Pierre Ganty

Radu Iosif

Filip Konečný

Underapproximation of Procedure Summaries for Integer Programs ‹

We show how to underapproximate the procedure summaries of recursive programs over the integers using off-the-shelf analyzers for non-recursive programs. The novelty of our approach is that the non-recursive program we compute may capture unboundedly many behaviors of the original recursive program for which stack usage cannot be bounded. Moreover, we identify a class of recursive programs on which our method terminates and returns the precise summary relations without underapproximation. Doing so, we generalize a similar result for non-recursive programs to the recursive case. Finally, we present experimental results of an implementation of our method applied on a number of examples.

Introduction

Procedure summaries are relations between the input and return values of a procedure, resulting from its terminating executions. Computing summaries is important, as they are a key enabler for the development of modular verification techniques for interprocedural programs, such as checking safety, termination or equivalence properties. Summary computation is, however, challenging in the presence of recursive procedures with integer parameters, return values, and local variables. While many analysis tools exist for non-recursive programs, only a few ones address the problem of recursion.

In this paper, we propose a novel technique to generate arbitrarily precise underapproximations of summary relations. Our technique is based on the following idea. The control flow of procedural programs is captured precisely by the language of a contextfree grammar. A k-index underapproximation of this language (where k ě 1) is obtained by filtering out those derivations of the grammar that exceed a budget, called index, on the number (at most k) of occurrences of non-terminals occurring at each derivation step. As expected, the higher the index, the more complete the coverage of the underapproximation. From there we define the k-index summary relations of a program by considering the k-index underapproximation of its control flow.

Our method then reduces the computation of k-index summary relations for a recursive program to the computation of summary relations for a non-recursive program, which is, in general, easier to compute because of the absence of recursion. The reduction was inspired by a decidability proof [START_REF] Atig | Approximating petri net reachability along context-free traces[END_REF] in the context of Petri nets.

The contributions of this paper are threefold. First, we show that, for a given index, recursive programs can be analyzed using off-the-shelf analyzers designed for nonrecursive programs. Second, we identify a class of recursive programs, with possibly unbounded stack usage, on which our technique is complete i.e., it terminates and returns the precise result. Third, we present experimental results of an implementation of our method applied on a number of examples. Related Work programs handling integers (in general, unbounded data domains) has gained significant interest with the seminal work of Sharir and Pnueli [START_REF] Sharir | Two approaches to interprocedural data flow analysis[END_REF]. They proposed two approaches for interprocedural dataflow analysis. The first one keeps precise values (call strings) up to a limited depth of the recursion stack, which bounds the number of executions. In contrast to the methods based on the call strings approach, our method can also analyse precisely certain programs for which the stack is unbounded, allowing for unbounded number of executions to be represented at once.

The second approach of Sharir and Pnueli is based on computing the least fixed point of a system of recursive dataflow equations (the functional approach). This approach to interprocedural analysis is based on computing an increasing Kleene sequence of abstract summaries. It is to be noticed that abstraction is key to ensuring termination of the Kleene sequence, the result being an over-approximation of the precise summary. Recently [START_REF] Esparza | Newtonian program analysis[END_REF], the Newton sequence was shown to converge at least as fast as the Kleene sequence. The intuition behind the Newton sequence is to consider control paths in the program of increasing index. Our contribution can be seen as a technique to compute the iterates of the Newton sequence for programs with integer parameters, return values, and local variables, the result being, at each step, an under-approximation of the precise summary.

The complexity of the functional approach was shown to be polynomial in the size of the (finite) abstract domain, in the work of Reps, Horwitz and Sagiv [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. This result is achieved by computing summary information, in order to reuse previously computed information during the analysis. Following up on this line of work, most existing abstract analyzers, such as INTERPROC [START_REF] Lalire | Interproc[END_REF], also use relational domains to compute overapproximations of function summaries -typically widening operators are used to ensure termination of fixed point computations. The main difference of our method with respect to static analyses is the use of underapproximation instead of overapproximation. If the final purpose of the analysis is program verification, our method will not return false positives. Moreover, the coverage can be increased by increasing the bound on the derivation index.

Previous works have applied model checking based on abstraction refinement to recursive programs. One such method, known as nested interpolants represents programs as nested word automata [START_REF] Alur | Adding nesting structure to words[END_REF], which have the same expressive power as the visibly pushdown grammars used in our paper. Also based on interpolation is the WHALE algorithm [START_REF] Albarghouthi | Whale: An interpolation-based algorithm for inter-procedural verification[END_REF], which combines partial exploration of the execution paths (underapproximation) with the overapproximation provided by a predicate-based abstract post operator, in order to compute summaries that are sufficient to prove a given safety property. Another technique, similar to WHALE, although not handling recursion, is the SMASH algorithm [START_REF] Godefroid | Compositional may-must program analysis: unleashing the power of alternation[END_REF] which combines may-and must-summaries for compositional verification of safety properties. These approaches are, however, different in spirit from ours, as their goal is proving given safety properties of programs, as opposed to computing the summaries of procedures independently of their calling context, which is our case. We argue that summary computation can be applied beyond safety checking, e.g., to prove termination [START_REF] Cook | Summarization for termination: no return! Formal Methods in System Design[END_REF], or program equivalence.

