Radu Iosif

Adam Rogalewicz

Tomáš Vojnar

Deciding Entailments in Inductive Separation Logic with Tree Automata

Separation Logic (SL) with inductive definitions is a natural formalism for specifying complex recursive data structures, used in compositional verification of programs manipulating such structures. The key ingredient of any automated verification procedure based on SL is the decidability of the entailment problem. In this work, we reduce the entailment problem for a non-trivial subset of SL describing trees (and beyond) to the language inclusion of tree automata (TA). Our reduction provides tight complexity bounds for the problem and shows that entailment in our fragment is EXPTIME-complete. For practical purposes, we leverage from recent advances in automata theory, such as inclusion checking for non-deterministic TA avoiding explicit determinization. We implemented our method and present promising preliminary experimental results.

Introduction

Separation Logic (SL) [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF] is a logical framework for describing recursive mutable data structures. The attractiveness of SL as a specification formalism comes from the possibility of writing higher-order inductive definitions that are natural for describing the most common recursive data structures, such as singly-or doubly-linked lists (SLLs/DLLs), trees, hash maps (lists of lists), and more complex variations thereof, such as nested and overlaid structures (e.g. lists with head and tail pointers, skip-lists, trees with linked leaves, etc.). In addition to being an appealing specification tool, SL is particularly suited for compositional reasoning about programs. Indeed, the principle of local reasoning allows one to verify different elements (functions, threads) of a program, operating on disjoint parts of the memory, and to combine the results a-posteriori, into succinct verification conditions. However, the expressive power of SL comes at the price of undecidability [START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF]. To avoid this problem, most SL dialects used by various tools (e.g. SPACE INVADER [START_REF] Berdine | Shape analysis for composite data structures[END_REF], PREDATOR [START_REF] Dudka | Predator: A practical tool for checking manipulation of dynamic data structures using separation logic[END_REF], or INFER [START_REF] Calcagno | Infer: An automatic program verifier for memory safety of c programs[END_REF]) use hard-coded predicates, describing SLLs and DLLs, for which entailments are, in general, tractable [START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF]. For graph structures of bounded tree width, a general decidability result was presented in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF]. Entailment in this fragment is EXPTIME-hard, as proven in [START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF].

In this paper, we present a novel decision procedure for a restriction of the decidable SL fragment from [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF], describing recursive structures in which all edges are local with respect to a spanning tree. Examples of such structures include SLLs, DLLs, trees and trees with parent pointers, etc. For structures outside of this class (e.g. skip-lists or trees with linked leaves), our procedure is sound (namely, if the answer of the procedure is positive, then the entailment holds), but not complete (the answer might be negative and the entailment could still hold). In terms of program verification, such a lack of completeness in the entailment prover can lead to non-termination or false positives, but will not cause unsoundness (i.e. classify a buggy program as correct).

The method described in the paper belongs to the class of automata-theoretic decision techniques: We translate an entailment problem ϕ |= ψ into a language inclusion problem L(A ϕ) ⊆ L(A ψ) for tree automata (TA) A ϕ and A ψ that (roughly speaking) encode the sets of models of ϕ and ψ, respectively. Yet, a naïve translation of the inductive definitions of SL into TA encounters a polymorphic representation problem: the same set of structures can be defined in several different ways, and TA simply mirroring the definition will not report the entailment. For example, DLLs with selectors next and prev for the next and previous nodes, respectively, can be described by a forward unfolding of the inductive definition: DLL(head, prev,tail, next) ≡ ∃x. head → (x, prev) * DLL(x, head,tail, next) | emp∧head = tail ∧ prev = next, as well as by a backward unfolding of the definition: DLL rev (head, prev,tail, next) ≡ ∃x. tail → (next, x) * DLL rev (head, prev, x,tail) | emp∧head = tail ∧ prev = next. Also, one can define a DLL starting with a node in the middle and unfolding backward to the left of this node and forward to the right: DLL mid (head, prev,tail, next) ≡ ∃x, y, z . DLL(y, x,tail, next)

* DLL rev (head, prev, z, x). The circular entailment: DLL(a, b, c, d) |= DLL rev (a, b, c, d) |= DLL mid (a, b, c, d) |= DLL(a, b, c, d) holds, but a naïve structural translation to TA might not detect this fact. To bridge this gap, we define a closure operation on TA, called canonical rotation, which adds all possible representations of a given inductive definition, encoded as a tree automaton.

The translation from SL to TA provides also tight complexity bounds, showing that entailment in the local fragment of SL with inductive definitions is EXPTIMEcomplete. Moreover, we implemented our method using the VATA [START_REF] Lengal | Vata: a tree automata library[END_REF] tree automata library, which leverages from recent advances in non-deterministic language inclusion for TA [START_REF] Bouajjani | Antichain-based universality and inclusion testing over nondeterministic finite tree automata[END_REF], and obtained quite encouraging experimental results.

Related work.

