
HAL Id: hal-01418889
https://hal.science/hal-01418889

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Deciding Entailments in Inductive Separation Logic with
Tree Automata

Radu Iosif, Adam Rogalewicz, Tomáš Vojnar

To cite this version:
Radu Iosif, Adam Rogalewicz, Tomáš Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. 12th International Symposium on Automated Technology for Verification and
Analysis (ATVA 2014), Nov 2014, Sydney, Australia. pp.201-218, �10.1007/978-3-319-11936-6_15�.
�hal-01418889�

https://hal.science/hal-01418889
https://hal.archives-ouvertes.fr


Deciding Entailments in Inductive Separation Logic
with Tree Automata

Radu Iosif1, Adam Rogalewicz2, and Tomáš Vojnar2

1 University Grenoble Alpes, CNRS, VERIMAG, Grenoble, France
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. Separation Logic (SL) with inductive definitions is a natural formal-
ism for specifying complex recursive data structures, used in compositional veri-
fication of programs manipulating such structures. The key ingredient of any au-
tomated verification procedure based on SL is the decidability of the entailment
problem. In this work, we reduce the entailment problem for a non-trivial subset
of SL describing trees (and beyond) to the language inclusion of tree automata
(TA). Our reduction provides tight complexity bounds for the problem and shows
that entailment in our fragment is EXPTIME-complete. For practical purposes,
we leverage from recent advances in automata theory, such as inclusion checking
for non-deterministic TA avoiding explicit determinization. We implemented our
method and present promising preliminary experimental results.

1 Introduction
Separation Logic (SL) [22] is a logical framework for describing recursive mutable
data structures. The attractiveness of SL as a specification formalism comes from the
possibility of writing higher-order inductive definitions that are natural for describ-
ing the most common recursive data structures, such as singly- or doubly-linked lists
(SLLs/DLLs), trees, hash maps (lists of lists), and more complex variations thereof,
such as nested and overlaid structures (e.g. lists with head and tail pointers, skip-lists,
trees with linked leaves, etc.). In addition to being an appealing specification tool, SL
is particularly suited for compositional reasoning about programs. Indeed, the principle
of local reasoning allows one to verify different elements (functions, threads) of a pro-
gram, operating on disjoint parts of the memory, and to combine the results a-posteriori,
into succinct verification conditions.

However, the expressive power of SL comes at the price of undecidability [6]. To
avoid this problem, most SL dialects used by various tools (e.g. SPACE INVADER [2],
PREDATOR [9], or INFER [7]) use hard-coded predicates, describing SLLs and DLLs,
for which entailments are, in general, tractable [8]. For graph structures of bounded tree
width, a general decidability result was presented in [14]. Entailment in this fragment
is EXPTIME-hard, as proven in [1].

In this paper, we present a novel decision procedure for a restriction of the decidable
SL fragment from [14], describing recursive structures in which all edges are local with
respect to a spanning tree. Examples of such structures include SLLs, DLLs, trees and
trees with parent pointers, etc. For structures outside of this class (e.g. skip-lists or trees
with linked leaves), our procedure is sound (namely, if the answer of the procedure is
positive, then the entailment holds), but not complete (the answer might be negative
and the entailment could still hold). In terms of program verification, such a lack of
completeness in the entailment prover can lead to non-termination or false positives,
but will not cause unsoundness (i.e. classify a buggy program as correct).



The method described in the paper belongs to the class of automata-theoretic de-
cision techniques: We translate an entailment problem ϕ |= ψ into a language inclu-
sion problem L(Aϕ) ⊆ L(Aψ) for tree automata (TA) Aϕ and Aψ that (roughly speak-
ing) encode the sets of models of ϕ and ψ, respectively. Yet, a naı̈ve translation of
the inductive definitions of SL into TA encounters a polymorphic representation prob-
lem: the same set of structures can be defined in several different ways, and TA sim-
ply mirroring the definition will not report the entailment. For example, DLLs with
selectors next and prev for the next and previous nodes, respectively, can be de-
scribed by a forward unfolding of the inductive definition: DLL(head, prev, tail,next)≡
∃x. head 7→ (x, prev)∗DLL(x,head, tail,next) | emp∧head = tail∧ prev= next, as well
as by a backward unfolding of the definition: DLLrev(head, prev, tail,next)≡ ∃x. tail 7→
(next,x)∗DLLrev(head, prev,x, tail) | emp∧head = tail∧ prev= next. Also, one can de-
fine a DLL starting with a node in the middle and unfolding backward to the left of this
node and forward to the right: DLLmid(head, prev, tail,next)≡∃x,y,z . DLL(y,x, tail,next)
∗DLLrev(head, prev,z,x). The circular entailment: DLL(a,b,c,d) |= DLLrev(a,b,c,d) |=
DLLmid(a,b,c,d) |= DLL(a,b,c,d) holds, but a naı̈ve structural translation to TA might
not detect this fact. To bridge this gap, we define a closure operation on TA, called
canonical rotation, which adds all possible representations of a given inductive defini-
tion, encoded as a tree automaton.

The translation from SL to TA provides also tight complexity bounds, showing
that entailment in the local fragment of SL with inductive definitions is EXPTIME-
complete. Moreover, we implemented our method using the VATA [17] tree automata
library, which leverages from recent advances in non-deterministic language inclusion
for TA [4], and obtained quite encouraging experimental results.

Related work. Given the large body of literature on logics for describing mutable data
structures, we need to restrict this section to the related work that focuses on SL [22].
The first (proof-theoretic) decidability result for SL on a restricted fragment defining
only SLLs was reported in [3], which describe a co-NP algorithm. The full basic SL
without recursive definitions, but with the magic wand operator was found to be unde-
cidable when interpreted in any memory model [6]. A PTIME entailment procedure for
SL with list predicates is given in [8]. Their method was extended to reason about nested
and overlaid lists in [11]. More recently, entailments in an important SL fragment with
hardcoded SLL/DLL predicates were reduced to Satisfiability Modulo Theories (SMT)
problems, leveraging from recent advances in SMT technology [20, 18]. The work re-
ported in [10] deals with entailments between inductive SL formulae describing nested
list structures. It uses a combination of graphs and TA to encode models of SL, but
it does not deal with the problem of polymorphic representation. Recently, a decision
procedure for entailments in a fragment of multi-sorted first-order logic with reacha-
bility, hard-coded trees and frame specifications, called GRIT (Graph Reachability and
Inverted Trees) has been reported in [21]. Due to the restriction of the transitive closure
to one function symbol (parent pointer), the expressive power of their logic, without
data constraints, is strictly lower than ours (regular properties of trees cannot be en-
coded in GRIT). However, GRIT can be extended with data, which has not been, so far,
considered for SL.

Closer to our work on SL with user-provided inductive definitions is the fragment
used in the tool SLEEK, which implements a semi-algorithmic entailment check, based
on unfoldings and unifications [19]. Along this line of work, the theorem prover CY-
CLIST builds entailment proofs using a sequent calculus. Neither SLEEK nor CYCLIST

2



are complete for a given fragment of SL, and, moreover, these tools do not address the
polymorphic representation problem.

Our previous work [14] gave a general decidability result for SL with inductive
definitions interpreted over graph-like structures, under several necessary restrictions,
based on a reduction from SL to Monadic Second Order Logic (MSOL) on graphs of
bounded tree width. Decidability of MSOL on such graphs relies on a combinatorial
reduction to MSOL on trees (see [12] for a proof of Courcelle’s theorem). Altogether,
using the method from [14] causes a blowup of several exponentials in the size of the
input problem and is unlikely to produce an effective decision procedure.