Preliminaries

Grammars A context-free grammar (or simply grammar) is a tuple G " pX , Σ, δq where X is a finite nonempty set of nonterminals, Σ is a finite nonempty alphabet and δ Ď X ˆpΣ Y X q ˚is a finite set of productions. The production pX, wq may also be noted X Ñ w. Also define headpX Ñ wq " X and tailpX Ñ wq " w. Given two strings u, v P pΣYX q ˚we define a step u ùñ v if there exists a production pX, wq P δ and some words y, z P pΣ Y X q ˚such that u " yXz and v " ywz. We use ùñ ˚to denote the reflexive transitive closure of ùñ. The language of G produced by a nonterminal X P X is the set L X pGq " tw P Σ ˚| X ùñ ˚wu and we call any sequence of steps from a nonterminal X to w P Σ ˚a derivation from X. Given X ùñ ˚w, we call the sequence γ P δ ˚of productions used in the derivation a control word and write X γ ùñ w to denote that the derivation conforms to γ. Visibly Pushdown Grammars To model the control flow of procedural programs we use languages generated by visibly pushdown grammars, a subset of context-free grammars. In this setting, words are defined over a tagged alphabet p Σ " Σ Y xΣ Y Σy, where xΣ " txa | a P Σu represents procedure call sites and Σy " tay | a P Σu represents procedure return sites. Formally, a visibly pushdown grammar G " pX , p Σ, δq is a grammar that has only productions of the following forms, for some a, b P Σ:

X Ñ a X Ñ a Y X Ñ xa Y by Z It is worth pointing that, for our purposes, we do not need a visibly pushdown grammar to generate the empty string ε. Each tagged word generated by visibly pushdown grammars is associated a nested word [START_REF] Alur | Adding nesting structure to words[END_REF] the definition of which we briefly recall. Given a finite alphabet Σ, a nested word over Σ is a pair pw, ;q, where w " a 1 a 2 . . . a n P Σ ˚, and ; Ď t1, 2, . . . , nu ˆt1, 2, . . . , nu is a set of nesting edges (or simply edges) where:

1. i ; j only if i ă j, i.e. edges only go forward; 2. |t j | i ; ju| ď 1 and |ti | i ; ju| ď 1, i.e. no two edges share a call/return position; 3. if i ; j and k ; then it is not the case that i ă k ď j ă , i.e. edges do not cross. Intuitively, we associate a nested word to a tagged word as follows: there is an edge between tagged symbols xa and by iff both are generated at the same derivation step. For instance looking forward at Ex. 2 consider the tagged word w " τ 1 τ 2 xτ 3 τ 1 τ 5 τ 6 τ 7 τ 3 yτ 4 resulting from a derivation Q init 1 ñ ˚w. The nested word associated to w is pτ 1 τ 2 τ 3 τ 1 τ 5 τ 6 τ 7 τ 3 τ 4 , t3 ; 8uq. Finally, let w nw denote the mapping which given a tagged word in the language of a visibly pushdown grammar returns the nested word thereof. Integer Relations We denote by Z the set of integers. Let x " tx 1 , x 2 , . . . , x d u be a set of variables for some d ą 0. Define x 1 the primed variables of x to be tx 1 1 , x 1 2 , . . . , x 1 d u. All variables range over Z. We denote by Ý Ñ y an ordered sequence xy 1 , . . . , y k y of variables, and by | Ý Ñ y | its length k. By writing Ý Ñ y Ď x we mean that each variable in Ý Ñ y belongs to

x. For sequences Ý Ñ y and Ý Ñ z of length k, Ý Ñ y " Ý Ñ z stands for the equality

Ź k i"1 y i " z i .
A linear term t is a linear combination of the form a 0 `řd i"1 a i x i , where a 0 , . . . , a d P Z. An atomic proposition is a predicate of the form t ď 0, where t is a linear term. We consider formulae in the first-order logic over atomic propositions t ď 0, also known as Presburger arithmetic. A valuation of x is a function ν : x Ý Ñ Z. The set of all valuations of x is denoted by Z x . If Ý Ñ y " xy 1 , . . . , y k y is an ordered sequence of variables, we denote by νp Ý Ñ y q the sequence of integers xνpy 1 q, . . . , νpy k qy. An arithmetic formula R px, y 1 q defining a relation R Ď Z x ˆZy is evaluated with respect to two valuations ν 1 P Z x and ν 2 P Z y , by replacing each x P x by ν 1 pxq and each y 1 P y 1 by ν 2 pyq in R . The composition of two relations R 1 Ď Z x ˆZy and R 2 Ď Z y ˆZz is denoted by R 1 ˝R2 " tpu, vq P Z x ˆZz | Dt P Z y . pu, tq P R 1 and pt, vq P R 2 u. For a subset y Ď x, we denote νÓ y P Z y the projection of ν onto variables y Ď x. Finally, given two valuations I, O P Z x , we denote by I ¨O their concatenation and we define Z xˆx " tI ¨O | I, O P Z x u.

Integer Recursive Programs

We consider in the following that programs are collections of procedures calling each other, possibly according to recursive schemes. Formally, an integer program is an indexed tuple P " xP 1 , . . . , P n y, where P 1 , . . . , P n are procedures. Each procedure is a tuple

P i " xx i , Ý Ñ x in i , Ý Ñ x out i , S i , q init i , F i , ∆ i y
, where x i are the local variables4 of P i (x i X x j " H for all i ‰ j), Ý Ñ x in i , Ý Ñ x out i Ď x i are the ordered tuples of input and output variables, S i are the control states of P i (S i X S j " H, for all i ‰ j), q init i P S i is the initial, and F i Ď S i are the final states of P i , and ∆ i is a set of transitions of one of the following forms:

-q R px i ,x 1 i q Ý ÝÝÝÝ Ñ q 1 is
an internal transition, where q, q 1 P S i , and R px i , x 1 i q is a Presburger arithmetic relation involving only the local variables of P i ; q Ý Ñ z 1 "P j p Ý Ñ u q ÝÝÝÝÝÝÝÑ q 1 is a call, where q, q 1 P S i , P j is the callee, Ý Ñ u are linear terms over

x i , Ý Ñ z Ď x i are variables, such that | Ý Ñ u | " | Ý Ñ x in j | and | Ý Ñ z | " | Ý Ñ x out j |.
We define the size of the program 7P " ř n i"1 |∆ i | to be the total number of transition rules, and locpP q " ř n i"1 |S i | be the number of control locations in P . The call graph of a program P " xP 1 , . . . , P n y is a directed graph with vertices P 1 , . . . , P n and an edge pP i , P j q, for each P i and P j , such that P i has a call to P j . A program is said to be recursive if its call graph has at least one cycle, and non-recursive if its call graph is a dag. Finally, let nF pP i q denotes the set S i zF i of non-final states of P i , and nF pP q "

Ť n i"1 nF pP q be the set of non-final states of P .