Given the large body of literature on logics for describing mutable data structures, we need to restrict this section to the related work that focuses on SL [START_REF] Reynolds | Separation Logic: A Logic for Shared Mutable Data Structures[END_REF]. The first (proof-theoretic) decidability result for SL on a restricted fragment defining only SLLs was reported in [START_REF] Berdine | A decidable fragment of separation logic[END_REF], which describe a co-NP algorithm. The full basic SL without recursive definitions, but with the magic wand operator was found to be undecidable when interpreted in any memory model [START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF]. A PTIME entailment procedure for SL with list predicates is given in [START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF]. Their method was extended to reason about nested and overlaid lists in [START_REF] Enea | Compositional invariant checking for overlaid and nested linked lists[END_REF]. More recently, entailments in an important SL fragment with hardcoded SLL/DLL predicates were reduced to Satisfiability Modulo Theories (SMT) problems, leveraging from recent advances in SMT technology [START_REF] Piskac | Automating separation logic using smt[END_REF][START_REF] Navarro Prez | Separation logic modulo theories[END_REF]. The work reported in [START_REF] Enea | Compositional Entailment Checking for a Fragment of Separation Logic[END_REF] deals with entailments between inductive SL formulae describing nested list structures. It uses a combination of graphs and TA to encode models of SL, but it does not deal with the problem of polymorphic representation. Recently, a decision procedure for entailments in a fragment of multi-sorted first-order logic with reachability, hard-coded trees and frame specifications, called GRIT (Graph Reachability and Inverted Trees) has been reported in [START_REF] Piskac | Automating separation logic with trees and data[END_REF]. Due to the restriction of the transitive closure to one function symbol (parent pointer), the expressive power of their logic, without data constraints, is strictly lower than ours (regular properties of trees cannot be encoded in GRIT). However, GRIT can be extended with data, which has not been, so far, considered for SL.

Closer to our work on SL with user-provided inductive definitions is the fragment used in the tool SLEEK, which implements a semi-algorithmic entailment check, based on unfoldings and unifications [START_REF] Nguyen | Enhancing program verification with lemmas[END_REF]. Along this line of work, the theorem prover CY-CLIST builds entailment proofs using a sequent calculus. Neither SLEEK nor CYCLIST are complete for a given fragment of SL, and, moreover, these tools do not address the polymorphic representation problem.

Our previous work [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] gave a general decidability result for SL with inductive definitions interpreted over graph-like structures, under several necessary restrictions, based on a reduction from SL to Monadic Second Order Logic (MSOL) on graphs of bounded tree width. Decidability of MSOL on such graphs relies on a combinatorial reduction to MSOL on trees (see [START_REF] Flum | Parameterized Complexity Theory[END_REF] for a proof of Courcelle's theorem). Altogether, using the method from [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] causes a blowup of several exponentials in the size of the input problem and is unlikely to produce an effective decision procedure.

The work [START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF] provides a rather complete picture of complexity for the entailment in various SL fragments with inductive definitions, including EXPTIME-hardness of the decidable fragment of [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF], but provides no upper bound. The EXPTIME-completeness result in this paper provides an upper bound for a fragment of local definitions, and strengthens the EXPTIME-hard lower bound as well, i.e. it is showed that even the entailment between local definitions is EXPTIME-hard.

Definitions

The set of natural numbers is denoted by N. If x = x 1 , . . . , x n and y = y 1 , . . . , y m are tuples, x • y = x 1 , . . . , x n , y 1 , . . . , y m denotes their concatenation, |x| = n denotes the length of x, and (x) i = x i denotes the i-th element of x. For a partial function f : A B, and ⊥ / ∈ B, we denote by f (x) = ⊥ the fact that f is undefined at some point

x ∈ A. The domain of f is denoted dom(f) = {x ∈ A | f (x) = ⊥}, and the image of f is denoted as img(f) = {y ∈ B | ∃x ∈ A . f (x) = y}. By f : A f in B,
we denote any partial function whose domain is finite. Given two partial functions f , g defined on disjoint domains, i.e. dom(f) ∩ dom(g) = / 0, we denote by f ⊕ g their union.

States. We consider Var = {x, y, z, . . .} to be a countably infinite set of variables and nil ∈ Var be a designated variable. Let Loc be a countably infinite set of locations and null ∈ Loc be a designated location.

k ∈ N such that (h())(k) = ⊥.
Given a state S = s, h , s is called the store and h the heap. For any l, l ∈ Loc, we write k -→ S instead of (h())(k) = for any k ∈ N called a selector. We call the triple k -→ S an edge of S. When the S subscript is obvious from the context, we sometimes omit it. Let Img(h) = ∈Loc img(h()) be the set of locations which are destinations of some edge in h. A location ∈ Loc is said to be allocated in s, h if ∈ dom(h) (i.e. it is the source of an edge). The location is called dangling in s, h if ∈ [img(s) ∪ Img(h)] \ dom(h), i.e. it is referenced by a store variable or reachable from an allocated location in the heap, but it is not allocated in the heap itself. The set loc(S) = img(s) ∪ dom(h) ∪ Img(h) is the set of all locations either allocated or referenced in the state S.

For any two states S 1 = s 1 , h 1 and S 2 = s 2 , h 2 such that (i) s 1 and s 2 agree on the evaluation of common variables (∀x ∈ dom(s 1) ∩ dom(s 2) . s 1 (x) = s 2 (x)) and (ii) h 1 and h 2 have disjoint domains (dom(h 1) ∩ dom(h 2) = / 0), we denote by S 1 S 2 = s 1 ∪ s 2 , h 1 ⊕ h 2 the disjoint union of S 1 and S 2 . The disjoint union is undefined if one of the above conditions does not hold.

