Radu Iosif

Adam Rogalewicz

Jiri Simacek

The Tree Width of Separation Logic with Recursive Definitions

Separation Logic is a widely used formalism for describing dynamically allocated linked data structures, such as lists, trees, etc. The decidability status of various fragments of the logic constitutes a long standing open problem. Current results report on techniques to decide satisfiability and validity of entailments for Separation Logic(s) over lists (possibly with data). In this paper we establish a more general decidability result. We prove that any Separation Logic formula using rather general recursively defined predicates is decidable for satisfiability, and moreover, entailments between such formulae are decidable for validity. These predicates are general enough to define (doubly-) linked lists, trees, and structures more general than trees, such as trees whose leaves are chained in a list. The decidability proofs are by reduction to decidability of Monadic Second Order Logic on graphs with bounded tree width. list(hd,tl) ::= emp ∧ hd = tl | ∃x. hd → x * list(x,tl) dll(hd, p,tl) ::= emp ∧ hd = tl

Introduction

Separation Logic (SL) [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF] is a general framework for describing dynamically allocated mutable data structures generated by programs that use pointers and low-level memory allocation primitives. The logics in this framework are used by an important number of academic (SPACE INVADER [START_REF] Berdine | Shape analysis for composite data structures[END_REF], SLEEK [START_REF] Nguyen | Enhancing program verification with lemmas[END_REF] and PREDATOR [START_REF] Dudka | Predator: A practical tool for checking manipulation of dynamic data structures using separation logic[END_REF]), as well as industrial-scale (INFER [START_REF] Calcagno | Infer: An automatic program verifier for memory safety of c programs[END_REF]) tools for program verification and certification. These logics are used both externally, as property specification languages, or internally, as e.g., abstract domains for computing invariants, or for proving verification conditions. The main advantage of using SL when dealing with heap manipulating programs, is the ability to provide compositional proofs, based on the principle of local reasoning i.e., analyzing different sections (e.g., functions, threads, etc.) of the program, that work on disjoint parts of the global heap, and combining the analysis results a-posteriori.

The basic language of SL consists of two kinds of atomic propositions describing either (i) the empty heap, or (ii) a heap consisting of an allocated cell, connected via a separating conjunction primitive. Hence a basic SL formula can describe only a heap whose size is bounded by the size of the formula. The ability of describing unbounded data structures is provided by the use of recursive definitions. Figure 1 gives several common examples of recursive data structures definable in this framework.

The main difficulty that arises when using Separation Logic with Recursive Definitions (SLRD) to reason automatically about programs is that the logic, due to its expressiveness, does not have very nice decidability properties. Most dialects used in practice restrict the language (e.g., no quantifier alternation, the negation is used in a very restricted ways, etc.) and the class of models over which the logic is interpreted (typically singly-linked lists, and slight variations thereof). In the same way, we apply several natural restrictions on the syntax of the recursive definitions, and define the fragment SLRD btw , which guarantees that all models of a formula in the fragment have bounded tree width. Indeed, this ensures that the satisfiability and entailment problems in this fragment are decidable without any restrictions on the type of the recursive data structures considered.

In general, the techniques used in proving decidability of Separation Logic are either proof-based ([START_REF] Nguyen | Enhancing program verification with lemmas[END_REF][START_REF] Berdine | A decidable fragment of separation logic[END_REF]), or model-based ([START_REF] Bozga | Quantitative separation logic and programs with lists[END_REF][START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF]). It is well-known that automata theory, through various automata-logics connections, provides a unifying framework for proving decidability of various logics, such as (W)SkS, Presburger Arithmetic or MSO over certain classes of graphs. In this paper we propose an automata-theoretic approach consisting of two ingredients. First, SLRD btw formulae are translated into equivalent Monadic Second Order (MSO) formulae over graphs. Second, we show that the models of SLRD btw formulae have the bounded tree width property, which provides a decidability result by reduction to the satisfiability problem for MSO interpreted over graphs of bounded tree width [START_REF] Seese | The structure of models of decidable monadic theories of graphs[END_REF], and ultimately, to the emptiness problem of tree automata.

Related Work

The literature on defining decidable logics for describing mutable data structures is rather extensive. Initially, first-order logic with transitive closure of one function symbol was introduced in [START_REF] Immerman | The boundary between decidability and undecidability for transitive-closure logics[END_REF] with a follow-up logic of reachability on complex data structures, in [START_REF] Yorsh | A logic of reachable patterns in linked data-structures[END_REF]. The decision procedures for these logics are based on reductions to the decidability of MSO over finite trees. Along the same lines, the logic PALE [START_REF] Møller | The pointer assertion logic engine[END_REF] goes beyond trees, in defining trees with edges described by regular routing expressions, whose decidability is still a consequence of the decidability of MSO over trees. More recently, the CSL logic [START_REF] Bouajjani | A logic-based framework for reasoning about composite data structures[END_REF] uses first-order logic with reachability (along multiple selectors) in combination with arithmetic theories to reason about shape, path lengths and data within heap structures. Their decidability proof is based on a small model property, and the algorithm is enumerative. In the same spirit, the STRAND logic [START_REF] Madhusudan | Decidable logics combining heap structures and data[END_REF] combines MSO over graphs, with quantified data theories, and provides decidable fragments using a reduction to MSO over graphs of bounded tree width.

On what concerns SLRD [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF], the first (proof-theoretic) decidability result on a restricted fragment defining only singly-linked lists was reported in [START_REF] Berdine | A decidable fragment of separation logic[END_REF], which describe a coNP algorithm. The full basic SL without recursive definitions, but with the magic wand operator was found to be undecidable when interpreted in any memory model [START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF]. Recently, the entailment problem for SLRD over lists has been reduced to graph homomorphism in [START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF], and can be solved in PTIME. This method has been extended to reason nested and overlaid lists in [START_REF] Enea | Compositional invariant checking for overlaid and nested linked lists[END_REF]. The logic SLRD btw , presented in this paper is, to the best of our knowledge, the first decidable SL that can define structures more general than lists and trees, such as e.g. trees with parent pointers and linked leaves.

Preliminaries

For a finite set S, we denote by ||S|| its cardinality. We sometimes denote sets and sequences of variables as x, the distinction being clear from the context. If x denotes a sequence, (x) i denotes its i-th element. For a partial function f : A B, and

⊥ / ∈ B, we denote f (x) = ⊥ the fact that f is undefined at some point x ∈ A. By f [a ← b] we denote the function λx . if x = a then b else f (x). The domain of f is denoted dom(f) = {x ∈ A | f (x) = ⊥}, and the image of f is denoted as img(f) = {y ∈ B | ∃x ∈ A . f (x) = y}. By f : A f in B
we denote any partial function whose domain is finite. Given two partial functions f , g defined on disjoint domains, we denote by f ⊕ g their union.