Simplified syntax To ease the description of programs defined in this paper, we use a simplified, human readable, imperative language such that each procedure of the program conforms to the following grammar: The local variables occurring in P are denoted by id, linear terms by t, Presburger formulae by f , and control labels by . Each procedure consists in local declarations followed by a sequence of statements. Statements may carry a label. Program statements can be either assume statements6 , (parallel) assignments, procedure calls (possibly with a return value), return to the caller (possibly with a value), non-deterministic jumps goto 1 or . . . or n , and havoc x 1 , x 2 , . . . , x n statements 7 . We consider the usual syntactic requirements (used variables must be declared, jumps are well defined, no jumps outside procedures, etc.). We do not define them, it suffices to know that all simplified programs in this paper comply with the requirements. A program using the simplified syntax can be easily translated into the formal syntax, as shown at Fig. 1.

assume x ď 0; z Ð 0; havoc x; return z; end q init 1 q 2 q 3 q 5 q 4 q 6 q 2 f q 1 f x ě 0 ^x1 " x ^z1 " z x ą 0 ^x1 " x ^z1 " z x ď 0 ^x1 " x ^z1 " z z 1 " Ppx ´1q z 1 " z `2 ^x1 " x z 1 " z z 1 " 0 ^x1 " x t 1 t 2 t 5 t 3 t 4 t 6 t 7
Example 1. Figure 1 shows a program in our simplified imperative language and its corresponding integer program P . Formally, P " xPy where P is defined as: xtx, zu, xxy, xzy, tq init 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 1 f , q 2 f u, q init 1 , tq 1 f , q 2 f u, tt 1 ,t 2 ,t 3 ,t 4 ,t 5 ,t 6 ,t 7 uy. Since P calls itself (t 3), this program is recursive.

Semantics We are interested in computing the summary relation between the values of the input and output variables of a procedure. To this end, we give the semantics of a program P " xP 1 , . . . , P n y as a tuple of relations R q describing, for each non-final control state q P nF pP i q, the effect of the program when started in q upon reaching a state in F i . An interprocedurally valid path is represented by a tagged word over an alphabet p Θ, which maps each internal transition t to a symbol τ, and each call transition t to a pair of symbols xτ, τy P p Θ. In the sequel, we denote by Q the nonterminal corresponding to the control state q, and by τ P Θ the alphabet symbol corresponding to the transition t of P . Formally, we associate P a visibly pushdown grammar, denoted in the rest of the paper by G P " pX , p Θ, δq, such that Q P X if and only if q P nF pP q and: (a) Q Ñ τ P δ if and only if t : q R Ý Ñ q 1 and q 1 R nF pP q

(b) Q Ñ τ Q 1 P δ if and only if t : q R Ý Ñ q 1 and q 1 P nF pP q (c) Q Ñ xτ Q init j τy Q 1 P δ if and only if t : q Ý Ñ z 1 "P j p Ý Ñ u q ÝÝÝÝÝÝÝÑ q 1
It is easily seen that interprocedurally valid paths in P and tagged words in G P are in one-to-one correspondence. In fact, each interprocedurally valid path of P between state q P nF pP i q and a state of F i , where 1 ď i ď n, corresponds exactly to one tagged word of L Q pG P q.

Example 2. (continued from Ex. 1) The visibly pushdown grammar G P corresponding to P consists of the following variables and labelled productions:

p b 1 def " Q init 1 Ñ τ 1 Q 2 p b 2 def " Q 2 Ñ τ 2 Q 3 p b 5 def " Q 2 Ñ τ 5 Q 5 p c 3 def " Q 3 Ñ xτ 3 Q init 1 τ 3 y Q 4 p a 4 def " Q 4 Ñ τ 4 p b 6 def " Q 5 Ñ τ 6 Q 6 p a 7 def " Q 6 Ñ τ 7
In the following, we use superscripts a, b, c to distinguish productions of the form The semantics of a program is the union of the semantics of the nested words corresponding to its executions, each of which being a relation over input and output variables. To define the semantics of a nested word, we first associate to each τ P p Θ an integer relation ρ τ , defined as follows:

Q Ñ τ, Q Ñ τ Q 1 or Q Ñ xτ Q init j τy Q 1 , respectively. L Q init 1 pG P q includes the word w " τ 1 τ 2 xτ 3 τ 1 τ 5 τ 6 τ 7 τ 3 yτ 4 , of which w nwpwq " pτ 1 τ 2 τ 3 τ 1 τ 5 τ 6 τ 7 τ 3 τ 4 , t3 ;
for an internal transition t : q

R Ý Ñ q 1 P ∆ i , let ρ τ " R px i , x 1 i q Ď Z x i ˆZx i ; -for a call transition t : q Ý Ñ z 1 "P j p Ý Ñ u q ÝÝÝÝÝÝÝÑ q 1 P ∆ i , we define a call relation ρ xτ " p Ý Ñ x in j 1 " Ý Ñ u q Ď Z x i ˆZx j , a return relation ρ τy " p Ý Ñ z 1 " Ý Ñ x out j q Ď Z x j ˆZx i and a frame relation φ τ " Ź xPx i z Ý Ñ z x 1 " x Ď Z x i ˆZx i .
We define the semantics of the program P " xP 1 , . . . , P n y in a top-down manner. Assuming a fixed ordering of the non-final states in the program, i.e. nF pP q " xq 1 , . . . , q m y, the semantics of the program P , denoted P , is the tuple of relations x q 1 , . . . , q m y.

