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Abstract

This paper proves the NP-completeness of the reachability problem for the
class of flat counter machines with difference bounds and, more generally, octag-
onal relations, labeling the transitions on the loops. The proof is based on the fact
that the sequence of powers {Rn}∞n=0 of such relations can be encoded as a peri-
odic sequence of matrices, and that both the prefix and the period of this sequence
are simply exponential in the size of the binary representation of a relation R. This
result allows to characterize the complexity of the reachability problem for one of
the most studied class of counter machines [6, 10], and has a potential impact on
other problems in program verification.

1 Introduction
Counter machines are powerful abstractions of programs, commonly used in software
verification. Due to their expressive power, counter machines can simulate Turing ma-
chines [29], thus their decision problems (reachability, termination) are undecidable.
This early negative result motivated researchers to define classes of systems with de-
cidable reachability problems, such as: vector addition systems [27, 22, 23], reversal-
bounded counter machines [20], Datalog programs with gap-order constraints [32],
and flat counter machines [4, 10, 6]. Despite the fact that the reachability problem is,
in principle, decidable for these classes, few of these results are actually supported by
tools, and used for real-life verification purposes. The main reason is that the complex-
ity of the reachability problems for these systems is, in general, prohibitive. As a prac-
tical consequence, most software verifiers rely on incomplete algorithms, which, due
to the loss of precision, may raise large numbers of false alarms. Improving the preci-
sion of these tools requires mixed techniques such as combinations of model checking,
static analysis and acceleration, that rely on identifying subproblems for which the set
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of reachable states, or the transitive closure of the transition relation, can be computed
precisely [18, 16], by cost-effective algorithms.

In this paper, we study the complexity of the reachability problems for a class of
flat counter machines, whose control structure forbids nested loops and the transitions
occurring inside loops are labeled with octagons, i.e. conjunctions of inequalities of
the form ±x ± y ≤ c where x, y denote the current or next values of the counters and
c is an integer constant. Our main result states that the reachability problem for this
class of counter machines is NP-complete. This result is a direct generalization of
the NP-completness of the reachability problem for the subclass of difference bounds
constraints, which are finite conjunctions of inequalities of the form x − y ≤ c, with c
being an integer constant.

Due to the particular syntax of the octagonal constraints, in which the variables
are always multiplied by coefficients from the set {−1,0,1}, such relations can be rep-
resented by square matrices of a fixed dimension, called difference bounds matrices
(DBM). The main idea of the NP-completness proof is that sequence of DBMs corre-
sponding to the sequence of relations {Rn}∞n=0 is periodic, in the sense that the matrices
situated at equal distance in the sequence, beyond a certain prefix, differ by equal quan-
tities. If the prefix and the period of this sequence are known, one can build a quantifier-
free formula of Presburger arithmetic that characterizes this sequence, and reduce the
reachability problem to an instance of the satisfiability problem in the quantifier-free
fragment of Presburger arithmetic, known to be NP-complete [35].

The main technical difficulty is, given an octagonal constraint that defines a rela-
tion R, building such a Presburger formula in polynomial time. To this end, we show
that the prefix b and the period c of the sequence of DBMs representing {Rn}∞n=0 are
simply exponential in the size of the octagon defining R. Using this argument, one can
(i) guess the prefix b and the period c of the relation, (ii) compute the powers Rb and
Rc, using exponentiation by squaring, (iii) verify the validity of the guess for b and c,
and (iv) build the needed Presburger constraint in polynomial time.

Proving the simply exponential bounds for the prefix and the period of an octagonal
relation uses insights from the theory of weighted graphs and tropical algebra [15, 33].
We use the classical representation of DBMs by weighted constraint graphs, such that
the n-th power of a difference bounds relation R is defined by the minimal weight
paths of a constraint graph of width n, called an unfolding graph [10]. Then we define
a weighted automaton, called zigzag automaton, that recognizes the set of constraint
paths in the unfolding graph. The minimal weight paths, needed to define the n-times
composition of R with itself, are given by the n-th power of the incidence matrix of
the transition table of the zigzag automaton, where matrix multiplication is defined in
the tropical semiring ⟨Z±∞,min,+,∞,0⟩. Since the sequence of tropical powers of
any given matrix is periodic, we obtain that the sequence of DBMs representing the
relations {Rn}∞n=0 is periodic as well.

We first prove the existence of simply exponential bounds on the prefix and the
period of the sequence of DBMs that represent the sequence of relations {Rn}∞n=0,
where R is a relation defined by a difference bounds constraint. These bounds are then
generalized to octagonal relations. The most technical part is proving the bound on the
period of such sequences, which requires an insight on the particular structure of loops
in the zigzag automaton describing the powers (w.r.t. composition) of a difference
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bounds relations. The crucial point is restricting the zigzag automaton to recognize
a subset of constraint paths, with a bounded number of direction changes, whose set
of weights is sufficient to define the relation Rn. This idea originates in the work of
Comon and Jurski [10] on defining transitive closures of difference bounds relations
by formulae of Presbuger arithmetic, in order to prove decidability of the reachability
problem for flat counter machines with difference bounds relations.

1.1 Related Work
The study of the computational complexity of the reachability problem (and other re-
lated problems, such as coverability and boundedness) for various classes of counter
machines has recently received much attention.

An important class of counter machines with decidable reachability problems are
Vector Addition Systems with States (VASS). This problem has been shown to be EX-
PSPACE-hard by Lipton [26] and currently no upper bound has been found. On the
other hand, the problems of coverability and boundedness for VASS are shown to be
EXPSPACE-complete [31]. Because the transition relation of VASS can be defined as a
finite disjunction of difference bounds constraints, these counter machines are, in prin-
ciple, not flat. However, when restricting the number of counters to two, Hopcroft and
Pansiot [19] have shown that the set of reachable configurations of a VASS is semi-
linear, thus definable in Presburger arithmetic. Along this line, Leroux and Sutre [24]
showed that it is possible to build a flat counter machine, with the same transitions as
the original 2-counter VASS and same reachable set of configurations. A close anal-
ysis of their construction revealed that reachability of 2-counter VASS (mostly known
as 2-dimensional VASS) is a PSPACE-complete problem [3].

In their work, Ibarra and Gurari [17] study the reachability problem for counter ma-
chines with increment, decrement and zero test, in the reversal-bounded case, where
the counters are allowed to switch between non-decreasing and non-increasing modes
a number of times, bounded by a constant. It is found that, when the number of coun-
ters and reversals are fixed constants (i.e. not part of the representation of the counter
machines) the emptiness problem is decidable in logarithmic space, and hence, in
polynomial time. Moreover, if the machines under consideration are all determinis-
tic, the emptiness problem is NLOGSPACE-complete. On the other hand, if the number
of counters and reversals are part of the input, the emptiness problem is in PSPACE.
Our model of computation is incomparable, since flat counter machines with non-
deterministic counter updates are not reversal-bounded, in general. For instance, if
the future value of a counter x is chosen to be x − 1 ≤ x′ ≤ x + 1 within a loop, the
counter can switch any number of times between increasing and decreasing modes.

The class of gap-order constraints, initially introduced by Revesz [32], consists of
finite conjunctions of difference bounds constraints x − y ≤ c, where c is a positive
constant. Counter machines with gap-order constraints have been studied by Bozzelli
and Pinchinat [9] who coined their reachability problem to PSPACE-complete. Our
result is incomparable to [9], as we show NP-completeness for flat counter machines
with strictly more general1 octagonal relations on loops.

1The generalization of gap-order to difference bound constraints suffices to show undecidability of non-
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The results which are probably closest to ours are the ones in [12, 11], where flat
counter machines with linear affine guards and vector addition updates are considered.
In [12] it is shown that model-checking for Linear Temporal Logic is NP-complete for
these systems, matching thus our complexity for reachability with difference bounds
constraints, while model-checking first-order logic and linear µ-calculus is PSPACE-
complete [11], matching the complexity of CTL* model checking for gap-order con-
straints [9]. These results are again incomparable with ours, since (i) the linear affine
guards are more general, while (ii) the vector addition updates are more restrictive (e.g.
the direct transfer of values x′i = xj for i ≠ j is not allowed).

The result of this paper is a refinement of earlier decidability proofs for the reach-
ability problem concerning flat counter machines with loops labeled by difference
bounds [10, 7] constraints. The first such result, due to Comon and Jurski [10] de-
fines the sequence of n-times compositions {Rn}∞n=0 of a difference bounds relation R
by a formula in Presburger arithmetic. The essence of their proof is the definition, by a
formula of Presburger arithmetic, of a subset of paths, in the constraint graph represent-
ingRn, that encompasses the set of paths of minimal weight, relevant for the definition
of the relation Rn. They show that only certain paths, that roughly go back and forth
from one extremity of the graph to the other, without changing direction in between,
are important in the definition of the closed form. The idea of considering only such
simple paths is instrumental in our work, for establishing a simply exponential upper
bound on the period of these relations.

By exploring further the structure of these simple paths, Konečný [21] showed that
the sequence of the closed form of the power sequence of a difference bounds (re-
spectively, octagonal) relation can be defined by a quantifier-free Presburger formula
which, moreover, can be built in polynomial time by a deterministic algorithm. As a re-
sult, the reachability problem for flat counter machines can be proved to be in NPTIME
directly, by polynomial reduction to the satisfiability of quantifier-free Presburger arith-
metic. Unlike the proof given in this paper, Konečný’s proof [21] does not use periodic
sequences, relying on an enumeration of polynomially many minimal weight paths.
Besides providing an alternative proof of NP-completness to the reachability problem,
the results in this paper define closed forms using only finite disjunctions of difference
bounds constraints (respectively, octagons) whose coefficients are parameterized by n.
This characterization of the closed forms is of particular interest for other problems,
such as, e.g. the complexity of the termination problem for periodic classes of relations
[8], or extensions of the model of flat counter machines with recursive calls [14].

2 Preliminaries
We denote by Z, N and N+ the sets of integers, positive (including zero) and strictly
positive integers, respectively. We define Z∞ = Z ∪ {∞} and Z±∞ = Z∞ ∪ {−∞}. We
write [n] for the interval {0, . . . , n − 1}, abs(n) for the absolute value of the integer
n ∈ Z, and gcd(n1, . . . , nk), lcm(n1, . . . , nk) for the greatest common divisor and least
common multiple of the natural numbers n1, . . . , nk ∈ N, respectively. The cardinality
of a finite set S is denoted by ∥S∥.

flat counter machines, hence the restriction to flat control structures is crucial.
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A weighted graph is a tuple G = ⟨V,E,w⟩, where V is a set of vertices, E ⊆ V ×V
is a set of edges, and w ∶ E → Z is a weight function. If G is clear from the context,
we write u

αÐ→ v for (u, v) ∈ E and w(u, v) = α. A path in G is a sequence of the form
π ∶ v0

w1Ð→ v1 ⋯ vk−1
wkÐ→ vk. We denote by src(π) = v0, dst(π) = vk its source and

destination vertices, by ∣π∣ = k and by w(π) = ∑ki=1wi its weight. The path π is said to
be (i) elementary if vi = vj only if i = 0 and j = k, (ii) a cycle if src(π) = dst(π), and
(iii) minimal if, for any path π′ such that src(π′) = src(π), dst(π′) = dst(π), we have
w(π) ≤ w(π′). We denote by µ(G) = max({abs(α) ∣ u αÐ→ v} ∪ {1}) the maximum
between the absolute values of the weights of G and 1.

The set of n×n square matrices with coefficients in Z∞ (Z±∞) is denoted as Zn×n∞
(Zn×n±∞ ). Each matrix M ∈ Zn×n∞ is the incidence matrix of a weighted graph GM =
⟨VM ,EM ,wM ⟩, where VM = {1, . . . , n},EM = {(i, j) ∣Mij <∞} andw(i, j) =Mij ,
for all i, j ∈ {1, . . . , n}. In this case, we also define µ(M) = µ(GM).

A term t over a set of variables x = {x1, . . . , xN} is a linear combination a0+a1x1+
. . . aNxN , for some integer constants a0, a1, . . . , aN ∈ Z. An atomic proposition is a
predicate of the form t ≤ 0 or t ≡c 0, where t is a term, c ∈ N+ is a constant, and
≡c denotes equality modulo c. The boolean constants false and true are denoted by �
and ⊺, respectively. Quantifier-free Presburger Arithmetic (QFPA) is the set of boolean
combinations of atomic propositions of the above form. For a QFPA formula φ, let
Atom(φ) denote the set of atomic propositions in φ, and φ[t/x] denote the formula
obtained by substituting the variable x with the term t in φ. We assume that all integers
are encoded in binary and denote by ∣φ∣ the size of the binary encoding of a formula φ.

Let x denote a nonempty set of integer variables. A valuation of x is a function
ν ∶ xÐ→ Z. The set of valuations is denoted by Zx. If ν ∈ Zx is a valuation, we denote
by ν ⊧ ϕ the fact that the formula obtained from ϕ by replacing each occurrence of
x ∈ x with the integer ν(x) is valid under the standard interpretation of the first-order
arithmetic. A formula ϕ is said to be consistent if and only if there exists a valuation
ν, such that ν ⊧ ϕ. The consistency problem (also known as the satisfiability problem)
for QFPA is NP-complete [35, Lemma 5].

Let x′ denote the set {x′ ∣ x ∈ x} of primed variables. A formula φ(x,x′) is
evaluated with respect to two valuations ν, ν′ ∈ Zx, by replacing each occurrence of
x ∈ x with ν(x) and each occurrence of x′ ∈ x′ with ν′(x) in φ. We write (ν, ν′) ⊧ φ
when the formula obtained from these replacements is valid. A formula φ(x,x′) is
said to define a relation R ⊆ Zx × Zx whenever for all ν, ν′ ∈ Zx, we have (ν, ν′) ∈ R
iff (ν, ν′) ⊧ φ. The empty relation is denoted by ∅. The composition of two relations
R1,R2 ⊆ Zx × Zx defined by formulae ϕ1(x,x′) and ϕ2(x,x′), respectively, is the
relation R1 ○R2 ⊆ Zx ×Zx, defined by the formula ∃y . ϕ1(x,y) ∧ ϕ2(y,x′).

The identity on x is the relation Ix ⊆ Zx × Zx defined by the formula ⋀x∈x x′ = x.
For any relation R ⊆ Zx ×Zx, we define R0 = Ix and Rn+1 = Rn ○R = R ○Rn, for all
n ∈ N. Rn is called the n-th power ofR in the sequel. The infinite sequence of relations
{Rn}∞n=0 is called the power sequence of R. With these notations, R+ = ⋃∞n=1R

n

denotes the transitive closure ofR, andR∗ = R+∪Ix denotes the reflexive and transitive
closure of R. A relation R is said to be ∗-consistent if and only if Rn ≠ ∅, for all
n ∈ N+. If R is not ∗-consistent, there exists b > 0 such that Rn = ∅, for all n ≥ b.

Definition 1 A class of relations R is the union of all monoids ⟨Rx, ○, Ix⟩, where
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Rx ⊆ 2Z
x×Zx

is a set of relations over x closed under conjunction and composition,
containing the relations Ix and ∅.

In this paper we will define classes of relations by a fragments of QFPA. In fact, any
fragment of QFPA that contains equality and is closed under conjunction and quantifier
elimination defines a class of relations.

3 The Reachability Problem for Flat Counter Machines
In this section we define counter machines, which are essentially a generalization of
Rabin-Scott finite nondeterministic automata, extended with a set of integer counters,
and transitions described by quantifier-free Presburger formulae. Formally, a counter
machine (CM) is a tuple M = ⟨x,L, `init, `fin,∆⟩, where:

• x is a set of variables (counters) ranging over Z,
• L is a set of control locations,
• `init, `fin ∈ L are the initial and final control locations, respectively,

• ∆ is a set of transition rules of the form `
φ(x,x′)ÐÐÐ→ `′, where `, `′ ∈ L are control

locations and φ(x,x′) is a QFPA formula defining both (i) the conditions on
the current values x that enable the transition, and (ii) the updates of the current
values x to the next values x′.

The size of the binary representation of a counter machine is defined as ∣M ∣ = ∑
`
φÐ→`′ ∣φ∣,

i.e. the sum of the sizes of all formulae labeling the transition rules of M .
A configuration of M is a pair (`, ν), where ` ∈ L is a control location, and

ν ∈ Zx is a valuation of the variables. A run of M is a sequence of configurations
(`0, ν0), . . . , (`n, νn), where `0 = `init, `n = `fin and for each i = 0, . . . , n − 1, there
exists a transition rule `i

φiÐ→ `i+1 such that (νi, νi+1) ⊧ φi. The reachability problem
asks, given a counter machine M , does M have a run?

Let us now define the flatness restriction on counter machines. The control flow
graph of M is the labeled graph whose vertices are the control locations L and whose
edges are the transition rules in ∆. A cycle in this graph is elementary if it does not
contain another cycle. A counter machineM is flat if and only if every control location
belongs to at most one elementary cycle in its control flow graph.

For a set of relations R, we denote by REACHFLAT(R) the class of reachability

problems for all flat counter machines M where, for each transition rule `
φ(x,x′)ÐÐÐ→ `′

belonging to a cycle in the control flow graph of M , the formula φ(x,x′) defines a
relation from R. The main result is that REACHFLAT(OCT) is NP-complete, where
OCT is the set of relations defined below.

