2, let pr1((q,q′)) = q, pr2((q,q′)) = q′ and for an arbitrary cycle γ in
A, let pri(γ) denote the corresponding cycles in Ai, obtained by projection of the i-th
control state, i = 1,2. Suppose that there is a control state (q,q′) ∈Q1×Q2 that belongs
to (at least) two different elementary cycles, γ and δ. Then q belongs to pr1(γ) and
pr1(δ) in A1, and q′ belongs to pr2(γ) and pr2(δ) in A2. Since, by the hypothesis A1

21

and A2 are flat, then pri(γ) and pri(δ) must be (possibly trivial) unfoldings of the same
elementary cycle εi in Ai, for i = 1,2, respectively. In other words, pri(γ) = ki · εi and
pri(δ) = li · εi, for i = 1,2 and ki, li ∈ N.

Let m be the least common multiple of |ε1| and |ε2|, and ni = m
|εi|

, for i = 1,2. Let

α be the cycle in A obtained by the composition of the two cycles obtained by iterating
ε1 n1 times, and ε2 n2 times, respectively, i.e. pri(α) = ni · εi, i = 1,2. Since εi are
elementary cycles of Ai, it follows that α is the smallest cycle of A with the property
that pri(α) is an unfolding of εi. Hence γ and δ, must both be either α or unfoldings of
α, contradicting the assumption that they were different elementary cycles of A.

To prove that the elementary cycles of A are labelled with (parametric) DBM for-
mulae only, notice that any cycle of A is a composition of two (unfoldings of) cycles
in A1 and A2. Since both component cycles are labelled with DBM formulae, and the
label of the transitions of A is the conjunction of the labels of the transitions in A1, A2,
it follows that the resulting cycle is labelled with DBM formulae as well.

2. Second, we prove that V (A) = V (A1)↑x1∪x2
∩ V (A2)↑x1∪x2

.

Let s∈V (A1)↑x1∪x2
∩V (A2)↑x1∪x2

be a bi-infinite sequence of counter valuations.
From the definition of V (.), there exist r1 ∈R (A1) and r2 ∈R (A2) such that val(r1) =
s↓x1

and val(r2) = s↓x2
.

Let i ∈ Z be an arbitrary position, and r1(i) = (q1,ν1), r1(i+ 1) = (q′1,ν
′
1), r2(i) =

(q2,ν2), r′2(i + 1) = (q′2,ν
′
2) be successive configurations of r1 and r2, respectively,

where ν1,ν′1 : x1→ Z and ν2,ν′2 : x2→ Z are valuations of x1, x2. Then there exist

transition rules q1
ϕ1(x1,x

′
1)

−−−−−→ q′1 in A1, and q2
ϕ2(x2,x′2)
−−−−−→ q′2 in A2, such that ϕ1(ν1(x1),ν′1(x

′
1))

and ϕ2(ν2(x2),ν′2(x
′
2)) are both valid. Hence, by construction of A, there exists a tran-

sition rule (q1,q2)
ϕ1∧ϕ2−−−→ (q′1,q

′
2), such that ϕ1 ∧ ϕ2 is satisfied by (ν1∪ν′1) ↑x1∪x2

∩(ν2∪ν′2)↑x1∪x2
. In this way, one can build a bi-infinite run r of A, such that val(r) = s.

It remains to be proven that this run is an accepting run of A.

Since ri is an accepting run of Ai, then by Proposition 1, it is also an accepting
run of Ac

i , for i = 1,2. By the flatness of A1, and, implicitly of Ac
1, there exist a se-

quence σ1 of states from Lc
1 that repeats infinitely often to the left of r1, i.e. there

exists a position k1 ∈ Z, such that the restriction of r1 to (−∞,k1] is of the form
. . .σ1σ1. Analogously, there exists a sequence σ2 of states from Lc

2, and a position
k2 ∈ Z such that the restriction of r2 to (−∞,k2] is of the form . . .σ2σ2. Then, the
restriction of r to (−∞,min(k1,k2)] is of the form . . .σσ, where σ is a sequence of
pairs (q,q′) ∈ Lc

1× Lc
2. Hence there exists such a pair repeating infinitely often to the

left in r, i.e. r is left-accepting. Analogously, one proves that r is right-accepting.
We have proved that V (A) ⊇ V (A1) ↑x1∪x2

