
HAL Id: hal-01418901
https://hal.science/hal-01418901

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A Verification Toolkit for Numerical Transition Systems
Tool Paper ⋆

Hossein Hojjat, Florent Garnier, Radu Iosif, Filip Konečny, Viktor Kuncak,
Philipp Rümmer

To cite this version:
Hossein Hojjat, Florent Garnier, Radu Iosif, Filip Konečny, Viktor Kuncak, et al.. A Verification
Toolkit for Numerical Transition Systems Tool Paper ⋆. 18th International Symposium on Formal
Methods, Aug 2012, Paris, France. �hal-01418901�

https://hal.science/hal-01418901
https://hal.archives-ouvertes.fr

A Verification Toolkit for Numerical Transition Systems
Tool Paper⋆

Hossein Hojjat1, Florent Garnier2, Radu Iosif2,
Filip Konečný2, Viktor Kuncak1, and Philipp Rümmer3

1 Swiss Federal Institute of Technology Lausanne (EPFL)
2 Verimag, Grenoble, France
3 Uppsala University, Sweden

Abstract. This paper reports on an effort to create benchmarks and a toolkit for
rigorous verification problems, simplifying tool integration and eliminating am-
biguities of complex programming language constructs. We focus onInteger Nu-
merical Transition Systems(INTS), which can be viewed as control-flow graphs
whose edges are annotated by Presburger arithmetic formulas. We describe the
syntax, semantics, a front-end, and a first release of benchmarks for such tran-
sition systems. Furthermore, we present FLATA and ELDARICA , two new verifi-
cation tools for INTS. The FLATA system is based on precise acceleration of the
transition relation, while the ELDARICA system is based on predicate abstrac-
tion with interpolation-based counterexample-driven refinement. The ELDARICA
verifier uses the PRINCESStheorem prover as a sound and complete interpolat-
ing prover for Presburger arithmetic. Both systems can solve several examples
for which previous approaches failed and present a useful baseline for verifying
integer programs. Our infrastructure is publicly available; we hope that it will
spur further research, benchmarking, competitions, and synergistic communica-
tion between verification tools.

1 Introduction

Common representation formats, benchmarks, and tool competitions have helped re-
search in a number of areas, including constraint solving, theorem proving, and com-
pilers. To bring such benefits to the area of software verification, we are proposing a
standardized logical format for programs, in terms of hierarchical infinite-state tran-
sition systems. The advantage of using a formally defined common format is avoiding
ambiguities of programming language semantics and helpingto separate semantic mod-
eling from designing verification algorithms.
This paper focuses on systems whose transition relation is expressed in Presburger
arithmetic. Integer Numerical Transition Systems, (denoted INTS throughout this pa-
per), also known as counter automata, counter systems, or counter machines, are an
infinite-state extension of the model of finite-stateboolean transition systems, a model
extensively used in the area of software verification [10]. The interest for INTS comes
from the fact that they can encode various classes of systemswith unbounded (or very
large) data domains, such as hardware circuits, cache memories, or software systems
with variables of non-primitive types, such as integer arrays, pointers and/or recursive
data structures.
Any Turing-complete class of systems can, in principle be simulated by an INTS [12].
Despite this expressiveness, a number of recent works have revealed cost-effective ap-
proximate reductions of verification problems for several classes of complex systems to
decision problems, phrased in terms on INTS. Examples of systems that can be effec-
tively verified by means of integer programs include: specifications of hardware compo-
nents [14], programs with singly-linked lists [2], trees [8], and integer arrays [3]. Hence
the growing interest for analysis tools working on INTS.

⋆ Supported in part by the Rich Model Toolkit initiative,http://richmodels.org

http://richmodels.org

2 Hojjat, Garnier, Iosif, Konečný, Kuncak, Rümmer

var i : Int ;
var j : Int

l0 : havoc(i)
assume(i >= 0)

l1 : havoc(j)
assume(j >= 0)

l2 : var x: Int = i
var y: Int = j

l3 : while (x != 0) {
l4 : x = x − 1
l5 : y = y − 1

}
l6 : if (i == j)
l7 : assert(x == y)

l0

l1

l2

l3

l4l5

l6

l7

err

i′ ≥ 0

j′ ≥ 0

x′ = i ∧ y′ = j

x 6= 0

x′ = x − 1

y′ = y − 1

x = 0

i = j

x 6= y

(a) (b)

Fig. 1. Example Program and its Numerical Transition System (NTS) Representation. By con-
vention, if a variablev does not appear in the transition relation formula, we implicitly assume
the frame conditionv = v′ is conjoined with the formula.