Trees and Tree Automata. Let Σ be a countable alphabet and N * be the set of sequences of natural numbers. Let ε ∈ N * denote the empty sequence and p.q denote the concatenation of two sequences p, q ∈ N * . We say that p is a prefix of q if q = p.q for some q ∈ N * . A set X ⊆ N * is prefix-closed iff p ∈ X ⇒ q ∈ X for each prefix q of p. A tree t over Σ is a finite partial function t : N * f in Σ such that dom(t) is a finite prefix-closed subset of N * and, for each p ∈ dom(t) and i ∈ N, we have t(p.i) = ⊥ only if t(p. j) = ⊥, for all 0 ≤ j < i. The sequences p ∈ dom(t) are called positions in the following. Given two positions p, q ∈ dom(t), we say that q is the i-th successor (child) of p if q = p.i, for some i ∈ N. We denote by D(t) = {-1, 0, . . . , N} the direction alphabet of t, where N = max{i ∈ N | ∃p ∈ N * . p.i ∈ dom(t)}, and we let D + (t) = D(t) \ {-1}. By convention, we have (p.i).(-1) = p, for all p ∈ N * and i ∈ D + (t).

Given a tree t and a position p ∈ dom(t), we define the arity of the position p as # t (p) =

max{d ∈ D + (t) | p.d ∈ dom(t)} + 1.
A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the following) is a quadruple A = Q, Σ, ∆, F , where Σ is a finite alphabet, Q is a finite set of states, F ⊆ Q is a set of final states, Σ is an alphabet, and ∆ is a set of transition rules of the form σ(q 1 , . . . , q n) → q, for σ ∈ Σ, and q, q 1 , . . . , q n ∈ Q. Given a tree automaton A = Q, Σ, ∆, F , for each rule ρ = (σ(q 1 , . . . , q n) -→ q), we define its size as |ρ| = n + 1. The size of the tree automaton is |A| = ∑ ρ∈∆ |ρ|. A run of A over a tree t : N * f in Σ is a function π : dom(t) → Q such that, for each node p ∈ dom(t), where q = π(p), if q i = π(p.i) for 1 ≤ i ≤ n, then ∆ has a rule (t(p))(q 1 , . . . , q n) → q. We write t π =⇒ q to denote that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t π =⇒ q for some run π. The language of A is defined as L(A) = {t | ∃q ∈ F, t =⇒ q}.

Separation Logic

The syntax of basic formulae of Separation Logic (SL) is given below:

α ∈ Var \ {nil}; x ∈ Var; Π ::= α = x | Π 1 ∧ Π 2 Σ ::= emp | α → (x 1 , . . . , x n) | Σ 1 * Σ 2 , for some n > 0 ϕ ::= Σ ∧ Π | ∃x . ϕ
A formula of the form n i=1 α i = x i defined by the Π nonterminal in the syntax above is said to be pure. The atomic proposition emp, or any formula of the form k i=1 α i → (x i,1 , . . . , x i,n i), for some k > 0, is said to be spatial. A variable x is said to be free in ϕ if it does not occur under the scope of any existential quantifier. We denote by FV (ϕ) the set of free variables. A variable α ∈ FV (Σ) \ {nil} is said to be allocated (respectively, referenced) in a spatial formula Σ if it occurs on the left-hand (respectively, right-hand) side of a proposition α → (x 1 , . . . , x n) of Σ.

In the following, we shall use two equality relations. The syntactic equality, denoted σ ≡ ς, means that σ and ς are the same syntactic object (formula, variable, tuple of variables, etc.). On the other hand, by writing x = Π y, for two variables x, y ∈ Var and a pure formula Π, we mean that the equality of the values of x and y is implied by Π.

A system of inductive definitions (inductive system) P is a set of rules of the form

P i (x i,1 , . . . , x i,n i) ≡ | m i j=1 R i, j (x i,1 , . . . , x i,n i) k i=1 (1)
where {P 1 , . . . , P k } is a set of predicates, x i,1 , . . . , x i,n i are called formal parameters, and the formulae R i, j are called the rules of P i . Each rule is of the form R i, j (x) ≡ ∃z . Σ * P i 1 (y 1) * . . . * P i m (y m) ∧ Π, where x ∩ z = / 0, and the following holds: 1. Σ ≡ emp is a non-empty spatial formula 3 , called the head of R i, j . 2. P i 1 (y 1), . . . , P i m (y m) is a tuple of predicate occurrences, called the tail of R i, j , where |y j | = n i j , for all 1 ≤ j ≤ m. 3. Π is a pure formula, restricted such that, for all formal parameters β ∈ x, we allow only equalities of the form α = Π β, where α is allocated in Σ. 44. for all 1 ≤ r, s ≤ m, if x i,k ∈ y r , x i,l ∈ y s , and x i,k = Π x i,l , for some 1 ≤ k, l ≤ n i , then r = s; a formal parameter of a rule cannot be passed to two or more subsequent occurrences of predicates in that rule. 5The size of a rule R is denoted by |R| and defined inductively as follows:

|α = x| = 1, |emp| = 1, |α → (x 1 , . . . , x n)| = n + 1, |ϕ • ψ| = |ϕ| + |ψ|, |∃x . ϕ| = |ϕ| + 1, and |P(x 1 , . . . , x n)| = n.
Here, α ∈ Var \ {nil}, x, x 1 , . . . , x n ∈ Var, and • ∈ { * , ∧}. The size of an inductive system (1) is defined as

|P | = ∑ k i=1 ∑ m i
j=1 |R i, j |. A rooted system P , P i is an inductive system P with a designated predicate P i ∈ P . Example 1. To illustrate the use of inductive definitions (with the above restrictions), we first show how to define a predicate DLL(hd, p,tl, n) describing doublylinked lists of length at least one. As depicted on the top of Fig. 1, the formal parameter hd points to the first allocated node of such a list, p to the node pointed to by the prev selector of hd, tl to the last node of the list (possibly equal to hd), and n to the node pointed to by the next selector from tl. This predicate can be defined as follows: DLL(hd, p,tl, n) ≡ hd → (n, p) ∧ hd = tl | ∃x. hd → (x, p) * DLL(x, hd,tl, n).