∩ V (A2) ↑x1∪x2
. The direction V (A) ⊆

V (A1)↑x1∪x2
∩ V (A2)↑x1∪x2

is proved using a similar argument. BC

Proof of Lemma 4 This can be proven by a reduction from the halting problem for
2-counter automata [13]. A 2-counter machine with non-negative counters c1,c2 is a
sequential program:

0 : ins0;1 : ins1; · · · ;n : insn;

22

where insn is a halt instruction and insi with i = 0,1, · · · ,n are instructions of the
following two types, for 0≤ k,k1,k2 ≤ n, and 1≤ j ≤ 2:

1. c j = c j + 1;goto k;
2. if c j = 0 then goto k1 else (c j = c j−1; goto k2);

We give a formula ϕ such that the machine halts iff the formula is satisfiable. ϕ
uses three arrays a1, a2 and a3. a1 (resp. a2) contains values of counter 1 (resp. 2) and
a3 contains the control location. Each instruction k : insk is translated into a formula
ϕk(i) having a parameter i. We give the translation for instructions concerning counter
c1. Instructions concerning counter c2 are encoded in a similar way. Instructions of the
form k : c1 = c1 + 1;goto k′ are translated into:

ϕk(i) : a3[i] = k∧a1[i+ 1] = a1[i]+ 1∧a2[i+ 1] = a2[i]∧a3[i+ 1] = k′

Instructions of the form k : if c j = 0 then goto k1 else (c j = c j−1; goto k2) are trans-
lated into:

ϕk(i) : (a3[i] = k∧a1[i] = 0∧a1[i+ 1] = a1[i]∧a2[i+ 1] = a2[i]∧a3[i+ 1] = k1)

∨(a3[i] = k∧a1[i] > 0∧a1[i+ 1] = a1[i]−1∧a2[i+ 1] = a2[i]∧a3[i+ 1] = k2)

Now the formula ϕ is given as

∃a1,a2,a3∃m.∀i.((0 ≤ i≤ m−1)→ (a3[0] = 0∧
n−1
_

j=0

ϕ j(i)∧a3[m] = n))

The models of the formula are exactly the halting runs of the counter machine in
m steps. a1[i] (resp. a2[i]) is the value of counter c1 (resp. c2) after i steps and a3[i] is
the corresponding control location. a3[0] = 0 and a3[m] = n make sure that the machine
starts at the initial control location 0 and goes to the halting location n and

Wn−1
j=0 ϕ j(i)

insures that counter values and control locations stored in two consecutive positions (i
and i+1) in the arrays a1, a2 and a3 correspond to values in a run of the machine. Then
it is clear, that the machine halts iff ϕ is satisfiable.

Note that one can easily give a formula using just one array. This is done by inter-
leaving the three arrays and using the modulo constraints to access the counter values
and the control locations. BC

Proof of Lemma 5 We show how a formula, written in the syntax of Figure 1, can be
transformed into an equivalent formula of the form (NF), by applying the steps below:

1. Put the left-hand sides of the subformulae ∀i . ϕ(i)→ ψ(i) into disjunctive normal
form, and then split both the left-hand and right-hand sides by applying exhaus-
tively the following equivalence preserving transformations:

∀i . ϕ1∨ϕ2→ ψ ⇐⇒ ∀i . ϕ1→ ψ ∧ ∀i . ϕ2→ ψ

∀i . ϕ→ ψ1∧ψ2 ⇐⇒ ∀i . ϕ→ ψ1 ∧ ∀i . ϕ→ ψ2

The resulting formula will have only conjunctions of atomic formulae on the left-
hand side of the implications and only atomic formulae on the right hand side of
the implications.

23

2. Put the entire formula into disjunctive normal form, treating the implications∀i . ϕ(i)→
ψ as atomic propositions, and distribute the existential prefix to each disjunctive
clause.

3. Eliminate negated implications using the equivalence¬
(

∀i . ϕ→ψ
)

⇐⇒ ∃k . ϕ∧
(; → ¬ψ[k/i]). Notice that, because of the previous step, ψ is an atomic DBM
formula involving array terms, hence ¬ψ can be written equivalently without nega-
tion. We move the existential quantifier to the prefix of existential quantifiers of
the formula, renaming the index variables i by some fresh array-bound variables
k. We make ϕ a part of θp. The newly introduced implication is not preceded by a
universal quantifier (as expected by the normal form we use), but this will be taken
care of by the next step.

