N

N
N

HAL

open science

A Verification Toolkit for Numerical Transition Systems
Tool Paper *

Hossein Hojjat, Florent Garnier, Radu losif, Filip Konecny, Viktor Kuncak,

Philipp Riimmer

» To cite this version:

Hossein Hojjat, Florent Garnier, Radu losif, Filip Konec¢ny, Viktor Kuncak, et al.. A Verification
Toolkit for Numerical Transition Systems Tool Paper x. 18th International Symposium on Formal

Methods, Aug 2012, Paris, France. hal-01418901

HAL Id: hal-01418901
https://hal.science/hal-01418901
Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Public Domain

https://hal.science/hal-01418901
https://hal.archives-ouvertes.fr

A Verification Toolkit for Numerical Transition Systems
Tool Paper*

Hossein Hojjat, Florent Garniet, Radu losif,
Filip Konetn¥?, Viktor Kuncak!, and Philipp Rimmér

! Swiss Federal Institute of Technology Lausanne (EPFL)

2 Verimag, Grenoble, France

3 Uppsala University, Sweden
Abstract. This paper reports on an effort to create benchmarks andlattfoy
rigorous verification problems, simplifying tool integiat and eliminating am-
biguities of complex programming language constructs. d¢es$ oninteger Nu-
merical Transition Systen(§NTS), which can be viewed as control-flow graphs
whose edges are annotated by Presburger arithmetic fasmida describe the
syntax, semantics, a front-end, and a first release of besdtsnfor such tran-
sition systems. Furthermore, we presenffA and E.DARICA, two new verifi-
cation tools for INTS. The EATA system is based on precise acceleration of the
transition relation, while the EDARICA system is based on predicate abstrac-
tion with interpolation-based counterexample-drivenn@fiient. The EDARICA
verifier uses the RINCESStheorem prover as a sound and complete interpolat-
ing prover for Presburger arithmetic. Both systems canesebweral examples
for which previous approaches failed and present a use8dlio@ for verifying
integer programs. Our infrastructure is publicly avaiéable hope that it will
spur further research, benchmarking, competitions, andrgystic communica-
tion between verification tools.

1 Introduction

Common representation formats, benchmarks, and tool ciitiope have helped re-
search in a number of areas, including constraint solvimggtem proving, and com-
pilers. To bring such benefits to the area of software vetiicawe are proposing a
standardized logical format for programs, in terms of Hiegngcal infinite-state tran-
sition systems. The advantage of using a formally definedhcomformat is avoiding
ambiguities of programming language semantics and hetpiagparate semantic mod-
eling from designing verification algorithms.

This paper focuses on systems whose transition relatiowpeessed in Presburger
arithmetic. Integer Numerical Transition Systems, (deddNTS throughout this pa-
per), also known as counter automata, counter systems,umteromachines, are an
infinite-state extension of the model of finite-stht@lean transition systema model
extensively used in the area of software verification [10je Thterest for INTS comes
from the fact that they can encode various classes of systéimsinbounded (or very
large) data domains, such as hardware circuits, cache nesnor software systems
with variables of non-primitive types, such as integer ysrgointers and/or recursive
data structures.

Any Turing-complete class of systems can, in principle loeusated by an INTS[12].
Despite this expressiveness, a number of recent works lesiealed cost-effective ap-
proximate reductions of verification problems for sevelasses of complex systems to
decision problems, phrased in terms on INTS. Examples @ésysthat can be effec-
tively verified by means of integer programs include: speatfons of hardware compo-
nents|[14], programs with singly-linked lisig [2], treE$, [8nd integer array$s [3]. Hence
the growing interest for analysis tools working on INTS.

* Supported in part by the Rich Model Toolkit initiatiiet t p: / / ri chnodel s. org

http://richmodels.org

2 Hojjat, Garnier, losif, Kone¢ny, Kuncak, RUmmer

var i: Int;
var j: Int
10: havoq(i) i T #y
assumégi >=0)
11: havoq(j)
assuméj >=0)] o
12: var x: Int =i J v=Y
var y: Int =j
I3: while (x '=0) {
14: x=x-1 o =iny =3
5: y=y-1

6: if (i ==j)
I7: assert(x ==vy)

(a) (b)

Fig. 1. Example Program and its Numerical Transition System (NT&)rBsentation. By con-
vention, if a variablev does not appear in the transition relation formula, we ioig}i assume
the frame condition = v’ is conjoined with the formula.