Another example is the predicate TLL(r, ll, lr) describing binary trees with linked leaves whose root is pointed to by the formal parameter r, the left-most leaf is pointed to by ll, and the right-most leaf points to lr as shown in the bottom of Fig. 1: TLL(r, ll, lr) ≡ r → (nil, nil, lr) ∧ r = ll | ∃x, y, z. r → (x, y, nil) * TLL(x, ll, z) * TLL(y, z, lr).

The semantics of SL is given by the model relation |=, defined inductively, on the structure of formulae, as follows:

S |= emp ⇐⇒ dom(h) = / 0 S |= α → (x 1 , . . . , x n) ⇐⇒ s = {(α, 0), (x 1 , 1), . . . , (x n , n)} and h = { 0 , λi . if 1 ≤ i ≤ n then i else ⊥ } for some 0 , 1 , . . . , n ∈ Loc S |= ϕ 1 * ϕ 2 ⇐⇒ S 1 |= ϕ 1 and S 2 |= ϕ 2 for some S 1 , S 2 : S 1 S 2 = S S |= ∃x . ϕ ⇐⇒ s[x ←], h |= ϕ for some ∈ Loc S |= P i (x i,1 , . . . , x i,n i) ⇐⇒ S |= R i, j (x i,1 , . . . , x i,n i), for some 1 ≤ j ≤ m i , in (1)
The semantics of = and ∧ are classical for first order logic. Note that we adopt here the strict semantics, in which a points-to relation α → (x 1 , . . . , x n) holds in a state consisting of a single cell pointed to by α that has exactly n outgoing edges s(α

) k - → S s(x k), 1 ≤ k ≤ n, leading either towards the single allocated location s(α) (if s(x k) = s(α)) or towards dangling locations (if s(x k) = s(α)).
The empty heap is specified by emp.

A state S is a model of a predicate P i iff it is a model of one of its rules R i, j . For a state S that is a model of R i, j , the inductive definition of the semantics implies existence of a finite unfolding tree: this is a tree labeled with rules of the system in such a way that, whenever a node is labeled by a rule with a tail P i 1 (y 1), . . . , P i m (y m), it has exactly m children such that the j-th child, for 1 ≤ j ≤ m, is labeled with a rule of P i j (see the middle part of Fig. 2-a formal definition is given in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF].

Given an inductive system P , predicates P i (x 1 , . . . , x n) and P j (y 1 , . . . , y n) of P with the same number of formal parameters n, and a tuple of variables x where |x| = n, the entailment problem is defined as follows: P i (x) |= P P j (x) : ∀S . S |= P i (x) ⇒ S |= P j (x).

Connectivity, Spanning Trees and Local States

In this section, we define two conditions ensuring that entailments in the restricted SL fragment can be decided effectively. The notion of a spanning tree is central for these definitions. Informally, a state S has a spanning tree t if all allocated locations of S can be placed in t such that there is always an edge in S in between every two locations placed in a parent-child pair of positions (see Fig. 2 for two spanning trees).

Definition 2. Given a state S = s, h , a spanning tree of S is a bijective tree t :

N * → dom(h) such that ∀p ∈ dom(t)∀d ∈ D + (t) . p.d ∈ dom(t) ⇒ ∃k ∈ N . t(p) k - → S t(p.d).
Given an inductive system P , let S = s, h be a state and P i ∈ P be an inductive definition such that S |= P i . Our first restriction, called connectivity (Def. 3), ensures that the unfolding tree of the definition of P i is also a spanning tree of S (cf. Fig. 2, middle). In other words, each location ∈ dom(h) is created by an atomic proposition of the form α → (x 1 , . . . , x n) from the unfolding tree of the definition P i , and, moreover, by Def. 2, there exists an edge k -→ S for any parent-child pair of positions in this tree (cf. the next edges in Fig. 2).

For a basic quantifier-free SL formula ϕ ≡ Σ ∧ Π and two variables x, y ∈ FV (ϕ), we say that y is ϕ-reachable from x iff there is a sequence x = Π α 0 , . . . , α m = Π y, for some m ≥ 0, such that, for each 0 ≤ i < m, α i → (β i,1 , . . . , β i,p i) is an atomic proposition in Σ, and

β i,s = Π α i+1 , for some 1 ≤ s ≤ p i . A variable x ∈ FV (Σ) is called a root of Σ if every variable y ∈ FV (Σ) is ϕ-reachable from x. Definition 3. Given a system P = {P i ≡ | m i j=1 R i, j } n i=1 of inductive definitions, a rule R i, j (x i,1 , . . . , x i,k) ≡ ∃z . Σ * P i 1 (y 1) * . . . * P i m (y m) ∧ Π of a predicate P i (x i,1 , . . . , x i,k
) is connected iff there exists a formal parameter x i, of P i , 1 ≤ ≤ k, such that (i) x i, is a root of Σ and (ii) for each j = 1, . . . , m, there exists 0 ≤ s < |y j | such that (y j) s is (Σ ∧ Π)-reachable from x i, and x i j ,s is a root of the head of each rule of P i j . The system P is said to be connected if all its rules are connected.