Stores, Heaps and States. We consider PVar = {u, v, w, . . .} to be a countable infinite set of pointer variables and Loc = {l, m, n, . . .} to be a countable infinite set of memory locations. Let nil ∈ PVar be a designated variable, null ∈ Loc be a designated location, and Sel = {1, . . . , S}, for some given S > 0, be a finite set of natural numbers, called selectors in the following. Definition 1. A state is a pair s, h where s : PVar Loc is a partial function mapping pointer variables into locations such that s(nil) = null, and h : Loc f in Sel f in Loc is a finite partial function such that (i) null ∈ dom(h) and (ii) for all ∈ dom(h) there exist k ∈ Sel such that (h())(k) = ⊥.

Given a state S = s, h , s is called the store and h the heap. For any k ∈ Sel, we write h k () instead of (h())(k), and k -→ for h k () = . We sometimes call a triple k -→ an edge, and k is called a selector. Let Img(h) = ∈Loc img(h()) be the set of locations which are destinations of some selector edge in h. A location ∈ Loc is said to be allocated in s, h if ∈ dom(h) (i.e. it is the source of an edge), and dangling in s, h if ∈ [img(s) ∪ Img(h)] \ dom(h), i.e., it is either referenced by a store variable, or reachable from an allocated location in the heap, but it is not allocated in the heap itself. The set loc(S) = img(s) ∪ dom(h) ∪ Img(h) is the set of all locations either allocated or referenced in a state S = s, h .

Trees. Let Σ be a finite label alphabet, and N * be the set of sequences of natural numbers. Let ε ∈ N * denote the empty sequence, and p.q denote the concatenation of two sequences p, q ∈ N * . A tree t over Σ is a finite partial function t : N * f in Σ, such that dom(t) is a finite prefix-closed subset of N * , and for each p ∈ dom(t) and i ∈ N, we have: t(p.i) = ⊥ ⇒ ∀0 ≤ j < i . t(p. j) = ⊥. Given two positions p, q ∈ dom(t), we say that q is the i-th successor (child) of p if q = p.i, for i ∈ N. Also q is a successor of p, or equivalently, p is the parent of q, denoted p = parent(q) if q = p.i, for some i ∈ N.

We will sometimes denote by D(t) = {-1, 0, . . . , N} the direction alphabet of t, where N = max{i ∈ N | p.i ∈ dom(t)}. The concatenation of positions is defined over D(t) with the convention that p.(-1) = q if and only if p = q.i for some i ∈ N. We denote D + (t) = D(t) \ {-1}. A path in t, from p 1 to p k , is a sequence p 1 , p 2 , . . . , p k ∈ dom(t) of pairwise distinct positions, such that either p i = parent(p i+1) or p i+1 = parent(p i), for all 1 ≤ i < k. Notice that a path in the tree can also link sibling nodes, not just ancestors to their descendants, or viceversa. However, a path may not visit the same tree position twice.

Tree Width. A state (Def. 1) can be seen as a directed graph, whose nodes are locations, and whose edges are defined by the selector relation. Some nodes are labeled by program variables (PVar) and all edges are labeled by selectors (Sel). The notion of tree width is then easily adapted from generic labeled graphs to states. Intuitively, the tree width of a state (graph) measures the similarity of the state to a tree. Definition 2. Let S = s, h be a state. A tree decomposition of S is a tree t : N * f in 2 loc(S) , labeled with sets of locations from loc(S), with the following properties:

1. loc(S) = p∈dom(t) t(p), the tree covers the locations of S 2. for each edge l 1 s -→ l 2 in S, there exists p ∈ dom(t) such that l 1 , l 2 ∈ t(p) 3. for each p, q, r ∈ dom(t), if q is on a path from p to r in t, then t(p) ∩ t(r) ⊆ t(q)

The width of the decomposition is w(t) = max p∈dom(t) {||t(p)|| -1}. The tree width of S is tw(S) = min{w(t) | t is a tree decomposition of S}.

A set of states is said to have bounded tree width if there exists a constant k ≥ 0 such that tw(S) ≤ k, for any state S in the set. Figure 2 gives an example of a graph (left) and a possible tree decomposition (right). Fig. 2. A graph and a possible tree decomposition of width 2

Syntax and Semantics of Monadic Second Order Logic

Monadic second-order logic (MSO) on states is a straightforward adaptation of MSO on labeled graphs [START_REF] Madhusudan | The tree width of auxiliary storage[END_REF]. As usual, we denote first-order variables, ranging over locations, by x, y, . . . , and second-order variables, ranging over sets of locations, by X,Y, The set of logical MSO variables is denoted by LVar mso , where PVar ∩ LVar mso = / 0. We emphasize here the distinction between the logical variables LVar mso and the pointer variables PVar: the former may occur within the scope of first and second order quantifiers, whereas the latter play the role of symbolic constants (function symbols of zero arity). For the rest of this paper, a logical variable is said to be free if it does not occur within the scope of a quantifier. By writing ϕ(x), for an MSO formula ϕ, and a set of logical variables x, we mean that all free variables of ϕ are in x.

The syntax of MSO is defined below:

u ∈ PVar; x, X ∈ LVar mso ; k ∈ N ϕ ::= x = y | var u (x) | edge k (x, y) | null(x) | X(x) | ϕ ∧ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ
The semantics of MSO on states is given by the relation [START_REF] Seese | The structure of models of decidable monadic theories of graphs[END_REF], with the following interpretations of the vertex and edge labels:

S, ι, ν |= mso null(x) ⇐⇒ ι(x) = nil S, ι, ν |= mso var u (x) ⇐⇒ s(u) = ι(x) S, ι, ν |= mso edge k (x, y) ⇐⇒ h k (ι(x)) = ι(y)
The satisfiability problem for MSO asks, given a formula ϕ, whether there exists a state S such that S |= mso ϕ. This problem is, in general, undecidable. However, one can show its decidability on a restricted class of models. The theorem below is a slight variation of a classical result in (MSO-definable) graph theory [START_REF] Seese | The structure of models of decidable monadic theories of graphs[END_REF]. For space reasons, all proofs are given in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF].

Theorem 1. Let k ≥ 0 be an integer constant, and ϕ be an MSO formula. The problem asking if there exists a state S such that tw(S) ≤ k and S |= mso ϕ is decidable.

Syntax and Semantics of Separation Logic

Separation Logic (SL) [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF] uses only a set of first order logical variables, denoted as LVar sl , ranging over locations. We suppose that LVar sl ∩ PVar = / 0 and LVar sl ∩ LVar mso = / 0. Let Var sl denote the set PVar ∪ LVar sl . A formula is said to be closed if it does not contain logical variables which are not under the scope of a quantifier. By writing ϕ(x) for an SL formula ϕ and a set of logical variables x, we mean that all free variables of ϕ are in x.