4. For each implication of the form ∀i . ϕ(k, i)→ ψ(a,k, i), such that ψ contains an
array term a[f (k)] where f (k) is a linear combination of array-bound variables,
introduce a fresh universally quantified index variable j, and rewrite the whole
implication as ∀i∪ { j} . ϕ∧ j = f (k)→ ψ[j/ f (k)]. This step ensures that array
terms are indexed only by universally quantified index variables.

5. Normalise all DBM subformulae of the premises ϕ of the array subformulae∀i . ϕ→
ψ. This step computes also the transitive closure of the DBMs, making explicit all
dependencies between indices. For each pair of constraints i− j ≤ n and j− i ≤
−m occurring in a conjunction within the premise of an implication of the form
∀i . ϕ→ ψ, either it is the case that n−m < 0, in which case replace the whole
implication by true, or else n−m ≥ 0, in which case replace both constraints by
W

l∈[m,n] i− j = l10 and eliminate i from the implication subformula, by replacing
each occurrence of i by j + l. This step ensures that no constraints of the form
m≤ i− j≤ n are left within the formula.

6. Rename the universally quantified index variables such that each array constraint of
the form (i) a[i+n]∼ g(k), (ii) a[i+n]−b[i+m]∼ p, or (iii) a[i+n]−b[j+m]∼ p,
n,m, p ∈ Z, uses index variables that are distinct from the other. In the following,
we distinguish three cases:

(i) For subformulae of the form a[i+n]∼ g(k), replace i with i−n throughout the
formula. In particular, the array terms a[i+ n] are substituted with a[i].

(ii) For subformulae of the form a[i + n]− b[i + m]∼ p, suppose that n ≤ m, the
other case being symmetric. We replace i with i−n throughout the formula. In
particular, the array terms a[i + n] are substituted with a[i], and a[i + m] with
a[i+ m−n], respectively.

(iii) For subformulae of the form a[i+ n]−b[j+ m]∼ p, replace i with i−n and j

with j−m. In particular, the array terms a[i + n] and b[j + m] are substituted
with a[i] and b[j], respectively.

This step ensures that the only constraints involving array terms are of the form
a[i] ∼ g, a[i]− b[i + n]∼ m and a[i]− b[j] ∼ m, where g is a linear polynomial in
bound variables, ∼∈ {≤,≥}, n ∈N and m ∈ Z.

7. Normalise the atomic propositions in all the premises of the implications ∀i . ϕ→ψ
by applying the following substitutions:
(a) f ∼ i+ n with f −n∼ i for∼∈ {≤,≥},

10 By
W

l∈[a,b] φ(l) we denote the disjunction ϕ(a)∨ϕ(a+1)∨ . . .∨ϕ(b).

24

(b) i− j + n≤ p with i− j ≤ p−n,

(c) i+ n≡s t with i≡s t ′, where 0≤ t ′ < t and t ′ ≡s t + n.

It can be easily checked that the formula obtained after applying the normalisation steps
is in the form (NF), and that is equivalent to the initial formula, since every transforma-
tion preserves logical equivalence.

Proof of Lemma 6 We carry out the proof separately for ϕ being of type (F1)-(F3).

(F1) ϕ : ∀i .
VK

k=1 fk ≤ i ∧
VL

l=1 i≤ gl ∧ i≡s t→ a[i]∼ h(k) where 0≤ t < s

“⇒” By the construction of Gι,ϕ = (V,E), we have V = {a,ζ}×Z. Define Lab : V → Z

as Lab((a,n))= µ(a,n) and Lab((ζ,n))= 0 for all n∈Z. To show that Lab is consistent,
let ∼ be ≤, the other case being symmetric. Let us consider any edge from E . For
edges linking nodes from ζ×Z, we have trivially Lab((ζ,n))− Lab((ζ,n + 1)) ≤ 0
and Lab((ζ,n + 1))− Lab((ζ,n)) ≤ 0. The only other edges in Gι,ϕ are of the form

(a,n)
h(k)
−−→ (ζ,n) with n ∈ Pι where Pι is the set given in the construction of Gι,ϕ.

Any n ∈ Pι satisfies the precondition of ϕ. Since (ι,µ) is a model of ϕ, we have that
µ(a,n)−0≤ h(k), which implies Lab((a,n))−Lab((ζ,n))≤ h(k).

“⇐” This direction follows from a similar argument.

(F2) ϕ : ∀i .
VK

k=1 fk ≤ i ∧
VL

l=1 i≤ gl ∧ i≡s t → a[i]−b[i+ p]∼ q where 0 ≤ s < t,
p ∈ N, q ∈ Z.