For each non-final control state q P nF pP i q where 1 ď i ď n, we denote by q Ď Z x i Ẑx i the relation (over the local variables of procedure P i) defined as q " Ť αPL Q pG P q α . It remains to define α , the semantics of the tagged word α. Out of convenience, we define the semantics of its corresponding nested word w nwpαq " pτ 1 . . . τ , ;q over alphabet Θ, and define α " w nwpαq . For a nesting relation ; Ď t1, . . . , u t1, . . . , u, we define ; i, j " tps ´pi ´1q,t ´pi ´1qq | ps,tq P ; X ti, . . . , ju ˆti, . . . , juu, for some i, j P t1, . . . , u, i ă j. Finally, we define pτ 1 . . . τ , ;q Ď Z x i ˆZx i (recall that α P L Q pG P q and q is a state of P i) as follows:

pτ 1 . . . τ , ;q " $ ' & ' % ρ τ 1 if " 1 ρ τ 1 ˝ pτ 2 . . . τ , ; 2, q
if ą 1 and @1 ď j ď : 1 ; j CaRet τ ˝ pτ j`1 . . . τ , ; j`1, q if ą 1 and D1 ď j ď : 1 ; j where, in the last case, which corresponds to call transition t : q Ý Ñ z 1 "P d p Ý Ñ u q ÝÝÝÝÝÝÝÑ q 1 P ∆ i , we have τ 1 " τ j " τ and define CaRet τ " `ρxτ ˝ τ 2 . . . τ j´1 , ; 2, j´1 q ˝ρτy ˘X φ τ .

Example 3. (continued from Ex. 2) The semantics of a given the nested word θ " pτ 1 τ 2 τ 3 τ 1 τ 5 τ 6 τ 7 τ 3 τ 4 , t3 ; 8uq is a relation between valuations of tx, zu, given by: θ " ρ τ 1 ˝ρτ 2 ˝`pρ xτ 3 ˝ρτ 1 ˝ρτ 5 ˝ρτ 6 ˝ρτ 7 ˝ρτ 3 y q X φ t 3 ˘˝ρ τ 4 One can verify that θ " x " 1 ^z1 " 2, i.e. the result of calling P with an input valuation x " 1 is the output valuation z " 2.

Finally, we introduce a few useful notations. By P q we denote the component of P corresponding to q P nF pP q. Slightly abusing notations, we define L P i pG P q as L Q init i pG P q and P P i as P q init i . Finally, define P i{o P i " txIÓ x in i , OÓ x out i y | xI, Oy P P P i u.

Underapproximating the Program Semantics

In this section we define a family of underapproximations of P , called boundedindex underapproximations. Then we show that each k-index underapproximation of the semantics of a (possibly recursive) program P coincides with the semantics of a non-recursive program computable from P and k. The central notion of bounded-index derivation is introduced in the following followed by basic properties about them. The main intuition behind our method is to filter out interprocedurally valid paths which can not be produced by k-index derivations. Our analysis is then carried out on the remaining paths produced by k-index derivations only. 8 Gruska [START_REF] Gruska | A few remarks on the index of context-free grammars and languages[END_REF] proved that deciding whether L X pGq " L pkq X pGq for some k ě 1 is undecidable.

Example 4. (continued form Ex. 2) P is a (non-tail) recursive procedure and G P models its control flow. Inspecting G P reveals that L Q init 1 pG P q " t `τ1 τ 2 xτ 3 ˘nτ 1 τ 5 τ 6 τ 7 `τ3 yτ 4 ˘n | n ě 0u. For each value of n we give a 2-index derivation capturing the word: repeat

n times the steps Q init 1 p b 1 p b 2 p c 3 ùñ τ 1 τ 2 xτ 3 Q init 1 τ 3 yQ 4 p a 4 ùñ τ 1 τ 2 xτ 3 Q init 1 τ 3 yτ 4 followed by the steps Q init 1 p b 1 p b 5 p b 6 p a 7
ùñ τ 1 τ 5 τ 6 τ 7 . Therefore the 2-index approximation of G P shows that L Q init

1 pG P q " L p2q Q init 1 pG P q.
However bounding the number of times P calls itself up to 2 results in 3 interprocedurally valid paths (for n " 0, 1, 2).

[\ Given k ě 1, we define the k-index semantics of P as P pkq " x q 1 pkq , . . . , q m pkq y,

where the k-index semantics of a non-final control state q of a procedure P i is the relation q pkq Ď Z x i ˆZx i , defined as q " Ť αPL pkq Q pG P q α .

Computing Bounded-index Underapproximations

In what follows, we define a source-to-source transformation that takes in input a recursive program P , an integer k ě 1 and returns a non-recursive program H k which has the same semantics as P pkq (modulo projection on some variables). Therefore every off-the-shelf tool, that computes the summary semantics for a non-recursive program, can be used to compute the k-index semantics of P , for any given k ě 1.

Let P " xP 1 , . . . , P n y be a program, and x "

Ť n i"1 x i be the set of all variables in P . As we did previously, we assume a fixed ordering xq 1 , . . . , q m y on the set nF pP q.