We believe that robustly handling a wide variety of patteshgrogramming with in-
tegers is essential for building robust verification to@ds.an example, consider the
program in Figuré€ll(a). Most programmers would have litiféadilty observing that
the assertion will always succeed, but many tools, inclgdion-relational abstract in-
terpretation, as well as predicate abstraction with ahjtinterpolation can fail to prove
the assertion to hold [11]. The integer numerical transitigstem for this program is in
Figure1(b). We have developed a toolkit for producing andimating such represen-
tations, as well as two very different analyzers that cafyaeasuch transition systems.
Both analyzers, EDARICA and FLATA, in fact succeed for this, as well as for several
other interesting examples. In other cases, however, quergrents show that these
two techniques are complementary, so a user benefits frondiffevent technologies
that use the same input format.

2 The INTS Infrastructure

We have developed a toolkit for rigorous automated verificabf programs in INTS
format. The unifying component is the INTS librBrwhich defines the syntax of the
INTS representation by providing a parser and a library stralot syntax tree classes.
For the purposes of this paper, the INTS syntax can be caeside be just a textual
description of a control flow graph labeled by Presburgeharétic formulae, as e.g.,
the one in Figurgll (b).

There are several components built using the INTS form#teeias input, output or
both. The INTS library is designed in order to support rekl$i easy bridging with
new tools, which can be either front-ends (translators freainstream programming
languages into INTS), back-ends (verifier tools), or botlmréntly, there exists tools to

“http://richmodel s. epfl.ch/ntsconp/ntslib

http://richmodels.epfl.ch/ntscomp/ntslib

A Verification Toolkit for Numerical Transition Systems 3

generate INTS from sequential and concurrent C, Scala, anitby. We present two
tools that can verify INTS programs: FLATA and Eldarica.

Flata verifier. FLATAH is a verification tool for hierarchical non-recursive INT®da
els. The verification technique used inATA is based on computing transitive closures
of loops labeled by conjunctive transition relations. Theee main classes of integer
relations for which transitive closures can be computedipedy in finite time are:
(1) difference bounds constraint®) octagons and (3)finite monoid affine transfor-
mations For these three classes, the transitive closures can éetiefly defined in
Presburger arithmetic.

The transitive closure computation is integrated in a salgrithmic method for com-
puting the summary relation of an individual INTS. This aigfom builds the relation
incrementally, by eliminating control states and compg#irtoming with outgoing re-
lations. The verification method isodular. the tool computes the summary relation for
each INTS independently of its calling context, thus avaidhe overhead of procedure
inlining.

Eldarica verifier. ELDARICA implements predicate abstraction with Counter-Example
Guided Abstraction Refinement (CEGAR). It generates anratisteachability tree
(ART) of the system on demand, using lazy abstractioh [1@} @artesian abstraction,
and uses interpolation to refine the set of predicates [9Q)ARICA uses caching of the
previously explored states and formulae to prevent unisacgseconstruction of tree.
On demand, large block encoding [1] can be performed to eethe number of calls
to the interpolating theorem prover.

Eldarica refines abstractions with the helpQykig Interpolants extracted from infea-
sibility proofs for spurious counterexamples. A completteipolation procedure for
(quantifier-free) Presburger arithmetic was proposed]ingidd has been implemented
in the Princess prover [13] that we use in Eldarica. In thigrapch, interpolants are ex-
tracted from unsatisfiability proofs of conjunctive forraal by recursively annotating
the proof with partial and intermediate interpolants.

3 Experimental Comparison of the FLATA and ELDARICA Tools

We next show the benefits of INTS on comparing the performaftee FLATA and
ELDARICA tools. This experimental analysis also points to the cursérengths and
weaknesses of the two tools we are developing. We have aesidix sets of exam-
ples, extracted automatically from different sources:Gg)rograms with arrays pro-
vided as examples of divergence in predicate abstractitin () INTS extracted from
programs with singly-linked lists by the L2CA tool [2], (d)T'S extracted from VHDL
models of circuits following the method of [14], (d) verifitan conditions for programs
with arrays, expressed in the SIL logic of [3] and translatetNTS, (e) C programs
provided as benchmarks in the NECLA static analysis suitd,(§ C programs with
asynchronous procedure calls translated into INTS usiagpproach of[7] (the ex-
amples with extension .optim are obtained via an optimizaaiation method [6]).
The execution times are relative to an XXXX architecture.ndiced that the two tools
behaved in a complementary way. In some cases (in partionldre (a) examples) the
predicate abstraction method fails due to an unbounded euofbloop unrollings re-
quired by refinement. In these cases, acceleration was ledpdind the needed invari-
ant rather quickly. On the other hand, in particular on thextmples, the acceleration

Shttp://ww-verimag.i nmag. fr/ FLATA html

http://www-verimag.imag.fr/FLATA.html

4 Hojjat, Garnier, losif, Kone¢ny, Kuncak, RUmmer

approach was unsuccessful in reducing loops with lineanbotoctagonal relations. In
these cases, the predicate abstraction found the needsmliRyer invariants for proving
correctness, and error traces, for the erroneous examples.