Definition 2 A formula φ(x) is an octagonal constraint if it is a finite conjunction of
atomic propositions of the form ±xi ≤ αi or ±xi ± xj ≤ βij , where αi, βij ∈ Z, for all
1 ≤ i, j ≤ N . We denote by OCT the set of relations R ⊆ Zx ×Zx defined by octagonal
constraints φ(x,x′).

Example 1 Fig. 1 shows a flat counter machineM = ⟨{i, j, b},{`0, `1, `2, `3}, `0, `3,∆⟩.
The machine increments both counters i and j by executing the self-loop on state `1 a
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number of times equal to the value of b, that was guessed on the transition `0 Ð→ `1,
then it will move to `2 and will increment i, while decrementing j, until j = 0. Finally, it
moves to its final state if i = 2b. Observe that all transition rules, except for `2

i=2bÐÐ→ `3,
are labeled with octagonal relations. ∎

`0

0<b′

i′=0

j′=0

ÐÐÐ→

0≤i<b

i′=i+1

j′=j+1

ÿ

`1

i=b

i′=i

j′=j

ÐÐÐ→

j>0

i′=i+1

j′=j−1

ÿ

`2
i=2b

ÐÐÐ→ `3

Figure 1: A flat counter machine

In the rest of this section we set the ground for the proof of the NP-completness
result by presenting necessary background notions concerning octagonal constraints,
starting with a simpler class of formulae, called difference bounds constraints. In par-
ticular, we show that the set of octagonal relations are closed under compositions, thus
OCT is a class of relations in the sense of Definition 1.

3.1 Difference Bounds Constraints
Let x = {x1, x2, . . . , xN} be a set of variables, for someN ∈ N+. Without losing gener-
ality, we consider only formulae in which each atomic proposition involves exactly two
variables. Atomic propositions xi ≤ αi, xi ≥ αi, for αi ∈ Z, are replaced by xi−ζ ≤ αi,
ζ − xi ≤ −αi, respectively, for an extra variable ζ, with the implicit assumption ζ = 0.

Definition 3 A difference bounds constraint φ(x) is a finite conjunction of atomic
propositions of the form xi − xj ≤ αij , 1 ≤ i, j ≤ N , where αij ∈ Z. A relation
R ⊆ Zx × Zx is a difference bounds relation if it is defined by a difference bounds
constraint φR(x,x′).

If φ(x) is a difference bounds constraint, the difference bounds matrix (DBM) rep-
resenting φ is the matrixMφ ∈ ZN×N

∞ , where (Mφ)ij = αij if xi−xj ≤ αij ∈ Atom(φ),
and (Mφ)ij = ∞, otherwise (see Fig. 2 (a) for an example). In particular, any incon-
sistent difference bounds constraint is represented by theN ×N matrix [−∞]N , whose
coefficients are all −∞. Dually, a matrix M ∈ ZN×N

∞ corresponds to the difference
bounds constraint Φ(M) ≡ ⋀Mij<∞ xi − xj < Mij . M is consistent if Φ(M) is a
consistent formula. The constraint graph Gφ of a difference bounds constraint φ is the
weighted graph whose incidence matrix is Mφ (see Fig. 2 (b) for an example).

Definition 4 A consistent DBM M ∈ ZN×N
∞ is said to be closed if and only if:

1. Mii = 0, for all 1 ≤ i ≤ N , and
2. all triangle inequalities Mik ≤Mij +Mjk hold, for all 1 ≤ i, j, k ≤ N .
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⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x′1 x′2
x1 0 ∞ 1 −1
x2 ∞ 0 −2 2

x′1 ∞ ∞ 0 ∞
x′2 ∞ ∞ ∞ 0

⎞
⎟⎟⎟⎟⎟
⎠ x2 x′2

x1 x′1
1

−1

2

−2

(a) M∗
R (b) GR

Figure 2: Let φ(x1, x2, x
′
1, x

′
2) ≡ x1−x′1 ≤ 1∧x1−x′2 ≤ −1∧x2−x′1 ≤ −2∧x2−x′2 ≤ 2

be a difference bounds constraint. (a) shows the closed DBM of M∗
φ and (b) shows the

constraint graph Gφ.

Given a consistent DBM M , the unique closed DBM which is logically equivalent to
M is denoted by M∗. If M is an inconsistent DBM, we denote M∗ = [−∞]N , by
convention. Observe that the closed DBM is a canonical (unique) representation of a
difference bounds constraint. Moreover, this canonical representation of a DBM can
be computed in cubic time, using the classical Floyd-Warshall shortest path algorithm.

It is known that quantifier elimination for difference bounds constraints takes cubic
time in the size of the binary representation of the constraint2. Then the set of relations
R ⊆ Zx × Zx defined by difference bounds constraints φR(x,x′) is closed under rela-
tional composition. Since the identity relation Ix is definable by a difference constraint
and the empty relation∅ is definable by any inconsistent constraint the set of difference
bounds relations forms a class (Definition 1), denoted as DB in the following.

Because any difference bounds relationR ⊆ Zx×Zx, defined by a formula φ(x,x′),
is uniquely represented by the difference bounds constraint Φ(M∗

φ), we define the
size of its binary representation as ∣R∣ = ∣Φ(M∗

φ)∣, independently of the choice of
φ. In principle, any algorithm that takes as input a difference bounds relation R can
be considered w.l.o.g. to work directly on its canonical representation, because the
time needed to compute the canonical representation of R is O(∣R∣3), thus any super-
polynomial bound derived with this assumption carry over to the general case.

3.2 Octagonal Constraints
Given a set of variables x = {x1, . . . , xN}, an octagonal constraint φ(x) (Defini-
tion 2) is usually represented by a difference bounds constraints φ(y), where y =
{y1, . . . , y2N}, y2i−1 stands for +xi and y2i stands for −xi, with the implicit require-
ment that y2i−1 = −y2i, for each 1 ≤ i ≤ N . Observe that the latter condition cannot be
directly represented as a difference bounds constraint. Formally, we have:

(xi − xj ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2j−1 ≤ c), (y2j − y2i ≤ c) ∈ Atom(φ)
(−xi + xj ≤ c) ∈ Atom(φ) ⇔ (y2j−1 − y2i−1 ≤ c), (y2i − y2j ≤ c) ∈ Atom(φ)
(−xi − xj ≤ c) ∈ Atom(φ) ⇔ (y2i − y2j−1 ≤ c), (y2j − y2i−1 ≤ c) ∈ Atom(φ)
(xi + xj ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2j ≤ c), (y2j−1 − y2i ≤ c) ∈ Atom(φ)
2To eliminate ∃x.φ(x), one computes the closed DBM M∗

φ in cubic time in the binary size of φ and
eliminates the row and column corresponding to x from it.
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In order to handle the y variables in the following, we define ı̄ = i − 1, if i is even, and
ı̄ = i + 1 if i is odd. Obviously, we have ¯̄ı = i, for all i ∈ Z, i ≥ 1.

An octagonal constraint φ(x) is represented by the matrix Mφ ∈ Z2N×2N
∞ , cor-

responding to φ(y). A matrix M ∈ Z2N×2N
∞ is coherent if Mij = M̄ı̄ for all 1 ≤

i, j ≤ 2N . This property is needed because an atomic proposition xi − xj ≤ c can be
represented as both y2i−1 − y2j−1 ≤ c and y2j − y2i ≤ c. Dually, a coherent matrix
M ∈ Z2N×2N

∞ corresponds to the following octagonal constraint:

Ω(M) ≡ ⋀
1≤i,j≤N

xi − xj ≤M2i−1,2j−1 ∧ ⋀
1≤i,j≤N

xi + xj ≤M2i−1,2j ∧ ⋀
1≤i,j≤N

−xi − xj ≤M2i,2j−1

A coherent DBM M is said to be octagonal-consistent if Ω(M) is consistent.

Definition 5 An octagonal-consistent coherent DBMM ∈ Z2N×2N
∞ is said to be tightly

closed if and only if it is closed and Mij ≤ ⌊Miı̄

2
⌋ + ⌊M̄j

2
⌋, for all 1 ≤ i, j ≤ N .

The last condition from Definition 5 ensures that the knowledge induced by the
implicit conditions yi + yı̄ = 0, which cannot be represented as difference constraints,
has been propagated through the DBM. Since 2yi = yi − yı̄ ≤Miı̄ and −2yj = ȳ − yj ≤
M̄j , we have yi ≤ ⌊Miı̄

2
⌋ and −yj ≤ ⌊M̄j

2
⌋, which implies yi − yj ≤ ⌊Miı̄

2
⌋ + ⌊M̄j

2
⌋,

thus Mij ≤ ⌊Miı̄

2
⌋ + ⌊M̄j

2
⌋ must hold, if M is supposed to be the most precise DBM

representation of an octagonal constraint. If j = ı̄ in the previous, we obtain Miı̄ ≤
2⌊Miı̄

2
⌋, implying that Miı̄ is necessarily even, if M is tightly closed.

The following theorem [2] provides an effective way of testing octagonal-consistency
and computing the tight closure of a coherent DBM. Moreover, it shows that the tight
closure of a given DBM is unique and can also be computed within the same cubic
time upper bound, as the DBM closure:

Theorem 1 Let M ∈ Z2N×2N
∞ be a coherent DBM. Then M is octagonal-consistent

iff M is consistent and ⌊M
∗
iı̄

2
⌋ + ⌊M

∗
ı̄i

2
⌋ ≥ 0, for all 1 ≤ i ≤ 2N . Moreover, if M is

octagonal-consistent, the tight closure of M is the DBM M t ∈ Z2N×2N
∞ defined as:

M t
ij = min{M∗

ij , ⌊
M∗
iı̄

2
⌋ + ⌊

M∗
̄j

2
⌋}

for all 1 ≤ i, j ≤ 2N , where M∗ ∈ Z2N×2N
∞ is the closure of M .

Proof: [2, Theorems 2 and 3]. ◻

The tight closure of DBMs is needed for checking entailment between octagonal
constraints and for quantifier elimination, as shown by the following proposition.

Proposition 1 Let φ(x) and ψ(x) be two consistent octagonal constraints. Then, the
following hold:

1. φ⇒ ψ if and only if (M t
φ
)
ij
≤ (M t

ψ
)
ij

, for all 1 ≤ i, j ≤ 2N .

2. ∃xk.φ(x) ⇔ Ω(M ′), where M ′ is the DBM obtained by eliminating the lines
and columns 2k and 2k + 1 from M t

φ
.
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y′2 y2 y4 y′4
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1
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1 y2 y3 y4 y′1 y′2 y′3 y′4
y1 0 ∞ ∞ 5 ∞ ∞ ∞ 2
y2 ∞ 0 ∞ ∞ ∞ −2 ∞ −1
y3 ∞ 5 0 ∞ ∞ 3 ∞ 4
y4 ∞ ∞ ∞ 0 ∞ ∞ ∞ −3
y′1 −2 ∞ ∞ 3 0 ∞ ∞ 0
y′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ 1
y′3 −1 2 −3 4 1 0 0 0
y′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Gφ M t
φ

Figure 3: Graph and matrix representation of the difference bounds representation
φ(y,y′) of an octagonal relation defined by φ(x,x′) ≡ x1 + x2 ≤ 5 ∧ x′1 − x1 ≤
−2 ∧ x′2 − x2 ≤ −3 ∧ x′2 − x′1 ≤ 1.

Proof: Point (1) is by [28, Theorem 4.4.1] and point (2) is by [5, Theorem 2]. ◻

Since octagonal constraints have quantifier elimination, by Proposition 1 (2), the
set OCT of octagonal relations forms a class, in the sense of Definition 1. Moreover,
since a tightly closed DBM is a canonical representation of an octagonal relation, we
can define w.l.o.g. the size of the binary representation of a relation R ∈ OCT as ∣R∣ =
∣Ω(M t

φ
)∣, where φ is any octagonal constraint that defines R. Again, this definition

has no impact on the computational complexity of the decision problems involving
octagonal relations, because the canonical representation of any R ∈ OCT can be
computed in time O(∣R∣3).

Example 2 Consider the octagonal relation defined by φ(x1, x2, x
′
1, x

′
2) ≡ x1 + x2 ≤

5 ∧ x′1 − x1 ≤ −2 ∧ x′2 − x2 ≤ −3 ∧ x′2 − x′1 ≤ 1. Its difference bounds representation
is φ(y,y′) ⇔ y1 − y4 ≤ 5 ∧ y3 − y2 ≤ 5 ∧ y′1 − y1 ≤ −2 ∧ y2 − y′2 ≤ −2 ∧ y′3 − y3 ≤
−3∧y4−y′4 ≤ −3∧y′3−y′1 ≤ 1∧y′2−y′4 ≤ 1, where y = {y1, . . . , y4}. Figure 3(a) shows
the graph representation Gφ. Note that the implicit constraint y′3 − y′4 ≤ 1, represented
by a dashed edge in Figure 3(a), is not tight. The tightening step replaces the bound 1,
crossed in Figure 3(a), with 0. Figure 3(b) shows the tightly closed DBM representation
of R, denoted M t

φ
. ∎

3.3 Periodic Relations
As shown in the previous, both difference bounds and octagonal relations are closed
under compositions and have canonical matrix representations. When studying the
complexity of the reachability problem REACHFLAT(OCT), a crucial point concerns
the behavior of the power sequence {Rk}∞

k=0
, for a relation R ∈ OCT. A first ob-

servation is that, for any k ≥ 0, we have that Rk ∈ OCT. If we denote by σ(R) the
canonical DBM representation ofR, we show that the sequence of DBMs {σ(Rk)}∞k=0

is periodic, in a sense that we define next. This fact is important for the definition of a
nondeterministic algorithm that solves the above reachability problem.
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We consider infinite sequences {sk}∞k=0 in Z±∞, with the following extension of
addition: (i) for all x ∈ Z∞, x +∞ =∞+ x =∞, and (ii) for all x ∈ Z±∞, x + (−∞) =
−∞ + x = −∞. A sequence {sk}∞k=0 is an arithmetic progression if there exists a
constant λ ∈ Z±∞, called rate, such that sk+1 = sk + λ, for all k ≥ 0. A generalization
of this notion are periodic sequences, defined below.

Definition 6 An infinite sequence {sk}∞k=0, where sk ∈ Z±∞, for all k ≥ 0, is said to be
periodic if and only if there exist integer constants b ≥ 0, c > 0 and λ0, . . . , λc−1 ∈ Z±∞
such that sb+(k+1)c+i = sb+kc+i + λi, for all k ≥ 0 and all i ∈ [c]. The smallest b, c and
λi are called the prefix, period and rates of the sequence.

Note that an arithmetic progression is a periodic sequence with prefix 0 and period 1.
In the following, we consider sequences of square matrices and say that an infinite

sequence {Mk}∞k=0 of matrices Mk ∈ Zn×n±∞ is periodic if every sequence {(Mk)ij}∞k=0

is periodic, for all i, j ∈ [n]. The next lemma provides a characterization of periodicity
for a sequence of matrices, with an estimation of its prefix and period.

Lemma 1 A a sequence of Zn×n±∞ matrices {Mk}∞k=0 is periodic iff there exist integers
b ≥ 0, c > 0 and matrices Λ0, . . . ,Λc−1 ∈ Zn×n±∞ such that:

∀k ≥ 0∀i ∈ [c] . Mb+(k+1)c+i =Mb+kc+i +Λi .

If, moreover, bij and cij are the prefix and period of the sequence {(Mk)ij}∞k=0, then
b = max1≤i,j≤n(bij), c = lcm1≤i,j≤n(cij) are the smallest such integers.

Proof: “⇒” Suppose that the sequence {Mk}∞k=0 is periodic. Then, for each i, j ∈
[n], the sequence {(Mk)ij}∞k=0 is periodic, and let λij0 , . . . , λ

ij
cij−1 be the rates of this

sequence. For all ` ∈ [c] and all i, j ∈ [n], define (Λ`)ij = c
cij

⋅ (λij(b−bij+`)mod cij
).

The check Mb+(k+1)c+` = Mb+kc+` + Λ`, for all k ≥ 0 and ` ∈ [c] is straightforward.
“⇐” For each i, j ∈ [n], the sequence {(Mk)ij}

∞
k=0

is periodic: (Mb+(k+1)c+`)ij =
(Mb+kc+`)ij + (Λ`)ij , for all k ≥ 0 and ` ∈ [c].

For the last point, suppose first, by contradiction, that there exists b′ < max1≤i,j≤n(bij)
such that Mb′+(k+1)c+` = Mb′+kc+` + Λ`, for all k ≥ 0 and ` ∈ [c]. Let 1 ≤ s, t ≤ n be
such that bst = max1≤i,j≤n(bij). Then the sequence {(Mk)st}

∞
k=0 is periodic with

prefix b′ < bst, contradiction. Second, suppose by contradiction, that there exists
c′ < lcm1≤i,j≤n(cij) such that Mb+(k+1)c′+` =Mb+kc′+` +Λ`, for all k ≥ 0 and ` ∈ [c′].
Then there exists 1 ≤ s, t ≤ n such that cst does not divide c′, which contradicts the fact
that the sequence {(Mk)st}

∞
k=0 is periodic with period cst. ◻

Let us focus now on sequences of matrices that represent the power sequences
{Rk}∞k=0, where R ∈ OCT. Given a set of variables x = {x1, . . . , xN}, we denote
by OCTx the class of octagonal relations R ⊆ Zx × Zx. Formally, let σ ∶ OCTx →
Z4N×4N
∞ ∪ {[−∞]4N} be the bijection that maps each consistent relation R into its

canonical DBM σ(R) ∈ Z4N×4N
∞ and the inconsistent relation into σ(∅) = [−∞]4N .