The work [1] provides a rather complete picture of complexity for the entailment in
various SL fragments with inductive definitions, including EXPTIME-hardness of the
decidable fragment of [14], but provides no upper bound. The EXPTIME-completeness
result in this paper provides an upper bound for a fragment of local definitions, and
strengthens the EXPTIME-hard lower bound as well, i.e. it is showed that even the
entailment between local definitions is EXPTIME-hard.

2 Definitions

The set of natural numbers is denoted by N. If x = 〈x1, . . . ,xn〉 and y = 〈y1, . . . ,ym〉
are tuples, x ·y = 〈x1, . . . ,xn,y1, . . . ,ym〉 denotes their concatenation, |x|= n denotes the
length of x, and (x)i = xi denotes the i-th element of x. For a partial function f : A ⇀ B,
and⊥ /∈ B, we denote by f (x) =⊥ the fact that f is undefined at some point x ∈ A. The
domain of f is denoted dom( f ) = {x ∈ A | f (x) 6=⊥}, and the image of f is denoted as
img( f ) = {y ∈ B | ∃x ∈ A . f (x) = y}. By f : A ⇀ f in B, we denote any partial function
whose domain is finite. Given two partial functions f ,g defined on disjoint domains,
i.e. dom( f )∩dom(g) = /0, we denote by f ⊕g their union.

States. We consider Var = {x,y,z, . . .} to be a countably infinite set of variables and
nil ∈ Var be a designated variable. Let Loc be a countably infinite set of locations and
null ∈ Loc be a designated location.

Definition 1. A state is a pair 〈s,h〉 where s : Var ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in N ⇀ f in Loc
is a finite partial function such that (i) null 6∈ dom(h) and (ii) for all ` ∈ dom(h) there
exists k ∈ N such that (h(`))(k) 6=⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any l, l′ ∈ Loc, we

write `
k−→S `′ instead of (h(`))(k) = `′ for any k ∈ N called a selector. We call the

triple `
k−→S `′ an edge of S. When the S subscript is obvious from the context, we

sometimes omit it. Let Img(h) =
⋃

`∈Loc img(h(`)) be the set of locations which are
destinations of some edge in h. A location ` ∈ Loc is said to be allocated in 〈s,h〉 if
` ∈ dom(h) (i.e. it is the source of an edge). The location is called dangling in 〈s,h〉
if ` ∈ [img(s)∪ Img(h)] \ dom(h), i.e. it is referenced by a store variable or reachable
from an allocated location in the heap, but it is not allocated in the heap itself. The
set loc(S) = img(s)∪ dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in the state S.

For any two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 such that (i) s1 and s2 agree on
the evaluation of common variables (∀x ∈ dom(s1) ∩ dom(s2) . s1(x) = s2(x)) and
(ii) h1 and h2 have disjoint domains (dom(h1) ∩ dom(h2) = /0), we denote by S1]S2 =

3



〈s1∪ s2,h1⊕h2〉 the disjoint union of S1 and S2. The disjoint union is undefined if one
of the above conditions does not hold.

Trees and Tree Automata. Let Σ be a countable alphabet and N∗ be the set of se-
quences of natural numbers. Let ε ∈ N∗ denote the empty sequence and p.q denote the
concatenation of two sequences p,q ∈ N∗. We say that p is a prefix of q if q = p.q′ for
some q′ ∈ N∗. A set X ⊆ N∗ is prefix-closed iff p ∈ X ⇒ q ∈ X for each prefix q of p.

A tree t over Σ is a finite partial function t : N∗⇀ f in Σ such that dom(t) is a finite
prefix-closed subset of N∗ and, for each p ∈ dom(t) and i ∈ N, we have t(p.i) 6= ⊥
only if t(p. j) 6= ⊥, for all 0 ≤ j < i. The sequences p ∈ dom(t) are called positions
in the following. Given two positions p,q ∈ dom(t), we say that q is the i-th successor
(child) of p if q= p.i, for some i∈N. We denote by D(t) = {−1,0, . . . ,N} the direction
alphabet of t, where N = max{i ∈ N | ∃p ∈ N∗ . p.i ∈ dom(t)}, and we let D+(t) =
D(t) \ {−1}. By convention, we have (p.i).(−1) = p, for all p ∈ N∗ and i ∈ D+(t).
Given a tree t and a position p∈ dom(t), we define the arity of the position p as #t(p) =
max{d ∈D+(t) | p.d ∈ dom(t)}+1.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the
following) is a quadruple A = 〈Q,Σ,∆,F〉, where Σ is a finite alphabet, Q is a finite set
of states, F ⊆Q is a set of final states, Σ is an alphabet, and ∆ is a set of transition rules
of the form σ(q1, . . . ,qn)→ q, for σ ∈ Σ, and q,q1, . . . ,qn ∈ Q. Given a tree automaton
A = 〈Q,Σ,∆,F〉, for each rule ρ = (σ(q1, . . . ,qn)−→ q), we define its size as |ρ|= n+1.
The size of the tree automaton is |A| = ∑ρ∈∆ |ρ|. A run of A over a tree t : N∗ ⇀ f in Σ

is a function π : dom(t)→ Q such that, for each node p ∈ dom(t), where q = π(p), if
qi = π(p.i) for 1 ≤ i ≤ n, then ∆ has a rule (t(p))(q1, . . . ,qn)→ q. We write t π

=⇒ q
to denote that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that
t π
=⇒ q for some run π. The language of A is defined as L(A) = {t | ∃q ∈ F, t =⇒ q}.

2.1 Separation Logic
The syntax of basic formulae of Separation Logic (SL) is given below:

α ∈ Var \{nil}; x ∈ Var;
Π ::= α = x | Π1∧Π2
Σ ::= emp | α 7→ (x1, . . . ,xn) | Σ1 ∗Σ2 , for some n > 0
ϕ ::= Σ∧Π | ∃x . ϕ

A formula of the form
∧n

i=1 αi = xi defined by the Π nonterminal in the syntax above
is said to be pure. The atomic proposition emp, or any formula of the formFk

i=1αi 7→
(xi,1, . . . ,xi,ni), for some k > 0, is said to be spatial. A variable x is said to be free in ϕ if
it does not occur under the scope of any existential quantifier. We denote by FV (ϕ) the
set of free variables. A variable α ∈ FV (Σ)\{nil} is said to be allocated (respectively,
referenced) in a spatial formula Σ if it occurs on the left-hand (respectively, right-hand)
side of a proposition α 7→ (x1, . . . ,xn) of Σ.

In the following, we shall use two equality relations. The syntactic equality, denoted
σ ≡ ς, means that σ and ς are the same syntactic object (formula, variable, tuple of
variables, etc.). On the other hand, by writing x =Π y, for two variables x,y ∈ Var and
a pure formula Π, we mean that the equality of the values of x and y is implied by Π.

A system of inductive definitions (inductive system) P is a set of rules of the form{
Pi(xi,1, . . . ,xi,ni)≡ |

mi
j=1 Ri, j(xi,1, . . . ,xi,ni)

}k

i=1
(1)

4



where {P1, . . . ,Pk} is a set of predicates, xi,1, . . . ,xi,ni are called formal parameters,
and the formulae Ri, j are called the rules of Pi. Each rule is of the form Ri, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, where x∩ z = /0, and the following holds:
1. Σ 6≡ emp is a non-empty spatial formula3, called the head of Ri, j.
2. Pi1(y1), . . . ,Pim(ym) is a tuple of predicate occurrences, called the tail of Ri, j, where
|y j|= ni j , for all 1≤ j ≤ m.