Let G P " pX , p Θ, δq be the visibly pushdown grammar associated with P , such that each non-final state q of P is associated a nonterminal Q P X . Then we define a nonrecursive program H K that captures the K-index semantics of P (Algorithm 1), for K ě 1. Formally, we define H K " Ś K k"0 xquery k Q 1 , . . . , query k Q m y, where: for each k " 0, . . . , K and each control state q P nF pP q, we have a procedure query k Q ; in particular, query 0 Q 1 , . . . , query 0 Q m consists of one assume false statement; each procedure query k Q has five sets of local variables, all of the same cardinality as x: two sets, named x I and x O , are used as input variables, whereas the other three sets, named x J , x K and x L are used locally by query k Q . Besides, query k Q has a local variable called PC. There are no output variables. Observe that each procedure query k Q calls only procedures query k´1 Q 1 for some Q 1 , hence the program H K is non-recursive, and therefore amenable to summarization techniques that cannot handle recursion. Also the hierarchical structure of H K enables modular summarization by computing the summaries ordered by increasing values of k " 0, 1, . . . , K. The summaries of H K´1 are reused to compute H K . Finally, it is routine to check that the size of H K is in OpK ¨7P q. Furthermore, the time needed to generate H K is linear in the product K ¨7P . Given that query k Q has two copies of x as input variables, and no output variables, the input output semantics H i{o query k Q Ď Z xˆx is a set of tuples, rather than a (binary) relation. We denote prepquery k Q q " tI ¨O P Z xˆx | query k Q pI, Oq returns with empty stacku. Clearly assume pPC " headpp a 1 qq; assume ρ tailpp a 1 q px I , x O q; return; . . .

prepquery k Q q " H i{o query k Q . Algorithm 1: proc query k Q px I , x O q for k ě 1 begin var PC, x J , x K , x L ; PC Ð Q;
p a na :
assume pPC " headpp a n a qq; assume ρ tailpp a na q px I , x O q; return;

p b 1 :
assume pPC " headpp b 1 qq; [paste code for 2 nd case: tailpp b 1 q P Θ ˆX]; . . .

p b nb :
assume pPC " headpp b n b qq; [paste code for 2 nd case: tailpp b n b q P Θ ˆX];

p c 1 :
assume pPC " headpp c 1 qq; [paste code for 3 rd case: tailpp c 1 q P xΘ ˆX ˆΘy ˆX]; . . .

p c nc :
assume pPC " headpp c n c qq; [paste code for 3 rd case: tailpp c n c q P xΘ ˆX ˆΘy ˆX]; end 2 nd case:

tailpp b i q"τ Q 1 PΘˆX havoc (x J); assume ρ τ px I , x J q; x I Ð x J ; PC Ð Q 1 ; // query k Q 1 px I , x O q goto start;
// return In Alg. 1, p α i where α P ta, b, cu refers to a production of the visibly pushdown grammar G P . The same symbol in boldface refers to the labelled statements in Alg. 1. The superscript α P ta, b, cu differentiate the productions whether they are of the form

Q Ñ τ, Q Ñ τ Q 1 or Q Ñ xτ Q init j τy Q 1 , respectively.
3 rd case:

tailpp c i q " xτ Q init j τy Q 1 PxΘˆX ˆΘyˆX havoc (x J , x K , x L); assume ρ xτ px I , x J q ;
/* call relation */ assume ρ τy px K , x L q ; /* return relation */ assume φ τ px I , x L q ;

/* frame relation */ goto ord or rod; ord: query k´1 Q init j px J , x K q; /* in order exec. */

x I Ð x L ; PC Ð Q 1 ; // query k Q 1 px I , x O q goto start; // return rod: query k´1 Q 1 px L , x O q; /* out of order exec. */ x I Ð x J ; x O Ð x K ; PC Ð Q init j ; // query k Q init j px I , x O q
goto start; // return Theorem 1 relates the semantics of H K and the K-index semantics of P . Given k, 1 ď k ď K and a control state q of P , we show equality between H K i{o query k Q and P pkq q over common variables. Before starting, we fix an arbitrary value for K and require that each k is such that 1 ď k ď K. Hence, we drop K in H K and write H .

Inspection of the code of H reveals that H simulates k-index depth first derivations of G P and interprets the statements of P on its local variables while applying derivation steps. The main difference with the normal execution of P is that H may interpret a procedure call and its continuation in an order which differs from the expected one.

Example 5. Let us consider an execution of query for the call query 2

Q init 1 pp 1 0 q, p 1 2 qq following Q init 1 p b 1 p b 2 p c 3 ùñ τ 1 τ 2 xτ 3 Q init 1 τ 3 yQ 4 p a 4 ùñ τ 1 τ 2 xτ 3 Q init 1 τ 3 yτ 4 p b 1 p b 5 p b 6 p a 7
ùñ τ 1 τ 2 xτ 3 τ 1 τ 5 τ 6 τ 7 τ 3 yτ 4 . In the table below, the first row (labelled k{PC) gives the caller (1 "

query 1 Q 4 , 2 " query 2 Q init 1
) and the value of PC when control hits the labelled statement given at the second row (labelled ip). The third row (labelled x I {x O) represents the content of the two arrays. x I {x O " p a b qp c d q says that, in x I , x has value a and z has value b; in x O , x has value c and z has value d.

k{PC 2{Q init 1 2{Q init 1 2{Q 2 2{Q 2 2{Q 3 2{Q 3 2{Q 3 ip start p b 1 start p b 2 start p c 3 rod x I {x O p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q k{PC 1{Q 4 1{Q 4 2{Q init 1 2{Q init 1 2{Q 2 2{Q 2 2{Q 5 ip start p a 4 start p b 1 start p b
5 start x I {x O p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q k{PC 2{Q 5 2{Q 6 2{Q 6 ip p b 6 start p a 7

x I {x O p 0 0 qp 42 0 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q

The execution of query 2

Q init 1 starts on row 1, column 1 and proceeds until the call to query 1 Q 4 at row 2, column 1 (the out of order case). The latter ends at row 2, column 2, where the execution of query 2 Q init 1 resumes. Since the execution is out of order, and the previous havocpx J , x K , x L q results into x J " p 0 0 q, x K " p 42 0 q and x L " p 1 0 q (this choice complies with the call relation), the values of x I {x O are updated to p 0 0 q{p 42 0 q. The choice for equal values (0) of z in both x I and x 0 is checked in row 3, column 3. Theorem 1. Let P " xP 1 , . . . , P n y be a program, x " Ť n i"1 x i be the set of all variables in P , and let q P nF pP i q be a non-final control state of some procedure P i "

xx i , Ý Ñ x in i , Ý Ñ x out i , S i , q init i , F i , ∆ i y.
Then, for any k ě 1, we have:

H i{o query k Q " tI ¨O P Z xˆx | xIÓ x i , OÓ
x i y P P pkq q u . Consequently, we also have:

P pkq q " txIÓ x i , OÓ x i y | I ¨O P H i{o query k Q u
The proof of Thm. 1 is based on the following lemma.