Basic Formulae. The syntax of basic formula is given below:

α ∈ Var sl \ {nil}; β ∈ Var sl ; x ∈ LVar sl π ::= α = β | α = β | π 1 ∧ π 2 σ ::= emp | α → (β 1 , . . . , β n) | σ 1 * σ 2 , for some n > 0 ϕ ::= π ∧ σ | ∃x . ϕ A formula of the form n i=1 α i = β i ∧ m j=1 α j = β j
defined by π in the syntax above is said to be pure. If Π is a pure formula, let Π * denote its closure, i.e., the equivalent pure formula obtained by the exhaustive application of the reflexivity, symmetry, and transitivity axioms of equality. A formula of the form k i=1 α i → (β i,1 , . . . , β i,n) defined by σ in the syntax above is said to be spatial. The atomic proposition emp denotes the empty spatial conjunction. For a spatial formula Σ, let |Σ| be the total number of variable occurrences in Σ, e.g.

|emp| = 0, |α → (β 1 , . . . , β n)| = n + 1, etc.
The semantics of a basic formula ϕ is given by the relation S, ι |= sl ϕ where S = s, h is a state, and ι : LVar sl f in Loc is an interpretation of logical variables from ϕ. For a closed formula ϕ, we denote by S |= sl ϕ the fact that S is a model of ϕ.

S, ι |= sl emp ⇐⇒ dom(h) = / 0 S, ι |= sl α → (β 1 , . . . , β n) ⇐⇒ h = { (s ⊕ ι)(α), λi . if i ≤ n then (s ⊕ ι)(β i) else ⊥ } S, ι |= sl ϕ 1 * ϕ 2 ⇐⇒ S 1 , ι |= sl ϕ 1 and S 2 , ι |= sl ϕ 2 where S 1 S 2 = S
The semantics of =, =, ∧, and ∃ is classical. Here, the notation S 1 S 2 = S means that S is the union of two states S 1 = s 1 , h 1 and S 2 = s 2 , h 2 whose stacks agree on the evaluation of common program variables (∀α

∈ PVar . s 1 (α) = ⊥ ∧ s 2 (α) = ⊥ ⇒ s 1 (α) = s 2 (α))
, and whose heaps have disjoint domains (dom

(h 1) ∩ dom(h 2) = / 0) i.e., S = s 1 ∪ s 2 , h 1 ⊕ h 2 .
Note that we adopt here the strict semantics, in which a points-to relation α → (β 1 , . . . , β n) holds in a state consisting of a single cell pointed to by α, with exactly n outgoing edges towards dangling locations pointed to by β 1 , . . . , β n , and the empty heap is specified by emp.

Every basic formula ϕ is equivalent to an existentially quantified pair Σ ∧ Π where Σ is a spatial formula and Π is a pure formula. Given a basic formula ϕ, one can define its spatial (Σ) and pure (Π) parts uniquely, up to equivalence. A variable α ∈ Var is said to be allocated in ϕ if and only if α → (. . .) occurs in Σ. It is easy to check that an allocated variable may not refer to a dangling location in any model of ϕ. A variable β is referenced if and only if α → (. . . , β, . . .) occurs in Σ for some variable α. For a basic formula ϕ ≡ Σ ∧ Π, the size of ϕ is defined as |ϕ| = |Σ|. Lemma 1. Let ϕ(x) be a basic SL formula, S = s, h be a state, and ι : LVar sl f in Loc be an interpretation, such that S, ι |= sl ϕ(x). Then tw(S) ≤ max(|ϕ|, ||PVar||).

Recursive Definitions. A system P of recursive definitions is of the form:

P 1 (x 1,1 , . . . , x 1,n 1) ::= | m 1 j=1 R 1, j (x 1,1 , . . . , x 1,n 1) . . . P k (x k,1 , . . . , x k,n k) ::= | m k j=1 R k, j (x k,1 , . . . , x k,n k)
where P 1 , . . . , P k are called predicates, x i,1 , . . . , x i,n i are called parameters, and the formulae R i, j are called the rules of P i . Concretely, a rule R i, j is of the form R i, j (x) ≡ ∃z . Σ * P i 1 (y 1) * . . . * P i m (y m) ∧ Π, where Σ is a spatial SL formula over variables x ∪ z, called the head of R i, j , P i 1 (y 1), . . . , P i m (y m) is an ordered sequence of predicate occurrences, called the tail of R i, j (we assume w.l.o.g. that x ∩ z = / 0, and that y k ⊆ x ∪ z, for all k = 1, . . . , m), Π is a pure formula over variables x ∪ z.

Without losing generality, we assume that all variables occurring in a rule of a recursive definition system are logical variables from LVar sl -pointer variables can be passed as parameters at the top level. We subsequently denote head(R i, j) ≡ Σ, tail(R i, j) ≡ P i k (y k) m k=1 and pure(R i, j) ≡ Π, for each rule R i, j . Rules with empty tail are called base cases. For each rule R i, j let ||R i, j || var = ||z|| + ||x|| be the number of variables, both existentially quantified and parameters, that occur in R i, j . We denote by ||P || var = max{||R i. j || var | 1 ≤ i ≤ k, 1 ≤ j ≤ m i } the maximum such number, among all rules in P . We also denote by

D(P) = {-1, 0, . . . , max{|tail(R i, j)| | 1 ≤ i ≤ k, 1 ≤ j ≤ m i } -1} the direction alphabet of P .
Example. The predicate tll describes a data structure called a tree with parent pointers and linked leaves (see Fig. 3(b)). The data structure is composed of a binary tree in which each internal node points to left and right children, and also to its parent node. In addition, the leaves of the tree are kept in a singly-linked list, according to the order in which they appear on the frontier (left to right).

tll(x, p, lea f l , lea f r) ::= x → (nil, nil, p, lea f r) ∧ x = lea f l (R 1) | ∃l, r, z. x → (l, r, p, nil) * tll(l, x, lea f l , z) * tll(r, x, z, lea f r) (R 2)
The base case rule (R 1) allocates leaf nodes. The internal nodes of the tree are allocated by the rule (R 2), where the ttl predicate occurs twice, first for the left subtree, and second for the right subtree. Definition 3. Given a system of recursive definitions P = P i ::= | m i j=1 R i, j n i=1 , an unfolding tree of P rooted at i is a finite tree t such that:

1. each node of t is labeled by a single rule of the system P , 2. the root of t is labeled with a rule of P i , 3. nodes labeled with base case rules have no successors, and 4. if a node u of t is labeled with a rule whose tail is P i 1 (y 1) * . . . * P i m (y m), then the children of u form the ordered sequence v 1 , . . . , v m where v j is labeled with one of the rules of P i j for all j = 1, . . . , m.