3. Π is a pure formula, restricted such that, for all formal parameters β ∈ x, we allow
only equalities of the form α =Π β, where α is allocated in Σ.4

4. for all 1≤ r,s≤m, if xi,k ∈ yr, xi,l ∈ ys, and xi,k =Π xi,l , for some 1≤ k, l ≤ ni, then
r = s; a formal parameter of a rule cannot be passed to two or more subsequent
occurrences of predicates in that rule.5

The size of a rule R is denoted by |R| and defined inductively as follows: |α = x| =
1, |emp| = 1, |α 7→ (x1, . . . ,xn)| = n + 1, |ϕ•ψ| = |ϕ|+ |ψ|, |∃x . ϕ| = |ϕ|+ 1, and
|P(x1, . . . ,xn)| = n. Here, α ∈ Var \ {nil}, x,x1, . . . ,xn ∈ Var, and • ∈ {∗,∧}. The size
of an inductive system (1) is defined as |P | = ∑

k
i=1 ∑

mi
j=1 |Ri, j|. A rooted system 〈P ,Pi〉

is an inductive system P with a designated predicate Pi ∈ P .

lr

n

n

n n n

n

n

ll

root

l

l lr r

r

l r l r l r l r

hd

next

prev
tl

n

next

prev

next

prev

next

prevprev

next
p

Fig. 1. Top: A DLL. Bottom: A TLL.

Example 1. To illustrate the use of in-
ductive definitions (with the above restric-
tions), we first show how to define a pred-
icate DLL(hd, p, tl,n) describing doubly-
linked lists of length at least one. As de-
picted on the top of Fig. 1, the formal
parameter hd points to the first allocated
node of such a list, p to the node pointed
to by the prev selector of hd, tl to the last
node of the list (possibly equal to hd), and
n to the node pointed to by the next selector from tl. This predicate can be defined as
follows: DLL(hd, p, tl,n)≡ hd 7→ (n, p) ∧ hd = tl | ∃x. hd 7→ (x, p)∗DLL(x,hd, tl,n).

Another example is the predicate TLL(r, ll, lr) describing binary trees with linked
leaves whose root is pointed to by the formal parameter r, the left-most leaf is pointed to
by ll, and the right-most leaf points to lr as shown in the bottom of Fig. 1: TLL(r, ll, lr)≡
r 7→ (nil,nil, lr) ∧ r = ll | ∃x,y,z. r 7→ (x,y,nil)∗TLL(x, ll,z)∗TLL(y,z, lr). �

The semantics of SL is given by the model relation |=, defined inductively, on the
structure of formulae, as follows:

S |= emp ⇐⇒ dom(h) = /0

S |= α 7→ (x1, . . . ,xn) ⇐⇒ s = {(α, `0),(x1, `1), . . . ,(xn, `n)} and
h = {〈`0,λi . if 1≤ i≤ n then `i else ⊥〉}
for some `0, `1, . . . , `n ∈ Loc

S |= ϕ1 ∗ϕ2 ⇐⇒ S1 |= ϕ1 and S2 |= ϕ2 for some S1,S2 : S1]S2 = S
S |= ∃x . ϕ ⇐⇒ 〈s[x← `],h〉 |= ϕ for some ` ∈ Loc
S |= Pi(xi,1, . . . ,xi,ni) ⇐⇒ S |= Ri, j(xi,1, . . . ,xi,ni), for some 1≤ j ≤ mi, in (1)

3 In practice, we allow frontier or root rules to have empty heads.
4 This restriction can be lifted at the expense of an exponential blowup in the size of the TA.
5 The restriction can be lifted by testing double allocation as in [14] (with an exponential cost).

5



The semantics of = and ∧ are classical for first order logic. Note that we adopt here the
strict semantics, in which a points-to relation α 7→ (x1, . . . ,xn) holds in a state consist-

ing of a single cell pointed to by α that has exactly n outgoing edges s(α) k−→S s(xk),
1≤ k ≤ n, leading either towards the single allocated location s(α) (if s(xk) = s(α)) or
towards dangling locations (if s(xk) 6= s(α)). The empty heap is specified by emp.

A state S is a model of a predicate Pi iff it is a model of one of its rules Ri, j. For a state
S that is a model of Ri, j, the inductive definition of the semantics implies existence of
a finite unfolding tree: this is a tree labeled with rules of the system in such a way that,
whenever a node is labeled by a rule with a tail Pi1(y1), . . . ,Pim(ym), it has exactly m
children such that the j-th child, for 1 ≤ j ≤ m, is labeled with a rule of Pi j (see the
middle part of Fig. 2—a formal definition is given in [16].

Given an inductive system P , predicates Pi(x1, . . . ,xn) and Pj(y1, . . . ,yn) of P with
the same number of formal parameters n, and a tuple of variables x where |x|= n, the en-
tailment problem is defined as follows: Pi(x) |=P Pj(x) : ∀S . S |= Pi(x)⇒ S |= Pj(x).

2.2 Connectivity, Spanning Trees and Local States
In this section, we define two conditions ensuring that entailments in the restricted SL
fragment can be decided effectively. The notion of a spanning tree is central for these
definitions. Informally, a state S has a spanning tree t if all allocated locations of S can
be placed in t such that there is always an edge in S in between every two locations
placed in a parent-child pair of positions (see Fig. 2 for two spanning trees).

Definition 2. Given a state S = 〈s,h〉, a spanning tree of S is a bijective tree t : N∗→
dom(h) such that ∀p ∈ dom(t)∀d ∈D+(t) . p.d ∈ dom(t)⇒∃k ∈ N . t(p) k−→S t(p.d).

Given an inductive system P , let S = 〈s,h〉 be a state and Pi ∈ P be an inductive
definition such that S |= Pi. Our first restriction, called connectivity (Def. 3), ensures
that the unfolding tree of the definition of Pi is also a spanning tree of S (cf. Fig. 2,
middle). In other words, each location ` ∈ dom(h) is created by an atomic proposition
of the form α 7→ (x1, . . . ,xn) from the unfolding tree of the definition Pi, and, moreover,

by Def. 2, there exists an edge `
k−→S `

′ for any parent-child pair of positions in this tree
(cf. the next edges in Fig. 2).

For a basic quantifier-free SL formula ϕ ≡ Σ∧Π and two variables x,y ∈ FV (ϕ),
we say that y is ϕ-reachable from x iff there is a sequence x =Π α0, . . . ,αm =Π y, for
some m≥ 0, such that, for each 0≤ i < m, αi 7→ (βi,1, . . . ,βi,pi) is an atomic proposition
in Σ, and βi,s =Π αi+1, for some 1≤ s≤ pi. A variable x ∈ FV (Σ) is called a root of Σ

if every variable y ∈ FV (Σ) is ϕ-reachable from x.

Definition 3. Given a system P = {Pi ≡ |mi
j=1Ri, j}n

i=1 of inductive definitions, a rule
Ri, j(xi,1, . . . ,xi,k) ≡ ∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π of a predicate Pi(xi,1, . . . ,xi,k) is
connected iff there exists a formal parameter xi,` of Pi, 1 ≤ ` ≤ k, such that (i) xi,` is
a root of Σ and (ii) for each j = 1, . . . ,m, there exists 0 ≤ s < |y j| such that (y j)s is
(Σ∧Π)-reachable from xi,` and xi j ,s is a root of the head of each rule of Pi j . The system
P is said to be connected if all its rules are connected.

For instance, the DLL and TLL systems from Ex. 1 are both connected. Our second
restriction, called locality, ensures that every edge `

k−→S `
′, between allocated locations

`,`′ ∈ dom(h), involves locations that are mapped to a parent-child pair of positions in
some spanning tree of S.