For instance, the DLL and TLL systems from Ex. 1 are both connected. Our second restriction, called locality, ensures that every edge k -→ S , between allocated locations , ∈ dom(h), involves locations that are mapped to a parent-child pair of positions in some spanning tree of S. For instance, the DLL system of Ex. 1 is local, while the TLL system is not (e.g. the n edges between leaves cannot be mapped to parent-child pairs in the spanning tree that is obtained by taking the l and r edges of the TLL). In this paper, we address the locality problem by giving a sufficient condition (a syntactic check of the inductive system, prior to the generation of TA) able to decide the locality on all of the practical examples considered (Sec. 3.2). The decidability of locality of general inductive systems is an interesting open problem, considered for future research. Definition 5. A system P = {P i (x i,1 , . . . , x i,n i)} k i=1 is said to be local if and only if each formal parameter x i, j of a predicate P i is either (i) allocated in each rule of P i and (y) j is referenced at each occurrence P i (y), or (ii) referenced in each rule of P i and (y) j is allocated at each occurrence P i (y).

This gives a sufficient (but not necessary) condition ensuring that any state S, such that S |= P i , has a local spanning tree, if P is a connected local system. The condition is effective and easily implemented (see Sec. 3.2) by the translation from SL to TA.

From Separation Logic to Tree Automata

The first step of our entailment decision procedure is building a TA for a given inductive system. Roughly speaking, the TA we build recognizes unfolding trees of the inductive system. The alphabet of such a TA consists of small basic SL formulae describing the neighborhood of each allocated variable, together with a specification of the connections between each such formula and its parent and children in the unfolding tree. Each alphabet symbol in the TA is called a tile. Due to technical details related to the encoding of states as trees of SL formulae, the most space in this section is dedicated to the definition of tiles. Once the tile alphabet is defined, the states of the TA correspond naturally to the predicates of the inductive system, and the transition rules correspond to the rules of the system.

Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tuple T = ϕ, x -1 , x 0 , . . . , x d-1 , for some d ≥ 0, where ϕ is a basic SL formula, and each x i is a tuple of pairwise distinct variables, called a port. We further assume that all ports contain only free variables from ϕ and that they are pairwise disjoint. The variables from x -1 are said to be incoming, the ones from x 0 , . . . , x d-1 are said to be outgoing, and the ones from par(T) = FV (ϕ) \ (x -1 ∪ . . . ∪ x d-1) are called parameters. The arity of a tile T = ϕ, x -1 , . . . , x d-1 is the number of outgoing ports, denoted by #(T) = d. We denote form(T) ≡ ϕ and port i (T) ≡ x i , for all -1 ≤ i < d.

Given tiles T 1 = ϕ, x -1 , . . . , x d-1 and T 2 = φ, y -1 , . . . , y e-1 such that FV (ϕ) ∩ FV (φ) = / 0, we define the i-composition, for some 0

≤ i < d, such that |x i | = |y -1 |: T 1 i T 2 = ψ, x -1 , . . . x i-1
, y 0 , . . . , y e-1 , x i+1 , . . . , x d-1 where ψ ≡ ∃x i ∃y -1 . ϕ * φ∧x i = y -1 . 6 For a position q ∈ N * and a tile T , we denote by T q the tile obtained by renaming each variable x in the ports of T by x q . A tree t labeled with tiles corresponds to a tile defined inductively, for any p ∈ dom(t), as:

T (t, p) = t(p) p 0 T (t, p.0) 1 T (t, p.1) . . . #(p)-1 T (t, p.(# t (p) -1)). The SL formula Φ(t) ≡ form(T (t, ε)) is said to be the characteristic formula of t.
Canonical tiles. We first define a class of tiles that encode local states (Def. 4) with respect to the underlying tile-labeled spanning trees. We denote by T = (∃z) z → (y 0 , . . . , y m-1) ∧ Π, x -1 , . . . , x d-1 a tile whose spatial formula is either (i) ∃z . z → (y 0 , . . . , y m-1) or (ii) z → (y 0 , . . . , y m-1) with z ∈ par(T). A tile T = (∃z) z → (y 0 , . . . , y m-1) ∧ Π, x -1 , . . . , x d-1 is said to be canonical if each port x i can be factorized as x f w i • x bw i (distinguishing forward links going from the root to the leaves and backward links going in the opposite direction, respectively) such that:

1. x bw -1 ≡ y h 0 , . . . , y h k , for some ordered sequence 0 ≤ h 0 < . . . < h k < m, i.e. the backward incoming tuple consists only of variables referenced by the unique allocated variable z, ordered by the corresponding selectors. 2. For all 0 ≤ i < d, x f w i ≡ y j 0 , . . . , y j k i , for some ordered sequence 0 ≤ j 0 < . . . < j k i < m. As above, each forward outgoing tuple consists of variables referenced by the unique allocated variable z, ordered by the corresponding selectors. 3. For all 0 ≤ i, j < d, if (x f w i) 0 ≡ y p and (x f w j) 0 ≡ y q , for some 0 ≤ p < q < m (i.e. y p ≡ y q), then i < j. This means that the forward outgoing tuples are ordered by the selectors referencing their first element.

≤ i < # t (p), |port f w i (t(p))| = |port f w -1 (t(p.i))| and |port bw i (t(p))| = |port bw -1 (t(p.i))
|. An important property of canonical trees is that each state that is a model of the characteristic formula Φ(t) of a canonical tree t (i.e. S |= Φ(t)) can be uniquely described by a local spanning tree u : dom(t) → Loc, which has the same structure as t, i.e. dom(u) = dom(t). Intuitively, this is because each variable y i , referenced in an atomic proposition z → (y 0 , . . . , y m-1) in a canonical tile, is allocated only if it belongs to the backward part of the incoming port x bw -1 or the forward part of some outgoing port x f w i . In the first case, y i is equal to the variable allocated by the parent tile, and in the second case, it is equal to the variable allocated by the i-th child. An immediate consequence is that any two models of Φ(t) differ only by a renaming of the allocated locations, i.e. they are identical up to isomorphism. Example 2 (cont. of Ex. 1). To illustrate the notion of canonical trees, Fig. 3 shows two canonical trees for a given DLL. The tiles are depicted as big rectangles containing the appropriate basic formula as well as the input and output ports. In all ports, the first variable is in the forward and the second in the backward part.