Remarks. Notice that the recursive predicate P(x) ::= ∃y . x → y * P(y) does not have finite unfolding trees. However, in general a system of recursive predicates may have infinitely many finite unfolding trees.

In the following, we denote by T i (P) the set of unfolding trees of P rooted at i. An unfolding tree t ∈ T i (P) corresponds to a basic formula of separation logic φ t , called the characteristic formula of t, and defined in what follows. For a set of tree positions P ⊆ N * , we denote LVar P = {x p | x ∈ LVar, p ∈ P}. For a tree position p ∈ N * and a rule R, we denote by R p the rule obtained by replacing every variable occurrence x in R by x p . For each position p ∈ dom(t), we define a formula φ p t , by induction on the structure of the subtree of t rooted at p:

if p is a leaf labeled with a base case rule R, then φ p t ≡ R p if p has successors p.1, . . . , p.m, and the label of p is the recursive rule R(x) ≡ ∃z . head(R) * m j=1 P i j (y j) ∧ pure(R), then:

φ p t (x p) ≡ ∃z p . head(R p) * m j=1 [∃x p.i i j . φ p.i t (x p.i i j) ∧ y p j = x p.i i j] ∧ pure(R p)
In the rest of the paper, we write φ t for φ ε t . Notice that φ t is defined using the set of logical variables LVar dom(t) , instead of LVar. However the definition of SL semantics from the previous carries over naturally to this case.

Example. (cont'd) Fig. 3(a) presents an unfolding tree for the tll predicate given in the previous example. The characteristic formula of each node in the tree can be obtained by composing the formulae labeling the children of the node with the formula labeling the node. The characteristic formula of the tree is the formula of its root.

∃l ε , r ε , z ε .x ε → (l ε , r ε , p ε , nil)∧ ∃x 0 , p 0 , lea f 0 l , lea f 0 r , x 1 , p 1 , lea f 1 l , lea f 1 r . l ε = x 0 ∧ x ε = p 0 ∧ lea f ε l = lea f 0 l ∧ z ε = lea f 0 r ∧ r ε = x 1 ∧ x ε = p 1 ∧ z ε = lea f 1 l ∧ lea f ε r = lea f 1 r
∃l 0 , r 0 , z 0 .x 0 → (l 0 , r 0 , p 0 , nil)∧ ∃x 00 , p 00 , lea f 00 l , lea f 00 r , x 01 , p 01 , lea f 01 l , lea f 01 r . , the semantics of a recursive predicate P i is defined as follows: S, ι |= sl P i (x i,1 , . . . , x i,n i) ⇐⇒ S, ι ε |= sl φ t (x ε i,1 , . . . , x ε i,n i), for some t ∈ T i (P) [START_REF] Berdine | Shape analysis for composite data structures[END_REF] where ι ε (x ε i, j)

l 0 = x 00 ∧ x 0 = p 00 ∧ lea f 0 l = lea f 00 l ∧ z 0 = lea f 00 r ∧ r 0 = x 01 ∧ x 0 = p 01 ∧ z 0 = lea f 01 l ∧ lea f 0 r = lea f 01 r x 00 → (nil, nil, p 00 , lea f 00 r) ∧ x 00 = lea f 00 l x 01 → (nil, nil, p 01 , lea f 01 r) ∧ x 01 = lea f 01 l ∃l 1 , r 1 , z 1 .x 1 → (l 1 , r 1 , p 1 , nil)∧ ∃x 10 , p 10 , lea f 10 l , lea f 10 r , x 11 , p 11 , lea f 11 l , lea f 11 r . l 1 = x 10 ∧ x 1 = p 10 ∧ lea f 1 l = lea f 10 l ∧ z 1 = lea f 10 r ∧ r 1 = x 11 ∧ x 1 = p 11 ∧ z 1 = lea f 11 l ∧ lea f 1 r = lea f 11 r x 10 → (nil, nil, p 10 , lea f 10 r) ∧ x 10 = lea f 10 l x 11 → (nil, nil, p 11 , lea f 11 r) ∧ x 11 = lea f 11 l * * * * * * z ε z 0 z 1 (a)
de f = ι(x i, j
) for all j = 1, . . . , n i .

Remark. Since the recursive predicate P(x) ::= ∃y . x → y * P(y) does not have finite unfolding trees, the formula ∃x.P(x) is unsatisfiable.

Top Level Formulae. We are now ready to introduce the fragment of Separation Logic with Recursive Definitions (SLRD). A formula in this fragment is an existentially quantified formula of the following form: ∃z . ϕ * P i 1 * . . . * P i n , where ϕ is a basic formula, and P i j are occurrences of recursive predicates, with free variables in PVar ∪ z. The semantics of an SLRD formula is defined in the obvious way, from the semantics of the basic fragment, and that of the recursive predicates.

Example. The following SLRD formulae, with PVar = {root, head}, describe both the set of binary trees with parent pointer and linked leaves, rooted at root, with the leaves linked into a list pointed to by head. The difference is that ϕ 1 describes also a tree containing only a single allocated location: In general, it is possible to reduce an entailment problem ϕ 1 |= ϕ 2 to satisfiability of the formula ϕ 1 ∧ ¬ϕ 2 . In our case, however, this is not possible directly, because SLRD is not closed under negation. The decision procedures for satisfiability and entailment is the subject of the rest of this paper.

ϕ 1 ≡ tll(root,

Decidability of Satisfiability and Entailment in SLRD

The decision procedure for the satisfiability and entailment in SLRD is based on two ingredients. First, we show that, under certain natural restrictions on the system of recursive predicates, which define a fragment of SLRD, called SLRD btw , all states that are models of SLRD btw formulae have bounded tree width (Def. 2). These restrictions are as follows:

1. Progress: each rule allocates exactly one variable 2. Connectivity: there is at least one selector edge between the variable allocated by a rule and the variable allocated by each of its children in the unfolding tree 3. Establishment: all existentially quantified variables in a recursive rule are eventually allocated

Second, we provide a translation of SLRD btw formulae into equivalent MSO formulae, and rely on the fact that satisfiability of MSO is decidable on classes of states with bounded tree width.

A Decidable Subset of SLRD

At this point we define the SLRD btw fragment formally, by defining the three restrictions above. The progress condition (1) asks that, for each rule R in the system of recursive definitions, we have head(R) ≡ α → (β 1 , . . . , β n), for some variables α, β 1 , . . . , β n ∈ Var sl . The intuition between this restriction is reflected by the following example.

Example. Consider the following system of recursive definitions:

ls(x, y) ::= x → y | ∃z,t . x → (z, nil) * t → (nil, y) * ls(z,t)
The predicate ls(x, y) defines the set of structures {x(

1 - →) n z → t(2 - →) n y | n ≥ 0}, which
clearly cannot be defined in MSO.