6



Definition 4. Let S = 〈s,h〉 be a state and t : N∗→ dom(h) be a spanning tree of S. An

edge `
k−→S `

′ with `,`′ ∈ dom(h) is said to be local w.r.t. a spanning tree t iff there exist
p ∈ dom(t) and d ∈D(t)∪{ε} such that t(p) = ` and t(p.d) = `′. The tree t is a local
spanning tree of S iff t is a spanning tree of S and S has only local edges w.r.t. t. The
state S is local iff it has a local spanning tree.

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL1 ]

hd

p

next prev

tl
n

next prev

next prev

next prev

prev

next

Fig. 2. Two spanning trees of
a DLL. The middle one is an
unfolding tree when labeled
by DLL1 ≡ hd 7→ (n, p)∧hd =
tl and DLL2 ≡ ∃x. hd 7→
(x, p)∗DLL(x,hd, tl,n).

For instance, the DLL system of Ex. 1 is local, while
the TLL system is not (e.g. the n edges between leaves
cannot be mapped to parent-child pairs in the spanning
tree that is obtained by taking the l and r edges of the
TLL). In this paper, we address the locality problem by
giving a sufficient condition (a syntactic check of the
inductive system, prior to the generation of TA) able
to decide the locality on all of the practical examples
considered (Sec. 3.2). The decidability of locality of
general inductive systems is an interesting open prob-
lem, considered for future research.

Definition 5. A system P = {Pi(xi,1, . . . ,xi,ni)}
k
i=1 is

said to be local if and only if each formal parameter
xi, j of a predicate Pi is either (i) allocated in each rule
of Pi and (y) j is referenced at each occurrence Pi(y),
or (ii) referenced in each rule of Pi and (y) j is allo-
cated at each occurrence Pi(y).

This gives a sufficient (but not necessary) condition ensuring that any state S, such that
S |= Pi, has a local spanning tree, if P is a connected local system. The condition is
effective and easily implemented (see Sec. 3.2) by the translation from SL to TA.

3 From Separation Logic to Tree Automata

The first step of our entailment decision procedure is building a TA for a given inductive
system. Roughly speaking, the TA we build recognizes unfolding trees of the inductive
system. The alphabet of such a TA consists of small basic SL formulae describing the
neighborhood of each allocated variable, together with a specification of the connec-
tions between each such formula and its parent and children in the unfolding tree. Each
alphabet symbol in the TA is called a tile. Due to technical details related to the en-
coding of states as trees of SL formulae, the most space in this section is dedicated to
the definition of tiles. Once the tile alphabet is defined, the states of the TA correspond
naturally to the predicates of the inductive system, and the transition rules correspond
to the rules of the system.

3.1 Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tuple T = 〈ϕ,x−1,x0, . . . ,xd−1〉, for some d ≥ 0, where ϕ is a basic SL
formula, and each xi is a tuple of pairwise distinct variables, called a port. We further
assume that all ports contain only free variables from ϕ and that they are pairwise
disjoint. The variables from x−1 are said to be incoming, the ones from x0, . . . ,xd−1 are
said to be outgoing, and the ones from par(T ) = FV (ϕ)\ (x−1∪ . . .∪xd−1) are called

7



parameters. The arity of a tile T = 〈ϕ,x−1, . . . ,xd−1〉 is the number of outgoing ports,
denoted by #(T ) = d. We denote form(T )≡ ϕ and porti(T )≡ xi, for all −1≤ i < d.

Given tiles T1 = 〈ϕ,x−1, . . . ,xd−1〉 and T2 = 〈φ,y−1, . . . ,ye−1〉 such that FV (ϕ)∩
FV (φ) = /0, we define the i-composition, for some 0 ≤ i < d, such that |xi| = |y−1|:
T1~i T2 = 〈ψ,x−1, . . .xi−1,y0, . . . ,ye−1,xi+1, . . . ,xd−1〉where ψ≡∃xi∃y−1 . ϕ∗φ∧xi =

y−1.6 For a position q∈N∗ and a tile T , we denote by T 〈q〉 the tile obtained by renaming
each variable x in the ports of T by x〈q〉. A tree t labeled with tiles corresponds to
a tile defined inductively, for any p ∈ dom(t), as: T (t, p) = t(p)〈p〉 ~0 T (t, p.0)~1
T (t, p.1) . . . ~#(p)−1 T (t, p.(#t(p)−1)). The SL formula Φ(t)≡ form(T (t,ε)) is said
to be the characteristic formula of t.

Canonical tiles. We first define a class of tiles that encode local states (Def. 4) with
respect to the underlying tile-labeled spanning trees. We denote by T = 〈(∃z) z 7→
(y0, . . . ,ym−1)∧Π,x−1, . . . ,xd−1〉 a tile whose spatial formula is either (i) ∃z . z 7→
(y0, . . . ,ym−1) or (ii) z 7→ (y0, . . . ,ym−1) with z ∈ par(T ). A tile T = 〈(∃z) z 7→ (y0, . . . ,
ym−1)∧Π, x−1, . . . ,xd−1〉 is said to be canonical if each port xi can be factorized as
x f w

i ·xbw
i (distinguishing forward links going from the root to the leaves and backward

links going in the opposite direction, respectively) such that:
1. xbw

−1≡〈yh0 , . . . ,yhk〉, for some ordered sequence 0≤ h0 < .. . < hk <m, i.e. the back-
ward incoming tuple consists only of variables referenced by the unique allocated
variable z, ordered by the corresponding selectors.

2. For all 0 ≤ i < d, x f w
i ≡ 〈y j0 , . . . ,y jki

〉, for some ordered sequence 0 ≤ j0 < .. . <

jki < m. As above, each forward outgoing tuple consists of variables referenced by
the unique allocated variable z, ordered by the corresponding selectors.

3. For all 0 ≤ i, j < d, if (x f w
i )0 ≡ yp and (x f w

j )0 ≡ yq, for some 0 ≤ p < q < m (i.e.
yp 6≡ yq), then i < j. This means that the forward outgoing tuples are ordered by the
selectors referencing their first element.

4. (x f w
−1∪xbw

0 ∪ . . .∪xbw
d−1)∩{y0, . . . ,ym−1}= /0 and Π≡ x f w

−1 = z ∧
∧d−1

i=0 xbw
i = z.7

We denote by port f w
i (T ) and portbw

i (T ) the tuples x f w
i and xbw

i , respectively, for all
−1≤ i < d. The set of canonical tiles is denoted as T c.

Definition 6. A tree t : N∗⇀ f in T c is called canonical iff #(t(p)) = #t(p) for any p ∈
dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w

i (t(p))| = |port f w
−1(t(p.i))| and

|portbw
i (t(p))|= |portbw

−1(t(p.i))|.

An important property of canonical trees is that each state that is a model of the
characteristic formula Φ(t) of a canonical tree t (i.e. S |= Φ(t)) can be uniquely de-
scribed by a local spanning tree u : dom(t)→ Loc, which has the same structure as
t, i.e. dom(u) = dom(t). Intuitively, this is because each variable yi, referenced in an
atomic proposition z 7→ (y0, . . . ,ym−1) in a canonical tile, is allocated only if it belongs
to the backward part of the incoming port xbw

−1 or the forward part of some outgoing
port x f w

i . In the first case, yi is equal to the variable allocated by the parent tile, and
in the second case, it is equal to the variable allocated by the i-th child. An immediate
consequence is that any two models of Φ(t) differ only by a renaming of the allocated
locations, i.e. they are identical up to isomorphism.

6 For two tuples x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we write x = y for
∧k

i=1 xi = yi.
7 For a tuple x = 〈x1, . . . ,xk〉, we write x = z for

∧k
i=1 xi = z.