We believe that robustly handling a wide variety of patternsof programming with in-
tegers is essential for building robust verification tools.As an example, consider the
program in Figure 1(a). Most programmers would have little difficulty observing that
the assertion will always succeed, but many tools, including non-relational abstract in-
terpretation, as well as predicate abstraction with arbitrary interpolation can fail to prove
the assertion to hold [11]. The integer numerical transition system for this program is in
Figure 1(b). We have developed a toolkit for producing and manipulating such represen-
tations, as well as two very different analyzers that can analyze such transition systems.
Both analyzers, ELDARICA and FLATA , in fact succeed for this, as well as for several
other interesting examples. In other cases, however, our experiments show that these
two techniques are complementary, so a user benefits from twodifferent technologies
that use the same input format.

2 The INTS Infrastructure

We have developed a toolkit for rigorous automated verification of programs in INTS
format. The unifying component is the INTS library4, which defines the syntax of the
INTS representation by providing a parser and a library of abstract syntax tree classes.
For the purposes of this paper, the INTS syntax can be considered to be just a textual
description of a control flow graph labeled by Presburger arithmetic formulae, as e.g.,
the one in Figure 1 (b).
There are several components built using the INTS format, either as input, output or
both. The INTS library is designed in order to support relatively easy bridging with
new tools, which can be either front-ends (translators frommainstream programming
languages into INTS), back-ends (verifier tools), or both. Currently, there exists tools to

4 http://richmodels.epfl.ch/ntscomp/ntslib

http://richmodels.epfl.ch/ntscomp/ntslib

A Verification Toolkit for Numerical Transition Systems 3

generate INTS from sequential and concurrent C, Scala, and Verilog. We present two
tools that can verify INTS programs: FLATA and Eldarica.

Flata verifier. FLATA 5 is a verification tool for hierarchical non-recursive INTS mod-
els. The verification technique used in FLATA is based on computing transitive closures
of loops labeled by conjunctive transition relations. The three main classes of integer
relations for which transitive closures can be computed precisely in finite time are:
(1) difference bounds constraints, (2) octagons, and (3)finite monoid affine transfor-
mations. For these three classes, the transitive closures can be effectivelly defined in
Presburger arithmetic.
The transitive closure computation is integrated in a semi-algorithmic method for com-
puting the summary relation of an individual INTS. This algorithm builds the relation
incrementally, by eliminating control states and composing incoming with outgoing re-
lations. The verification method ismodular: the tool computes the summary relation for
each INTS independently of its calling context, thus avoiding the overhead of procedure
inlining.

Eldarica verifier. ELDARICA implements predicate abstraction with Counter-Example
Guided Abstraction Refinement (CEGAR). It generates an abstract reachability tree
(ART) of the system on demand, using lazy abstraction [10] with Cartesian abstraction,
and uses interpolation to refine the set of predicates [9]. ELDARICA uses caching of the
previously explored states and formulae to prevent unnecessary reconstruction of tree.
On demand, large block encoding [1] can be performed to reduce the number of calls
to the interpolating theorem prover.
Eldarica refines abstractions with the help ofCraig Interpolants, extracted from infea-
sibility proofs for spurious counterexamples. A complete interpolation procedure for
(quantifier-free) Presburger arithmetic was proposed in [5], and has been implemented
in the Princess prover [13] that we use in Eldarica. In this approach, interpolants are ex-
tracted from unsatisfiability proofs of conjunctive formulae, by recursively annotating
the proof with partial and intermediate interpolants.

3 Experimental Comparison of the FLATA and ELDARICA Tools

We next show the benefits of INTS on comparing the performanceof the FLATA and
ELDARICA tools. This experimental analysis also points to the current strengths and
weaknesses of the two tools we are developing. We have considered six sets of exam-
ples, extracted automatically from different sources: (a)C programs with arrays pro-
vided as examples of divergence in predicate abstraction [11], (b) INTS extracted from
programs with singly-linked lists by the L2CA tool [2], (c) INTS extracted from VHDL
models of circuits following the method of [14], (d) verification conditions for programs
with arrays, expressed in the SIL logic of [3] and translatedto INTS, (e) C programs
provided as benchmarks in the NECLA static analysis suite, and (f) C programs with
asynchronous procedure calls translated into INTS using the approach of [7] (the ex-
amples with extension .optim are obtained via an optimized translation method [6]).
The execution times are relative to an XXXX architecture. Wenoticed that the two tools
behaved in a complementary way. In some cases (in particularon the (a) examples) the
predicate abstraction method fails due to an unbounded number of loop unrollings re-
quired by refinement. In these cases, acceleration was capable to find the needed invari-
ant rather quickly. On the other hand, in particular on the (f) examples, the acceleration