Lemma 2. Let k ě 1, q be a non-final control state of P i and I, O P Z x . If I ¨O P prepquery k Q q then xIÓ x i , OÓ x i y P P pkq q . Conversely, if xIÓ x i , OÓ x i y P P pkq q then there exists I

1 , O 1 P Z x such that I 1 Ó x i " IÓ x i , O 1 Ó x i " OÓ x i and I 1 ¨O1 P prepquery k Q q.
Proof: First we consider a tail-recursive version of Algorithm 1 which is obtained by replacing every two statements of the form PC Ð X ; goto start ; by statements query k X px I , x O q ; return ; (as it appears in the comments of Alg. 1). The equivalence between Algorithm 1 and its tail-recursive variant is an easy exercise.

"ð" Let xIÓ x i , OÓ x i y P P pkq q . By definition of k-index semantics, there exists a tagged word α P L pkq Q pG P q such that xIÓ x i , OÓ x i y P α . Let p 1 be the first production used in the derivation of α and let ě 1 be the length (in number of productions used) of the derivation. Our proof proceeds by induction on . If " 1 then we find that p 1 must be of the form Q Ñ τ and that α " τ. Therefore we have α " τ " ρ τ and moreover xI Ó x i , OÓ x i y P ρ τ . Since k ě 1, we let I 1 " I, O 1 " O and we find that query k Q pI 1 , O 1 q returns by choosing to jump to the label corresponding to p 1 , then executing the assume statement and finally the return statement. Thus I 1 ¨O1 P prepquery k Q q. For ą 1, the proof divides in two parts.

1.

If p 1 is of the form Q Ñ τ Q 1 then we find that α " τ β, for some tagged word β. Moreover, xIÓ x i , OÓ x i y P α " ρ τ ˝ β by definition of the semantics. This implies that there exists J P Z x such that xIÓ x i , JÓ x i y P ρ τ and xJÓ x i , OÓ x i y P β . Hence, we conclude from β P L pkq Q 1 pG P q, and the fact that the derivation Q 1 pkq "ùñ ‹ β has less productions than Q pkq "ùñ ‹ α, that xJÓ x i , OÓ x i y P P pkq Q 1 . Applying the induction hypothesis on this last fact, we find that J ¨O P prepquery k Q 1 q. Finally consider the call query k Q pI, Oq where at label start the jump goes to label corresponding to p 1 . At this point in the execution havocpx J q returns J. Next assume ρ τ pI, Jq succeeds. Finally we find that the call to query k Q pI, Oq returns because so does the call query k Q 1 pJ, Oq which is followed by return. Hence

I ¨O P prepquery k Q q. 2. If p 1 is of the form Q Ñ xτ Q init j τy Q 1 then we find that α " xτ β 1 τy β for some β 1 , β. Lemma 1 (prop. 3) shows that either β 1 P L pk´1q Q init j pG P q and β P L pkq Q 1 pG P q or β 1 P L pkq Q init j pG P q
and β P L pk´1q Q 1 pG P q, and both derivations have less productions than . We will assume the former case, the latter being treated similarly. Moreover, xIÓ x i , OÓ x i y P α "

CaRet τ ˝ β " ´`ρ xτ ˝ β 1 ˝ρτy ˘X φ τ ¯˝ β Ď ´`ρ xτ ˝ P pk´1q q init j ˝ρτy ˘X φ τ ¯˝ P pkq q 1 .
Hence there exists J, K, L P Z x such that xI Ó x i , J Ó x i y P ρ xτ , xJ Ó x i , K Ó x j y P P pk´1q q init j , xKÓ x j , LÓ x j y P ρ yτ , and xLÓ x i , OÓ x i y P P pkq q 1 . Applying the induction hypothesis on the derivations of β 1 and β, we obtain that J ¨K P prepquery k´1 Q init j q and L ¨O P prepquery k Q 1 q. Given those facts, it is routine to check that query k Q pI 1 , O 1 q returns by choosing to jump to the label corresponding to p 1 , then having havocpx J , x K , x L q return pJ, K, Lq, hence I 1 ¨O1 P prepquery k Q q. The only if direction is proven in the technical report [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF].

[\ As a last point, we prove that the bounded-index sequence t P pkq u 8

k"1 satisfies several conditions that advocate its use in program analysis, as an underapproximation sequence. The subset order and set union is extended to tuples of relations, point-wise.

P pkq Ď P pk`1q for all k ě 1 pA1q P " Ť 8

k"1 P pkq pA2q Condition (A1) requires that the sequence is monotonically increasing, the limit of this increasing sequence being the actual semantics of the program (A2). These conditions follow however immediately from the two first points of Lemma 1. To decide whether the limit P has been reached by some iterate P pkq , it is enough to check that the tuple of relations in P pkq is inductive with respect to the statements of P . This can be implemented as an SMT query.