“⇒” By the construction of Gι,ϕ = (V,E), we have V = {a,b,ζ}×Z. Define Lab :
V → Z as Lab((a,n)) = µ(a,n), Lab((b,n)) = µ(b,n), and Lab((ζ,n)) = 0 for all n ∈
Z. To show that Lab is consistent, let ∼ be ≤, the other case being symmetric. Let
us consider any edge from E . For edges linking nodes from ζ×Z, we have trivially
Lab((ζ,n))−Lab((ζ,n+1))≤ 0 and Lab((ζ,n+1))−Lab((ζ,n))≤ 0. The only other

edges in Gι,ϕ are of the form (a,n)
q
−→ (b,n + p) with n ∈ Pι where Pι is the set given

in the construction of Gι,ϕ. Since (ι,µ) is a model of ϕ, then for all n ∈ Pι, we have
µ(a,n)−µ(b,n + p)≤ q, which implies Lab((a,n))−Lab((b,n + p))≤ q.

“⇐” This direction follows from a similar argument.

(F3) ϕ : ∀i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i ≤ g1

l ∧
VK2

k=1 f 2
k ≤ j ∧

VL2
l=1 j ≤ g2

l ∧ i− j ≤
p ∧ i≡s t ∧ j ≡u v→ a[i]−b[j]∼ q where 0≤ s < t, 0≤ u < v, p ∈ Z∞, and q ∈ Z.

Let us assume first that p < ∞ and that ∼ is ≤, the other cases being very similar.
Let the sets P 1

ι and P 2
ι be defined as in the construction of the constraint graph Gι,ϕ.

“⇒” By the construction of Gι,ϕ = (V,E), we have V = {a,b,ζ,tϕ}×Z. First of all, we
define Lab : V → Z as Lab((a,n)) = µ(a,n), Lab((b,n)) = µ(b,n), and Lab((ζ,n)) = 0
for all n ∈ Z. It remains to define Lab for tϕ×Z.

Let us consider first the case where T≤ = /0. Then, there do not exist k ∈ P 1
ι and

l ∈ P 2
ι such that k− l ≤ p. This allows us to define Lab((tϕ,n)) = µ(a,n + p)− q for

25

n + p ∈ P 1
ι , Lab((tϕ,n)) = µ(b,n) for n ∈ P 2

ι and Lab((tϕ,n)) = 0 for all other n ∈ Z.
As there is no n such that n+ p ∈ P 1

ι and n ∈ P 2
ι and as there are no arcs linking nodes

of tϕ×Z, it can be easily checked that the labelling is consistent.

Second, we consider the case where T≤ 8= /0. In such a case, there exist k′ ∈ P 1
ι and

l ∈ P 2
ι such that k′ − l ≤ p. Thus, P 2

ι is not empty, and by definition it is finite, hence it
has a maximum element.

Then, we define Lab((tϕ,n)) as follows: For n≤max(P 2
ι), Lab((tϕ,n))= min{µ(b, i) | i∈

P 2
ι and i≥ n}. For n > max(P 2

ι), we define the labelling inductively as follows: If n +
p∈P 1

ι , then Lab((tϕ,n))= max(Lab((tϕ,n−1)),µ(a,n+ p)−q), otherwise Lab((tϕ,n))=
Lab((tϕ,n−1)). It remains to show that min{µ(b, i) | i ∈ P 2

ι and i ≥ n} exists and that
Lab is consistent.

Since µ is a model, we have µ(a,k′)− µ(b, j) ≤ q for all j ∈ P 2
ι with k′ − j ≤ p.

This implies that the set {µ(b, i) | i ∈ P 2
ι and i≥ n} is bounded from below. Therefore

min{µ(b, i) | i ∈ P 2
ι and i≥ n} exists.

To show that Lab is consistent, we consider all edges of Gι,ϕ.

For edges linking nodes from ζ×Z, we have trivially Lab((ζ,n))− Lab((ζ,n +
1))≤ 0 and Lab((ζ,n + 1))−Lab((ζ,n))≤ 0.

For edges of T≤, we have by definition of the labelling of tϕ×Z that Lab((tϕ,n))≤
Lab((tϕ,n+1)) for all n∈Z. Indeed, for n≤max(P 2

ι), we set Lab(tϕ,n)= min{µ(b, i) | i∈
P 2

ι and i ≥ n}. Notice that, for n1 ≤ n2 we have Lab(tϕ,n1) ≤ Lab(tϕ,n2). For n >
max(P 2

ι), we set Lab(tϕ,n) = Lab(tϕ,n−1).