Time [s Time [s Time [s

Model Flata [E]Id. Model Flata [E]Id. Model Flata [E%d
(a) Examples from [11] (c) VHDL models from [14] (f) Examples from [7]

anubhav (C) 0.4 2.5counter (C) 0.1 22hl(E) - 138
copyl (E) 1.0 9.0 register (C) 0.1 1.3hl.optim (E) 05 27
cousot (C) 0.3 - synlifo (C) 14.7 57.3 h1h2 (E) - 353
loop1 (C) 0.3 2.4 (d) Verification conditions h1h2.optim (E) 0.7 5.2
loop (C) 0.3 1.3 for array programs [3] simple (E) - 11.9
scan (E) 15 -Totationvc.1 (C) 05 2.3 xsimple.optim (E) 0.5 2.7
string.concatl (E) 3.1 - rotationvec.2 (C) 0.8 2.4 test0 (C) - 36.2
string.concat (E) 3.0 - rotationve.3 (C) 0.7 0.4 test0.optim (C) 0.2 6.0
string.copy (E) 2.6 - rotationvc.1 (E) 0.6 1.5 testO (E) - 130
substringl (E) 0.3 0.7splitve.1 (C) 3.1 3.2 test0.optim (E) 04 27
substring (E) 1.3 0.7splitvc.2 (C) 2.2 2.4 testl.optim (C) 0.4 10.7

(b) Examples from L2CA [2] split.vc.3 (C) 2.1 0.6 testl.optim (E) 09 83
bubblesort (E) 9.6 0.6splitvc.1 (E) 19.0 2.3test2l.optim(E) 0.9 5.9

insdel (E) 0.1 0.17e)NECLAbenchmarks test22.optm(E) 1.8 7.7
insertsort (E) 1.4 0.6Dblast (C) 0.2 3.3test2.optim (C) 5.2 46.0
listcounter (C) 0.2 - infl (E) 0.1 1.4 wrpc.manual (C) 2.3 1.8
listcounter (E) 0.2 0.3inf4 (E) 0.6 4.8 wrpc (E) - 147
listreversal (C) 3.1 0.4inf6 (C) 0.0 3.0 wrpc.optim (E) - 37
listreversal (E) 0.4 0.6inf8 (C) 0.2 47

mergesort (E) 08 0.6

selectionsort (E) 0.9 0.3

Fig. 2. Benchmarks foFlata andEldarica. The letter after the model name distinguisbesect
from Erratic models. Items with “-” led to a timeout for the respeettool.

References

1. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R.l&stiani. Software model
checking via large-block encoding. FMCAD, 2009.

2. A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Morogddn Vojnar. Programs with lists
are counter automata. DAV, pages 517-531, 2006.

3. M. Bozga, P. Habermehl, R. losif, F. Kone€ny, and T. ¥pjn Automatic verification of
integer array programs. IBAV, pages 157-172, 2009.

4. M. Bozga, R. losif, and F. Konetny. Fast accelerationltiately periodic relations. In
CAV, pages 227-242, 2010.

5. A. Brillout, D. Kroening, P. RUmmer, and T. Wahl. An inpefating sequent calculus for

quantifier-free Presburger arithmetic. ICAR LNCS. Springer, 2010.

P. Ganty. Personal communication.

P. Ganty and R. Majumdar. Algorithmic verification of aslyronous programs CoRR

abs/1011.0551, 2010.

8. P. Habermehl, R. losif, A. Rogalewicz, and T. Vojnar. Pnguermination of tree manipu-
lating programs. IMATVA pages 145-161, 2007.

9. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillaibstractions from proofs. In
POPL, pages 232-244. ACM, 2004.

No

A Verification Toolkit for Numerical Transition Systems 5

10. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. ladmstraction. IlPOPL, 2002.