8



hd
p

next prev

tl

n

next

prev

x0   y1

y0   x1

next

prev

y0   x1

p

next prev

next prev

next prev

prev

next

next

prev

ϕ: ∃z. z     (y0,y1)
/\ z = x0

/\ z = x1

ϕ: hd     (y0,p)
/\ hd = x1

next

prev

x0   y1

y0   x1

ϕ: ∃z. z     (y0,y1)
/\ z = x0

/\ z = x1

next

prev

x0   y1

y0   x1

ϕ: ∃z. z     (y0,y1)
/\ z = x0

/\ z = x1

prev

x0   y1

ϕ: tl     (n,y1)
/\ z = x0

n

next

y1   x0y0   x1

ϕ: ∃z. z     (y0,y1)

/\ z = x0 /\ z = x1

next

prev

x0   y1

y0   x1

/\ z = x0

/\ z = x1

prev

x0   y1

/\ z = x0

n

next

ϕ: ∃z. z     (y0,y1)

ϕ: tl     (n,y1)

next

prev

x1   y0

y1   x0

ϕ: ∃z. z     (y0,y1)
/\ z = x0

/\ z = x1

next

x1   y0

ϕ: hd     (y0,p)
/\ hd = x1

p

prev

r

Fig. 3. The DLL from Fig. 1 with two of its canonical trees (re-
lated by a canonical rotation r).

Example 2 (cont.
of Ex. 1). To il-
lustrate the notion
of canonical trees,
Fig. 3 shows two
canonical trees for
a given DLL. The
tiles are depicted as
big rectangles con-
taining the appropri-
ate basic formula as
well as the input and
output ports. In all
ports, the first vari-
able is in the for-
ward and the sec-
ond in the backward
part. �

Quasi-canonical tiles. We next define a class of tiles that encode non-local states in
order to extend our decision procedure to handle entailments between non-local induc-
tive systems. In addition to local edges between neighboring tiles, quasi-canonical tiles
allow to define sequences of equalities between remote tiles. This extension is used
to specify non-local edges within the state. A tile T = 〈ϕ∧Π,x−1, . . . ,xd−1〉 is said
to be quasi-canonical if and only if each port xi can be factorized as x f w

i · xbw
i · x

eq
i ,

〈ϕ, x f w
−1 ·xbw

−1, . . . , x f w
d−1 ·xbw

d−1〉 is a canonical tile, Π is pure formula, and:
1. for each 0≤ i < |xeq

−1|, either (xeq
−1)i ∈ FV (ϕ) or (xeq

−1)i =Π (xeq
k ) j for some unique

indices 0≤ k < d and 0≤ j < |x f w
k |.

2. for each 0≤ k < d and each 0≤ j < |xeq
k |, either (xeq

k ) j ∈ FV (ϕ) or exactly one of
the following holds: (i) (xeq

k ) j =Π (xeq
−1)i for some unique index 0 ≤ i < |xeq

−1| or
(ii) (xeq

k ) j =Π (xeq
r )s for some unique indices 0≤ r < d and 0≤ s < |xeq

r |.
3. For any x,y ∈

⋃d−1
i=−1 xeq

i , we have x =Π y only in one of the cases above.
We denote porteq

i (T ) ≡ xeq
i , for all −1 ≤ i < d. The set of quasi-canonical tiles is

denoted by T qc. The next definition of quasi-canonical trees extends Def. 6 to the case
of quasi-canonical tiles.

Definition 7. A tree t : N∗ ⇀ f in T qc is quasi-canonical iff #(t(p)) = #t(p) for any
p ∈ dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w

i (t(p))| = |port f w
−1(t(p.i))|,

|portbw
i (t(p))|= |portbw

−1(t(p.i))|, and |porteq
i (t(p))|= |porteq

−1(t(p.i))|.

Example 3 (cont. of Ex. 1). For an illustration of the notion of quasi-canonical trees,
see Fig. 4, which shows a quasi-canonical tree for the TLL from Fig. 1. The figure uses
the same notation as Fig. 3. In all the ports, the first variable is in the forward part, the
backward part is empty, and the rest is the equality part. �

3.2 Building a TA for an Inductive System
In the rest of this section, we consider that P is a connected inductive system (Def. 3)—
our construction will detect and reject disconnected systems. Given a rooted system

9



x0   y0

/\ ll = x0

n
ϕ: ll     (nil,nil,y0)

l r

y1   x2y0   x1

nroot

x0   x1

y0   x2 y1   x3   x4

l r

n

ϕ: ∃z. z     (y0,y1,nil)
/\ z = x0

/\ x2 = x3

/\ x1 = x4

x0   x1

y1   x4y0   x2   x3

l r

ϕ: ∃z. z     (y0,y1,nil)
/\ z = x0

/\ x1 = x2

/\ x3 = x4

ϕ: root     (y0,y1,nil) /\ x1 = x2

n

l r
ll

x0   x1   y0

n

l r
ϕ: ∃z. z     (nil,nil,y0)

/\ z = x0

/\ z = x1

x0   x1   y0

n

l r
ϕ: ∃z. z     (nil,nil,y0)

/\ z = x0

/\ z = x1

x0   x1

l r
lr

ϕ: ∃z. z     (nil,nil,lr)
/\ z = x0

/\ z = x1

n

Fig. 4. A quasi-canonically tiled tree for the tree with linked leaves from Fig. 1.

〈P ,Pr〉, the first ingredient of our decision procedure for entailments is a procedure for
building a TA that recognizes all unfolding trees of the inductive definition of Pr in
the system P . The first steps of the procedure implement a specialization of the rooted
system with respect to a tuple α = 〈α1, . . . ,αnr〉 of actual parameters for Pr, not used
in P . For space reasons, the specialization steps are described only informally here (for
a detailed description of these steps, see [16]).

The first step is an elimination of existentially quantified variables that occur within
equalities with formal parameters or allocated variables from all rules of P . Second,
each rule of P whose head consists of more than one atomic proposition α 7→ (x1, . . . ,xn)
is split into several new rules, containing exactly one such atomic proposition. At
this point, any disconnected inductive system (Def. 3) passed to the procedure is de-
tected and rejected. The final specialization step consists in propagating the actual pa-
rameters α through the rules. A formal parameter xi,k of a rule Ri, j(xi,1, . . . ,xi,ni) ≡
∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π is directly propagated to some (unique) parameter
of a predicate occurrence Pi j , for some 1 ≤ j ≤ m, if and only if xi,k 6∈ FV (Σ) and
xi,k ≡ (yi j)`, for some 0 ≤ ` < |yi j |, i.e. xi,k is neither allocated nor pointed to by the
head of the rule before being passed on to Pi j . We denote direct propagation of parame-
ters by the relation xi,k ; xi j ,` where xi j ,` is the formal parameter of Pi j which is mapped
to the occurrence of (yi j)`. We say that xi,k is propagated to xr,s if xi,k ;

∗ xr,s where ;∗

denotes the reflexive and transitive closure of the ; relation. Finally, we replace each
variable y of P by the actual parameter α j provided that xr, j ;

∗ y. It is not hard to
show that the specialization procedure runs in time O(|P |), hence the size of the output
system is increased by a linear factor only.