Then R is said to be periodic if the matrix sequence {σ(Rk)}∞k=0 is periodic. If every
relation in a certain class is periodic, we call that class periodic as well.
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Example 3 Consider the octagonal relationR ⊆ Z{x,y}×Z{x,y} defined by the formula
x′ = y + 1 ∧ y′ = x, where for all ` ∈ N:

σ(R2`+1) =

x y x′ y′

x 0 ∞ ∞ `
y ∞ 0 −` − 1 ∞
x′ ∞ ` + 1 0 ∞
y′ −` ∞ ∞ 0

σ(R2`+2) =

x y x′ y′

x 0 ∞ −` − 1 ∞
y ∞ 0 ∞ −` − 1
x′ ` + 1 ∞ 0 ∞
y′ ∞ ` + 1 ∞ 0

The sequence {σ(Rk)}∞k=0 is periodic with prefix b = 1 and period c = 2, where:

Λ0 =

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

Λ1 =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

∎

One of the results in this paper is that the class OCT is periodic. The proof of this
fact relies essentially on the fact that the class DB is periodic, and uses (a variant of)
Theorem 1 to generalize this result from difference bounds to octagonal relations. In
the next section we give a generic nondeterministic decision procedure for the problem
REACHFLAT(R), where R is a periodic class of relations. Moreover, we identify
certain conditions under which each branch of the procedure terminates in polynomial
time, which provides an NP upper bound for the REACHFLAT(R) problem.

4 An Algorithm for the Reachability Problem
In general, the decision procedures for the reachability problem for flat counter ma-
chines rely on acceleration [4, 13], which is defining the transitive closure of the rela-
tions that occur on the cycles of these machines by formulae from the quantifier-free
fragment of Presburger arithmetic. To show that these reachability problems belong to
the class NP, it is essential to build these QFPA formulae in polynomial time.

For the sake of simplicity, we explain the idea of a nondeterministic algorithm
(Algorithm 1) for the reachability problem on the flat counter machine below:

`init
I(x)ÐÐ→

φ(x,x′)
ÿ
`

F (x)ÐÐ→ `fin (1)

where I(x) and F (x) are QFPA formulae and φ(x,x′) is an octagonal constraint
defining a relation R ∈ OCTx, for a given set of variables x = {x1, . . . , xN}.

Let us assume for now that this relation is periodic. The algorithm guesses candi-
date values for the prefix b ≥ 0 and period c > 0 of R (line 2), computes a candidate
rate Λ (line 3), and checks if b, c and Λ satisfy the following condition (line 4):

IND(B,C,Λ) ∶ ∀n ≥ 0 . σ (σ−1(B + n ⋅Λ) ○ σ−1(C)) = B + (n + 1) ⋅Λ (2)

12



Algorithm 1 nondeterministic algorithm for the reachability problem (1)
input: M = ⟨x,{`init, `, `fin}, `init, `fin,∆⟩ of the form (1), where x = {x1, . . . , xN}
output: YES if and only if M has a run from `init to `fin

1: let R be the relation defined by φ(x,x′)
2: chose b ≥ 0 and c > 0
3: let Λ ∈ Z4N×4N

∞ be a matrix such that σ(Rb) +Λ = σ(Rb+c)
4: if IND(σ(Rb), σ(Rc),Λ) then
5: chose i ∈ [b]
6: φ<b ← I(x) ∧Ω(σ(Ri)) ∧ F (x′)
7: chose j ∈ [c]
8: φ≥b ← k ≥ 0 ∧ I(x) ∧ ς(σ(Rb+j) + k ⋅Λ) ∧ F (x′)
9: if φ<b ∨ φ≥b is satisfiable then

10: return YES

11: fail

where B,C and Λ are square matrices of equal dimension, in our case B = σ(Rb),
C = σ(Rc) and Λ is such that σ(Rb) + Λ = σ(Rb+c). Intuitively, this means that b,
c and Λ are valid choices for the prefix, period and rate of the sequence of matrices
{σ(Rk)}∞

k=0
, in the sense of Lemma 1.

In case the reachability problem for M has a positive answer, i.e. there exists a run
from `init to `fin, two cases are possible. Either the number of iterations of the loop
is (i) strictly smaller than b, or (ii) between b + nc and b + (n + 1)c, for some n ≥ 0.
The first case is captured by the QFPA formula φ<b (line 6), where Ω(σ(Ri)) is the
canonical octagonal constraint representing the relation Ri.

The second case is encoded by the QFPA formula φ≥b (line 8). Here k /∈ x is a
parameter variable and by Z[k]∞ we denote the set of univariate linear terms of the
form a ⋅k + b, with a, b ∈ Z∞. Also Z[k]m×m

∞ denotes the set of m×m square matrices
of such terms. With these notations, ς is a mapping of matrices M[k] ∈ Z[k]4N×4N

∞
into parametric octagonal constraints consisting of atomic propositions of the form
±x± y ≤ a ⋅k + b, defined in the same way as the octagonal constraint Ω(M) is defined
for a matrix M ∈ Z4N×4N

∞ . Moreover, ς satisfies the following condition:

∀M ∈ Z[k]4N×4N
∞ ∀n ∈ N . ς(M)(n) = σ−1(M[n/k]) (3)

The final step is checking the satisfiability of the disjunction φ<b ∨ φ≥b (line 9). If
the formula produced by a nondeterministic branch of the algorithm is satisfiable, the
reachability question has a positive answer. Otherwise, if no branch produces a satisfi-
able formula, the reachability question has a negative answer.

To prove that the class of reachability problems REACHFLAT(OCT) is in NP, it
is enough to show that, for any machine M of the form (1), each branch of Algorithm
1 terminates in PTIME(∣M ∣). For this, the matrices σ(Rc), σ(Ri) and σ(Rb+j) must
be computable in PTIME(∣R∣), for all i = 0, . . . , b and j = 0, . . . , c and, moreover, the
condition IND(σ(Rb), σ(Rc),Λ) (2) must be decidable in NPTIME(∣R∣). Under these
conditions, the QFPA formulae φ<b and φ≥b are of polynomial size in ∣M ∣, and the
satisfiability of their disjunction is decidable in NPTIME(∣M ∣).
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The following theorem generalizes this argument to arbitrary flat counter machines
by giving sufficient conditions under which the class REACHFLAT(OCT) is NP-complete.

Theorem 2 REACHFLAT(OCT) is NP-complete if there exists a constant d, such that
the following hold, for each relation R ∈ OCT:

1. ∣Rn∣ = O((∣R∣ ⋅ logn)d), for all n > 0,
2. R is periodic with prefix and period of the order of 2O(∣R∣

d).

Before giving the proof of Theorem 2, we show that the condition IND(B,C,Λ)
is decidable in nondeterministic polynomial time, by reduction to the satisfiability of a
QFPA formula. The proof relies on a symbolic tight closure algorithm (Algorithm 2),
which builds such a formula using a cubic number of steps.

Algorithm 2 Symbolic Tight Closure algorithm
input: a matrix M ∈ Z∞[k]m×m of univariate linear terms
output: a matrix T ∈ Z∞[k]m×m of univariate terms over min,+, and ⌊ .

2
⌋

1: function SYMBFW(M )
2: for i = 1, . . . ,m do
3: for j = 1, . . . ,m do
4: Pij ←Mij

5: for k = 1, . . . ,m do
6: for i = 1, . . . ,m do
7: for j = 1, . . . ,m do
8: Pij ←min (Pij , Pik + Pkj)
9: return P
1: T ← SYMBFW(M)
2: for i = 1, . . . ,m do
3: for j = 1, . . . ,m do
4: Tij ←min(Tij , ⌊Tiı̄2

⌋ + ⌊T̄j
2

⌋)
5: return T

Lemma 2 Given N > 0 and matrices B,C,Λ ∈ Z4N×4N
∞ , the condition IND(B,C,Λ)

is decidable in nondeterministic polynomial time.

Proof: The condition IND(B,C,Λ) checks the validity of the equivalence:

∀k ≥ 0 . σ(σ−1(B + k ⋅Λ) ○ σ−1(C)) = B + (k + 1) ⋅Λ .

For a matrix M ∈ Z∞[k]4N×4N of univariate linear terms in k, we define the labeled
graphHM = ⟨y ∪ y′,→⟩, where y = {y1, . . . , y2N} are the variables used in the differ-
ence bounds encoding of an octagonal relation with variables {x1, . . . , xN}, and whose

labeled edges are yi
Mi,jÐÐ→ yj , yi

Mi,j+2NÐÐÐÐ→ y′j , y
′
i

Mi+2N,jÐÐÐÐ→ yj , y
′
i

Mi+2N,j+2NÐÐÐÐÐÐ→ y′j , for all
1 ≤ i, j ≤ 2N . The left-hand side of the equivalence IND(B,C,Λ) corresponds to the
graphHlhs with vertices y(0) ∪ y(1) ∪ y(2), such that:
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• Hlhs↓y(0)∪y(1) is the graph HB+k⋅Λ, in which the vertices y(0) and y(1) replace
y and y′, and

• Hlhs ↓ y(1)∪y(2) is the constraint graph GC representing the difference bounds
constraint Φ(C), in which y(1) and y(2) replace the vertices y and y′ of GC ,
respectively.

The right-hand side of the equivalence IND(B,C,Λ) is represented, in a similar way,
by the graph Hrhs, which equals the graph HB+(k+1)⋅Λ, with vertices y(0) and y(2)

replacing y and y′, respectively.
Since both graphs denote (parametric) octagonal constraints, by Proposition 1 (1)

we need to prove that, for all k ≥ 0 the path labels corresponding to the minimal paths
within the tight closures of the incidence matrices of Hlhs and Hrhs are equal, for all
k ≥ 0. These tight closures can be expressed by univariate terms with variable k, built
in time O(N3), from constants c ∈ Z and the functions min,+ and ⌊ .

2
⌋, by Algorithm

2, which implements the result of Theorem 1. Notice that the size of each such term is
bounded by the time needed to build it, i.e. O(N3). Finally, each term can be encoded
in QFPA, because all constituent functions, i.e. min,+ and ⌊ .

2
⌋ are QFPA-definable. As

a direct consequence, the condition IND(B,C,Λ) is decidable in NPTIME. ◻

Proof of Theorem 2 NP-hardness is by reduction from the satisfiability problem for
QFPA, and the fact that any transition rule of a flat CM, that is not part of a cycle,
can be labeled by an arbitrary QFPA formula. Given an instance φ(x) of the QFPA
satisfiability problem, we consider the CM `init

φÐ→ `fin. The reachability problem has
a positive answer iff φ has a satisfying assignment.

To prove that REACHFLAT(OCT) is contained in NP, let M = ⟨x,L, `1, `n,∆⟩ be
a flat CM, where L = {`1, . . . , `n}. First, we reduce the control flow graph ⟨L,∆⟩ of
M to a dag and several self-loops, by replacing each non-trivial cycle:

`i0
φ0Ð→ `i1

φ1Ð→ `i2 . . . `ik−2

φk−2ÐÐ→ `ik−1

φk−1ÐÐ→ `i0

where k > 1, with the following sequence:

λ0(x,x
′)

ÿ
`i0

φ0Ð→

λ1(x,x
′)

ÿ
`i1 . . .

λk−1(x,x
′)

ÿ
`ik−1

φk−1ÐÐ→ `′i0
λ0(x,x

′)ÐÐÐÐ→ . . .
φk−1ÐÐ→ `′ik−1

(4)

where λj(x,x′) = ∃x1, . . . ,xj+1 . φj(x,xj+1) ∧ . . . ∧ φk−1(xk−1,xk) ∧ φ0(xk,x1) ∧
. . . ∧ φj−1(xj−1,x

′), `′i1 , . . . , `
′
ik−1

are fresh control locations not in L, and for each

rule `ij
φÐ→ `m of M , where m ≠ i(j+1) mod k, we add a rule `′ij

φÐ→ `m, for each
j = 0, . . . , k − 1. This step doubles at most the number of control locations in L.
W.l.o.g., we can consider henceforth that each control location `i belongs to at most
one self loop labeled by a formula φi, for i = 1, . . . ,2n.

For each cycle `i
φiÐ→ `i, where φi defines a relation Ri ∈ OCTx, for each i =

1, . . . ,2n, the nondeterministic algorithm performs the steps of Algorithm 1, namely:
1. Guess values bi ≥ 0 and ci > 0, of the order of 2O(∣Ri∣

d), compute the powersRbii ,
Rcii andRbi+cii and find Λi such that σ(Rbi+cii ) = σ(Rbii )+Λi. By the hypotheses
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(1) and (2) this computation is possible in PTIME(∣Ri∣), using exponentiation by
squaring.

2. Check the validity of the condition IND(σ(Rbii ), σ(Rcii ),Λi) in NPTIME(∣Ri∣),
which is possible by Lemma 2.

3. Build a QFPA formula φi(k,x,x′) = φ<bii (x,x′)∨φ≥bii (k,x,x′) in PTIME(∣Ri∣).
The second step uses a breadth-first dag traversal to label each control location in `i,

for i = 1, . . . ,2n, with a QFPA formula θi(x,x′) that captures the summary (effect) of
the set of executions of M from the initial state `1 to `i. We assume w.l.o.g. that (i) for
every location `i, i = 2, . . . ,2n, there exists a path in M from `1 to `i, and (ii) there
is no self-loop involving `1 in M . We consider the sets of variables k = {k1, . . . , k2n}
and xti = {xti,` ∣ ` = 1, . . . ,N}, where i = 1, . . . ,2n and t ∈ {in,out}. We define θ1 = ⊺,
and for all j = 2, . . . ,2n:

θj(xin
1,...,2n,x

out
1,...,2n) = ⋁

`i
Rij⇒ `j

θi(xin
1,...,2n,x

out
1,...,2n)∧φij(xout

i ,xin
j )∧φj(kj ,xin

j ,x
out
j )

where φij is the formula defining Rij . It is not difficult to prove that, for all i =
1, . . . ,2n and ν, ν′ ∈ Zx: (ν, ν′) ⊧ θi⇔M has a run (`1, ν), . . . , (`i, ν′) .

Since for every location `i, i = 2, . . . ,2n, there exists a control path from `1 to
it, the breadth-first traversal guarantees that each predecessor `i of a location `j is
labeled with the summary θi before `j is visited by the algorithm, ensuring that the
definition above is correct. Moreover, the dag structure (excepting the self-loops) of
the CM guarantees that it is sufficient to visit each locations only once in order to label
it with a summary. Thus, the labeling takes polynomial time and, consequently, ∣θi∣ is
polynomially bounded by ∣M ∣, for each i = 1, . . . ,2n. Since the size of the sumary
labeling the final location is polynomial in ∣M ∣, and the satisfiability problem is in
NPTIME(∣M ∣), it follows that REACHFLAT(OCT) is contained in NP. ◻

In the next section we prove the point (1) from Theorem 2. The rest of the paper is
dedicated to proving point (2), which requires a more complex technical argument.

4.1 The First Ingredients of the Proof
In order to apply Theorem 2 we start by proving that the first assumption from its state-
ment holds for each octagonal relation R ∈ OCT, namely that the size of the binary
representation of the n-th power Rn is bounded by a polynomial function with argu-
ments ∣R∣ and logn. In this case, the binary size of an exponentially large power Rn,
where n = 2O(∣R∣

d) and d is a constant, is bounded by a polynomial in ∣R∣. Moreover,
such powers can be computed in a polynomial number of steps, using exponentiation
by squaring. This is essential in proving that each branch of the nondeterministic Algo-
rithm 1 terminates in polynomial time, and also in the generalization of this reasoning
to arbitrary flat CM with cycles labeled by octagonal constraints (Theorem 2).

As in most proofs in the rest of this paper, it is useful to prove the statement first
for the simpler class of difference bounds relations, and use Theorem 1 (or a variant
thereof) to relate difference bounds with octagonal relations. Since difference bounds
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relations can be represented by weighted graphs (see Fig. 2 (b) for an example), we
use a weighted graph to represent the n-th power of a relation R ∈ DB.

We write GR for the weighted graph Gσ(R), in which each vertex 1 ≤ i ≤ N is
replaced by the variable xi, and each vertexN < i ≤ 2N is replaced by x′i. For a matrix
M ∈ Z2N×2N

∞ , we denote its top-left, top-right, bottom-left and bottom-rigth N × N
corners as ∎M,M∎,∎M , and M∎, respectively (see Fig. 2 (a) for an example).