For edges in {(a,k)
q
−→ (tϕ,k− p) | k ∈ P 1

ι }, we consider two cases. If k− p >

max(P 2
ι), then by definition of the labelling, we have that Lab((a,k)) = µ(a,k) and

Lab((tϕ,k− p))= max(Lab((tϕ,n−1)),µ(a,k)−q). Therefore, Lab((a,k))−Lab((tϕ,k−
p))≤ q. If k− p≤max(P 2

ι), then by definition of the labelling, we have that Lab((a,k))=
µ(a,k) and Lab((tϕ,k− p)) = min{µ(b, i) | i ∈ P 2

ι and i ≥ k− p}. Let m ∈ P 2
ι be such

that µ(b,m) = Lab((tϕ,k− p)). Since µ is a model, we have µ(a,k)−µ(b,m)≤ q. This
implies Lab((a,k))−Lab((tϕ,k− p))≤ q.

Finally, for edges in {(tϕ,k)
0
−→ (b,k) | k∈P 2

ι }, we have by definition of the labelling

that Lab((tϕ,k))−Lab((b,k))≤ 0.

“⇐” Let Lab be a consistent labelling of Gι,ϕ and µ a valuation such that µ(a, i) =

Lab((a, i)) for all a∈ a and i∈Z. Let i, j such that
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i≤ g1

l ∧
VK2

k=1 f 2
k ≤

j ∧
VL2

l=1 j ≤ g2
l ∧ i− j ≤ p ∧ i≡s t ∧ j ≡u v. By the construction of Gι,ϕ, there are

edges (a, i)
q
−→ (tϕ, i− p), (tϕ, i)

0
−→ (tϕ, i+1),..., (tϕ, j−1)

0
−→ (tϕ, j) and (tϕ, j)

0
−→ (b, j).

By the fact that Lab is consistent, we have Lab((a, i))−Lab((b, j))≤ q which implies
that µ(a, i)−µ(b, j)≤ q. BC

D.1 Proof of Theorem 1

To proof the main theorem we give first several lemmas. The following two lemmas
relate the control states visited by an accepting run of Aϕ, with its positions.

26

Lemma 9. Let A = 〈x,Q,L,R,−→〉, where Q = {qL,qR}∪{qi | 0 ≤ i < s} ∪ {q
j
i | 0≤

j < s, j+1≤ i < j+ p} be an instance of the diagonal template D(a,b, p,q,s,t,L,U,dir),
and r0 be any normalised accepting run of A. Supposing that L∪U 8= /0, for all k ∈ Z,

we have that, if either r0(k) = (q j
i ,ν) or r0(k) = (qi,ν) for some valuation ν of the

counters in A, then ν(k) ≡s i.

Proof. Follows easily from (1) the fact that to enter and to leave the states {qi | 0 ≤
i < s} a guard checking the modulo constraint has to be satisfied and (2) the fact that if
L∪U 8= /0, then an accepting run has to either enter or leave the states {qi | 0 ≤ i < s}
due to the presence of guards in the transitions. BC

Lemma 10. Let A = 〈x,Q,L,R,−→〉, where Q = {qL,qR}∪ {qi | 0 ≤ i < s} be an in-

stance of the vertical template V(a,b, p,q,s,t,L,U), and r0 be any normalised accept-

ing run of A. Supposing that L∪U 8= /0 for all k ∈ Z, we have that, if r0(k) = (qi,ν) for

some valuation ν, then ν(k) ≡s i.

Proof. Like the proof of Lemma 9. BC

The following lemma is the basis of theorem 1.

Lemma 11. Let ϕ(k,a) be a formula of the form (F1)-(F3) and Aϕ the corresponding

automaton, as defined in Section 4.4. Then, Mϕ(V (Aϕ)) = [[ϕ]].

Proof. We only give the proof for the most difficult case, i.e. formulae of the form
(F3). For the other formulae, it is similar. Let us have a formula ϕ : ∀i, j .