Example 4 (cont. of Ex. 1). As an example of specialization, let us consider the pred-
icate DLL from Ex. 1, with parameters DLL(a,b,c,d). After the parameter elimination
and renaming the newly created predicates, we have a call Q1 (without parameters) of
the following inductive system:

Q1() ≡ a 7→ (d,b) ∧ a= c | ∃x. a 7→ (x,b)∗Q2(x,a)
Q2(hd, p) ≡ hd 7→ (d, p) ∧ hd = c | ∃x. hd 7→ (x, p)∗Q2(x,hd)

�

We are now ready to describe the construction of a TA for a specialized rooted
system 〈P ,Pr〉. First, for each predicate Pj(x j,1, . . . ,x j,n j) ∈ P , we compute several sets

of parameters, called signatures: sig f w
j = {x j,k | x j,k is allocated in each rule of Pj, and

(y)k is referenced in each occurrence Pj(y) of Pj}, sigbw
j = {x j,k | x j,k is referenced

in each rule of Pj, and (y)k is allocated at each occurrence Pj(y) of Pj}, and, finally,

10



sig
eq
j = {x j,1, . . . ,x j,n j} \ (sig

f w
j ∪sigbw

j ). The signatures of an inductive system can
be used to implement the locality test (Def. 5): the system P = {P1, . . . ,Pk} is local if
and only if sigeq

i = /0 for each 1≤ i≤ k.

Example 5 (cont. of Ex. 4). The signatures for the system in Ex. 4 are: sig f w
1 = sigbw

1 =

sig
eq
1 = /0 and sig

f w
2 = {hd},sigbw

2 = {p},sigeq
2 = /0. The fact that, for each i = 1,2,

we have sigeq
i = /0 implies that the DLL system is local. �

The procedure for building a TA from a rooted system 〈P ,Pr〉 with actual param-
eters α is denoted as SL2TA(P ,Pr,α) in the following. For each rule R j,` in the sys-
tem, the SL2TA procedure creates a quasi-canonical tile whose incoming and outgoing
ports xi are factorized as x f w

i ·xbw
i ·x

eq
i according to the precomputed signatures sig f w

j ,
sigbw

j , and sig
eq
j , respectively. The backward part of the input port xbw

−1 and the for-

ward parts of the output ports {x f w
i }i≥0 are sorted according to the order of incoming

selector edges from the single points-to formula which constitutes the head of the rule.
The output ports {xi}i≥0 are sorted within the tile according to the order of the selector
edges pointing to (x f w

i )0 for each i ≥ 0. Finally, each predicate name Pi is associated
with a state qi, and for each inductive rule, the procedure creates a transition rule in the
TA. The final state of the TA then corresponds to the root of the system (see Algorithm
in [16]). The invariant used to prove the correctness of this construction is that when-
ever the TA reaches a state qi it reads an unfolding tree whose root is labeled with a
rule Ri, j of the definition of a predicate Pi. The following lemma summarizes the TA
construction:

Lemma 1. Given a rooted system 〈P ,Pr(xr,1, . . . ,xr,nr)〉 where P = {Pi}k
i=1 is a con-

nected inductive system, 1 ≤ r ≤ k, and α = 〈α1, . . . ,αni〉 is a tuple of variables not in
P , let A = SL2TA(P ,Pr,α). Then, for every state S, we have S |= Pr(α) iff there exists
t ∈ L(A) such that S |= Φ(t). Moreover, |A|= O(|P |).

∆ =

 〈a 7→ (d,b)∧a= c, /0〉()→ q1 〈a 7→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ 7→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2


Example 6 (cont.
of Ex. 5). For the
specialized induc-
tive system P =
{Q1,Q2} from Ex. 4, we obtain the TA A = SL2TA(P ,Q1,〈a,b,c,d〉) =
〈Σ,{q1,q2},∆,{q1}〉 where ∆ is shown above. �

4 Rotation of Tree Automata

In this section we deal with polymorphic representations of states, i.e. situations when a
state can be represented by different spanning trees, with different tilings. In this section
we show that, for states with local spanning trees only (Def. 4), these trees are related
by a rotation relation.

4.1 Rotation as a Transformation of TA
We start by defining rotation as a relation on trees. Intuitively, two trees t1 and t2 are re-
lated by a rotation whenever we can obtain t2 from t1 by picking a position p ∈ dom(t1)
and making it the root of t2, while maintaining in t2 all edges from t1 (Fig. 5).

11



Definition 8. Given two trees t1, t2 : N∗⇀ f in Σ and a bijective mapping r : dom(t1)→
dom(t2), we say that t2 is an r-rotation of t1, denoted by t1 ∼r t2 if and only if: ∀p ∈
dom(t1)∀d ∈D+(t1) : p.d ∈ dom(t1)⇒∃e ∈D(t2) . r(p.d) = r(p).e. We write t1 ∼ t2
if there exists a bijective mapping r : dom(t1)→ dom(t2) such that t1 ∼r t2.

t1 t2

ε

0 1

00
01

ε

0
1

2

20

r

Fig. 5. An example of a rotation.

An example of a rotation r of a tree t1
to a tree t2 such that r(ε) = 2, r(0) = ε,
r(1) = 20, r(00) = 0, and r(01) = 1 is
shown in Fig. 5. Note that, e.g., for p =
ε ∈ dom(t1) and d = 0 ∈ D+(t1), where
p.d = ε.0 ∈ dom(t1), we get e = −1 ∈
D(t2), and r(ε.0) = 2.(−1) = ε.

In the rest of this section, we define rotation on canonical and quasi-canonical trees.
These definitions are refinements of Def. 8. Namely, the change in the structure of the
tree is mirrored by a change in the tile alphabet labeling the tree in order to preserve the
state which is represented by the (quasi-)canonical tree.

A substitution is an injective partial function σ : Var ⇀ f in Var. Given a basic for-
mula ϕ and a substitution σ, we denote by ϕ[σ] the result of simultaneously replacing
each variable x (not necessarily free) that occurs in ϕ by σ(x). For instance, if σ(x) = y,
σ(y) = z, and σ(z) = t, then (∃x,y . x 7→ (y,z)∧ z = x)[σ]≡ ∃y,z . y 7→ (z, t) ∧ t = y.

Definition 9. Given two canonical trees t,u : N∗⇀ f in T c and a bijective mapping r :
dom(t)→ dom(u), we say that u is a canonical rotation of t, denoted t ∼c

r u, if and only
if t ∼r u and there exists a substitution σp : Var ⇀ f in Var for each p ∈ dom(t) such that
form(t(p))[σp]≡ form(u(r(p))) and, for all 0≤ i < #t(p), there exists j ∈D(u) such
that r(p.i) = r(p). j and:

port f w
i (t(p))[σp] ≡ if j ≥ 0 then port f w

j (u(r(p))) else portbw
−1(u(r(p)))

portbw
i (t(p))[σp] ≡ if j ≥ 0 then portbw

j (u(r(p))) else port f w
−1(u(r(p)))

We write t ∼c u if there exists a mapping r such that t ∼c
r u.

Example 7 (cont. of Ex. 2). The notion of canonical rotation is illustrated by the canon-
ical rotation r relating the two canonical trees of a DLL shown in Fig. 3. In its case, the
variable substitutions are simply the identity in each node. Note, in particular, that when
the tile 0 of the left tree (i.e., the second one from the top) gets rotated to the tile 1 of the
right tree (i.e., the right successor of the root), the input and output ports get swapped
and so do their forward and backward parts. �

The following lemma is the key for proving completeness of our entailment check-
ing for local inductive systems: if a (local) state is a model of the characteristic formulae
of two different canonical trees, then these trees must be related by canonical rotation.

Lemma 2. Let t : N∗ ⇀ f in T c be a canonical tree and S = 〈s,h〉 be a state such that
S |= Φ(t). Then, for any canonical tree u : N∗⇀ f in T c, we have S |= Φ(u) iff t ∼c u.

In the following, we extend the notion of rotation to quasi-canonical trees:

Definition 10. Given two quasi-canonical trees t,u : N∗⇀ f in T qc and a bijective map-
ping r : dom(t)→ dom(u), we say that u is a quasi-canonical rotation of t, denoted
t ∼qc

r u, if and only if t ∼c
r u and |porteq

i (t(p))| = |porteq
j (u(r(p)))| for all p ∈ dom(t)

and all 0≤ i < #t(p),−1≤ j < #t(p) such that r(p.i) = r(p). j. We write t ∼qc u if there
exists a mapping r such that t ∼qc

r u.