5 http://www-verimag.imag.fr/FLATA.html

http://www-verimag.imag.fr/FLATA.html

4 Hojjat, Garnier, Iosif, Konečný, Kuncak, Rümmer

approach was unsuccessful in reducing loops with linear butnon-octagonal relations. In
these cases, the predicate abstraction found the needed Presburger invariants for proving
correctness, and error traces, for the erroneous examples.

Model
Time [s]

Flata Eld.
(a) Examples from [11]
anubhav (C) 0.4 2.5
copy1 (E) 1.0 9.0
cousot (C) 0.3 -
loop1 (C) 0.3 2.4
loop (C) 0.3 1.3
scan (E) 1.5 -
string concat1 (E) 3.1 -
string concat (E) 3.0 -
string copy (E) 2.6 -
substring1 (E) 0.3 0.7
substring (E) 1.3 0.7
(b) Examples from L2CA [2]
bubblesort (E) 9.6 0.6
insdel (E) 0.1 0.1
insertsort (E) 1.4 0.6
listcounter (C) 0.2 -
listcounter (E) 0.2 0.3
listreversal (C) 3.1 0.4
listreversal (E) 0.4 0.6
mergesort (E) 0.8 0.6
selectionsort (E) 0.9 0.3

Model
Time [s]

Flata Eld.
(c) VHDL models from [14]
counter (C) 0.1 2.2
register (C) 0.1 1.3
synlifo (C) 14.7 57.3
(d) Verification conditions
for array programs [3]
rotationvc.1 (C) 0.5 2.3
rotationvc.2 (C) 0.8 2.4
rotationvc.3 (C) 0.7 0.4
rotationvc.1 (E) 0.6 1.5
split vc.1 (C) 3.1 3.2
split vc.2 (C) 2.2 2.4
split vc.3 (C) 2.1 0.6
split vc.1 (E) 19.0 2.3
(e) NECLA benchmarks
blast (C) 0.2 3.3
inf1 (E) 0.1 1.4
inf4 (E) 0.6 4.8
inf6 (C) 0.0 3.0
inf8 (C) 0.2 4.7

Model
Time [s]

Flata Eld.
(f) Examples from [7]
h1 (E) - 13.8
h1.optim (E) 0.5 2.7
h1h2 (E) - 35.3
h1h2.optim (E) 0.7 5.2
simple (E) - 11.9
x simple.optim (E) 0.5 2.7
test0 (C) - 36.2
test0.optim (C) 0.2 6.0
test0 (E) - 13.0
test0.optim (E) 0.4 2.7
test1.optim (C) 0.4 10.7
test1.optim (E) 0.9 8.3
test21.optim (E) 0.9 5.9
test22.optim (E) 1.8 7.7
test2.optim (C) 5.2 46.0
wrpc.manual (C) 2.3 1.8
wrpc (E) - 14.7
wrpc.optim (E) - 3.7

Fig. 2.Benchmarks forFlata andEldarica. The letter after the model name distinguishesCorrect
from Erratic models. Items with “-” led to a timeout for the respective tool.

References

1. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model
checking via large-block encoding. InFMCAD, 2009.

2. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. InCAV, pages 517–531, 2006.

3. M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar. Automatic verification of
integer array programs. InCAV, pages 157–172, 2009.

4. M. Bozga, R. Iosif, and F. Konečný. Fast acceleration ofultimately periodic relations. In
CAV, pages 227–242, 2010.

5. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent calculus for
quantifier-free Presburger arithmetic. InIJCAR, LNCS. Springer, 2010.

6. P. Ganty. Personal communication.
7. P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs.CoRR,

abs/1011.0551, 2010.
8. P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving termination of tree manipu-

lating programs. InATVA, pages 145–161, 2007.
9. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.Abstractions from proofs. In

POPL, pages 232–244. ACM, 2004.

A Verification Toolkit for Numerical Transition Systems 5

10. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyabstraction. InPOPL, 2002.
11. R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In

TACAS, pages 459–473, 2006.
12. M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
13. P. Rümmer. A constraint sequent calculus for first-order logic with linear integer arithmetic.