VK1
k=1 f 1

k ≤

i ∧
VL1

l=1 i≤ g1
l ∧

VK2
k=1 f 2

k ≤ j ∧
VL2

l=1 j ≤ g2
l ∧ i− j ≤ p ∧ i≡s t ∧ j ≡u v→ a[i]−

b[j] ∼ q where 0 ≤ s < t and 0 ≤ u < v. Let Li = { f i
1, . . . , f i

Ki
} and Ui = {gi

1, . . . ,g
i
Li
}

for i = 1,2, respectively. Let φ = ∃i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i ≤ g1

l ∧
VK2

k=1 f 2
k ≤

j ∧
VL2

l=1 j≤ g2
l ∧ i− j ≤ p ∧ i≡s t ∧ j≡u v. We give the proof for p > 0 and∼=≤.

The other cases are very similar. Let Aϕ be the automaton corresponding to ϕ. We have
Aϕ = A1⊗A2⊗A3 where A1 is an instance of D(a,tϕ, p,q,s,t− p,L1− p,U1− p,left),
A2 is an instance of H(tϕ,right,φ), and A3 is an instance of V (tϕ,b,0,u,v,L2,U2). We
suppose that L1∪U1 8= /0 and L2∪U2 8= /0. The other cases are treated in a similar way.

“⊆” We first show that Mϕ(V (Aϕ)) ⊆ [[ϕ]]. Let r be an accepting run of Aϕ and r0 be
the normalised run corresponding to r. Let ιr : k→ Z and µr : {a,b}×Z→ Z be the
valuations of the free variables of ϕ corresponding to the run r0. Let Gιr,ϕ = (V,E) be
the constraint graph corresponding to ϕ for the valuation of the bound variables ιr. We
show below that starting from the run r0, we can define a consistent labelling Lab of
Gιr ,ϕ. Thanks to Lemma 6 which implies that the labelling Lab corresponds to a model,
this is enough to prove that Mϕ(V (Aϕ))⊆ [[ϕ]].

By construction, the run r0 of the automaton Aϕ = A1⊗A2⊗A3 corresponds to runs
ri

0 in the automata Ai (i∈ {1,2,3}). We have val(r0)(xa)= val(r1
0)(xa) and val(r0)(xb)=

val(r3
0)(xb) as well as val(r0)(xtϕ) = val(r1

0)(xtϕ) = val(r2
0)(xtϕ) = val(r3

0)(xtϕ).
The labelling Lab is defined as follows: Lab((a, i)) = µr(a, i), Lab((b, i)) = µr(b, i),

and Lab((tϕ, i)) = val(r0(i))(xtϕ) for all i ∈ Z. We show in the following that Lab is

consistent. Let Li,ιr = max{ιr(f i
k) | 1 ≤ k ≤ Ki} and Ui,ιr = min{ιr(gi

l) | 1 ≤ l ≤ Li}

27

for i = 1,2. Let P1,ιr = {k | L1,ιr ≤ k ≤ U1,ιr ∧ k ≡s t} and P2,ιr = {k | L2,ιr ≤ k ≤
U2,ιr ∧ k ≡u v}. We have to consider several cases depending on the left and right-
accepting states visited by the runs ri

0. Let A1 = 〈x1,Q,L,R,−→〉, A2 = 〈x2,Q′,L′,R′,−→′

〉, and A3 = 〈x3,Q′′,L′′,R′′,−→′′〉. We have Q = {qL,qR}∪ {qi | 0 ≤ i < s}∪ {q
j
i | 0 ≤

j < s, j + 1≤ i < j + p}, L = {qL}∪{qi | 0≤ i < s} and R = {qR}∪{qi | 0≤ i < s},
Q′ = {q′L,q

′
R, p′L, p′R} and Q′′ = {q′′L,q

′′
R}∪{q′′i | 0≤ i < s}.

1. The run r1
0 is left-accepting using qL and right-accepting using qR and goes through

the states {qi | 0≤ i < s}. We now show that Lab is consistent.

(a) Let us consider an edge (a,k)
q
−→ (tϕ,k− p) for some k ∈ P1,ιr . We have to show

that Lab((a,k))−Lab((tϕ,k− p)) ≤ q. Due to the structure of the automaton
A1, we have for each k ∈ P1,ιr that r1

0(k− p) = (qi,ν) for some i. Furthermore,
i ≡s t − p due to Lemma 9. Then, the construction of the automaton insures
that in any run, the p transitions following qi are such that val(r1

0(k))(xa)−
val(r1

0(k− p))(xtϕ) ≤ q. This holds due to the roles of the additional counters
{xi | 1 ≤ i < p} from the definition of D. This implies directly Lab((a,k))−
Lab((tϕ,k− p))≤ q.