Definition 7 LetR ∈ DBx be a relation and n ∈ N+ a constant. Let GnR = ⟨⋃nk=0 x
(k),Ð→,w⟩

be a weighted graph, where x(k) = {x(k)i ∣ 1 ≤ i ≤ N} and for all k ∈ [n]:
• x(k)i

cÐ→ x(k)j if and only if xi
cÐ→ xj is an edge of GR,

• x(k)i
cÐ→ x(k+1)

j if and only if xi
cÐ→ x′j is an edge of GR,

• x(k+1)
i

cÐ→ x(k)j if and only if x′i
cÐ→ xj is an edge of GR,

• x(k+1)
i

cÐ→ x(k+1)
j if and only if x′i

cÐ→ x′j is an edge of GR.

The constraint graph GnR is said to be an unfolding of the constraint graph GR. The key
observation relating the power Rn of R and the unfolding graph GnR is the following:
each difference constraint definingRn is given by a minimal path between the extremal
vertices (from the set x(0) ∪ x(n)) in GnR. Formally, for all i, j ∈ {1, . . . ,N}, the power
Rn is defined by the conjunction of the following constraints:

xi − xj ≤ (∎σ(Rn))ij = minwGn
R
(x(0)i , x

(0)
j )

xi − x′j ≤ (σ(Rn)∎)ij = minwGn
R
(x(0)i , x

(n)
j )

x′i − xj ≤ (∎σ(Rn))ij = minwGn
R
(x(n)i , x(0)j )

x′i − x′j ≤ (σ(Rn)∎)ij = minwGn
R
(x(n)i , x(n)j )

(5)

where minwGn
R
(x(p)i , x(q)j ) = min`∈N {minwGn

R
(x(p)i , x(q)j , `)}, and minwGn

R
(x(p)i , x(q)j , `)

is the minimal weight among all paths of length ` between x(p)i and x(q)j in GnR, or ∞, if
no such path exists. When the length is not important, we denote a path between x(p)i
and x(q)j as x(p)i

∗Ð→ x(q)j .
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x1 x′1
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(a) GR – the constraint graph of R (b) G6
R – the 6-times unfolding of GR

Figure 4: Constraint graphs for the DB relationR ≡ x2−x′1 ≤ −1∧x3−x′2 ≤ 0∧x1−x′3 ≤
0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

Example 4 Consider the difference bounds relation R defined by the formula φ ≡
x2 −x′1 ≤ −1 ∧ x3 −x′2 ≤ 0 ∧ x1 −x′3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0. Fig. 4 (a) shows
the constraint graph GR and Fig. 4 (b) depicts the unfolding G6

R of GR. ∎
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We are now ready to prove that the first condition of Theorem 2 holds for any
difference bounds relation.

Lemma 3 There exists a constant d > 0 such that, for every relation R ∈ DB, we have
∣Rn∣ = O((∣R∣ ⋅ logn)d), for all n > 0.

Proof: We assume w.l.o.g. that Rn is consistent, otherwise Rm = ∅ for all m ≥ n and
∣Rm∣ = ∣Rn∣. Then the unfolding GnR does not contain cycles of negative weight, thus
any minimal path in GnR does not contain a cycle. Since GnR has (n + 1) ⋅N nodes, any
minimal path has weight at most µ ⋅ (n + 1) ⋅N , where µ is the maximal value among
the labels of GR. Since there are at most 4N2 such paths in the definition of Rn (5),
we compute:

∣Rn∣ ≤ 4N2 log(µ ⋅ (n + 1) ⋅N) ≤ 4∣R∣2 log(∣R∣ ⋅ (n + 1) ⋅ ∣R∣)
≤ 4∣R∣2(2 log ∣R∣ + logn + 1) ≤ 16∣R∣3 ⋅ logn ≤ 16(∣R∣ ⋅ logn)3 . ◻

In order to establish a similar result for the more general class OCT, we must first
relate the powers of an octagonal relation R ∈ OCT, defined by a constraint φ(x,x′)
with the powers of the difference bounds relation R ∈ DB, defined by the constraint
φ(y,y′), obtained from φ by doubling the number of variables. The following lemma
establishes the needed correspondence between Rn and R

n
. We recall that a relation

is said to be ∗-consistent if each of its powers is consistent.

Lemma 4 For any ∗-consistent relation R ∈ OCT, the following holds, for any n ≥ 0:

σ(Rn)ij = min
⎛
⎝
σ(Rn)ij , ⌊

σ(Rn)iı̄
2

⌋ +
⎢⎢⎢⎢⎣
σ(Rn)̄j

2

⎥⎥⎥⎥⎦
⎞
⎠
.

Proof: [8, Lemma 4.30]. ◻

The following lemma proves the validity of the first condition of Theorem 2, for
every octagonal relation.

Lemma 5 There exists a constant d > 0 such that, for every relation R ∈ OCT, we
have ∣Rn∣ = O((∣R∣ ⋅ logn)d), for all n > 0.

Proof: We assume w.l.o.g. that R is ∗-consistent, otherwise there exists n > 0 such
that Rm = ∅, thus ∣Rm∣ = ∣Rn∣, for all m ≥ n. By Lemma 4, we infer, for any n > 0:

∣Rn∣ =
4N

∑
i,j=1

log (σ(Rn))ij ≤
4N

∑
i,j=1

log (σ(Rn))
ij
= ∣Rn∣ .

By Lemma 3, we have ∣Rn∣ = O((∣R∣ logn)d) for a constant d > 0, not depending on
R. Observe that ∣R∣ ≤ 2∣R∣, since every constraint of R is encoded by two constraints
of R. We obtain thus ∣Rn∣ = O((∣R∣ logn)d), for any n > 0. ◻
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5 The Periodicity of Octagonal Relations
In this section we prove that the class of octagonal relations is periodic, that is, for each
relation R ∈ OCT, the sequence of matrices {σ(Rk)}∞k=0 is periodic. Moreover, we
show that the prefix and the period of this sequence are of the order of 2O(∣R∣

d), for a
constant d > 0 that does not depend on the choice of R. By Theorem 2, a consequence
is that the class of problems REACHFLAT(OCT) is NP-complete.

The core of the proof is showing periodicity of difference bounds relations and
establishing the upper bounds for the prefix and period of sequence {σ(Rk)}∞k=0, where
R ∈ DB. The main idea is that the coefficients of any matrix σ(Rk) can be derived from
the k-th power of a larger matrixMR, where the matrix product is defined using min as
addition and + as multiplication. Intuitively, a sequence {Mk

R}∞k=0 gives the minimal
weights of the paths of length k = 0,1, . . . in a weighted graph AR, whose incidence
matrix is MR. To obtain the simply exponential bounds on the period and prefix of
a sequence {σ(Rk)}∞k=0, we develop this periodicity result further, by exploiting the
structure of the strongly connected components of AR.

In a nutshell, the set of paths from an unfolding GkR of the constraint graph GR
that represents the relation R ∈ DB (Definition 7) is the language, consisting of words
of length k, recognized by a weighted automaton AR (called zigzag automaton in the
following). We use an idea of Comon and Jurski [10] that show that the set of minimal
weights of these paths can be captured by a subset of paths, in which only a bounded
number of direction changes may occur. Based on this fact, we defineAR to recognize
only these simple paths from GkR, by considering a saturated relation Rsat, with the
same periodic behavior as R. The simply exponential upper bound on the period of the
sequence {σ(Rk)}kk=0 follows by a proof of the fact that, in each strongly connected
component of AR, there is an elementary cycle of minimal weight/length ratio, whose
length is of the order of 2O(N), where N is the number of variables from R.

5.1 Saturation of Difference Bounds Relations
We start by proving that the periodic behavior of a sequence of powers {Rk}∞k=0 of a
relation R ∈ DB can be analyzed by considering a saturated version of R, denoted as
Rsat. First we show that such a relation exists for eachR ∈ DB and that all powers ofR,
beyond a certain threshold, can be computed by a function taking as arguments powers
ofRsat instead. As a consequence, R is periodic if Rsat is periodic and the period ofR
is bounded by the period of Rsat. The salient property of a saturated difference bounds
relation is that, every power Rksat is defined by the weights of the minimal paths in the
unfolding GkR of the constraint graph defining R, with a bounded number of direction
changes. This detail is instrumental in providing an accurate upper bound on the period
of difference bounds relations.

Let x = {x1, . . . , xN} be a set of variables. We recall first the notion of folded
graph introduced by Comon and Jurski [10]. Given a relation R ∈ DBx, we consider
the weighted graph GfR = ⟨x,→f ,wf ⟩ which has an edge xi

αÐ→f xj for each edge
xi

αÐ→ xj , xi
αÐ→ x′j , x

′
i

αÐ→ xj , or x′i
αÐ→ x′j in GR. In other words, the folded graph GfR is

obtained from the weighted graph GR by merging all vertices xi and x′i, respectively.
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Example 5 For example, Fig. 5 (b) shows the folded graph for the relation defined by
the formula x2 −x′1 ≤ −1∧ x3 −x′2 ≤ 0∧ x1 −x′3 ≤ 0∧ x′4 −x4 ≤ 0∧ x′3 −x4 ≤ 0, whose
constraint graph is given in Fig. 5 (a). ∎

x4 x′4

x3 x′3

x2 x′2

x1 x′1
−1

0

0

0

0

x4

x3

x2

x1

0

0

0

-1

0
x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4) x(5)

−1
0

0

−1
0

0
0000

(a) (b) (c)

Figure 5: (a) Constraint graph GR, (b) folded graph GfR and (c) zigzag paths in the G5
R

unfolding of the difference bounds relation R, defined by x2 −x′1 ≤ −1 ∧ x3 −x′2 ≤
0 ∧ x1 −x′3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

The folded graph induces the following equivalence relation on indices of variables:
i ∼R j iff xi and xj belong to the same strongly connected component of GfR. For
example, the equivalence classes of the ∼R relation, induced by the folded graph in
Fig. 5 (b), are {1,2,3} and {4}.

The following corner inequalities are generalized triangle inequalities that occur in
an unfolding of size two of the constraint graph GR of a relation R ∈ DB (see Fig. 6).

(b)(a)

cij

cik dik

xi x′i x′′i xi x′i x′′i

xj x′j x′′j

xk x′
k

x′′
k

xj x′j x′′j

xk x′
k

x′′
k

cij dij dij

cik ≤ cij + cjk dik ≤ dij + djk

cjk djk djkcjk

Figure 6: Corner inequalities

Definition 8 A relation R ∈ DBx is saturated if, for all 1 ≤ i, j, k ≤ N , such that
i ∼R j ∼R k, the following hold:

(σ(R)∎)ik ≤ (σ(R)∎)ij + (∎σ(R))jk
(∎σ(R))ik ≤ (∎σ(R))ij + (σ(R)∎)jk

The first inequality is depicted in Fig. 6 (a) and the second case in Fig. 6 (b). The
importance of the above definition lies in the fact that the powers Rn of a saturated
relation R ∈ DB can be defined using only a subset of the minimal paths between the
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(extremal) vertices in the unfolding GnR of the constraint graph ofR (see the constraints
(5) for a definition of Rn using the minimal paths of GnR). Essentially, these are the
minimal paths that, moreover, do not change direction while traversing variables from
the same equivalence class of the ∼R relation.

Definition 9 Let GnR be the n-th unfolding of the constraint graph GR of a relation
R ∈ DB. An edge x(p)i Ð→ x(q)j of GnG is forward (backward) if q = p + 1 (q = p − 1). A
path is forward (backward) if it consists only of forward (backward) edges. A path π is
saturated if for each forward (backward) subpath ρ ∶ x(p)i

∗Ð→ x(q)j of π, of length ∣ρ∣ > 1,
we have i ∼R j.

We show that the n-th power of a saturated relation can be defined by considering only
the saturated minimal paths in the n-th unfolding of its constraint graph. For instance,
the path in Fig. 5 (c) is saturated.

Lemma 6 Given a saturated relationR ∈ DB, for each minimal path π ∶ x(p)i
∗Ð→ x(q)j in

the unfolding GnR of its constraint graph GR, there exists a saturated path πsat ∶ x(p)i
∗Ð→

x(q)j such that w(π) = w(πsat).

Proof: We define a sequence π0, π1, . . . of paths such that π0 = π and for each t ≥ 0,
πt+1 is obtained from πt as follows. Because R is saturated:

• for every two adjacent edges x(p)i
αÐ→ x(p+1)

j

βÐ→ x(p+1)
` on πt, where i ∼R `, there

exists an edge x(p)i
γÐ→ x(p+1)

` , where γ ≤ α + β, and

• for every two adjacent edges x(p+1)
i

αÐ→ x(p)j
βÐ→ x(p)` , where i ∼R `, there exists an

edge x(p+1)
i

γÐ→ x(p)` , where γ ≤ α + β.

πt+1 is obtained by replacing all pairs x(p)i
αÐ→ x(p+1)

j

βÐ→ x(p+1)
` with x(p)i

γÐ→ x(p+1)
`

and all pairs x(p+1)
i

αÐ→ x(p)j
βÐ→ x(p)` , where i ∼R `, with the edges x(p)i

γÐ→ x(p+1)
` and

x(p)i
γÐ→ x(p+1)

` , respectively. Clearly, πt+1 is a path in GnR and, moreover, we have that
∣πt+1∣ < ∣πt∣ and w(πt+1) ≤ w(πt). The sequence is finite, because ∣πt∣ decreases at
each step, and the last path in the sequence is saturated. If, moreover, π is minimal, all
paths in the sequence are minimal as well. ◻

In the rest of this section, we prove that for each difference bounds relation R it is
possible to find a saturated relation Rsat with the same periodic behavior as R. The
problem of periodicity and the evaluation of the upper bounds for the prefix and period
of R is carried out considering Rsat instead. This step is instrumental in proving a
simply exponential upper bound on the period of R.

At this point, it is useful to distinguish between relations that are ∗-consistent (Rk ≠
∅ for all k ≥ 0) and the ones that are not. In the latter case, the period of the power
sequence {Rk}∞k=0 is 1 and the prefix is bounded by the cut-off result below.

Lemma 7 For any relation R ∈ DBx, the following hold:
1. R is ∗-consistent only if for every n ∈ N+ and 1 ≤ i < j ≤ N , such that i ∼R j,

for any paths πi ∶ x(0)i
∗Ð→ x(k)i and πj ∶ x(k)j

∗Ð→ x(0)j in GnR with 0 < k ≤ n, we have
w(πi) +w(πj) ≥ 0.
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2. R is not ∗-consistent only if Rn = ∅, for all n ≥ 6N7 ⋅ µ(GR).

Proof: In the following, the travel of a path π ∶ x(n1)
i1

Ð→ . . . Ð→ x
(nk)
ik

in the unfolding
GnR (Definition 7) of the constraint graph GR is defined by τ(π) = maxkj=1 {nj} −
mink−1

j=1 {nj}.
(1) By contradiction, suppose that R is ∗-consistent and let πi ∶ x(0)i

∗Ð→ x(k)i and πj ∶
x(k)j

∗Ð→ x(0)j in GnR, such that i ∼ j and w(πi) + w(πj) < 0. Because i ∼ j, there exist
paths ζ ∶ x(d)j → . . .→ x(d+p)i and ξ ∶ x(d)i → . . .→ x(d+q)j in GnR, for some −N ≤ p, q ≤ N
and d ≥ max(abs(p),abs(q)). For any m ∈ N we build the following path:

ζ.πmi .ξ = x(d)j → . . .→ x(d+p)i → . . .→ x(d+p+mk)i → . . .→ x(d+p+q+mk)j .

For m ≥ ⌈−(p+q)
k

⌉, we have p+ q +mk > 0, i.e. the above path has a positive travel. Let
us now repeat this path k times, and concatenate it with the path

πp+q+kmj ∶ x(k(d+p+q+mk))j → . . .→ x(d)j .

We obtain the cycle (ζ.πmi .ξ)k.π
p+q+km
j , starting and ending in x(d)j . Observe that the

unfolding GnR has to be sufficiently large to accomodate this cycle. Since n can be taken
arbitrarily large, this is not a restriction. The weight of this cycle is:

k ⋅ (w(ζ) +w(ξ) +m ⋅w(πi)) + (p + q + km) ⋅w(πj) =
km ⋅ (w(πi) +w(πj)) + k ⋅ (w(ζ) +w(ξ)) + (p + q) ⋅w(πj) .

For a sufficiently large m ≥ ⌈−(p+q)
k

⌉, the weight of this cycle is negative, which con-
tradicts with the assumption that R is ∗-consistent. It follows that w(πi) +w(πj) ≥ 0.

(2) If R is not ∗-consistent, there exists n ∈ N+ such that Rn = ∅, thus there exists a
cycle γ of negative weight in GnR. Let γ ∶ x(n1)

i1
→ . . . → x

(nk−1)
ik−1

→ x(n1)
i1

be a negative

cycle of minimal travel in GnR. If τ(γ) ≤ N2, the cycle is present also in GN2

R . Hence
Rn = ∅, for every n ≥ N2. We consider thus that τ(γ) > N2. By the pigeonhole
principle, there exist a pair of variables xi, xj such that the pairs of vertices x(k)i , x(k)j
and x(`)i , x

(`)
j occur on the cycle, for some 0 ≤ k < ` ≤ n. Thus there exist paths

πi ∶ x(k)i → . . . → x(`)i and πj ∶ x(`)j → . . . → x(k)j . Observe that we can always chose
the pairs x(k)i , x(k)j and x(`)i , x

(`)
j such that ` − k ≤ N2. Clearly, we have i ∼ j, since xi

and xj occur on the cycle γ. Suppose now that w(πi)+w(πj) ≥ 0. Since `−k > 0, we
obtain a cycle of smaller travel, by eliminating πi and πj from γ, and concatenating the
path x(k)j → . . .→ x(k)i with x(`−k)i → . . . x(`−k)j . But then we obtain a cycle γ′ of weight
w(γ′) ≤ w(γ) < 0 and travel τ(γ′) < τ(γ). This would contradict the assumption that
τ(γ) is the minimal travel of all negative weight cycles in GnR. Hence it must be the
case that w(πi) +w(πj) < 0.