In LPAR, volume 5330 ofLNCS, pages 274–289. Springer, 2008.
14. A. Smrcka and T. Vojnar. Verifying parametrised hardware designs via counter automata. In

Haifa Verification Conference, pages 51–68, 2007.

A Demonstration of Flata on the Running Example

Flata verifies the program in Figure 1(a) by computing its transfer function. The method
is similar to the classical conversion of finite automata into regular expressions. We
start by eliminating control states in Figure 1(b) which have no self-loop. Each such
elimination requires to compose all incoming with all outgoing edge relations. Figure
3(a) shows the result after elimination of control statesl1, l2, l4, l5, l6, andl7.
Next, we eliminate control states with self-loops. Each such elimination requires the
computation of the transitive and reflexive closure of a (possibly disjunctive) relation
(one disjunct for each self-loop relation). For this, we apply a semi-algorithm which
is based on the algorithm from [4] computing transitive and reflexive closure of dif-
ference bounds and octagonal relations. When successful, we replace the loop with
meta-transitions labeled with the computed closure. Elimination of l3 in Figure 3(a)
yields meta-transitions shown in Figure 3(b). Finally, we eliminatel3 andl′3, now with-
out self-loops, which gives an inconsistent transfer function in Figure 3(c), thus proving
correctness of the program.

l0 l3 err

x′ ≥ 0 ∧ x′ = i′∧

y′ ≥ 0 ∧ y′ = j′

x ≤ −1 ∧ x′ = x − 1∧

y′ = y − 1∧

havoc(x, y)

x ≥ 1 ∧ x′ = x − 1∧

y′ = y − 1∧

havoc(x, y)

x = 0 ∧ y ≥ 1∧

j = i ∧ havoc()

x = 0 ∧ y ≤ −1∧

j = i ∧ havoc()

l0 err
false

(a) (c)

l0 l3 l′3 err

x′ ≥ 0 ∧ x′ = i′∧

y′ ≥ 0 ∧ y′ = j′

x′ ≤ x − 1 ∧ x ≤ −1∧

x′ − x = y′ − y∧

havoc(x, y)

havoc()

x′ ≤ x − 1 ∧ x′ ≥ 0∧

x′ − x = y′ − y∧

havoc(x, y)

x = 0 ∧ y ≥ 1∧

j = i ∧ havoc()

x = 0 ∧ y ≤ −1∧

j = i ∧ havoc()

(b)

Fig. 3.Deciding Safety by Elimination of Control Locations

6 Hojjat, Garnier, Iosif, Konečný, Kuncak, Rümmer

B Demonstration of Eldarica on the Running Example

Fig. 4. Abstract reachability tree for blast.nts

C Example for Interpolation

As an example for interpolation, consider the infeasible path l0, l1, l2, l3, l6, l7, err from
our example program in Figure 1. By converting the statements and guards into a for-
mula, Eldarica extracts the following path constraint:

i0 = 0 ∧ j0 = 0 ∧ i1 ≥ 0 ∧ j1 ≥ 0 ∧ x0 = i1 ∧ y0 = j1 ∧ x0 = 0
︸ ︷︷ ︸

φ(i0,j0,i1,j1,x0,y0)

∧ i1 = j1 ∧ x0 6= y0
︸ ︷︷ ︸

ψ(i1,j1,x0,y0)

Princess derives the inconsistency of constraints like this by linear combination of the
equations, as shown in Figure 5, forming the unsatisfiable consequence0 6= 0. For

A Verification Toolkit for Numerical Transition Systems 7

the given partitioning of the constraint intoφ(i0, j0, i1, j1, x0, y0), ψ(i1, j1, x0, y0), an
interpolant can be computed by projecting this linear combination to the equations orig-
inating from the left partition:

I(i1, j1, x0, y0) ≡ −1 · (x0 − i1 = 0) + 1 · (y0 − j1 = 0) ≡ (y0 − x0 + i1 − j1 = 0)

The resulting predicate,i1− j1 = x0−y0, enables Eldarica to refine the abstract reach-
ability tree and construct an inductive invariant for the loop in the example program,
proving its safety.

Left partition
φ(i0, j0, i1, j1, x0, y0)

Right partition
ψ(i1, j1, x0, y0)

i0 = 0 j0 = 0 · · ·

x0 − i1 = 0

y0 − j1 = 0

x0 − y0 6= 0

i1 − j1 = 0

i1 − y0 6= 0

i1 − j1 6= 0

0 6= 0

+-

+

+

+

-

Fig. 5.Proof about path constraints. All atoms are normalised to have right-hand side0.

	A Verification Toolkit for Numerical Transition Systems