(b) Let us consider an edge (tϕ,k)
0
−→ (b,k) for some k ∈ P2,ιr . We have to show

that Lab((tϕ,k))−Lab((b,k))≤ 0. If P2,ιr is not empty, then the run r3
0 must go

through the states {q′′i | 0≤ i < s} but it cannot stay there all the time. We have
for each k ∈ P2,ιr that r3

0(k) = (qi,ν) with i ≡u v due to Lemma 10. Then,
the transition following qi of the automaton ensures that val(r3

0(k))(xtϕ)−

val(r3
0(k))(xb)≤ 0. This implies directly Lab((tϕ,k))−Lab((b,k))≤ 0.

(c) Let us consider the edges T≤. The accepting run r2
0 either goes through q′L and

q′R or p′L and p′R. In the latter case, this means that the guard φ is not satisfied.
Therefore, by definition, T≤ is empty. In the former case, we have xtϕ− x′tϕ ≤ 0

for each transition of A2. This gives val(r2
0(k))(xtϕ)− val(r2

0(k + 1))(xtϕ) ≤ 0
for all k ∈ Z, which implies Lab((tϕ,k))−Lab((tϕ,k + 1))≤ 0 for all k ∈ Z.

2. The run r1
0 is left-accepting using the state qL and right-accepting using the state

qR and does not go through {qi | 0 ≤ i < s}. In this case, the run goes through

the transition qL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR. This means that P1,ιr is

empty and diagonal edges are trivially consistent. The other edges are shown to be
consistent as in the cases 1(b) and 1(c).

3. The run r1
0 is left-accepting using a state in {qi | 0 ≤ i < s} and right-accepting

using qR. In this case, Lemmas 9 and 10 can still be applied in a similar way to the
first case to show that the labelling is consistent.

4. The run r1
0 is left-accepting using the state qL and right-accepting using {qi | 0 ≤

i < s}. Symmetric to the previous case.

5. The run r1
0 is left-accepting using a state in {qi | 0≤ i < s} and right-accepting using

{qi | 0 ≤ i < s}. This is impossible because L1∪U1 8= /0 implies that an accepting
run must either enter or leave the states {qi | 0 ≤ i < s} due to the presence of
guards in the transitions.

28

“⊇” Now, we show that [[ϕ]]⊆Mϕ(V (Aϕ)). This is, given a model of ϕ, we have to show
that the counter automaton Aϕ has a corresponding accepting run. Let 〈ι,µ〉 be a model
of ϕ. Because of Lemma 6, there exists a consistent labelling Lab of the constraint
graph Gι,ϕ with µ(a, i) = Lab((a, i)) and µ(b, i) = Lab((b, i)) for all i ∈ Z. It remains to
show that Aϕ has a run corresponding to the labelling Lab. It is enough to show that the
three automata A1,A2, and A3 have runs corresponding to the same labelling Lab. That
is, there are runs r1

0 of A1, r2
0 of A2, r3

0 of A3 such that val(r1
0(i))(xa) = Lab((a, i)) and

val(r3
0(i))(xb) = Lab((b, i)) for all i ∈ Z as well as val(r1

0(i))(xtϕ) = val(r2
0(i))(xtϕ) =

val(r3
0(i))(xtϕ) = Lab((tϕ, i)) for all i ∈ Z.

We define a bi-infinite sequence ν : Z→ ({xa,xb,xtϕ}∪{xk|k∈k}∪{x j| j∈ {1, ..., p−
1}}→ Z) of valuations of the counters of Aϕ such that :

– ∀k ∈ k∀i ∈ Z.ν(i)(xk) = ι(k)
– ∀i ∈ Z.ν(i)(xa) = L((a, i)) and ν(i)(xb) = L((b, i))
– ∀i ∈ Z.ν(i)(xtϕ) = L((tϕ, i))
– ∀ j ∈ {1, ..., p−1}∀i∈ Z.ν(i)(x j) = L((a, i+ j))−q

Now, as ν corresponds in the needed way to Lab, it remains to show that each au-
tomaton A1,A2, A3 has runs corresponding to ν (taking into account the relevant coun-
ters only). Let Li,ι = max{ι(f i

k) | 1 ≤ k ≤ Ki} and Ui,ι = min{ι(gi
l) | 1 ≤ l ≤ Li} for

i = 1,2. Let P 1
ι = {k | L1,ι≤ k≤U1,ι ∧ k≡s t} and P 2

ι = {k | L2,ι≤ k≤U2,ι ∧ k≡u v}.