Given πi and πj such that i ∼ j and w(πi) +w(πj) < 0, we apply the construction
of point (1) to obtain a cycle (ζ.πmi .ξ)`−k.π

p+q+(`−k)m
j of weight:

m ⋅ (` − k) ⋅ (w(πi) +w(πj)) + (` − k) ⋅ (w(ζ) +w(ξ)) + (p + q) ⋅w(πj)
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where ζ, ξ, p and q are the ones from point (1). To obtain a negative cycle, it is thus
sufficient to chose m = (` − k) ⋅ (w(ζ) + w(ξ)) + (p + q) ⋅ w(πj). Since ζ and π are
elementary paths, we have w(ζ)+w(ξ) ≤ 2N ⋅µ(GR) and p+q ≤ 2N . Moreover, since
`−k ≤ N2, we havew(πj) ≤ N2 ⋅µ(GR). Then it is sufficient to takem = 4N3 ⋅µ(GR).
The travel of the cycle thus constructed is at most:

(` − k) ⋅ (p + q + (` − k) ⋅m) ≤ N2 ⋅ (2N +N2 ⋅ 4N3 ⋅ µ(GR))
≤ 4N7 ⋅ µ(GR) + 2N3 ≤ 6N7 ⋅ µ(GR) .

The last inequality is obtained from the following observation: since w(πi) +w(πj) <
0, there must exist at least an edge of non-zero weight in GR, hence µ(GR) > 0. ◻

In the light of the previous lemma, we consider, from now on, that R ∈ DBx is a
∗-consistent relation. We are now ready to define a saturated relation Rsat, which is
periodic if and only if R is periodic, in which case the prefix and the period of Rsat

bound the prefix and the period of R, respectively.
Let φ(x,x′) be any difference bounds constraint (Definition 3) that definesR and φ̃

be the conjunction of all atomic propositions from Atom(φ) involving ∼R-equivalent
variables. We define the following sequence of formulae:

ψ0(y,x,x′,z) ≡ φ̃(y,x) ∧ φ̃(x,x′) ∧ φ̃(x′,z)
ψn+1(y,x,x′,z) ≡ ∃y′∃z′ . φ̃(y,y′) ∧ ψn(y′,x,x′,z′) ∧ φ̃(z′,z), for all n ∈ N

where y = {y1, . . . , yN}, z = {z1, . . . , zN}. The following lemma shows that the se-
quence {∃y∃z . ψn}∞n=0 converges in at most N2 steps and its limit defines a saturated
difference bounds relation.

Lemma 8 For every n ≥ N2, we have ∃y∃z . ψn+1(y,x,x′,z)⇔ ∃y∃z . ψn(y,x,x′,z)
and the formula ∃y∃z . ψN2(y,x,x′,z) ∧ φ defines a saturated relation Rsat.

Proof: “⇒” We have, for all n ≥ 0:

ψn+1(y,x,x′,z) ⇔ ∃y′∃z′ . φ̃(y,y′) ∧ ψn(y′,x,x′,z′) ∧ φ̃(z′,z)
⇒ ∃y∃z . ψn(y,x,x′,z) .

“⇐” For each n ≥ 0, ∃y∃z . ψn is equivalent to a difference bounds constraint, obtained
by eliminating the existential quantifiers and let Mn be the DBM of canonical the
quantifier-free difference bounds constraint that is equivalent to ∃y∃z . ψn. Suppose,
by contradiction, that there exists n ≥ N2 such that ∃y∃z . ψn /⇒ ∃y∃z . ψn+1. Then
there exist k, ` ∈ {1, . . . ,2N} such that (M∗

n)k` > (M∗
n+1)k`. There are four cases,

namely k ≤ N , k > N and ` ≤ N , ` > N . We prove the case k, ` ≤ N , the other three
cases being symmetric.

Because (M∗
n+1)k` < ∞, there exists a path π ∶ x(n)k Ð→ . . . Ð→ x(n)` of weight

w(π) = (M∗
n+1)k` in the unfolding graph G2(n+1)+1

φ̃
. But the only paths in G2(n+1)+1

φ̃

are among ∼R-equivalent variables, by the definition of φ̃, thus it must be the case that
k ∼R `. Moreover, π is not a path in G2n+1

φ̃
, or else we would have w(π) ≥ (M∗

n)k`,
hence (M∗

n+1)k` ≥ (M∗
n)k`, which contradicts our assumption. Since n + 1 > N2 and

23



there are at most N2 pairs of variables in x, by the pigeonhole principle there exists a
pair i, j and two positions 0 ≤ n1 < n2 ≤ 2(n + 1) + 1 such that π can be factorized as:

x(n)k → . . .→ x(n1)
i → . . .→

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
ξ

x(n2)
i
↓
⋮
↓

x(n)` ← . . .← x(n1)
j ← . . .←

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
ζ

x(n2)
j

Let π′ denote the path obtained from π by replacing the segment ξ ∶ x(n1)
i → . . .→ x(n1)

j

with the segment ζ ∶ x(n2)
i → . . .→ x(n2)

j , in which each position is shifted by n1−n2 >
0. Hence π′ is a path between x(n)k and x(n)` in G2n+1

R , thus w(π′) ≥ (M∗
n)k` > w(π).

Since w(π) = w(π′) + w(ξ) + w(ζ), we obtain that w(ξ) + w(ζ) < 0, and because
k ∼R `, we have that i ∼R j as well. By Lemma 7 (1), this contradicts the assumption
that R is ∗-consistent.

For the second point, ∃y∃z . ψN2

R (y,x,x′,z) ∧ φR ⇒ φR, hence Rsat ⊆ R. Now
suppose, by contradiction, that Rs is not saturated. Then there exist three indices
i ∼R j ∼R k that violate one of the corner inequalities from Def. 8. Assume w.l.o.g that
(σ(R)∎)ik > (σ(R)∎)ij + (∎σ(R))jk the other case being symmetric. Then we obtain

that ∃y∃z . ψN2

R /⇒ ∃y∃z . ψN2+1
R , contradicting the first point of the Lemma. ◻

Below we relate the powers of R with those of the relation Rsat, defined in the
statement of Lemma 8, in the sense that a proof of periodicity for Rsat constitutes a
proof for the periodicity of R. Moreover, the prefix and period of Rsat are used to
bound the prefix and period of R, respectively. We recall that, for a difference bounds
relationR ∈ DB, σ(R) is the closed DBM that definesR and µ(σ(R)) is the maximum
between the absolute values of the coefficients of σ(R) and 1.

Lemma 9 Given a ∗-consistent relation R ∈ DBx, where x = {x1, . . . , xN}, for every
n ≥ 2N2, we have Rn = RN2 ○Rn−2N2

sat ○RN2

. Moreover, R is periodic with prefix b
and period c if Rsat is periodic with prefix bsat and period csat, where:

• b = bsat +O(2N logN) ⋅max (µ(σ(RN2)),max0≤i<csat µ(σ(Rbsat+i
sat ))) and

• c divides csat.

Proof: Since Rsat ⊆ R, by Lemma 8, we obtain that Rn ⊇ RN2 ○Rn−2N2

sat ○RN2

, for
each n ≥ 2N2. The dual inclusion follows by noticing that, for any difference bounds
constraint φ that defines R, we have φ(x,x′) ⇒ φ̃(x,x′), because φ̃ is obtained by
dropping several atomic propositions from φ. Also, since R is ∗-consistent, it must be
the case that Rsat is ∗-consistent as well.

Assume that Rsat is periodic with prefix bsat and period csat, thus the sequence of
matrices {σ(Rksat}∞k=0 is periodic. By Lemma 1, there exist matrices Λi ∈ Z2N×2N

∞ ,
such that σ(Rbsat+kcsat+i

sat ) = σ(Rbsat+i
sat ) + k ⋅ Λi, for all k ≥ 0 and i ∈ [csat]. Since

Rbsat+2N2+` = RN
2 ○ Rbsat+` ○ RN2

for all ` ≥ 0, it is sufficient to show that the
sequence {σ(Rbsat+kcsat+i+2N2)}∞k=0 is periodic, for each i ∈ [csat]. To this end, let us
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observe that, for each i ∈ [csat], the matrix σ(Rbsat+kcsat+i+2N2) ∈ Z∞[k]2N×2N is the
incidence matrix of the labeled graph Gi = ⟨⋃3

j=0 x
(j),→i,wi⟩, defined as follows:

• Gi↓x(0)∪x(1) is GRN2 with x(0) and x(1) replacing x and x′, respectively.
• Gi↓x(2)∪x(3) is GRN2 with x(2) and x(3) replacing x and x′, respectively.
• Gi↓x(1)∪x(2) is defined by the following edges labeled by univariate linear terms

with variable k, for each s, t = 1, . . . ,N :

x(1)s
σ(Rbsat+i)s,t + k⋅(Λi)s,tÐÐÐÐÐÐÐÐÐÐÐÐ→ x(1)t

x(1)s
σ(Rbsat+i)s,t+N + k⋅(Λi)s,t+NÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ x(2)t

x(2)s
σ(Rbsat+i)s+N,t + k⋅(Λi)s+N,tÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ x(1)t

x(2)s
σ(Rbsat+i)s+N,t+N + k⋅(Λi)s+N,t+NÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ x(2)t

In other words, the middle graph Gi↓x(1)∪x(2) corresponds to the matrix σ(Rbsat+i)+k ⋅
Λi ∈ Z∞[k]2N×2N , whereas the extremities Gi↓x(0)∪x(1) and Gi↓x(1)∪x(2) are constraint
graphs defining the relation RN

2

. Clearly, for each i ∈ [csat] and k ≥ 0, the coefficients
of the matrix σ(Rbsat+kcsat+i+2N2) are given by the weights of the minimal paths from
and to the vertices in the set x(0) ∪ x(3) in Gi. Since R is ∗-consistent, no cycle of
negative weight can be found in Gi, for any k ≥ 0 and i ∈ [csat]. Thus the minimal paths
in Gi are necessarily elementary, thus of length at most 4N , which is the number of
vertices in Gi. Consequently, there exist at most (4N)N = O(2N logN) such paths, and
(σ(Rbsat+kcsat+i+2N2))st = min(wi,1st (k), . . . ,w

i,Lst
st (k)), for all s, t ∈ {1, . . . ,2N},

where wi,1st (k), . . . ,w
i,Lst
st (k) are the univariate linear terms labeling the elementary

paths from Gi of the form:
• x(0)s →∗ x

(0)
t if 1 ≤ s, t ≤ N ,

• x(0)s →∗ x
(3)
t−N if 1 ≤ s ≤ N and N < t ≤ 2N ,

• x(3)s−N →∗ x
(0)
t if N < s ≤ 2N and 1 ≤ t ≤ N ,

• x(3)s−N →∗ x
(3)
t−N if N < s, t ≤ 2N ,

and Lst = O(2N logN) is the number of such paths. Moreover, because each term
wi,jst (k) denotes a path of length at most 4N in Gi, we have that:

abs(wi,jst (0)) ≤ 4N ⋅max(µ(σ(RN
2

)), max
0≤i<csat

µ(σ(Rbsat+i
sat ))) (6)

The upper bound on the period of {σ(Rk)}∞k=0 can be found by the following ar-
gument. Observe that {(σ(Rbsat+kcsat+i

sat )st}∞k=0 is an arithmetic progression, for all
1 ≤ s, t ≤ 2N , thus each sequence {w`st(k)}∞k=0 is an arithmetic progression. By
Lemma 19, the sequence {min(w1

st(k), . . . ,wLstst (k))}∞k=0 has period 1 and by Lemma
1, the sequence of matrices {σ(Rbsat+kcsat+i+2N2)}∞k=0 has period 1, for each i ∈ [csat].
The period of the sequence {σ(Rk)}∞k=0 is thus a divisor of csat. Considering that
Lst = O(2N logN), the upper bound on the prefix of R is obtained as follows:

b ≤ bsat + (2N)2 ⋅max
0≤i<csat
1≤s,t≤2N

∑Lstj=1 abs(wi,jst (0)) by Lemma 19

= bsat +O(2N logN) ⋅max(µ(σ(RN2)),max0≤i<csat µ(σ(Rbsat+i
sat ))) by (6)

◻
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We have reduced the problem of proving the periodicity of an arbitrary difference
bounds relation R to proving the periodicity of a saturated difference bounds relation
Rsat. In the next two sections, we show that any saturated relation R is periodic (5.2)
and, moreover, that the prefix and the period of the sequence {σ(Rk)}∞k=0 are of the
order of 2O(∣R∣) (5.4). The previous lemma generalizes these bounds to arbitrary differ-
ence bounds relations. Finally, section 5.5 extends these bounds to octagonal relations,
concluding the proof of NP-completness for the class of problems REACHFLATOCT.

5.2 Zigzag Automata
In this section we define zigzag automata, which are an important tool for reasoning
about the powers of difference bounds relations. Consider an unfolding GnR of the
constraint graph GR, for some n > 0. We recall the constraints (5) which define the
power Rn, using the minimal paths in GnR between the vertices in the set x(0) ∪ x(n).
Each such path can be seen as a word over the finite alphabet of subgraphs of GR, and
the set of paths between two distinguished vertices is the language of a finite (weighted)
automaton, called zigzag automaton[7]. Intuitively, a zigzag automaton reads at step i,
all edges between x(i) and x(i+1) simultaneously. The weight of a transition fired by the
zigzag automaton is the sum of the weights of these edges. Each run of length n in a
zigzag automaton recognizes a word consisting of a single path between two extremal
vertices in GnR, from the set x(0) ∪ x(n). Since we are interested in the minimal paths
that occur in the constraints (5), we aim at computing the minimal weight among all
runs of length n, as a function of n.

Formally, a weighted automaton3 [34] is a tuple A = ⟨Σ, ω,Q, I,F,∆⟩, where Σ
is a finite alphabet, ω ∶ Σ → Z is a function associating integer weights to alphabet
symbols, Q, I , F are the set of states, initial and final states, respectively, and ∆ ⊆
Q×Σ×Q is a transition relation. The weight of a non-empty word w = σ1 . . . σn ∈ Σ+

is defined as ω(w) = ∑ni=1 ω(σi) and the weight of the empty word is ω(ε) = 0. When
A is clear from the context, we denote by q

σÐ→ q′ the fact that (q, σ, q′) ∈ ∆. A run
of A is a sequence q0

σ0Ð→ q1
σ1Ð→ . . .

σn−1ÐÐ→ qn, denoted q0
σ0...σn−1ÐÐÐÐÐ→ qn. A state

q ∈ Q is reachable if there exists a run from an initial state to it, and co-reachable if
there exists a run from it to a final state. A word w ∈ Σ∗ is accepted by A if there
exists a run q0

wÐ→ qn such that q0 ∈ I and qn ∈ F . We denote by L(A) the set
of words accepted by A, i.e. the language of A. Moreover, we define the function
minwA(n) = min{ω(w) ∣ w ∈ L(A), ∣w∣ = n} yielding, for each n ∈ N, the minimal
weight among all words of length n recognized by A, or ∞ if no such word exists.

Given a difference bounds relation R ∈ DBx, where x = {x1, . . . , xN} is a set of
variables, let GR = ⟨x ∪ x′,Ð→,w⟩ be the constraint graph that defines R. The alphabet
ΣR is the set of all subgraphs of GR such that (i) the in-degree and out-degree of each
node are at most 1, and (ii) the difference between the number of edges from x to
x′ and the number of edges number of edges from x′ to x is either −1, 0 or 1. The
weight of a graph symbol G ∈ ΣR os the sum of the weights that occur on its edges
ω(G) = ∑

x
cÐ→y c.

3We adopt a simplified version of the classical definition [34] that is sufficient for our purposes.
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(c) A run of Aef
24 on the word G3.(G1.G2.G3)2.G4 ∈ Σ+

R encoding an even forward path.

Figure 7: Zigzag automaton for the relation R defined by x2 −x′1 ≤ −1 ∧ x3 −x′2 ≤
0 ∧ x1 −x′3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

Example 6 Fig. 7 (a) shows a subset of the zigzag alphabet ΣR for the difference
bounds relation R⇔ x2 −x′1 ≤ −1∧x3 −x′2 ≤ 0∧x1 −x′3 ≤ 0∧x′4 −x4 ≤ 0∧x′3 −x4 ≤ 0
from Ex. 4. The weights of the symbols in the word are ω(G1) = ω(G2) = ω(G4) = 0,
ω(G3) =−1. Fig. 4 (c) shows a path x(0)2 Ð→ . . . Ð→ x(0)4 from the unfolding graph G8

R,
encoded by the word G3.(G1.G2.G3)2.G4. ∎

The set of states of the zigzag automaton is Q = {`, r, `r, r`,�}N , i.e. the set of
N -tuples of symbols `, r, `r, r` and �. Intuitively, these symbols capture the direction
of the incoming and outgoing edges of the alphabet symbols: ` for a path traversing
from right to left, r for a path traversing from left to right, `r for a right incoming and
right outgoing path, r` for a left incoming and left outgoing path, and � when there are
no incoming nor outgoing edges from that node. As a remark, the number of states of a
zigzag automaton is bounded by 5N . For example, Figure 7 (c) shows the use of states
in a zigzag automaton.