Completeness of Underapproximations for Bounded Programs

In this section we define a class of recursive programs for which the precise summary semantics of each program in that class is effectively computable. We show for each program P in the class that (a) P " P pkq for some value k ě 1, bounded by a linear function in the total number locpP q of control states in P , and moreover (b) the semantics of H k is effectively computable (and so is that of P pkq by Thm. 1).

Given an integer relation R Ď Z n ˆZn , its transitive closure R `" Ť 8 i"1 R i , where R 1 " R and R i`1 " R i ˝R, for all i ě 1. In general, the transitive closure of a relation is not definable within decidable subsets of integer arithmetic, such as Presburger arithmetic. In this section we consider two classes of relations, called periodic, for which this is possible, namely octagonal relations, and finite monoid affine relations. The formal definitions are deferred to the technical report [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF].

We define a bounded-expression b to be a regular expression of the form b " w 1 . . . w k , where k ě 1 and each w i is a non-empty word. A language (not necessarily context-free) L over alphabet Σ is said to be bounded if and only if L is included in (the language of) a bounded expression b. Theorem 2 ([START_REF] Luker | A family of languages having only finite-index grammars[END_REF]). Let G " pX , Σ, δq be a grammar, and X P X be a nonterminal, such that L X pGq is bounded. Then there exists a linear function B : N Ñ N such that L X pGq " L pkq X pGq for some 1 ď k ď Bp|X |q. If the grammar in question is G P , for a program P , then clearly |X | ď locpP q, by definition. The class of programs for which our method is complete is defined below: Definition 2. Let P be a program and G P " pX , p Θ, δq be its corresponding visibly pushdown grammar. Then P is said to be bounded periodic if and only if:

1. L X pG P q is bounded for each X P X ; 2. each relation ρ τ occurring in the program, for some τ P p Θ, is periodic.

Example 6. (continued from Ex. 4) Recall that L Q init

1 pG P q " L p2q Q init 1 pG P q which equals to the set t `τ1 τ 2 xτ 3 ˘nτ 1 τ 5 τ 6 τ 7 `τ3 yτ 4 ˘n | n ě 0u Ď `τ1 τ 2 xτ 3 ˘˚τ 1 τ 5 τ 6 τ 7 `τ3 yτ 4 ˘˚.
Concerning condition 1, it is decidable [START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF] and previous work [START_REF] Godoy | Invariant checking for programs with procedure calls[END_REF] defined a class of programs following a recursion scheme which ensures boundedness of the set of interprocedurally valid paths.

This section shows that the underapproximation sequence t P pkq u 8

k"1 , defined in Section 4, when applied to any bounded periodic programs P , always yields P in at most BplocpP qq steps, and moreover each iterate P pkq is computable and Presburger definable. Furthermore the method can be applied as it is to bounded periodic programs, without prior knowledge of the bounded expression b Ě L Q pG P q.

The proof goes as follows. Because P is bounded periodic, Thm. 2 shows that the semantics P of P coincide with its k-index semantics P pkq for some 1 ď k ď BplocpP qq. Hence, the result of Thm. 1 shows that for each q P nF pP q, the k-index semantics P pkq q is given by the semantics Q is flattable then P is computable in finite time by existing tools, such as FAST [START_REF] Bardin | FAST: Fast acceleration of symbolic transition systems[END_REF] or FLATA [START_REF] Bozga | Flat parametric counter automata[END_REF][START_REF] Bozga | Fast acceleration of ultimately periodic relations[END_REF]. In fact, these tools are guaranteed to terminate provided that (a) the input program is flattable; and (b) loops are labeled with periodic relations.

Definition 3. Let P " xP 1 , . . . , P n y be a non-recursive program and G P " pX , p Θ, δq be its corresponding visibly pushdown grammar. Procedure P i is said to be flattable if and only if there exists a bounded regular language R over p Θ, such that P P i " Ť αPL P i pG P qXR α .

Notice that a flattable program is not necessarily bounded (Def. 2), but its semantics can be computed by looking only at a bounded subset of interprocedurally valid sequence of statements.

Theorem 3. Let P " xP 1 , . . . , P n y be a bounded program, and let q P nF pP q. Then, for any k ě 1, procedure query k Q of program H is and flattable.

The proof of Thm. 3 roughly goes as follows: recall that we have P q " P pkq q for each q P nF pP q and so it is sufficient to consider the set L pkq Q pG P q of interprocedurally valid paths. We further show (Thm. 4) that a strict subset of the k-index derivations of G P is sufficient to capture L pkq Q pG P q. Moreover this subset of derivations is characterizable by a regular bounded expression b Γ over the productions of G P . Next, we map b Γ into a set f pb Γ q of interprocedurally valid paths of procedure query k Q of H , which is sufficient to capture H query k Q . Finally, using existing results [START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF], we show in Thm. 5 that f pb Γ q is a bounded and regular set. Hence, we conclude that each procedure query k Q is flattable. A full proof of Thm. 3 is given in the technical report [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF].

Given a grammar G " pX , Σ, δq, we call any subset of δ ˚a control set. Let Γ be a control set, we denote by L X pΓ, Gq " tw P Σ ˚| Dγ P Γ : X γ ùñ wu, the set of words resulting from derivations with control word in Γ.

Definition 4 ([19]

). Let D " X " w 0 ùñ ˚wm " w be a derivation. Let k ą 0, x i P Σ ˚, A i P X such that w m " x 0 A 1 x 1 ¨¨¨A k x k ; and for each m and i such that 0 ď m ď n, 1 ď i ď k, let f m piq denote the index of the first word in D in which the particular occurrence of variable A i appears. Let A j be the nonterminal replaced in step w m ùñ w m`1 of D. Then D is said to be depth-first if and only if for all m, 0 ď m ă n we have f m piq ď f m p jq, for all 1 ď i ď k.