– The run r1
0 of the automaton A1 is composed of three parts. The “left-accepting

part”, the “middle part”, and the “right-accepting” part. There are two cases to
consider depending on the emptiness or non-emptiness of the set P 1

ι .
• If P 1

ι is empty, then the run is constructed in the following way: The left-

accepting part goes through the transition qL
;
−→ qL, then the middle part is

the transition qL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR taken at an arbitrary

point. The right-accepting part goes through the transition qR
;
−→ qR. Since there

are no constraints (up to choosing the values of the parameters k), the run can
be trivially chosen to correspond to ν.

• If P 1
ι is not empty, then the left-accepting part goes through the transition qL

;
−→

qL until one of the guards of the outgoing transitions is satisfied, which happens
when xτ reaches the value L1,ι−1− p. The run then continues to one of the qi

states, namely the one for which xτ + 1 ≡s i. The middle part of the run then
goes through the states {qi | 0 ≤ i < s} till xτ reaches the value U1,ι− p−

1. Subsequently, the run continues through the states q
j
i to qR where it loops

forever. Within the run, the constraints that are to be satisfied when taking a
transition from a qi state include:
1. x′a− x1 ≤ q, which can be satisfied as in the sequence ν of valuations that

the run needs to follow, the value of x1 equals x′a−q,
2. x′k−1− xk ≤ 0 for 1 < k < p, which can be satisfied as in the sequence of

valuations ν to be followed, all x′k−1 and xk have the same value, and

29

3. x′p−1− xtϕ ≤ 0. This last kind of constraints is tested at the moments when
the value of xτ corresponds to an index l when a diagonal arc arrives to
tϕ. At that moment, in the sequence ν of valuations that we try to follow,
x′p−1 has the value of L((a, l + p))−q, and from the fact that the labelling
is consistent (and hence L((a, l + p))− L((tϕ, l)) ≤ q), it is clear that the
last kind of constraints can be satisfied too.

Hence, there is an accepting run corresponding to the bi-infinite sequence ν of

valuations. A similar reasoning applies when passing through the states q
j
i .

– The runs r2
0 of A2 and r3

0 of A3 are constructed in a similar way.
BC

Before proceeding with the proof of Theorem 1, let us first introduce some notation.
Let x be an arbitrary set of variables, interpreted over some domain D, and I ⊆ x 4→ D

be a set of valuations. For some superset y ⊃ x of the set of variables, we define I ↑y=
{ι : y→ D | ι↓x∈ I}. If x1,y1 and x2,y2 are sets of variables interpreted over domains
D1 and D2, respectively, x1⊆ y1, x2⊆ y2, and I12 ⊆ x1 4→D1×x2 4→D2 is a set of pairs
of valuations, let I12↑y1,y2

= {〈ι1, ι2〉 | ι1 : y1→D1, ι2 : y2→D2, 〈ι1↓x1
, ι2↓x2

〉 ∈ I12}.
The proof is by induction on the structure of ϕ. Lemma 11 takes care about the cases of
ϕ being of type (F1)-(F3). If ϕ is a PA constraint on k, the proof is immediate.

For the inductive case ϕ = ψ1 ∧ψ2, let ki and ai, be the sets of array-bound and
array variables of ψi, for i = 1,2, respectively. We have by Lemma 3, that:

V (Aψ1 ⊗Aψ2) = V (Aψ1)↑x1∪x2
∩ V (Aψ2)↑x1∪x2

where x1 are the counters of Aψ1 and x2 are the counters of Aψ2 . Applying Mϕ to this
equality, we obtain:

Mϕ(V (Aψ1 ⊗Aψ2)) = Mϕ(V (Aψ1)↑x1∪x2
) ∩ Mϕ(V (Aψ2)↑x1∪x2

)

since Mϕ is defined point wise on sets of runs. By the induction hypothesis, we have
Mψi(V (Aψi))= [[ψi]], for i = 1,2. It is easy to see that, Mϕ(V (Aψi)↑x1∪x2

)= [[ψi]]↑k1∪k2,a1∪a2
,

for i = 1,2. Hence, we have:

Mϕ(V (Aψ1 ⊗Aψ2)) = [[ψ1]]↑k1∪k2,a1∪a2
∩ [[ψ2]]↑k1∪k2,a1∪a2

= [[ψ1∧ψ2]]

The proof for the case ϕ = ψ1∨ψ2 follows a similar argument. BC

30