The transition relation ∆ ⊆ Q×ΣR ×Q is defined as follows. For all q,q′ ∈ Q and
G ∈ ΣR, we have q

GÐ→ q′, if and only if, for all 1 ≤ i ≤ N :
• qi = ` iff G has one edge to xi and no other edge involving xi,
• q′i = ` iff G has one edge from x′i and no other edge involving x′i,
• qi = r iff G has one edge from xi and no other edge involving xi,
• q′i = r iff G has one edge to x′i and no other edge involving x′i,
• qi = `r iff G has exactly two edges involving xi, x

(′)
j Ð→ xi Ð→ x(′)k and j /∼R k,

• q′i = r` iff G has exactly two edges involving x′i, x
(′)
j Ð→ x′i Ð→ x(′)k and j /∼R k,

27



• q′i ∈ {`r,�} iff G has no edge involving x′i,
• qi ∈ {r`,�} iff G has no edge involving xi.

Observe that the variables that occur on any path which traverses a vertex labeled `r or
r` may not belong to the same SCC of the folded graph GfR. As a consequence, every
path recognized by a zigzag automaton is saturated. For example, the path recognized
by the run in Figure 4 (c) goes forward while crossing the variables x1, x2, x3 and, after
changing direction, goes backward while crossing only x4.

We distinguish four types of paths in GnR. A path x(k)i
∗Ð→ x(`)j is said to be odd

forward if k = 0 and ` = n, even forward if k = ` = 0, odd backward if k = n and ` = 0,
and even backward if k = ` = n. The symbols needed to represent an odd path have an
odd number of edges, while those encoding even paths have even numbers of edges.

The zigzag automaton forR is a union of four types of automata. Formally, for each
i, j ∈ {1, . . . ,N} and t ∈ {of ,ob, ef , eb} (we use the abbreviations of =odd forward,
ob=odd backward, ef =even forward and eb=even backward), the weighted automaton
Atij = ⟨Q,ω, Itij , F tij ,∆⟩ recognizes the saturated paths x(p)i

∗Ð→ x(q)j of type t, with
p, q ∈ {0, n}. More precisely, we define the initial and final states as follows:

Iofij = {q ∣ qi = r and qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}}
F of
ij = {q ∣ qj = r and qh ∈ {r`,�}, ∀h ∈ {1, . . . ,N} ∖ {j}}
Iobij = {q ∣ qi = ` and qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}}
F ob
ij = {q ∣ qj = ` and qh ∈ {r`,�}, ∀h ∈ {1, . . . ,N} ∖ {j}}

Iefij = { {q ∣ qi = r, qj = `, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i, j}} if i ≠ j
{q ∣ qi = `r, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}} if i = j

F ef
ij = {r`,�}N
Iebij = {`r,�}N

F eb
ij = { {q ∣ qi = `, qj = r, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i, j}} if i ≠ j

{q ∣ qi = r`, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}} if i = j

Example 7 Figure 7 (b) shows the zigzag automaton Aef
24 of the difference bounds

relation R⇔ x2 −x′1 ≤ −1 ∧ x3 −x′2 ≤ 0 ∧ x1 −x′3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0 from
Ex. 4 and Ex. 6. Note that the states that are not both reachable and co-reachable are
not shown in this figure, hence the alphabet symbols G6 and G7 are not used. Fig. 7 (c)
shows a run of Aef

24 on the word γ = G3.(G1.G2.G3)2.G4, encoding an ef -path. ∎

The following theorem wraps up the above definition, by relating the language of
a zigzag automaton with the weights of the minimal paths in the unfolding GnR of the
constraint graph defining a difference bounds relation R.

Theorem 3 Let R ∈ DBx be a ∗-consistent saturated difference bounds relation, for
x = {x1, . . . , xN}. Then, for each n > 0 and all 1 ≤ i, j ≤ N , the following hold:

1. each word w ∈ L(Aof
ij ) of length n encodes a saturated path x(0)i

∗Ð→ x(n)j and the
weight of a minimal such path is minwAof

ij
(n),

2. each word w ∈ L(Aob
ij ) of length n encodes a saturated path x(n)i

∗Ð→ x(0)j and the
weight of a minimal such path is minwAob

ij
(n),
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3. each word w ∈ L(Aef
ij ) of length n encodes a saturated path x(0)i

∗Ð→ x(0)j and the
weight of a minimal such path is minwAef

ij
(n),

4. each word w ∈ L(Aeb
ij ) of length n encodes a saturated path x(n)i

∗Ð→ x(n)j and
the weight of a minimal such path is minwAeb

ij
(n).

Proof: We prove that each word w ∈ L(A)tij , for t ∈ {of ,ob, ef , eb} encodes a sat-
urated path by contradiction. Suppose that π is a path in w = σ1 . . . σn which is not
saturated. Then there exists two adjacent edges x(k)s Ð→ x(`)t Ð→ x(m)u on π belonging to
the same alphabet symbol σi ∈ ΣR, for some 1 ≤ i ≤ n, s ∼R u and either (i) ` = k + 1
and m ∈ {k, k + 1}, or (ii) ` = k − 1 and m ∈ {k − 1, k}. Since w ∈ L(Atij), there
exists a run q0

σ1Ð→ q1 . . .
σnÐ→ qn in Atij . In the first case, we have (qi)t = r` and in

the second case (qi−1)t = `r. In both cases, however, we must have s /∼R u, by the
definition of the transition relation of Atij , contradiction.

For the characterization of the weights of minimal paths, the proofs of the points
(1), (2), (3) and (4) are based on [7, Lemmas 4.6, 4.7, 4.3 and 4.4], respectively. ◻

5.3 Weighted Graphs and Periodic Powers of Matrices
This section recalls several results from the theory of weighted graphs, needed to prove
the periodicity of the minimal weight functions minwA of weighted automata. Based
on these facts, we characterize the prefixes and periods of a sequence of powers of a
matrix, which sets the ground for the analysis of the periodicity of difference bounds
relations (Section 5.4).

Let G = ⟨V,E,w⟩ be a weighted graph for the rest of this section. A path π is of
minimal weight for its length if , for any path π′ such that src(π′) = src(π), dst(π′) =
dst(π) and ∣π′∣ = ∣π∣, we have w(π) ≤ w(π′). Two paths π and π′ in G are equivalent
if src(π) = src(π′), dst(π) = dst(π′), ∣π∣ = ∣π′∣ and w(π) = w(π′). The average
weight of a path π is w(π) = w(π)

∣π∣ . A cycle is said to be critical if it has minimal
average weight among all cycles of G. The critical graph Gc consists of those vertices
and edges of G that belong to a critical cycle. The following theorem states a classical
result [1, Theorem 3.96]:

Theorem 4 For any weighted graph G, every cycle of the critical graph Gc is critical.

If C is a strongly connected component (SCC) of Gc, we define its cyclicity as the
greatest common divisor of the lengths of all its elementary cycles. The cyclicity of
Gc is the least common multiple of the cyclicities of its SCCs, and the cyclicity of G,
denoted c(G), is the cyclicity of Gc.

Weighted graphs are intimately related with the powers of their incidence matrices,
defined as follows. For two matrices A,B ∈ Zn×n∞ , let (A ⊠ B)ij = min1≤k≤n(Aik +
Bkj) and 1n be the matrix (1n)ii = 0, for all 1 ≤ i ≤ n and (1n)ij = ∞, for all
1 ≤ i, j ≤ n, where i ≠ j. The powers of a matrix M are defined as M0 = 1n and
Mk+1 = M ⊠Mk, for all k ≥ 0. If M is the incidence matrix of a weighted graph G,
the coefficient (Mk)ij is the weight of a minimal path of length k between the vertices
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i and j in G. In this case, we also write c(M) for c(G). The following theorem provides
a basic tool for proving periodicity of a sequence of relations, in the following.

Theorem 5 For a matrix M ∈ Zn×n∞ , the sequence {Mk}∞k=0 is periodic and its period
divides c(M).

Proof: See [33, Theorem 3.3]. ◻

Despite our best efforts, no estimation of the prefix of a power sequence of a matrix
could be found in the literature, so far. This gap is filled by the next theorem. We recall
that, for a matrix M , µ(M) stands for the maximum between the absolute values of its
coefficients and one.

Theorem 6 Given a matrix M ∈ Zn×n∞ , the prefix of the periodic sequence {Mk}∞k=0

is at most 4µ(M) ⋅ n6.

Proof: See Appendix A. ◻

Observe that the prefix of a sequence of matrix powers {Mk}∞k=0 depends linearly on
the maximal coefficient(s) and polynomially on the dimension of M . On the other
hand, its period (Theorem 5) depends (exponentially) only on the dimension of M .

Finally, we state the results of Theorems 5 and 6 in terms of weighted automata,
instead of weighted graphs. Given a weighted automaton A = ⟨Σ, ω,Q, I,F,∆⟩, its
underlying weighted graph is defined as G(A) = ⟨Q, δ,w⟩, where for all q, q′ ∈ Q:
(i) (q, q′) ∈ δ iff there exists σ ∈ Σ such that (q, σ, q′) ∈ ∆, and (ii) w(q, q′) =
min{ω(σ) ∣ ∃σ ∈ Σ . (q, σ, q′) ∈ ∆}. We write c(A) and µ(A) for c(G(A)) and µ(G(A)),
respectively.

Corollary 1 For a weighted automaton A = ⟨Σ, ω,Q, I,F,∆⟩, the infinite sequence
{minwA(n)}∞n=0 is periodic, with prefix b = O(µ(A) ⋅ c(A)⋅ ∥Q∥10) and period c that
divides c(A).

Proof: Let I = {qi1 , . . . , qik}, F = {qj1 , . . . , qj`} be the sets of initial and final states of
A. Clearly we have k, ` ≤∥Q∥. By denotingmst(n) = min{ω(w) ∣ qis

wÐ→ qjt , ∣w∣ = n},
we have:

min{ω(w) ∣ w ∈ L(A), ∣w∣ = n} =
k

min
s=1

`
min
t=1

mst(n) .

By Theorem 5, each sequence {mst(n)}∞n=0 is periodic, with prefix bst and period
cst that divides c(A). By Lemma 19, the sequence min{ω(w) ∣ w ∈ L(A), ∣w∣ = n} is
periodic, with period c that divides lcmk

s=1 lcm`
t=1 cst. Since each cst divides c(A), we

have that c divides c(A) as well. For an upper bound on the prefix b of this sequence,
let bmax = maxks=1 max`t=1 bst. By Lemma 19, we obtain:

b ≤ bmax + k ⋅ ` ⋅maxc−1
i=0 (∑ks=1∑`t=1 abs(ms,t(bmax + i)))

b ≤ bmax + k2 ⋅ `2 ⋅ (bmax + c − 1) ⋅ µ(A)

By Thm. 6, we have bmax ≤ 4µ(A)⋅ ∥Q∥6, hence we obtain, after simplifications
b ≤ 4 ⋅ µ(A) ⋅ c(A)⋅ ∥Q∥10. ◻
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5.4 The Periodicity of Difference Bounds Relations
We are now ready to prove that the sequence of matrices {σ(Rn)}∞n=0 is periodic,
where R ∈ DBx is any difference bounds relation and x = {x1, . . . , xN} is a set of
variables. The coefficients of σ(Rn) are the weights of the minimal paths between
extremal vertices from the set x(0) ∪ x(n) in the unfolding GnR of the constraint graph
GR — see the constraints (5). By Theorem 3, these weights are given by the functions
minwAtij(n), where Atij = ⟨Q,ω, Itij , F tij ,∆⟩ are the zigzag automata for the relation
R. Since these functions are periodic, it follows that the sequence {σ(Rn)}∞n=0 is pe-
riodic (Corollary 1). Moreover, the prefix of this sequence is polynomially bounded by
the common cyclicity of zigzag automata and ∥Q∥ and its period divides this cyclicity.
Since ∥Q∥= 2O(N) by the construction of zigzag automata, we are essentially left with
bounding the cyclicity of zigzag automata.

Let us start by proving a structural property of cycles in a zigzag automaton. A
cycle q

γÐ→ q in the underlying weighted graph G(Atij) of Atij is critical if it is a
critical cycle of G(Atij) and, moreover, q is both reachable and co-reachable in Atij .

Lemma 10 Let A be a zigzag automaton for a saturated relation R ∈ DBx, where
x = {x1, . . . , xN} and q

γÐ→ q be one of its a critical cycles, for ∣γ∣ > 0. Then γ is a
set of saturated paths {ξk ∶ x(pk)k

∗Ð→ x
(qk)
k }k∈K , either forward or backward, such that

k ∼R ` only if k = `, for all k, ` ∈K, where K ⊆ {1, . . . ,N}.

Proof: We give the proof for the odd-forward case, the other three cases being similar.
Since q is a reachable and co-reachable state of Aof

ij , there exists a word w = µ ⋅ γ ⋅ ν ∈
L(Aof

ij ) and a run q0
µÐ→ q

γÐ→ q
νÐ→ qf in Aof

ij for some q0 ∈ Itij and qf ∈ F tij . By

Theorem 3 (1), w encodes a saturated path π ∶ x(0)i
∗Ð→ x(∣w∣)j . We recall that q is a

N -tuple of elements from the set {`, r, `r, r`,�} and we denote by qk the k-th element
of q, for 1 ≤ k ≤ N . Let us consider first the case qk = r (the case qk = ` is symmetric).
Then either:

• π has a subpath ξ ∶ x(∣µ∣)k

∗Ð→ x(∣µ∣+∣γ∣)k . Since π is saturated and all variables that
occur on ξ are from the same equivalence class of ∼R, all edges in ξ must have
the same direction, forward or backward. But since ξ has strictly positive travel,
i.e. τ(ξ) > 0, at least one edge on ξ is forward, thus ξ is forward.

• π has a subpath ξ ∶ x(∣µ∣+∣γ∣)k

∗Ð→ x(∣µ∣)k and all edges of ξ must have the same
direction, either forward or backward. Since τ(ξ) < 0, at least one edge on ξ
must be backward, thus ξ is backward. But since qk = r, the only outgoing edge
from x(∣µ∣)k must be either forward or vertical, contradiction.

The cases qk ∈ {`r, r`} both lead to contradictions, using similar arguments. We have
established that γ consists of saturated paths that do not change their direction.

For the second point, assume that there exist two indices k, ` ∈K, such that k ∼R `
and k ≠ `. Then π has a subpath ξ ∶ x(∣µ∣)k

∗Ð→ x(∣µ∣)` , and since k ∼R `, it follows that all
variables occuring on ξ must be equivalent. Since π is saturated, the same holds for ξ,
thus the edges on ξ are either all forward or all backward. But this contradicts the fact
that the endpoints of ξ are both on the same position ∣µ∣. ◻

A path x(p)k
∗Ð→ x(q)k is essential if all variables occurring on it are pairwise distinct,
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except for the labels of its source and destination vertices. Clearly, the length of an
essential path is bounded by the number N of variables occurring on this path. An
essential power is a path ξn obtained from the concatenation of an essential path ξ
with itself n > 0 times.

The following lemma shows that each critical cycle q
γÐ→ q in a zigzag automaton

A is necessarily connected to a critical cycle q
λÐ→ q, where λ consists of a finite set of

essential powers. This allows us to bound the length of λ by a simply exponential value,
which divides lcm(1, . . . ,N). It follows that the common cyclicity of these zigzag
automata is a divisor of lcm(1, . . . ,N). We use the fact that lcm(1, . . . ,N) = 2O(N)

[30], which occurs as a consequence of the Prime Number Theorem, and bound the
cyclicity of zigzag automata by 2O(N).

Lemma 11 Let A be a zigzag automaton for a saturated relation R ∈ DBx, where
x = {x1, . . . , xN} and q

γÐ→ q be one of its a critical cycles, for ∣γ∣ > 0. Then there
exists a critical cycle q

λÐ→ q in A such that λ is a set of essential powers {πnkk }k∈K
and ∣λ∣ = lcmk∈K {∣πk ∣}, for some K ⊆ {1, . . . ,N}.

Proof: By Lemma 10, γ is a set {ξk}k∈K of forward/backward paths, such that the
labels of ξk and ξ` lie in different equivalence classes of the ∼R relation, for all k ≠ `.
We shall build a word λ as a set of essential powers {πnkk }k∈K . Clearly, the paths
πnkk and πn`` may not intersect (because they cannot share labels), for any k ≠ `, thus
q

λÐ→ q is a valid cycle w.r.t. the definition of the transition table of A. Before giving
the definition of the set {πnkk }k∈K , we prove the following fact:

Fact 1 For a path ξk ∶ x(p1)
k

α1Ð→ . . .
αm−1ÐÐÐ→ x(pm)k , let Gk be the restriction of GfR to the

vertices and edges on ξk. Then ζk ∶ xk
α1Ð→ . . .