Quasi-canonical tiles. We next define a class of tiles that encode non-local states in order to extend our decision procedure to handle entailments between non-local inductive systems. In addition to local edges between neighboring tiles, quasi-canonical tiles allow to define sequences of equalities between remote tiles. This extension is used to specify non-local edges within the state. A tile T = ϕ ∧ Π, x -1 , . . . , x d-1 is said to be quasi-canonical if and only if each port x i can be factorized as x 3. For any x, y ∈ d-1 i=-1 x eq i , we have x = Π y only in one of the cases above. We denote port eq i (T) ≡ x eq i , for all -1 ≤ i < d. The set of quasi-canonical tiles is denoted by T qc . The next definition of quasi-canonical trees extends Def. 6 to the case of quasi-canonical tiles.

f w i • x bw i • x eq i , ϕ, x f w -1 • x bw -1 , . . . , x f w d-1 • x bw d-
Definition 7. A tree t : N * f in T qc is quasi-canonical iff #(t(p)) = # t (p) for any p ∈ dom(t) and, moreover, for each 0 ≤ i < # t (p), |port f w i (t(p))| = |port f w -1 (t(p.i))|, |port bw i (t(p))| = |port bw -1 (t(p.i))|, and
|port eq i (t(p))| = |port eq -1 (t(p.i))|.
Example 3 (cont. of Ex. 1). For an illustration of the notion of quasi-canonical trees, see Fig. 4, which shows a quasi-canonical tree for the TLL from Fig. 1. The figure uses the same notation as Fig. 3. In all the ports, the first variable is in the forward part, the backward part is empty, and the rest is the equality part.

Building a TA for an Inductive System

In the rest of this section, we consider that P is a connected inductive system (Def. 3)our construction will detect and reject disconnected systems. Given a rooted system P , P r , the first ingredient of our decision procedure for entailments is a procedure for building a TA that recognizes all unfolding trees of the inductive definition of P r in the system P . The first steps of the procedure implement a specialization of the rooted system with respect to a tuple α = α 1 , . . . , α n r of actual parameters for P r , not used in P . For space reasons, the specialization steps are described only informally here (for a detailed description of these steps, see [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF]).

The first step is an elimination of existentially quantified variables that occur within equalities with formal parameters or allocated variables from all rules of P . Second, each rule of P whose head consists of more than one atomic proposition α → (x 1 , . . . , x n) is split into several new rules, containing exactly one such atomic proposition. At this point, any disconnected inductive system (Def. 3) passed to the procedure is detected and rejected. The final specialization step consists in propagating the actual parameters α through the rules. A formal parameter x i,k of a rule R i, j (x i,1 , . . . , x i,n i) ≡ ∃z . Σ * P i 1 (y 1) * . . . * P i m (y m) ∧ Π is directly propagated to some (unique) parameter of a predicate occurrence P i j , for some 1 ≤ j ≤ m, if and only if x i,k ∈ FV (Σ) and x i,k ≡ (y i j) , for some 0 ≤ < |y i j |, i.e. x i,k is neither allocated nor pointed to by the head of the rule before being passed on to P i j . We denote direct propagation of parameters by the relation x i,k ; x i j , where x i j , is the formal parameter of P i j which is mapped to the occurrence of (y i j) . We say that x i,k is propagated to x r,s if x i,k ; * x r,s where ; * denotes the reflexive and transitive closure of the ; relation. Finally, we replace each variable y of P by the actual parameter α j provided that x r, j ; * y. It is not hard to show that the specialization procedure runs in time O(|P |), hence the size of the output system is increased by a linear factor only.

Example 4 (cont. of Ex. 1). As an example of specialization, let us consider the predicate DLL from Ex. 1, with parameters DLL(a, b, c, d). After the parameter elimination and renaming the newly created predicates, we have a call Q 1 (without parameters) of the following inductive system:

Q 1 () ≡ a → (d, b) ∧ a = c | ∃x. a → (x, b) * Q 2 (x, a) Q 2 (hd, p) ≡ hd → (d, p) ∧ hd = c | ∃x. hd → (x, p) * Q 2 (x, hd)
We are now ready to describe the construction of a TA for a specialized rooted system P , P r . First, for each predicate P j (x j,1 , . . . , x j,n j) ∈ P , we compute several sets of parameters, called signatures: sig f w j = {x j,k | x j,k is allocated in each rule of P j , and (y) k is referenced in each occurrence P j (y) of P j }, sig bw j = {x j,k | x j,k is referenced in each rule of P j , and (y) k is allocated at each occurrence P j (y) of P j }, and, finally, sig eq j = {x j,1 , . . . , x j,n j } \ (sig f w j ∪ sig bw j). The signatures of an inductive system can be used to implement the locality test (Def. 5): the system P = {P 1 , . . . , P k } is local if and only if sig eq i = / 0 for each 1 ≤ i ≤ k.