The connectivity condition (2) is defined below: Definition 4. A rule R of a system of recursive definitions, such that head(R) ≡ α → (β 1 , . . . , β n) and tail(R) ≡ P i 1 (y 1), . . . , P i m (y m) , m ≥ 1, is said to be connected if and only if the following hold:

for each j = 1, . . . , m, (y j) s = β , for some 1 ≤ s ≤ n i j , where n i j is the number of parameters of P i j β t = β occurs in pure(R) * , for some 1 ≤ t ≤ n the s-th parameter x i j ,s of P i j is allocated in the heads of all rules of P i j .

In this case we say that between rule R and any rule Q of P i j , there is a local edge, labeled by selector t. F (R, j, Q) ⊆ Sel denotes the set of all such selectors. If all rules of P are connected, we say that P is connected.

Example. The following recursive rule, from the previous tll predicate, is connected:

∃l, r, z . x → (l, r, p, nil) * tll(l, x, lea f l , z) * tll(r, x, z, lea f r) (R 2)
R 2 is connected because the variable l is referenced in R 2 and it is passed as the first parameter to tll in the first recursive call to tll. Moreover, the first parameter (x) is allocated by all rules of tll. R 2 is connected, for similar reasons. We have

F (R 2 , 1, R 2) = {1} and F (R 2 , 2, R 2) = {2}.
The establishment condition (3) is formally defined below. Definition 5. Let P(x 1 , . . . , x n) = | m j=1 R j (x 1 , . . . , x n) be a predicate in a recursive system of definitions. We say that a parameter x i , for some i = 1, . . . , n is allocated in P if and only if, for all j = 1, . . . , m:

either x i is allocated in head(R j), or -(i) tail(R j) = P i 1 (y 1), . . . , P i k (y k) , (ii) (y) s = x i occurs in pure(R j) * , for some = 1, . . . , k, and (iii) the s-th parameter of P i is allocated in P i A system of recursive definitions is said to be established if and only if every existentially quantified variable is allocated.

Example. Let llextra(x) ::= x → (nil, nil) | ∃n, e. x → (n, e) * llextra(n) be a recursive definition system, and let φ ::= llextra(head), where head ∈ PVar. The models of the formula φ are singly-linked lists, where in all locations of the heap, the first selector points to the next location in the list, and the second selector is dangling i.e., it can point to any location in the heap. These dangling selectors may form a squared grid of arbitrary size, which is a model of the formula φ. However, the set of squared grids does not have bounded tree width [START_REF] Seese | The structure of models of decidable monadic theories of graphs[END_REF]. The problem arises due to the existentially quantified variables e which are never allocated.

Given a system P of recursive definitions, one can effectively check whether it is established, by guessing, for each predicate P i (x i,1 , . . . , x i,n i) of P , the minimal set of parameters which are allocated in P i , and verify this guess inductively 3 . Then, once the minimal set of allocated parameters is determined for each predicate, one can check whether every existentially quantified variable is eventually allocated.

Lemma 2. Let P = {P i ::=| m i j=1 R i j (x i,1 , . . . , x i,n i)} k i=1 be a established system of recursive definitions, and S = s, h be a state, such that S, ι |= sl P i (x i,1 , . . . , x i,n i) for some interpretation ι : LVar sl f in Loc and some 1 ≤ i ≤ k. Then tw(S) ≤ ||P || var .

The result of the previous lemma extends to an arbitrary top-level formula: Theorem 2. Let P = {P i ::=| m i j=1 R i j (x i,1 , . . . , x i,n i)} k i=1 be a established system of recursive definitions, and S = s, h be a state, such that S |= sl ∃z . ϕ(y 0) * P i 1 (y 1) * . . . * P i n (y n), where ϕ is a basic SL formula, and P i j are predicates of P , and y i ⊆ z, for all i = 0, 1, . . . , n. Then tw(S) ≤ max(||z||, |ϕ|, ||PVar||, ||P || var).

From SLRD btw to MSO

This section describes the translation of a SL formula using recursively defined predicates into an MSO formula. We denote by Π(X 0 , . . . , X i , X) the fact that X 0 , . . . , X i is a partition of X, and by Σ(x, X) the fact that X is a singleton with x as the only element.

Converting Basic SL Formulae to MSO

For every SL logical variable x ∈ LVar sl we assume the existence of an MSO logical variable x ∈ LVar mso , which is used to replace x in the translation. For every program variable u ∈ PVar \ {nil} we assume the existence of a logical variable x u ∈ LVar mso . The special variable nil ∈ LVar sl is translated into x nil ∈ LVar mso (with the associated MSO constraint null(x nil)). In general, for any pointer or logical variable α ∈ Var sl , we denote by α, the logical MSO variable corresponding to it.

The translation of a pure SL formula α = β, α = β, π 1 ∧ π 2 is α = β, ¬(α = β), π 1 ∧ π 2 , respectively, where π(α 1 , . . . , α k) is the translation of π(α 1 , . . . , α k). Spatial SL formulae σ(α 1 , . . . , α k) are translated into MSO formulae σ(α 1 , . . . , α k , X), where X is used for the set of locations allocated in σ. The fact that X actually denotes the domain of the heap, is ensured by the following MSO constraint:

Heap(X) ≡ ∀x ||Sel|| i=1 (∃y . edge i (x, y)) ↔ X(x)
The translation of basic spatial formulae is defined by induction on their structure:

emp(X) ≡ ∀x . ¬X(x) (α → (β 1 , . . . , β n))(X) ≡ Σ(α, X) ∧ n i=1 edge i (α, β i) ∧ ||Sel|| i=n+1 ∀x . ¬edge i (α, x) (σ 1 * σ 2)(X) ≡ ∃Y ∃Z . σ 1 (Y) ∧ σ 2 (Z) ∧ Π(Y, Z, X)
The translation of a closed basic SL formula ϕ in MSO is defined as ∃X . ϕ(X), where ϕ(X) is defined as (π ∧ σ)(X) ≡ π∧σ(X), and (∃x . ϕ 1)(X) ≡ ∃x . ϕ 1 (X). The following lemma proves that the MSO translation of a basic SL formula defines the same set of models as the original SL formula.

Lemma 3. For any state S = s, h , any interpretation ι : LVar sl f in Loc, and any basic SL formula ϕ, we have S, ι |= sl ϕ if and only if S, ι, ν[X ← dom(h)] |= mso ϕ(X) ∧ Heap(X), where ι : LVar mso f in Loc is an interpretation of first order variables, such that ι(x u) = s(u), for all u ∈ PVar, and ι(x) = ι(x), for all x ∈ LVar sl , and ν : LVar mso f in 2 Loc is any interpretation of second-order variables.