αm−1ÐÐÐ→ xk is a critical cycle of Gk.

Proof: Suppose, by contradiction, that there exists k ∈ K such that ζk is not a critical
cycle of Gk, hence there exists a cycle θ in Gk, such that w(θ) < w(ζk). Since Gk is
strongly connected, there exist paths µ and ν such that ηst = µ.θs.ν.(µ.ν)t is a path in
Gk, with source and destination xk, for all s, t ≥ 0. It is sufficient to build a path ηst
such that ∣ηst∣ is a multiple of ∣γ∣. In this case, there exist a cycle q

γ′Ð→ q, where γ′ is
the set consisting of ηs+K∣γ∣,t, for a sufficiently large K > 0, and powers of ξ`, for all
` ∈K∖{k}, such that w(γ′) < w(γ), which contradicts the fact that q

γÐ→ q is a critical
cycle of A.

In order to find s and t such that ∣ηst∣ is a multiple of ∣γ∣, let n1 = ∣µ∣ + ∣ν∣, n2 = ∣θ∣,
m1 = n1

gcd(n1,n2) and m2 = n2

gcd(n1,n2) . Clearly m1 and m2 are coprimes, and let
g(n1, n2) = n1n2 − (n1 + n2) be their Frobenius number. We know that any integer
h > g(n1, n2) is a conical combination h = k1m1 + k2m2, where k1, k2 ≥ 0. Let
n2 = `1m1 + `2m2, for some `1, `2 ≥ 0, be the smallest multiple of ∣γ∣ that is greater
than g(n1, n2), and let u = gcd(n1, n2) ⋅ n2

∣γ∣ . It is now easy to verify that ∣ηs,t∣ =
s ⋅ n1 + t ⋅ n2 = u ⋅ ∣γ∣, where s = `1 ⋅ gcd(n1, n2) and t = `2 ⋅ gcd(n1, n2). ◻

It follows that each graph Gk is critical, i.e. Gk = Gck, and we can chose, in Gk, an
elementary cycle ρk with both source and destinatin labeled by xk. By Theorem 4, we
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have that ρk is a critical cycle as well, and consequently w(ρk) = w(ζk). Let πk be the
path in GnR that corresponds to the path ρk in GfR, for each k ∈ K. Since all edges of
ρk correspond to edges of GnR that are either all forward or all backward, we know that
such a path exists. The path πk is essential, because ρk is an elementary cycle of GfR
and, moreover, w(πk) = w(ρk) = w(ζk) = w(ξk). The word λ consists of the essential
powers {πnkk }

k∈K , where nk = lcm`∈K ∣π`∣
∣πk ∣ , for all k ∈K. We have ∣λ∣ = lcmk∈K ∣πk ∣ by

the construction of λ. Moreover, q
λÐ→ q is a cycle in A, and since w(λ)

∣λ∣ = w(γ)
∣γ∣ , it is

also a critical cycle. ◻

The next theorem concludes the proof of periodicity for the class DB, providing
simply exponential upper bounds on the prefix and the period of a difference bounds
relation. The next section extends this result to the class OCT and finalizes the proof
of Theorem 2, which is the main result of this paper.

Theorem 7 There exists a constant d > 0 such that, for every relation R ∈ DB, the
sequence {σ(Rk)}∞k=0 is periodic, with prefix b = 2O(∣R∣

d) and period c = 2O(∣R∣
d).

Proof: Let R ⊆ Zx × Zx, where x = {x1, . . . , xN} and assume w.l.o.g. that each
variable xi occurs in a formula φ that defines R. Then we have N ≤ ∣R∣. Let GR be the
constraint graph of R. We also have that µ(GR) ≤ 2O(∣R∣).

We distinguish two cases. First, if R is not ∗-consistent, its period is c = 1 and its
prefix is b ≤ 6N7 ⋅ µ(GR) = 6∣R∣6 ⋅ 2O(∣R∣) = 2O(∣R∣), by Lemma 7 (2). Second, if R is
∗-consistent, there exists a saturated relation Rsat ⊆ R such that R is periodic if Rsat

is periodic, and
• b = bsat +O(2N logN) ⋅max(µ(σ(RN2)),max0≤i<csat µ(σ(Rbsat+i

sat ))),
• c divides csat,

where bsat and csat are the prefix and period of Rsat (Lemma 9). By Theorem 3 the
sequence {σ(Rksat)}∞k=0 is periodic, and by Corollary 1, we have bsat = O(µ(A) ⋅
c(A)⋅ ∥Q∥10) and csat is a divisor of c(A), where A = ⟨ΣR, ω,Q, I,F,∆⟩ is any
zigzag automaton for Rsat. Since ΣR is a set of subgraphs of GR, we have µ(A) ≤
µ(GR) = 2O(∣R∣). Moreover, ∥Q∥= 2O(∣R∣), by the definition of zigzag automata.

Observe that the choice of A does not influence c(A), because all zigzag automata
share the same transition table. It remains to give a bound for the cyclicity of A. By
Lemma 11 each critical cycle of G(A) is connected to a critical cycle of length that
divides lcm(1, . . . ,N). Thus the cyclicity of each SCC of A divides lcm(1, . . . ,N)
and the same holds for c(A), which is the least common multiple of the cyclicities of
the SCCs of G(A). Since lcm(1, . . . ,N) = 2O(N) [30], we obtain that c(A) = 2O(N) =
2O(∣R∣). Summing up, we obtain bsat = 2O(∣R∣) and csat = 2O(∣R∣). By Lemma 3, for all
0 ≤ i < csat, we have ∣Rbsat+i

sat ∣ = O((∣R∣sat ⋅ log(bsat + csat))d), for a constant d > 0 that
does not depend on the choice ofRsat. Since ∣Rsat∣ ≤ N2 ⋅ ∣R∣, by the definition ofRsat

(Lemma 8), we can conclude that max0≤i<csat µ(σ(Rbsat+i
sat )) = 2O(∣R∣

d). A similar
reasoning leads to µ(σ(RN2)) = 2O(∣R∣

d), and thus b = 2O(∣R∣
d). Since c ≤ csat, we

also have that c = 2O(∣R∣
d), which concludes the proof. ◻
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5.5 Finalizing the Proof of Theorem 2
We have gathered all the elements necessary to prove the second point of Theorem 2,
namely that the octagonal relations are periodic, with simply exponential prefixes and
periods. As a consequence, the class of problems REACHFLAT(OCT) is NP-complete.
The theorem below is a consequence of the similar result for difference bounds con-
straints and of the relation between the powers of octagonal relations and their en-
codings using difference bounds constraints (Lemma 4). We infer that the class OCT
is periodic, because for two periodic sequences {sk}∞k=0 and {tk}∞k=0, with prefixes
bs, bt ≥ 0 and periods cs, ct > 0, respectively, the following sequences are periodic:
- {sk + tk}∞k=0 with prefix at most max(bs, bt) and period which divides lcm(cs, ct)

(Lemma 16, Appendix B),
- {⌊ sk

2
⌋}∞
k=0

with prefix bs and period 2cs (Lemma 17, Appendix B),

- {min(sk, tk)}∞k=0 with prefix at most max(bs, bt) +∑lcm(cs,ct)
i=0 (abs(si) + abs(ti))

and period which divides lcm(cs, ct) (Lemma 18, Appendix B).

Theorem 8 There exists a constant d > 0 such that, for every relation R ∈ OCT, the
sequence {σ(Rk)}∞k=0 is periodic, with prefix b = 2O(∣R∣

d) and period c = 2O(∣R∣
d).

Proof: Let R ∈ OCTx, where x = {x1, . . . , xN} and R ∈ DBy be the difference
bounds relation that encodes R, for y = {y1, . . . , y2N}. We have that ∣R∣ ≤ 2∣R∣.

We consider first the case in which R is ∗-consistent. By Lemma 4 the matrix
σ(Rk) is octagonal-consistent, for any k ≥ 0. Then, by Theorem 1, σ(Rk) is con-
sistent, for all k ≥ 0, thus R is ∗-consistent. Moreover, by Theorem 7, the sequence
{σ(Rk)}∞k=0 is periodic, with period b and prefix c of the order of 2O(∣R∣

d), for a con-
stant d which does not depend on the choice of R. By Lemma 1, each of the se-
quences {σ(Rk)ij}∞k=0 is periodic, with prefix bij ≤ b and period cij that divides c.

By Lemma 17, the sequences {⌊σ(R
k)iı̄

2
⌋}

∞

k=0
and {⌊σ(R

k)̄j
2

⌋}
∞

k=0
are periodic with

prefixes biı̄, b̄j and periods 2ciı̄, 2c̄j , respectively. By Lemma 16, the sequence

{⌊σ(R
k)iı̄

2
⌋ + ⌊σ(R

k)̄j
2

⌋}
∞

k=0
is periodic with prefix at most max(biı̄, b̄j) and period

which divides 2 lcm(ciı̄, c̄j), thus also 2c. Then {σ(Rk)ij}∞k=0 is periodic with period
which divides 2c and prefix at most:

bm + 2c−1
max
`=0

(abs(σ(Rbm+`)ij) + abs(σ(Rbm+`)iı̄) + abs(σ(Rbm+`)̄j))

where bm = max(bij , biı̄, b̄j). Since bij , biı̄, b̄j and c are of the order of 2O(∣R∣
d), for

all ` = 0, . . . ,2c − 1, the coefficients σ(Rbm+`)ij , σ(R
bm+`)iı̄ and σ(Rbm+`)̄j are of

the order of 2O((∣R∣⋅log(bm+c))e), for a constant e that does not depend on R (Lemma
5), thus b is of the order of 2O(∣R∣

de). Finally, by Lemma 1, we obtain that the sequence
{σ(Rk)}∞k=0 is periodic, with prefix and period both of the order of 2O(∣R∣

de).
Second, if R is not ∗-consistent, we have two cases:
• if R is not ∗-consistent, then its period is 1 and its prefix is of the order of
O(∣R∣7 ⋅ 2∣R∣), by Lemma 7 (2) and the same bounds apply to R.
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• otherwise, R is ∗-consistent and there exists b0 ≥ 0 and 1 ≤ i ≤ 2N such that
⌊σ(R

m)iı̄
2

⌋ + ⌊σ(R
m)ı̄i
2

⌋ < 0 for all m ≥ b0 (Theorem 1). Because {σ(Rm)}∞m=0

is periodic, with prefix b and period c of the order of 2O(∣R∣
d), we obtain:

⌊σ(R
b+2kc)iı̄
2

⌋+ ⌊σ(R
b+2kc)ı̄i
2

⌋ ≥ ⌊σ(R
b)iı̄

2
⌋+ ⌊σ(R

b)ı̄i
2

⌋+ k ⋅ (⌊λiı̄
2

⌋ + ⌊λı̄i
2

⌋)

where λiı̄ and λı̄i are the rates of the sequences {σ(Rm)iı̄}∞m=0 and {σ(Rm)ı̄i}∞m=0,
respectively. It must be the case that ⌊λiı̄

2
⌋ + ⌊λı̄i

2
⌋ < 0, otherwise we could

not have ⌊σ(R
m)iı̄
2

⌋ + ⌊σ(R
m)ı̄i
2

⌋ < 0 for all m ≥ b0. Moreover, ⌊σ(R
b+2kc)iı̄
2

⌋ +
⌊σ(R

b+2kc)ı̄i
2

⌋ < 0 for all k ≥ abs(σ(Rb)iı̄) + abs(σ(Rb)ı̄i) = 2O(∣R∣
d). It is easy

to see that b0 ≤ b + 2c(abs(σ(Rb)iı̄) + abs(σ(Rb)ı̄i)) = 2O(∣R∣
d), which gives

the bound on the prefix of the sequence {σ(Rk)}∞k=0 in this case.
◻

Conclusions
We prove that the class of reachability problems for flat counter machines, with octag-
onal relations labeling the cycles, is NP-complete. This result is based on the analysis
of the periodic behavior of the matrices that encode the power sequences of relations.
These sequences of matrices have, moreover, simply exponential prefixes and the pe-
riods. The crux of the proof is the reduction from octagonal to a simpler class of
difference bounds constraints, who are proved to be periodic by the construction of a
weighted automaton. The prefix and period of difference bounds relations are shown
to be simply exponential by a detailed analysis of this weigthed automaton.
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polants, pp. 187–202. Springer Berlin Heidelberg (2012)

[19] Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science 8(2), 135 – 159 (1979)

36

http://dx.doi.org/10.2168/LMCS-10(3:8)2014
http://dx.doi.org/10.2168/LMCS-10(3:8)2014
http://hal.inria.fr/inria-00074510
http://hal.inria.fr/inria-00074510


[20] Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)
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A Proof of Theorem 6
For two paths π and π′, such that dst(π) = src(π′), we denote by π.π′ their con-
catenation. The empty path is denoted ε and if π is a cycle, we define π0 = ε,
πk+1 = π.πk and π∗ = {πk ∣ k ≥ 0}. For two sets of paths S and S′ let S.S′ =
{σ.σ′ ∣ σ ∈ S,σ′ ∈ S′,dst(σ) = src(σ′)}. If σ1, . . . , σk+1 are paths and λ1, . . . , λk are
pairwise distinct elementary cycles, such that dst(σi) = src(σi+1) = src(λi) = dst(λi),
for all i = 1, . . . , k, the set σ1.λ

∗
1.σ2 . . . σk.λ

∗
k.σk+1 is called a path scheme.

First, we show that all paths in G = ⟨V,E,w⟩, that are minimal for their length,
are captured by path schemes in which the number of cycles is at most quadratic in the
number of vertices.

Proposition 2 For each minimal path ρ there exists an equivalent path ρ′ and a path
scheme θ = σ1.λ

∗
1 . . . σk.λ

∗
k.σk+1, such that k ≤∥V ∥2 and ρ′ ∈ θ.

Proof: A similar statement, using a slightly different terminology is proved in [25,
Lemma 7.3.2]. Namely, for each path ρ (not necessarily minimal) in G, there exists an
equivalent path ρ′ = σ1.λ

n1

1 . . . σk.λ
nk
k .σk+1 where σ1, . . . , σk+1 are paths, λ1, . . . , λk

are elementary cycles, n1, . . . , nk > 0 and ∣σ1 . . . σk+1∣ ≤ (∥V ∥ −1)2. ◻

A path scheme σ1.λ
∗
1.σ2 . . . σk.λ

∗
k.σk+1 is bi-quadratic if ∣σ1.σ2 . . . σk+1∣ ≤∥V ∥4.

Next we show that, for every path in the graph, minimal for its length, there exists an
equivalent path which is captured by a bi-quadratic path scheme with one cycle:

Lemma 12 For each path ρ, minimal for its length, there exists an equivalent path ρ′

and a bi-quadratic path scheme σ.λ∗.σ′, such that ρ′ ∈ σ.λ∗.σ′.

Proof: By Prop. 2, for any path ρ there exists a path scheme θ = σ1.λ
∗
1.σ2 . . . σk.λ

∗
k.σk+1

such that k ≤∥V ∥2, and an equivalent path ρ′ = σ1.λ
n1

1 .σ2 . . . σk.λ
nk
k .σk+1, for some

n1, . . . , nk ≥ 0. Suppose that λi is a cycle with minimal average weight among all
cycles in the scheme, i.e. w(λi) = w(λi)

∣λi∣ ≤ w(λj)
∣λj ∣ = w(λj), for all 1 ≤ j ≤ k. For each

nj there exist pj ≥ 0 and 0 ≤ qj < ∣λi∣, such that nj = pj ⋅ ∣λi∣ + qj . Let ρ′′ be the path:

σ1.λ
q1
1 .σ2 . . . σi−1.λ

ni+∑i−1
j=1 pj ⋅∣λj ∣+∑

k
j=i+1 pj ⋅∣λj ∣

i .σi+1. . . . σk.λ
qk
k .σk+1

It is easy to check that ∣ρ′′∣ = ∣ρ′∣ and w(ρ′′) = w(ρ′), since ρ′ is minimal for its length.
Clearly ρ′′ is captured by the path scheme ρ1.λ

∗
i .ρ2, where ρ1 = σ1.λ

q1
1 .σ2 . . . σi−1 and

ρ2 = σi+1. . . . σk.λ
qk
k .σk+1. Since σ1, . . . , σk, σk+1 are acyclic elementary paths, by
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Prop. 2, ∣σi∣ <∥V ∥. Also, since λ1, . . . , λk are elementary cycles, we have ∣λi∣ ≤∥V ∥.
Since qi < ∣λi∣ ≤∥V ∥, and k ≤∥V ∥2, by Prop. 2, we obtain:

∣ρ1.ρ2∣ ≤ (k + 1) ⋅ (∥V ∥ −1) + k ⋅ (∥V ∥) ⋅ (∥V ∥ −1)
≤ (∥V ∥2 +1) ⋅ (∥V ∥ −1)+ ∥V ∥2 ⋅(∥V ∥) ⋅ (∥V ∥ −1)
= ∥V ∥4 − ∥V ∥2 + ∥V ∥ −1 ≤∥V ∥4

Hence ρ1.λ
∗
i .ρ2 is a bi-quadratic path scheme. ◻

For any ` ≥ 0 and vertices u, v ∈ V , let biq(u, v, `) denote the set of all bi-quadratic
path schemes σ.λ∗.σ′, for which there exists a path σ.λk.σ′ of length `, between u and v
and minbiq(u, v, `) = {σ.λ∗.σ′ ∈ biq(u, v, `) ∣ ∀τ.η∗.τ ′ ∈ biq(u, v, `) . w(λ) ≤ w(η)}
be the subset of biq(u, v, `) consisting of bi-quadratic path schemes of the form σ.λ∗.σ′,
where λ has minimal average weight. The following lemma shows that, for each suffi-
ciently long path that is minimal for its length, there exists an equivalent path following
a bi-quadratic path scheme of the form σ.λ∗.σ′, whose cycle λ has minimal average
weight, among all path schemes of this form. We recall that µ(G) is the maximum
between the absolute values of the weights of G and 1.