Example 5 (cont. of Ex. 4). The signatures for the system in Ex. 4 are: sig

f w 1 = sig bw 1 = sig eq 1 = / 0 and sig f w 2 = {hd}, sig bw 2 = {p}, sig eq 2 = /
0. The fact that, for each i = 1, 2, we have sig eq i = / 0 implies that the DLL system is local.

The procedure for building a TA from a rooted system P , P r with actual parameters α is denoted as SL2TA(P , P r , α) in the following. For each rule R j, in the system, the SL2TA procedure creates a quasi-canonical tile whose incoming and outgoing ports x i are factorized as x

f w i • x bw i • x
eq i according to the precomputed signatures sig f w j , sig bw j , and sig eq j , respectively. The backward part of the input port x bw -1 and the forward parts of the output ports {x f w i } i≥0 are sorted according to the order of incoming selector edges from the single points-to formula which constitutes the head of the rule. The output ports {x i } i≥0 are sorted within the tile according to the order of the selector edges pointing to (x f w i) 0 for each i ≥ 0. Finally, each predicate name P i is associated with a state q i , and for each inductive rule, the procedure creates a transition rule in the TA. The final state of the TA then corresponds to the root of the system (see Algorithm in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF]). The invariant used to prove the correctness of this construction is that whenever the TA reaches a state q i it reads an unfolding tree whose root is labeled with a rule R i, j of the definition of a predicate P i . The following lemma summarizes the TA construction: Lemma 1. Given a rooted system P , P r (x r,1 , . . . , x r,n r) where P = {P i } k i=1 is a connected inductive system, 1 ≤ r ≤ k, and α = α 1 , . . . , α n i is a tuple of variables not in P , let A = SL2TA(P , P r , α). Then, for every state S, we have S |= P r (α) iff there exists t ∈ L(A) such that S |= Φ(t). Moreover,

|A| = O(|P |). ∆ =    a → (d, b) ∧ a = c, / 0 () → q 1 a → (x, b), / 0, (x, a) (q 2) → q 1 ∃hd .hd → (d, p) ∧ hd = c ∧ hd = hd, (hd, p) () → q 2 ∃hd .hd → (x, p) ∧ hd = hd, (hd, p), (x, hd) (q 2) → q 2    Example 6 (cont.
of Ex. 5). For the specialized induc-

tive system P = {Q 1 , Q 2 } from Ex. 4, we obtain the TA A = SL2TA(P , Q 1 , a, b, c, d) = Σ, {q 1 , q 2 }, ∆, {q 1 }
where ∆ is shown above.

Rotation of Tree Automata

In this section we deal with polymorphic representations of states, i.e. situations when a state can be represented by different spanning trees, with different tilings. In this section we show that, for states with local spanning trees only (Def. 4), these trees are related by a rotation relation.

Rotation as a Transformation of TA

We start by defining rotation as a relation on trees. Intuitively, two trees t 1 and t 2 are related by a rotation whenever we can obtain t 2 from t 1 by picking a position p ∈ dom(t 1) and making it the root of t 2 , while maintaining in t 2 all edges from t 1 (Fig. 5).

Definition 8. Given two trees t 1 ,t 2 : N * f in Σ and a bijective mapping r : dom(t 1) → dom(t 2), we say that t 2 is an r-rotation of t 1 , denoted by t 1 ∼ r t 2 if and only if: ∀p ∈ dom(t 1)∀d ∈ D + (t 1) : p.d ∈ dom(t 1) ⇒ ∃e ∈ D(t 2) . r(p.d) = r(p).e. We write t 1 ∼ t 2 if there exists a bijective mapping r : dom(t 1) → dom(t 2) such that t 1 ∼ r t 2 . An example of a rotation r of a tree t 1 to a tree t 2 such that r(ε) = 2, r(0) = ε, r(1) = 20, r(00) = 0, and r(01) = 1 is shown in Fig. 5. Note that, e.g., for p = ε ∈ dom(t 1) and d = 0 ∈ D + (t 1), where p.d = ε.0 ∈ dom(t 1), we get e = -1 ∈ D(t 2), and r(ε.0) = 2.(-1) = ε.

In the rest of this section, we define rotation on canonical and quasi-canonical trees. These definitions are refinements of Def. 8. Namely, the change in the structure of the tree is mirrored by a change in the tile alphabet labeling the tree in order to preserve the state which is represented by the (quasi-)canonical tree.

A substitution is an injective partial function σ : Var f in Var. Given a basic formula ϕ and a substitution σ, we denote by ϕ[σ] the result of simultaneously replacing each variable x (not necessarily free) that occurs in ϕ by σ(x). For instance, if σ(x) = y, σ(y) = z, and σ(z) = t, then (∃x, y . x → (y, z) ∧ z = x)[σ] ≡ ∃y, z . y → (z,t) ∧ t = y. Definition 9. Given two canonical trees t, u : N * f in T c and a bijective mapping r : dom(t) → dom(u), we say that u is a canonical rotation of t, denoted t ∼ c r u, if and only if t ∼ r u and there exists a substitution σ p : Var f in Var for each p ∈ dom(t) such that form(t(p))[σ p] ≡ form(u(r(p))) and, for all 0 ≤ i < # t (p), there exists j ∈ D(u) such that r(p.i) = r(p). j and: port We write t ∼ c u if there exists a mapping r such that t ∼ c r u. Example 7 (cont. of Ex. 2). The notion of canonical rotation is illustrated by the canonical rotation r relating the two canonical trees of a DLL shown in Fig. 3. In its case, the variable substitutions are simply the identity in each node. Note, in particular, that when the tile 0 of the left tree (i.e., the second one from the top) gets rotated to the tile 1 of the right tree (i.e., the right successor of the root), the input and output ports get swapped and so do their forward and backward parts.