12



Algorithm 1 Rotation Closure of Quasi-canonical TA.
input a quasi-canonical TA A = 〈Q,Σ,∆,F〉
output a TA Ar where:
L(Ar) = {u : N∗⇀ f in T qc | ∃t ∈ L(A) . u∼qc t}
function ROTATETA(A)

Ar ← A
assume Ar ≡ 〈Qr ,Σ,∆r ,Fr〉
for all ρ ∈ ∆ do

assume ρ≡ T (q0, . . . ,qk)→ q
assume T ≡ 〈ϕ,x−1,x0, . . . ,xk〉
if x−1 6= /0 or q 6∈ F then

assume x−1 ≡ x f w
−1 ·xbw

−1 ·x
eq
−1

if xbw
−1 6= /0 then
Qrev←{qrev | q ∈ Q}
(Qρ,∆ρ)← (Q∪Qrev ∪{q f

ρ},∆)
p← POSITIONOF(xbw

−1,ϕ)

xswap← xbw
−1 ·x

f w
−1 ·x

eq
−1

Tnew← 〈ϕ,〈〉,x0, . . . ,xp,xswap, . . . ,xk〉
∆ρ←∆ρ∪{Tnew(q0 . . .qp,qrev . . .qk)−→ q f

ρ}
(∆ρ, )← ROTTR(q,∆,∆ρ, /0,F)

Aρ← 〈Qρ,Σ,∆ρ,{q f
ρ}〉

Ar ← Ar ∪Aδ

return Ar

function ROTTR(q,∆,∆new,V,F)
V← V∪{q}
for all (U(s0, . . . ,s`)→ s) ∈ ∆ do

for all 0≤ j ≤ ` such that s j = q do
assume U = 〈ϕ,x−1,x0, . . . ,x j , . . . ,x`〉
assume x j ≡ x f w

j ·xbw
j ·x

eq
j

if x−1 = /0 and s ∈ F then
xswap← xbw

j ·x
f w
j ·x

eq
j

U ′← 〈ϕ,xswap,x0, . . . ,x j−1,x j+1, . . . ,x`〉
∆new← ∆new ∪{U ′(s0 . . .s j−1 . . .s`)−→ qrev}

else
x−1 ≡ x f w

−1 ·xbw
−1 ·x

eq
−1

if xbw
−1 6= /0 then
ports← 〈x0, . . . ,x j−1,x j+1, . . . ,x`〉
states← (s0, . . . ,s j−1,s j+1, . . . ,s`)
xswap← xbw

−1 ·x
f w
−1 ·x

eq
−1

p← INSERTOUTPORT(xswap,ports,ϕ)
INSERTLHSSTATE(srev,states, p)
Unew← 〈ϕ,xbw

j ·x
f w
j ·x

eq
j ,ports〉

∆new← ∆new ∪{Unew(states)→ qrev}
if s 6∈ V then

(∆new,V)← ROTTR(s,∆,∆new,V,F)

return (∆new,V)

The increase in expressivity (i.e. the possibility of defining non-local edges) comes
at the cost of a loss of completeness. The following lemma generalizes the necessity
direction (⇐) of Lemma 2 for quasi-canonical tiles. Notice that the sufficiency (⇒)
direction does not hold in general.

Lemma 3. Let t,u : N∗ ⇀ f in T qc be quasi-canonical trees such that t ∼qc u. For all
states S, if S |= Φ(t), then S |= Φ(u).

4.2 Implementing Rotation as a Transformation of TA

This section describes the algorithm that produces the closure of a quasi-canonical tree
automaton (i.e. a tree automaton recognizing quasi-canonical trees only) under rota-
tion. The result is a TA that recognizes all trees u : N∗ ⇀ f in T qc such that t ∼qc u for
some tree t recognized by the input TA A = 〈Q,Σ,∆,F〉. Algorithm 1 (the ROTATETA
procedure) describes the rotation closure whose result is a language-theoretic union
of A and the TA Aρ, one for each rule ρ of A. The idea behind the construction of
Aρ = 〈Qρ,Σ,∆ρ,{q f

ρ}〉 can be understood by considering a tree t ∈ L(A), a run π :
dom(t)→Q, and a position p∈ dom(t), which is labeled with the right hand side of the
rule ρ = T (q1, . . . ,qk)−→ q of A. Then L(Aρ) will contain the rotated tree u, i.e. t ∼qc

r u,
where the significant position p is mapped into the root of u by the rotation function
r, i.e. r(p) = ε. To this end, we introduce a new rule Tnew(q0, . . . ,qrev, . . . ,qk) −→ q f

ρ

where the tile Tnew mirrors the change in the structure of T at position p, and qrev ∈
Qρ is a fresh state corresponding to q. The construction of Aρ continues recursively
(procedure ROTTR), by considering every rule of A that has q on the left hand side:
U(q′1, . . . ,q, . . . ,q

′
`) −→ s. This rule is changed by swapping the roles of q and s and

producing a rule Unew(q′1, . . . ,s
rev, . . .q′`) −→ qrev where Unew mirrors the change in the

structure of U . Intuitively, the states {qrev|q ∈Q}mark the unique path from the root of
u to r(ε) ∈ dom(u). The recursion stops when either (i) s is a final state of A, (ii) The

13



tile U does not specify a forward edge in the direction marked by q, or (iii) all states of
A have been visited.

Lemma 4. Let A = 〈Q,T qc,∆,F〉 be a TA, and Ar = ROTATETA(A) be the TA defining
the rotation closure of A. Then L(Ar) = {u | u : N∗ ⇀ f in T qc, ∃t ∈ L(A) . u ∼qc t}.
Moreover, |Ar|= O(|A|2).

The main result of this paper is given by the following theorem. The entailment
problem for inductive systems is reduced, in polynomial time, to a language inclusion
problem for tree automata. The inclusion test is always sound (if the answer is yes, the
entailment holds), and complete, if the right-hand side is a local system (Def. 4).

Theorem 1. Let P =
{

Pi ≡ |mi
j=1 Ri, j

}k

i=1
be a connected inductive system. Then, for

any two predicates Pi(xi,1, . . . ,xi,ni) and Pj(x j,1, . . . ,x j,n j) of P such that ni = n j, and
for any tuple of variables α = 〈α1, . . . ,αni〉 not used in P , the following holds for A1 =
SL2TA(P ,Pi,α) and A2 = SL2TA(P ,Pj,α):

– (Soundness) Pi(α) |=P Pj(α) if L(A1)⊆ L(Ar
2) and

– (Completness) Pi(α) |=P Pj(α) only if L(A1)⊆ L(Ar
2) provided 〈P ,Pj〉 is local.

∆ =



〈a 7→ (b,d)∧a= c, /0〉()→ q1 〈a 7→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ 7→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2
〈∃hd′.hd′ 7→ (d, p)∧hd = c∧hd′ = hd, /0,(p,hd)〉(qrev

2 ) → q f in
〈a 7→ (x,b),(a,x)〉() → qrev

2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd,x),(p,hd)〉(qrev

2 ) → qrev
2

〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd, /0,(x,hd),(p,hd)〉(q2,qrev
2 ) → q f in



Example 8 (cont. of
Ex. 6). When ap-
plied on the tree au-
tomaton A, the op-
eration of rotation
closure produces the
tree automaton Ar = 〈Σ,{q1,q2,qrev

2 ,q f in},∆,{q1,q f in}〉 where ∆ is shown above. �

5 Complexity
In this section, we provide tight complexity bounds for the entailment problem in the
fragment of SL with inductive definitions under consideration, i.e., with the connectiv-
ity and locality restrictions. The first result shows the need for connectivity within the
system: allowing disconnected rules leads to undecidability of the entailment problem.
As a remark, the general undecidability of entailments for SL with inductive definitions
has already been proven in [1]. Our proof stresses the fact that undecidability occurs
due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with disconnected rules.