Lemma 13 For every path ρ that is minimal for its length ∣ρ∣ > 4µ(G)⋅∥V ∥6, there
exists an equivalent path ρ′ and a path scheme σ.λ∗.σ′ ∈ minbiq(src(ρ),dst(ρ), ∣ρ∣),
such that ρ′ ∈ σ.λ∗.σ′.

Proof: Let u = src(ρ) and v = dst(ρ). By Lemma 12, for every path ρ, minimal for
its length L > 0, there exists an equivalent path ρ′ which is captured by at least one
biquadratic path scheme from biq(u, v,L). We will show that if L ≥ 4µ(G)⋅ ∥V ∥6,
the cycle in this path scheme must have minimal average weight among the cycles
of all path schemes in biq(u, v,L). Let σi.λ∗i .σ

′
i, σj .λ

∗
j .σ

′
j ∈ biq(u, v,L) be two path

schemes such that ρi = σi.λbii .σ′i and ρj = σj .λbjj .σ′j are two paths of length L, between
the same vertices, for some bi, bj ≥ 0. First, we compute:

bi = L−∣σi.σ′i∣
∣λi∣ w(ρi) = w(σi.σ′i) +

L−∣σi.σ′i∣
∣λi∣ ⋅w(λi)

bj = L−∣σj .σ′j ∣
∣λj ∣ w(ρj) = w(σj .σ′j) +

L−∣σj .σ′j ∣
∣λj ∣ ⋅w(λj)

Assume w.l.o.g. that w(λi) < w(λj). We compute:

w(ρi) ≤ w(ρj) ⇔
w(σi.σ′i) +

L−∣σi.σ′i∣
∣λi∣ ⋅w(λi) ≤ w(σj .σ′j) +

L−∣σj .σ′j ∣
∣λj ∣ ⋅w(λj) ⇔

∣λi∣∣λj ∣(w(σi.σ′i)−w(σj .σ
′
j))+∣λi∣⋅∣σj .σ

′
j ∣⋅w(λj)−∣λj ∣⋅∣σi.σ

′
i∣⋅w(λi)

w(λj)⋅∣λi∣−w(λi)⋅∣λj ∣ ≤ L
(7)

Since w(λj) ⋅ ∣λi∣ − w(λi) ⋅ ∣λj ∣ > 0 and since w(λi),w(λj), ∣λi∣, ∣λj ∣ ∈ Z, we have
that w(λj) ⋅ ∣λi∣ −w(λi) ⋅ ∣λj ∣ ≥ 1. By Lemma 12, we have ∣σi.σ′i∣, ∣σj .σ′j ∣ ≤∥V ∥4, and
moreover, for any path π, w(π) ≤ ∣π∣ ⋅ µ(G). Since 1 ≤ ∣λi∣, ∣λj ∣ ≤∥V ∥, we compute:

∣λi∣⋅∣λj ∣⋅(w(σi.σ′i)−w(σj .σ
′
j))+∣λi∣⋅∣σj .σ

′
j ∣⋅w(λj)−∣λj ∣⋅∣σi.σ

′
i∣⋅w(λi)

w(λj)⋅∣λi∣−w(λi)⋅∣λj ∣
≤ ∣λi∣ ⋅ ∣λj ∣ ⋅ (w(σi.σ′i) −w(σj .σ′j)) + ∣λi∣ ⋅ ∣σj .σ′j ∣ ⋅w(λj) − ∣λj ∣ ⋅ ∣σi.σ′i∣ ⋅w(λi)
≤ 4µ(G)⋅ ∥V ∥6
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Combining this with equation (7), we infer that w(λi) < w(λj) and L ≥ 4µ(G)⋅ ∥V ∥6

only if w(ρi) ≤ w(ρj), or, dually, that w(ρi) > w(ρj) and L ≥ 4µ(G)⋅ ∥V ∥6 only
if w(λi) ≥ w(λj). Therefore, a path, minimal for its length, which is greater than
4µ(G)⋅ ∥V ∥6 must belong to a biquadratic path scheme, whose cycle has minimal
average weight, among all path schemes, to which the path may belong. ◻

The following lemma shows that the minbiq sets are invariant for fixed vertices and
lengths that belong to certain arithmetic progressions.

Lemma 14 Given vertices u and v, for each arithmetic progression {`k}∞k=0 of rate
lcm(1, . . . ,∥V ∥) and `0 ≥∥V ∥4, minbiq(u, v, `i) = minbiq(u, v, `j), for all i, j ≥ 0.

Proof: LetC = lcm(1, . . . ,∥V ∥). It is sufficient to show biq(u, v, `k) = biq(u, v, `k+1),
for all k ≥ 0. Let θ = σ.λ∗.σ′ ∈ biq(u, v, `0 + kC) be a path scheme. Clearly,
`0 + kC = ∣σ.σ′∣ + p ⋅ ∣λ∣ for some p ∈ N. Since θ is bi-quadratic, then ∣σ.σ′∣ ≤∥V ∥4.
Since `0 ≥∥V ∥4, we obtain that `0 ≥ ∣σ.σ′∣. As a consequence, p ⋅ ∣λ∣ ≥ kC. Thus,
p ≥ kC

∣λ∣ and hence p′ = p − k⋅C
∣λ∣ ≥ 0. Observe that p′ ∈ Z because ∣λ∣ ∈ {1, . . . ,∥V ∥} (λ

is an elementary cycle) and ∣λ∣ divides C. We can define a path ρ = σ.λp′ .σ′, such that:

∣ρ∣ = ∣σ.σ′∣ + p′ ⋅ ∣λ∣ = ∣σ.σ′∣ + p ⋅ ∣λ∣ − kC = `0 .

Thus, we have θ ∈ biq(u, v, `0) and since θ ∈ biq(u, v, `0 + kC) was an arbitrary path,
we have biq(u, v, `0 + kC) ⊆ biq(u, v, `0), for all k ∈ N. The other direction is trivial,
by taking k = 0. ◻

We denote by minwG(u, v, `) the minimal weight among the paths of length `,
between vertices u and v in G, or ∞ is no such path exists. The next lemma proves that
the minimal weights corresponding to a certain arithmetic progression of lengths form
an arithmetic progression as well.

Lemma 15 Given two vertices u and v, for any `0 > 4µ(G)⋅∥V ∥6 there exists an
arithmetic progression {`k}∞k=0 such that the sequence {minwG(u, v, `k)}∞k=0 forms
an arithmetic progression.

Proof: It is sufficient to show that, there exists an integer c > 0 such that, for any
`0 > 4µ(G)⋅∥ V ∥6, there exists r ∈ Z such that minw(u, v, `0 + (k + 1)c) = r +
minw(u, v, `0 + kc), for all k ≥ 0. Let c = lcm(1, . . . ,∥V ∥). By Lemma 14 we have
that that minbiq(u, v, `0) = minbiq(u, v, `0 + kc), for all k ≥ 0.

We distinguish two cases. First, minw(u, v, `0+kc) =∞, i.e. minbiq(`+kc, u, v) =
minbiq(u, v, `0+(k+1)c) = ∅, and therefore we obtain minw(u, v, `0+(k+1)c) =∞
as well. Second, suppose that minw(u, v, `0 + kc) < ∞. Then there exists a path
ρ between u and v, minimal for its length ∣ρ∣ = `0 + kc > 4 ⋅ µ(G)⋅ ∥ V ∥6. By
Lemma 13, there exists an equivalent path ρ′ and a biquadratic path scheme σ.λ∗.σ′ ∈
minbiq(u, v, `0 + kc) such that ρ′ = σ.λb.σ′ for some b ≥ 0. Let ρ′′ be the path
σ.λb+

c
∣λ∣ .σ′. We will show that ρ′′ is minimal for its length. For, if this is the case, then

∣ρ′′∣ = ∣ρ∣ + c and w(ρ′′) = w(ρ) + c ⋅w(λ), i.e. minw(u, v, `0 + kc) = minw(u, v, `0 +
(k + 1)c)+ c ⋅w(λ). Since w(λ) is the common average weight of all path schemes in

40



minbiq(u, v, `0 + kc) = minbiq(u, v, `0 + k′c), for any k, k′ ≥ 0, the value of the rate
c ⋅w(λ) does not depend on the value k.

To show that ρ′′ is indeed minimal for its length, suppose it is not, and let π′′ be
a path of length ∣ρ′′∣ = `0 + (k + 1)c > 4µ(G)⋅∥V ∥6 such that w(π′′) < w(ρ′′). By
Lemma 13, there exists an equivalent path π′ and a biquadratic path scheme τ.η∗.τ ′ ∈
minbiq(u, v, `0 + (k + 1)c) = minbiq(u, v, `0 + kc) (by Lemma 14) such that π′ =
τ.ηd.τ ′, for some d ≥ 0. We define the path π = τ.ηd−

c
∣η∣ .τ ′, of length `0 + kc. We have

the following relations:

ρ = σ.λb.σ′ ρ′′ = σ.λb+
c
∣λ∣ .σ′ w(ρ) ≤ w(π) w(ρ′′) > w(π′′)

π = τ.ηd−
c
∣η∣ .τ ′ π′′ = τ.ηd.τ ′ ∣ρ∣ = ∣π∣ ∣ρ′′∣ = ∣π′′∣

Since w(λ) = w(η), we infer that

w(ρ′′) −w(ρ) = w(λ) ⋅ c∣λ∣ = w(λ) ⋅ c = w(η) ⋅ c = w(η) ⋅ c∣η∣ = w(π′′) −w(π) (8)

Also, w(ρ) ≤ w(π) and w(π′′) < w(ρ′′) implies that w(ρ) +w(π′′) < w(π) +w(ρ′′)
which contradicts equation (8). ◻

Proof of Theorem 6 By Lemma 1, the prefix of the sequence {Mk}∞k=0 is max1≤i,j≤n bij
where bij is the prefix of the sequence {Mij}∞k=0. Thus it is sufficient to show that
bij ≤ 4µ(M) ⋅ n6, for each pair 1 ≤ i, j ≤ n. Let GM = ⟨{1, . . . , n},E,w⟩ be
the weighted graph whose incidence matrix is M and i, j ∈ {1, . . . , n} be two ver-
tices of GM . By Lemma 15, there exists an arithmetic progression {`k}nk=0, where
`0 = 4µ(M) ⋅ n6 + 1, such that {minwGM (i, j, `k)}∞k=0 is an arithmetic progression.
Then it must be the case that bij ≤ 4µ(M) ⋅ n6. ◻

B Periodic Sequences of Sums, Minima and Half Terms
Lemma 16 Let {sk}∞k=0 and {tk}∞k=0 be two periodic sequences, with prefixes bs, bt
and periods cs, ct, respectively. Then the sequence {sk + tk}∞k=0 is periodic, and:

∃λ0, . . . , λc−1 ∀k ≥ 0 ∀i ∈ [c] . sb+(k+1)c+i + tb+(k+1)c+i = λi + sb+kc+i + tb+kc+i
where c = lcm(cs, ct) and b = max(bs, bt).

Proof: Let λs0, . . . , λ
s
cs−1 be the rates of {sk}∞k=0 and λt0, . . . , λ

t
ct−1 be the rates of

{tk}∞k=0, respectively. For all i ∈ [c], we define λi = c
cs
λsi mod cs

+ c
ct
λti mod ct

. With
these definitions, the required equality is an easy check. ◻

Lemma 17 Let {sn}∞n=0 be a periodic sequence with prefix b ≥ 0 and period c > 0.
Then the sequence {⌊ sn

2
⌋}∞
n=0

is periodic, and:

∃λ0, . . . , λ2c−1 ∀k ≥ 0 ∀i ∈ [2c] . ⌊
sb+(k+1)⋅2c+i

2
⌋ = λi + ⌊sb+k⋅2c+i

2
⌋ .
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Proof: Let λs0, . . . , λ
s
c−1 be the rates of the sequence {sn}∞n=0. We define λi = λi+c =

λsi , for all i ∈ [c]. Then, we compute:

⌊ sb+(k+1)2c+i
2

⌋ = ⌊ 2λsi+sb+k⋅2c+i
2

⌋ = λi + ⌊ sb+k⋅2c+i
2

⌋
⌊ sb+(k+1)2c+c+i

2
⌋ = ⌊ 2λsi+sb+k⋅2c+c+i

2
⌋ = λi + ⌊ sb+k⋅2c+c+i

2
⌋ .

◻

Lemma 18 Let {sk}∞k=0 and {tk}∞k=0 be two periodic sequences, with prefixes bs, bt
and periods cs, ct, respectively. Then the sequence {min(sk, tk)}∞k=0 is periodic, and:

∃b ≤ bmax +maxc−1
i=0 (abs(sbmax+(i mod cs)) + abs(tbmax+(i mod ct)))

∃λ0, . . . , λc−1 ∀k ≥ 0 ∀i ∈ [c] .
min(sb+(k+1)c+i, tb+(k+1)c+i) = λi +min(sb+kc+i, tb+kc+i)

where c = lcm(cs, ct) and bmax = max(bs, bt).

Proof: We prove first the following facts, for all

k ≥ ⌈
abs(sbmax+(i mod cs)) + abs(tbmax+(i mod ct))

c
⌉

and each i ∈ [c]:
1. if

λsimodcs

cs
< λtimodct

ct
then sbmax+kc+i ≤ tbmax+kc+i,

2. if
λsimodcs

cs
> λtimodct

ct
then sbmax+kc+i ≥ tbmax+kc+i,

3. if
λsimodcs

cs
= λtimodct

ct
then

sbmax+kc+i − tbmax+kc+i = sbmax+(i mod cs) − tbmax+(i mod ct)+
(i ÷ cs)λsi mod cs

− (i ÷ ct)λti mod ct
.

where ÷ denotes integer division.
Observe that sbmax+kc+i = sbmax+(imod cs) + (k c

cs
+ i ÷ cs)λsimod cs

and similar for
tbmax+kc+i. We have thus the following equivalences:

sbmax+kc+i ≤ tbmax+kc+i
sbmax+(i mod cs) + (k c

cs
+ i ÷ cs)λsi mod cs

≤ tbmax+(i mod cs) + (k c
ct
+ i ÷ ct)λti mod ct

kc(λ
s
i modcs

cs
− λti modct

ct
) ≤ tbmax+(i mod cs) − sbmax+(i mod cs)+

(i ÷ ct)λti mod cr
− (i ÷ cs)λsi mod cs

.

Under the assumption of this first point, we have:

kc ≥ abs(sbmax+(i mod cs)) + abs(tbmax+(i mod ct))⇒ sbmax+kc+i ≤ tbmax+kc+i
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The second point is symmetric. We obtain the last point by a similar argument. The
statement of the lemma follows, with the definition below. For all i ∈ [c]:

λi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c
λsi modcs

cs
if
λsi modcs

cs
< λti modct

ct

c
λti modct

ct
if
λsi modcs

cs
> λti modct

ct
0 otherwise

Observe that, if b = bmax+maxc−1
i=0 (abs(sbmax+(imod cs)) + abs(tbmax+(imod ct))), then

b + kc + i = bmax + (⌈maxc−1
i=0 (abs(sbmax+(imodcs))+abs(tbmax+(imodct)))

c
⌉ + k) c + i, and a

case split based on the above three facts can be applied. ◻

Lemma 19 Let {s1
k}

∞
k=0

, . . . ,{snk}
∞
k=0 be periodic sequences with prefixes b1, . . . , bn,

periods c1, . . . , cn and rates λ1
0, . . . , λ

1
c1−1, . . . , λ

n
0 , . . . , λ

n
cn−1, respectively. Letm1

k, . . . ,m
`
k

be linear combinations of s1
k, . . . , s

n
k , respectively. Then the sequence {min(m1

k, . . . ,m
`
k)}∞k=0

is periodic, with prefix at most b and period that divides c, where:
• b ≤ maxni=1(bi) + n ⋅maxc−1

i=0 (∑`j=1 abs(mj(s1
bmax+i, . . . , s

n
bmax+i))) and

• c = lcmn
i=1(ci).

Proof: Applying Lemma 16, we obtain that, each sequence {mi
k}

∞
k=0

, for i = 1, . . . , `,
is periodic, with prefix at most maxni=1(bi) and period which divides c. The upper
bound on the prefix and period of {min(m1

k, . . . ,m
`
k)}∞k=0 is obtained by applying n

times Lemma 18. ◻
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