States and Backbones

The rest of this section is concerned with the MSO definition of states that are models of recursive SL formulae, i.e. formulae involving recursively defined predicates. The main idea behind this encoding is that any part of a state which is the model of a recursive predicate can be decomposed into a tree-like structure, called the backbone, and a set of edges between the nodes in this tree. Intuitively, the backbone is a spanning tree that uses only local edges. For instance, in the state depicted in Fig. 3(b), the local edges are drawn in solid lines.

Let P k (x 1 , . . . , x n) be a recursively defined predicate of a system P , and S, ι |= sl P k (x 1 , . . . , x n), for some state S = s, h and some interpretation ι : LVar sl → Loc. Then S, ι |= sl φ t , where t ∈ T k (P) is an unfolding tree, φ t is its characteristic formula, and µ :

dom(t) → dom(h)
is the bijective tree that describes the allocation of nodes in the heap by rules labeling the unfolding tree. Recall that the direction alphabet of the system P is D(P) = {-1, 0, . . . , N -1}, where N is the maximum number of predicate occurrences within some rule of P , and denote D + (P) = D(P) \ {-1}. For each rule R i j in P and each direction d ∈ D(P), we introduce a second order variable X d i j to denote the set of locations such that (i) t(µ -1 ()) ≡ R i j and (ii)

µ -1 () is a d-th child, if d ≥ 0, or µ -1 () is the root of t, if d = -1. Let - →
X be the sequence of X k i j variables, enumerated in some order. We use the following shorthands:

X i j (x) ≡ k∈D(P) X k i j (x) X i (x) ≡ 1≤ j≤m i X i j (x) X k i (x) ≡ 1≤ j≤m i X k i j (x)
to denote, respectively, locations that are allocated by a rule R i j (X i j), by a recursive predicate P i (X i), or by a predicate P i , who are mapped to a k-th child (or to the root, if k = -1) in the unfolding tree of P , rooted at i (X k i). In order to characterize the backbone of a state, one must first define the local edges:

local edge d i, j,p,q (x, y) ≡ s∈F (R i, j ,d,R pq) edge s (x, y)
for all d ∈ D + (P). Here F (R i j , d, R pq) is the set of forward local selectors for direction d, which was defined previously -notice that the set of local edges depends on the source and destination rules R i j and R pq , that label the corresponding nodes in the unfolding tree, respectively. The following predicate ensures that these labels are used correctly, and define the successor functions in the unfolding tree:

succ d (x, y, - → X) ≡ X i j (x) ∧ X k pq (y) ∧ local edge d i, j,p,q (x, y)
for all d ∈ D + (P). The definition of the backbone of a recursive predicate P i in MSO follows tightly the definition of the unfolding tree of P rooted at i (Def. 3):

backbone i (r, - → X , T) ≡ tree(r, - → X , T) ∧ X -1 i (r) ∧ succ labels(- → X)
where tree(r, -→ X , T) defines a tree4 with domain T , rooted at r, with successor functions defined by succ 0 , . . . , succ N-1 , and succ labels ensures that the labeling of each tree position (with rules of P) is consistent with the definition of P :

succ labels(- → X) ≡ X i j (x) → r i j -1 d=0 ∃y . X d k d (y) ∧ succ d (x, y, - → X) 1 ≤ i ≤ M 1 ≤ j ≤ m i ∧ ∀y . ||Sel|| p=s i j +1 ¬edge p (x, y)
where we suppose that, for each rule R i j of P , we have head(R i j) ≡ α → (β 1 , . . . , β s i j)

and tail(R i j) = P k 1 , . . . , P k r i j , for some r i j ≥ 0, and some indexing k 1 , . . . , k r i j of predicate occurrences within R i j . The last conjunct ensures that a location allocated in R i j does not have more outgoing edges than specified by head(R i j). This condition is needed, since, unlike SL, the semantics of MSO does not impose strictness conditions on the number of outgoing edges.

Inner Edges

An edge between two locations is said to be inner if both locations are allocated in the heap. Let µ be the bijective tree defined in Sec. m-1 = γ p m are all logical consequences of φ t , for some tree positions p 2 , . . . , p m-1 ∈ dom(t) and some variables δ 2 , . . . , δ m-1 ∈ LVar sl . Notice that the above conditions hold only for inner edges. The (corner) case of edges leading to dangling locations is dealt with in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF].

Example. The existence of the edge from tree position 00 to 01 in Fig. 3(b), is a consequence of the following: (1) x 00 → (nil, nil, p 00 , lea f 00 r), (2) x 01 → (nil, nil, p 01 , lea f 01 r), and (3) lea f 00 r = z 0 = lea f 01 l = x 01 . The reason for other dashed edges is similar. The main idea here is to encode in MSO the existence of such paths, in the unfolding tree, between the source and the destination of an edge, and use this encoding to define the edges. To this end, we use a special class of tree automata, called tree-walking automata (TWA) to recognize paths corresponding to sequences of equalities occurring within characteristic formulae of unfolding trees.

Tree Walking Automata Given a set of tree directions D = {-1, 0, . . . , N} for some N ≥ 0, a tree-walking automaton 5 , is a tuple A = (Σ, Q, q i , q f , ∆) where Σ is a set of tree node labels, Q is a set of states, q i , q f ∈ Q are the initial and final states, and ∪ {ε}) is the (non-deterministic) transition function. A configuration of A is a pair p, q , where p ∈ D * is a tree position, and q ∈ Q is a state. A run of A over a Σ-labeled tree t is a sequence of configurations p 1 , q 1 , . . . , p n , q n , with p 1 , . . . , p n ∈ dom(t), such that for all i = 1, . . . , n -1, we have p i+1 = p i .k, where either:

∆ : Q × (Σ ∪ {root}) × (Σ ∪ {?}) → 2 Q × (D
1. p i = ε and (q i+1 , k) ∈ ∆(q i ,t(p i),t(p i .(-1))), for k ∈ D ∪ {ε} 2. p i = ε and (q i+1 , k) ∈ ∆(q i , σ, ?), for σ ∈ {t(p i) ∪ root} and k ∈ D ∪ {ε}
The run is said to be accepting if q 1 = q i , p 1 = ε and q n = q f . Routing Automata For a system of recursive definitions P = P i (x i,1 , . . . , x i,n i) ::=

| m i j=1 R i j (x i,1 , . . . , x i,n i) k i=1
, we define the TWA A P = (Σ P , Q P , q i , q f , ∆ P), where

Σ P = {R k i j | 1 ≤ i ≤ k, 1 ≤ j ≤ m i , k ∈ D(P)}, Q P = {q var x | x ∈ LVar sl } ∪ {q sel s | s ∈ Sel} ∪ {q i , q f }.
The transition function ∆ P is defined as follows:

1. (q i , k), (q sel s , ε) ∈ ∆(q i , σ, τ) for all k ∈ D + (P), all s ∈ Sel and all σ ∈ Σ P ∪ {root}, τ ∈ Σ P ∪ {?} i.e., the automaton first moves downwards chosing random directions, while in q i , then changes to q sel s for some non-deterministically chosen selector s.