The second result of this section provides tight complexity bounds for the entail-
ment problem for local connected systems. We must point out that EXPTIME-hardness
of entailments in the fragment of [14] was already proved in [1]. The result below is
stronger since the fragment under consideration is a restriction of the fragment from
[14] obtained by applying the locality condition.

Theorem 3. Entailment is EXPTIME-complete for local connected inductive systems.

6 Experiments
We implemented a prototype tool called SLIDE (Separation Logic with Inductive DEfi-
nitions) [15] that takes as input two rooted systems 〈Plhs,Plhs〉 and 〈Prhs,Prhs〉 and tests

14



Table 1. Experimental results. The upper table contains local systems, while the lower table non-
local ones. Sizes of initial TA (col. 3,4) and rotated TA (col. 5) are in numbers of states/transitions.

Entailment LHS |= RHS Answer |Alhs| |Arhs| |Ar
rhs|

DLL(a,nil,c,nil) |= DLLrev(a,nil,c,nil) True 2/4 2/4 5/8
DLLrev(a,nil,c,nil) |= DLLmid(a,nil,c,nil) True 2/4 4/8 12/18
DLLmid(a,nil,c,nil) |= DLL(a,nil,c,nil) True 4/8 2/4 5/8

∃x,n,b. x 7→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) |= DLL(a,nil,c,nil) True 3/5 2/4 5/8
DLL(a,nil,c,nil) |= ∃x,n,b. x 7→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) False 2/4 3/5 9/13
∃y,a. x 7→ (y,nil)∗ y 7→ (a,x)∗DLL(a,y,c,nil) |= DLL(x,nil,c,nil) True 3/4 2/4 5/8
DLL(x,nil,c,nil) |= ∃y,a. x 7→ (nil,y)∗ y 7→ (a,x)∗DLL(a,y,c,nil) False 2/4 3/4 8/10
∃x,b.DLL(x,b,c,nil)∗DLLrev(a,nil,b,x) |= DLL(a,nil,c,nil) True 3/6 2/4 5/8

DLL(a,nil,c,nil) |= DLL0+(a,nil,c,nil) True 2/4 2/4 5/8
TREEpp(a,nil) |= TREErev

pp (a,nil) True 2/4 3/8 6/11
TREErev

pp (a,nil) |= TREEpp(a,nil) True 3/8 2/4 5/10
TLLpp(a,nil,c,nil) |= TLLrev

pp (a,nil,c,nil) True 4/8 4/8 13/22
TLLrev

pp (a,nil,c,nil) |= TLLpp(a,nil,c,nil) True 4/8 4/8 13/22
∃l,r,z. a 7→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) |= TLL(a,c,nil) True 4/7 4/8 13/22
TLL(a,c,nil) |= ∃l,r,z. a 7→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) False 4/8 4/7 13/21

the validity of the entailment Plhs |=Plhs∪Prhs Prhs. Table 1 lists the entailment queries
on which we tried out our tool; all examples are public and available on the web [15].
The upper part of the table contains local systems, whereas the bottom part contains
non-local systems. Apart from the DLL and TLL predicates from Sect. 2.1, the con-
sidered entailment queries contain the following predicates: DLLrev (resp. DLLmid) that
encodes a DLL from the end (resp. middle), DLL0+ that encodes a possibly empty DLL,
TREEpp encoding trees with parent pointers, TREErev

pp that encodes trees with parent
pointers defined starting with an arbitrary leaf, TLLpp encoding TLLs with parent point-
ers, and TLLrev

pp which encodes TLLs with parent pointers starting from their leftmost
leaf. Columns |Alhs|, |Arhs|, and |Ar

rhs| of Table 1 provide information about the number
of states/transitions of the respective TA. The tool answered all queries correctly (de-
spite the incompleteness for non-local systems), and the running times were all under 1
sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared the SLIDE tool to the CYCLIST [5] theorem prover on the exam-
ples from the CYCLIST distribution [13]. Both tools run in less than 1 sec. on the ex-
amples from their common fragment of SL. CYCLIST does not handle examples where
rotation is needed, while SLIDE fails on examples that generate an unbounded number
of dangling pointers and are outside of the decidable fragment of [14].

7 Conclusion

We presented a novel decision procedure for the entailment problem in a non-trivial
subset of SL with inductive predicates, which deals with the problem that the same
recursive structure may be represented differently, when viewed from different entry
points. To this end, we use a special operation, which closes a given TA representation
w.r.t. the rotations of its spanning trees. Our procedure is sound and complete for induc-
tive systems with local edges. We have implemented a prototype tool which we tested
through a number of non-trivial experiments, with encouraging results.

Acknowledgment. This work was supported by the Czech Science Foundation under
the project 14-11384S, the EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070, and the internal BUT projects FIT-S-12-1 and FIT-S-14-2486.

15



References
1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. Foundations

for decision problems in separation logic with general inductive predicates. In Proc. of
FOSSACS’14, volume 8412 of LNCS, pages 411–425, 2014.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. In Proc. CAV’07, volume 4590 of LNCS. Springer,
2007.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation logic. In
Proc. of FSTTCS’04, volume 3328 of LNCS. Springer, 2004.

4. A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. Vojnar. Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. In Proc. of CIAA, volume
5148 of LNCS. Springer, 2008.

5. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In
APLAS, pages 350–367, 2012.

6. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic and its
neighbours. In Proceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer
Science, LICS ’10, pages 130–139, 2010.

7. C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory safety of c
programs. In Proc. of NASA Formal Methods’11, volume 6617 of LNCS. Springer, 2011.

8. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In Proc. of CONCUR’11, volume 6901 of LNCS. Springer,
2011.

9. K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool for checking manipulation of
dynamic data structures using separation logic. In Proc. of CAV’11, volume 6806 of LNCS.
Springer, 2011.

10. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking for a
Fragment of Separation Logic. Technical Report FIT-TR-2014-01, FIT, Brno University of
Technology, 2014.

11. C. Enea, V. Saveluc, and M. Sighireanu. Compositional invariant checking for overlaid and
nested linked lists. In Proc. of ESOP’13, pages 129–148, 2013.

12. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New York, Inc.,
2006.

13. N. Gorogiannis. Cyclist: a cyclic theorem prover framework.
URL: https://github.com/ngorogiannis/cyclist/.

14. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with recursive
definitions. In Proc. of CADE-24, volume 7898 of LNCS. Springer, 2013.

15. R. Iosif, A. Rogalewicz, and T. Vojnar. Slide: Separation logic with inductive definitions.
URL: http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/.

16. R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding entailments in inductive separation logic
with tree automata. CoRR, abs/1402.2127, 2014.

17. O. Lengal, J. Simacek, and T. Vojnar. Vata: a tree automata library.
URL: http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/.

18. J. Navarro Prez and A. Rybalchenko. Separation logic modulo theories. In APLAS, volume
8301 of LNCS, pages 90–106, 2013.

19. H. H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. In Proc of
CAV’08, volume 5123 of LNCS. Springer, 2008.

20. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using smt. In Proc. of
CAV’13, volume 8044 of LNCS, 2013.

21. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic with trees and data. In
Proc. of CAV’14, LNCS, 2014.

22. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02. IEEE CS Press, 2002.

16