We define the set DF X pGq (DF pkq X pGq) of words produced using only depth-first derivations (of index at most k) in G starting from X. Clearly, DF X pGq Ď L X pGq and similarly DF pkq X pGq Ď L pkq X pGq for all k ě 1. We further define the set DF X pΓ, Gq (DF pkq X pΓ, Gq) of words produced using depth-first derivations (of index at most k) with control words from Γ.

The following theorem shows that L pkq Q pG P q is captured by a subset of depth-first derivations whose control words belong to some bounded expression. Theorem 4. Let G " pX , Θ, δq be a visibly pushdown grammar, X 0 P X be a nonterminal such that L X 0 pGq is bounded. Then for each k ě 1 there exists a bounded expression b Γ over δ such that DF pkq X 0 pb Γ , Gq " L pkq X 0 pGq. Finally, to conclude that query k Q is flattable, we map the k-index depth-first derivations of G into the interprocedurally valid paths of query k Q . Then, applying Thm. 5 on that mapping, we conclude the existence of a bounded and regular set of interprocedurally valid paths of query k Q sufficient to capture its semantics. Theorem 5. Given two alphabets Σ and ∆, let f be a function from Σ ˚into ∆ ˚such that (i) if u is a prefix of v then puq is a prefix of f pvq; (ii) there exists an integer M such that | f pwaq| ´| f pwq| ď M for all w P Σ ˚and a P Σ; (iii) f pεq " ε; (iv) f ´1pRq is regular for all regular languages R. Then f preserves regular sets. Furthermore, for each bounded expression b we have that f pbq is bounded. We have implemented the proposed method in the FLATA verifier [START_REF] Hojjat | A verification toolkit for numerical transition systems -tool paper[END_REF] and experimented with several benchmarks. First, we have considered several programs, taken from [START_REF]Termination Competition[END_REF], that perform arithmetic and logical operations in a recursive way such as plus (addition), timesTwo (multiplication by two), leq (comparison), and parity (parity checking). It is worth noting that these programs have finite index and stabilization of the underapproximation sequence is thus guaranteed. Our technique computes summaries by verifying that P p2q " P p3q for all these benchmarks, see Table 1 (the platform used for experiments is Intel R Core TM i7-3770K CPU, 3.50GHz, with 16GB of RAM).

F a pxq " " x ´10 if x ě 101 pF a q a px `10 ¨a ´9q if x ď 100 G b pxq " " x ´10 if x ě 101 GpGpx `bqq if x ď 100 Next, we have considered the generalized McCarthy 91 function [START_REF] Cowles | Computer-aided reasoning. chap. Knuth's generalization of McCarthy's 91 function[END_REF], a well-known verification benchmark that has long been a challenge. We have automatically computed precise summaries of its generalizations F a and G b above for a " 2, . . . , 8 and b " 12, . . . , 14. The indices of the recursive programs implementing the F a , G b functions are not bounded, however the sequence reached the fixpoint after at most 4 steps.

Conclusions

We have presented an underapproximation method for computing summaries of recursive programs operating on integers. The underapproximation is driven by bounding

Fig. 1 .

 1 Fig. 1. Example of a simplified imperative program and its integer program thereof

 8uq is the corresponding nested word. The word w corresponds to an interprocedurally valid path where P calls itself once. Let γ 1 " p b

Definition 1 . 8 Lemma 1 .

 181 Given a grammar G " pX , Σ, δq with relation ùñ between strings, for every k ě 1 we define the relation pkq ùñ Ď ùñ as follows: u pkq ùñ v iff u ùñ v and both u and v contain at most k occurrences of variables from X . We denote by pkq "ùñ ‹ the reflexive transitive closure of pkq ùñ. Hence given X and k define L pkq X pGq " tw P Σ ˚| X pkq "ùñ ‹ wu, and we call the pkq ùñ-derivation of w P Σ ˚from X a k-index derivation. A grammar G is said to have index k whenever L X pGq " L pkq X pGq for each X P X . For every grammar the following properties hold: (1) BC pkq "ùñ ‹ w P Σ ˚iff there exist w 1 , w 2 such that w " w 1 w 2 and either (i) B pk´1q "ùñ ‹ w 1 , C pkq "ùñ ‹ w 2 , or (ii) C pk´1q "ùñ ‹ w 2 and B pkq "ùñ ‹ w 1 .

a 1 or ¨¨¨or p a n a or p b 1 or ¨¨¨or p b n b or p c 1 or ¨¨¨or p c n c ; p a 1 :

 1

 . Then, because P is bounded, we show in Thm. 3 that every procedure query k Q of program H is flattable (Def. 3). Moreover, since the only transitions of H which are not from P are equalities and havoc, all transitions of H are periodic. Since each procedure query k

	H query k Q	of procedure query k Q of the program

H

Table 1 .

 1 Experiments.

	6 Experiments	
	Program Time [s] k
	timesTwo 0.7 2
	leq	0.8 2
	parity	0.8 2
	plus	1.5 2
	F a"2	1.5 3
	F a"8	36.9 4
	G b"12	3.5 3
	G b"13	23.2 3
	G b"14	23.4 3

Observe that there are no global variables in the definition of integer program. Those can be encoded as input and output variables to each procedure.

Our simplified syntax does not seek to capture the generality of integer programs. Instead, our goal is to give a convenient notation for the programs given in this paper and only those.

assume f is executable if and only if the current values of the variables satisfy f .

havoc assigns non deterministically chosen integers to x 1 , x 2 , . . . , x n .

‹ Supported by the French National Project ANR-09-SEGI-016 VERIDYC, the Spanish Ministry of Economy and Finance grant (TIN2010-20639), and the Rich Model Toolkit initiative.

the index of derivations that produce the execution traces of the program, and computing the summary, for each index, by analyzing a non-recursive program. We also present a class of programs on which our method is complete. Finally, we report on an implementation and experimental evaluation of our technique.