11. R.Jhala and K. L. McMillan. A practical and complete aggmh to predicate refinement. In
TACAS pages 459-473, 2006.

12. M. Minsky. Computation: Finite and Infinite Machine®rentice-Hall, 1967.

13. P. RUmmer. A constraint sequent calculus for first-olatgic with linear integer arithmetic.
In LPAR volume 5330 oL NCS pages 274—-289. Springer, 2008.

14. A. Smrcka and T. Vojnar. Verifying parametrised hardw@esigns via counter automata. In
Haifa Verification Conferenggages 51-68, 2007.

A Demonstration of Flata on the Running Example

Flata verifies the program in Figure 1(a) by computing itasfar function. The method
is similar to the classical conversion of finite automata irggular expressions. We
start by eliminating control states in Figure 1(b) which éao self-loop. Each such
elimination requires to compose all incoming with all outgpedge relations. Figure
[B(a) shows the result after elimination of control stdte$;, l4, I5, lg, andi.

Next, we eliminate control states with self-loops. Eachhselimination requires the
computation of the transitive and reflexive closure of a ¢jiag disjunctive) relation
(one disjunct for each self-loop relation). For this, we Isgp semi-algorithm which
is based on the algorithm froml[4] computing transitive aeflexive closure of dif-
ference bounds and octagonal relations. When successuigplace the loop with
meta-transitions labeled with the computed closure. Blation ofis in Figure[3(a)
yields meta-transitions shown in Figdide 3(b). Finally, iimaatels andl}, now with-
out self-loops, which gives an inconsistent transfer fiomcin Figurd3(c), thus proving
correctness of the program.

< —1Aa =z — 1A

y =y —1A

havoc(x, y)
z=0Ay > 1A

j =i A havoc()

W oAy =5 false
—®
r=0Ay < —1A
j =i A havoc()
z>1Aa =a— 1A
y =y —1A
havoc(x, y)
(a) (©
mlnglAmgflA
) —xz =y —yn o -
©=0A A
2/ >o0nz’ =i'A havoc(z, y) l X V=
, Pl j =i A havoe()
v 20Ny =3 e
4’@ I3 v‘@- G

, ; z=0Ay < —1A
2/ <z —1Az" >0A j =i A havoc()
o —w =y —yn

havoc(z, y)

(b)

Fig. 3. Deciding Safety by Elimination of Control Locations

6 Hojjat, Garnier, losif, Kone¢ny, Kuncak, RUmmer

B Demonstration of Eldarica on the Running Example

() @)

Mas1312510 1617\161
N A
G (o) (1) Cowamnd (
Ts30us2 |18
(o) Coxan> () (e
0029 he12
. .
[©D) () Caxa> (108))
/2921329216 l2>13210 ba.»25 o7
Cexpaos > Cocaos) (109) (Cakase) D) €D
T
/A Y. fro\
G (22) Cowrass ¢
ke

1
Cexra03 >

Fig. 4. Abstract reachability tree for blast.nts

C Example for Interpolation

As an example for interpolation, consider the infeasibtapa iy, lo, I3, lg, I7, err from
our example program in Figuké 1. By converting the statemant! guards into a for-
mula, Eldarica extracts the following path constraint:

iQZO/\jOZO/\ilzo/\jlZO/\QJQZil/\yQZjl/\QJQ:O/\Z'lzjl/\mo%yo

¢(40,50,%1,J1,%0,Y0) P(i1,41,Z0,Y0)

Princess derives the inconsistency of constraints like ltlgilinear combination of the
equations, as shown in Figuré 5, forming the unsatisfiableseguenc® # 0. For

A Verification Toolkit for Numerical Transition Systems 7

the given partitioning of the constraint intgio, jo, i1, 51, Zo, Yo), ¥ (i1, j1, o, Yo), an
interpolant can be computed by projecting this linear coration to the equations orig-
inating from the left partition:

I(i1, j1,%0,90) = —1-(x0 —i1 =0)+1-(yo —j1 =0) = (yo — 20 +41 — j1 =0)

The resulting predicate; — j; = 2o — yo, €nables Eldarica to refine the abstract reach-
ability tree and construct an inductive invariant for thegan the example program,
proving its safety.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Left partition Right partition
é(io, Jo, i1, 1, To, Yo) (i1, j1, To, Yo)

Fig. 5. Proof about path constraints. All atoms are normalised e hight-hand sidé.

	A Verification Toolkit for Numerical Transition Systems