(q var

β s , ε) ∈ ∆(q sel s , R k i j , τ) and (q f , ε) ∈ ∆(q var α , R k i j , τ) for all k ∈ D(P) and τ ∈ Σ P ∪ {?} if and only if head(R i j) ≡ α → (β 1 , . . . , β s , . . . , β m), for some m > 0 i.e., when in q sel s , the automaton starts tracking the destination β s of the selector s through the tree. The automaton enters the final state when the tracked variable α is allocated.

3. for all k ∈ D + (P), all ∈ D(P) and all rules R q of P (x ,1 , . . . , x ,n), we have (q var x , j , k) ∈ ∆(q var y j , R l i j , τ), for all τ ∈ Σ P ∪ {?}, and (q var y j , -1) ∈ ∆(q var x , j , R k q , R l i j) if and only if tail(R i j) k ≡ P (y 1 , . . . , y n) i.e., the automaton moves down along the kth direction tracking x , j instead of y j , when the predicate P (y) occurs on the k-th position in R i j . Symmetrically, the automaton can also move up tracking y j instead of x , j , in the same conditions. 4. (q var β , ε) ∈ ∆(q var α , R k i j , τ) for all k ∈ D(P) and all τ ∈ Σ P ∪ {?} if and only if α = β occurs in pure(R i j) i.e., the automaton switches from tracking α to tracking β when the equality between the two variables occurs in R i j , while keeping the same position in the tree.

The following lemma formalizes the correctness of the TWA construction:

Lemma 4. Given a system of recursive definitions P , and an unfolding tree t ∈ T i (P) of P , rooted at i, for any x, y ∈ LVar sl and p, r ∈ dom(t), we have |= sl φ t → x p = y r if and only if A P has a run from p, q var x to r, q var y over t, where φ t is the characteristic formula of t.

To the routing automaton A P corresponds the MSO formula Φ

A P (r, - → X , T, - → Y)
, where r maps to the root of the unfolding tree, -→ X is the sequence of second order variables X k i j defined previously, T maps to the domain of the tree, and -→ Y is a sequence of secondorder variables X q , one for each state q ∈ Q P . We denote by Y sel s and Y f the variables from -→ Y that correspond to the states q sel S and q f , for all s ∈ Sel, respectively. For space reasons, the definition of Φ A P is given in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF]. With this notation, we define:

inner edges(r, - → X , T) ≡ ∀x∀y s∈Sel ∃ - → Y . Φ A P (r, - → X , T, - → Y) ∧Y sel s (x) ∧Y f (y) → edge s (x, y)

Double Allocation

In order to translate the definition of a recursively defined SL predicate P(x 1 , . . . , x n) into an MSO formula P, that captures the models of P, we need to introduce a sanity condition, imposing that recursive predicates which establish equalities between variables allocated at different positions in the unfolding tree, are unsatisfiable, due to the semantics of the separating conjunction of SL, which implicitly conjoins all local formulae of an unfolding tree. A double allocation occurs in the unfolding tree t if and only if there exist two distinct positions p, q ∈ dom(t) and:

1. a basic points-to formula α → (. . .) occurring in t(p) 2. a basic points-to formula β → (. . .) occurring in t(q) 3. a path p = p 1 , . . . , p m = q in t, such that the equalities α p = γ m-1 = β q are all logical consequences of φ t , for some tree positions p 2 , . . . , p m-1 ∈ dom(t) and some variables γ 2 , . . . , γ m-1 ∈ LVar sl

The cases of double allocation can be recognized using a routing automaton B P = (Σ P , Q P , q i , q f , ∆ P), whose states Q P = {q var x | x ∈ LVar sl } ∪ {q 0 , q i , q f } and transitions ∆ P differ from A P only in the following rules:

-(q 0 , ε) ∈ ∆(q i , σ, τ) for all σ ∈ Σ P ∪ {root} and all τ ∈ Σ P ∪ {?}, i.e. after nondeterministically chosing a position in the tree, the automaton enters a designated state q 0 , which occurs only once in each run. -(q var α , ε) ∈ ∆(q 0 , R k i j , τ) for all k ∈ D(P) and all τ ∈ Σ P ∪ {?} if and only if head(R i j) = α → (. . .), while in the designated state q 0 , the automaton starts tracking the variable α, which is allocated at that position.

This routing automaton has a run over t, which labels one position by q 0 and a distinct one by q f if and only if two positions in t allocate the same location. Notice that B P has always a trivial run that starts and ends in the same position -since each position p ∈ dom(t) allocates a variable α, and q i , ε , . . . , q 0 , p , q var α , p , q f , p is a valid run of B P . The predicate system has no double allocation if and only if these are the only possible runs of B P .

The existence of a run of B P is captured by an MSO formula Φ B P (r, -→ X , T, -→ Y), where r maps to the root of the unfolding tree, -→ X is the sequence of second order variables X k i j defined previously, T maps to the domain of the tree, and -→ Y is the sequence of second-order variables Y q , taken in some order, each of which maps to the set of tree positions visited by the automaton while in state q ∈ Q P -we denote by Y 0 and Y f the variables from -→ Y that correspond to the states q 0 and q f , respectively. Finally, we define the constraint: no double alloc(r,

- → X , T) ≡ ∀ - → Y . Φ B P (r, - → X , T, - → Y) → Y 0 = Y f

Handling Parameters

The last issue to be dealt with is the role of the actual parameters passed to a recursively defined predicate P i (x i,1 , . . . , x i,k) of P , in a top-level formula. Then, for each parameter x i, j of P i and each unfolding tree t ∈ T i (P), there exists a path ε = p 1 , . . . , p m ∈ dom(t)

and variables α 1 , . . . , α m ∈ LVar sl such that x i, j ≡ α 1 and α p = α

p +1
+1 is a consequence of φ t , for all = 1, . . . , m -1. Subsequently, there are three (not necessarily disjoint) possibilities:

1. head(t(p m)) ≡ α m → (. . .), i.e. α m is allocated 2. head(t(p m)) ≡ β → (γ 1 , . . . , γ p , . . . , γ), and α m ≡ γ p , i.e. α m is referenced 3. α m ≡ x i,q and p m = ε, for some 1 ≤ q ≤ k, i.e. α m is another parameter x i,q Again, we use slightly modified routing automata (one for each of the case above) C i, j P ,c = (Σ P , Q P , q i , q f , ∆ i, j c) for the cases c = 1, 2, 3, respectively. Here Q P = {q var x | x ∈ LVar sl } ∪ {q sel s | s ∈ Sel} ∪ {q i,a | 1 ≤ a ≤ k} ∪ {q i , q f } and ∆ i, j c , c = 1, 2, 3 differ from the transitions of A P in the following:

-(q i, j , ε) ∈ ∆ i, j

x (q i , root, ?), i.e. the automaton marks the root of the tree with a designated state q i, j , that occurs only once on each run -(q var x i, j , ε) ∈ ∆ i, j

x (q i, j , R -1 ik , ?), for each rule R ik of P i , i.e. the automaton starts tracking the parameter variable x i, j beginning with the root of the tree -(q f , ε) ∈ ∆ i, j 1 (q var α , R k i j , τ), for all k ∈ D(P), τ ∈ Σ P ∪ {?} iff head(R i j) ≡ α → (. . .)

is the final rule for C i, j P ,1

-(q sel s , ε) ∈ ∆ i, j 2 (q var γ , R k i j , τ), for all k ∈ D(P) and τ ∈ Σ P ∪ {?} iff head(R i j) ≡ α → (β 1 , . . . , β s , . . . , β n) and γ ≡ β s i.e., q sel s is reached in the second case, when the tracked variable is referenced. After that, C i, j P ,2 moves to the final state i.e., (q f , ε) ∈ ∆ i, j 2 (q sel s , σ, τ) for all s ∈ Sel, all σ ∈ Σ P ∪ {root} and τ ∈ Σ P ∪ {?} -(q i,a , ε) ∈ ∆ i, j 3 (q var x i,a , root, ?) and (q f , ε) ∈ ∆ i, j 3 (q i,a , root, ?), for each 1 ≤ a ≤ k and a = j i.e., are the final moves for C where r maps to the root of the unfolding tree, respectively, -→ X is the sequence of second order variables X k i j defined previously, T maps to the domain of the tree, and -→ Y is the sequence of second order variables corresponding to states of Q P -we denote by Y f ,Y i,a ,Y sel s ∈ -→ Y the variables corresponding to the states q f , q i,a , and q sel s , respectively.

The parameter x i, j of P i is assigned by the following MSO constraints: ∧ Y i, j 0 (x i, j) ∧ 1≤a≤k ∀y . Y i,a (y) → x i, j = x i,a where x i, j is the first-order MSO variable corresponding to the SL parameter x i, j . Finally, the constraint param i, j is conjunction of the param c i, j , c = 1, 2, 3 formulae.

param 1 i, j (

Fig. 1 .

 1 Fig. 1. Examples of recursive data structures definable in SLRD.

Fig. 3 .

 3 Fig. 3. (a) An unfolding tree for tll predicate and (b) a model of the corresponding formula

4 . 2 .

 42 The existence of an edge k -→ in S, between two arbitrary locations , ∈ dom(h), is the consequence of:1. a basic points-to formula α → (β 1 , . . . , β k , . . . , β n) that occurs in µ() 2. a basic points-to formula γ → (. . .) that occurs in µ() 3. a path µ() = p 1 , p 2 , . . . , p m-1 , p m = µ() in t, such that the equalities β

p 2 2

 2 = . . . = γ p m-1

 The outcome of this construction are MSO formulae Φ C i, j

 S, ι, ν |= mso ϕ, where S = s, h is a state, ι : {x, y, z, . . .} f in Loc is an interpretation of the first order variables, and ν : {X,Y, Z, . . .} f in 2 Loc is an interpretation of the second order variables. If S, ι, ν |= mso ϕ for all interpretations ι : {x, y, z, . . .} f in Loc and ν : {X,Y, Z, . . .} f in 2 Loc , then we say that S is a model of ϕ, denoted S |= mso ϕ. We use the standard MSO semantics

 nil, head, nil) ϕ 2 ≡ ∃l, r, x.root → (l, r, nil, nil) * tll(l, root, head, x) * tll(r, root, x, nil)We are interested in solving two problems on SLRD formulae, namely satisfiability and entailment. The satisfiability problem asks, given a closed SLRD formula ϕ, whether there exists a state S such that S |= sl ϕ. The entailment problem asks, given two closed SLRD formulae ϕ 1 and ϕ 2 , whether for all states S, S |= sl ϕ 1 implies S |= sl ϕ 2 . This is denoted also as ϕ 1 |= sl ϕ 2 . For instance, in the previous example we have ϕ 2 |= sl ϕ 1 , but not ϕ 1 |= sl ϕ 2 .

For efficiency, a least fixpoint iteration can be used instead of a non-deterministic guess.

≤ i, p ≤ M 1 ≤ j ≤ m i 1 ≤ q ≤ m p

For space reasons this definition can be found in[START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF].

This notion of tree-walking automaton is a slightly modified but equivalent to the one in[START_REF] Bojanczyk | Tree-walking automata[END_REF]. We give the translation of TWA into the original definition in[START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF].

Acknowledgement. This work was supported by the Czech Science Foundation (project P103/10/0306) and French National Research Agency (project VERIDYC ANR-09-SEGI-016). We also acknowledge Tomáš Vojnar, Lukáš Holík and the anonymous reviewers for their valuable comments.

Translating Top Level SLRD btw Formulae to MSO

We define the MSO formula corresponding to a predicate P i (x i,1 , . . . , x i,n i), of a system of recursive definitions P = {P 1 , . . . , P n }:

The following lemma is needed to establish the correctness of our construction.

Lemma 5. For any state S = s, h , any interpretation ι : LVar sl → f in Loc, and any recursively defined predicate P i (x 1 , . . . , x n), we have S, ι

, where ι : LVar mso f in Loc is an interpretation of first order variables, such that ι(x u) = s(u), for all u ∈ PVar, and ι(x) = ι(x), for all x ∈ LVar sl , and ν : LVar mso f in 2 Loc is any interpretation of secondorder variables.

Recall that a top level SLRD btw formula is of the form: ϕ ≡ ∃z . φ(y 0) * P i 1 (y 1) * . . . P i k (y k), where 1 ≤ i 1 , . . . , i k ≤ n, and y j ⊆ z, for all j = 0, 1, . . . , k. We define the MSO formula:

Theorem 3. For any state S and any closed SLRD btw formula ϕ we have that S |= sl ϕ if and only if S |= mso ∃X . ϕ(X) ∧ Heap(X).

Theorem 2 and the above theorem prove decidability of satisfiability and entailment problems for SLRD btw , by reduction to MSO over states of bounded tree width.

Conclusions and Future Work

We defined a fragment of Separation Logic with Recursive Definitions, capable of describing general unbounded mutable data structures, such as trees with parent pointers and linked leaves. The logic is shown to be decidable for satisfiability and entailment, by reduction to MSO over graphs of bounded tree width. We conjecture that the complexity of the decision problems for this logic is elementary, and plan to compute tight upper bounds, in the near future.