The following lemma is the key for proving completeness of our entailment checking for local inductive systems: if a (local) state is a model of the characteristic formulae of two different canonical trees, then these trees must be related by canonical rotation. Lemma 2. Let t : N * f in T c be a canonical tree and S = s, h be a state such that S |= Φ(t). Then, for any canonical tree u : N * f in T c , we have S |= Φ(u) iff t ∼ c u.

In the following, we extend the notion of rotation to quasi-canonical trees: Definition 10. Given two quasi-canonical trees t, u : N * f in T qc and a bijective mapping r : dom(t) → dom(u), we say that u is a quasi-canonical rotation of t, denoted t ∼ qc r u, if and only if t ∼ c r u and |port eq i (t(p))| = |port eq j (u(r(p)))| for all p ∈ dom(t) and all 0 ≤ i < # t (p), -1 ≤ j < # t (p) such that r(p.i) = r(p). j. We write t ∼ qc u if there exists a mapping r such that t ∼ qc r u.

Algorithm 1 Rotation Closure of Quasi-canonical TA.

input a quasi-canonical TA A = Q, Σ, ∆, F output a TA A r where:

L(A r) = {u : N * f in T qc | ∃t ∈ L(A) . u ∼ qc t} function ROTATETA(A) A r ← A assume A r ≡ Q r , Σ, ∆ r , F r
for all ρ ∈ ∆ do assume ρ ≡ T (q 0 , . . . , q k) → q assume T ≡ ϕ, x -1 , x 0 , . . . ,

x k if x -1 = / 0 or q ∈ F then assume x -1 ≡ x f w -1 • x bw -1 • x eq -1 if x bw -1 = / 0 then Q rev ← {q rev | q ∈ Q} (Q ρ , ∆ ρ) ← (Q ∪ Q rev ∪ {q f ρ }, ∆) p ← POSITIONOF(x bw -1 , ϕ) x swap ← x bw -1 • x f w -1 • x eq -1
T new ← ϕ, , x 0 , . . . , x p , x swap , . . . , x k ∆ ρ ← ∆ ρ ∪{T new (q 0 . . . q p , q rev . . .

q k) - → q f ρ } (∆ ρ ,) ← ROTTR(q, ∆, ∆ ρ , / 0, F) A ρ ← Q ρ , Σ, ∆ ρ , {q f ρ } A r ← A r ∪ A δ return A r function ROTTR(q, ∆, ∆ new , V, F) V ← V ∪ {q}
for all (U(s 0 , . . . , s) → s) ∈ ∆ do for all 0 ≤ j ≤ such that s j = q do assume U = ϕ, x -1 , x 0 , . . . , x j , . . . , x assume x j ≡ x f w j • x bw j • x eq j if x -1 = / 0 and s ∈ F then x swap ← x bw j • x f w j • x eq j U ← ϕ, x swap , x 0 , . . . , x j-1 , x j+1 , . . . , x

∆ new ← ∆ new ∪ {U (s 0 . . . s j-1 . . . s) - → q rev } else x -1 ≡ x f w -1 • x bw -1 • x eq -1 if
x bw -1 = / 0 then ports ← x 0 , . . . , x j-1 , x j+1 , . . . , x states ← (s 0 , . . . , s j-1 , s j+1 , . . . , s)

x swap ← x bw -1 • x f w -1 • x eq -1 p ← INSERTOUTPORT(x swap , ports, ϕ) INSERTLHSSTATE(s rev , states, p) U new ← ϕ, x bw j • x f w j • x eq j , ports ∆ new ← ∆ new ∪ {U new (states) → q rev } if s ∈ V then (∆ new , V) ← ROTTR(s, ∆, ∆ new , V, F) return (∆ new , V)
The increase in expressivity (i.e. the possibility of defining non-local edges) comes at the cost of a loss of completeness. The following lemma generalizes the necessity direction (⇐) of Lemma 2 for quasi-canonical tiles. Notice that the sufficiency (⇒) direction does not hold in general. Lemma 3. Let t, u : N * f in T qc be quasi-canonical trees such that t ∼ qc u. For all states S, if S |= Φ(t), then S |= Φ(u).

Implementing Rotation as a Transformation of TA

This section describes the algorithm that produces the closure of a quasi-canonical tree automaton (i.e. a tree automaton recognizing quasi-canonical trees only) under rotation. The result is a TA that recognizes all trees u : N * f in T qc such that t ∼ qc u for some tree t recognized by the input TA A = Q, Σ, ∆, F . Algorithm 1 (the ROTATETA procedure) describes the rotation closure whose result is a language-theoretic union of A and the TA A ρ , one for each rule ρ of A. The idea behind the construction of A ρ = Q ρ , Σ, ∆ ρ , {q f ρ } can be understood by considering a tree t ∈ L(A), a run π : dom(t) → Q, and a position p ∈ dom(t), which is labeled with the right hand side of the rule ρ = T (q 1 , . . . , q k) -→ q of A. Then L(A ρ) will contain the rotated tree u, i.e. t ∼ qc r u, where the significant position p is mapped into the root of u by the rotation function r, i.e. r(p) = ε. To this end, we introduce a new rule T new (q 0 , . . . , q rev , . . . , q k) -→ q f ρ where the tile T new mirrors the change in the structure of T at position p, and q rev ∈ Q ρ is a fresh state corresponding to q. The construction of A ρ continues recursively (procedure ROTTR), by considering every rule of A that has q on the left hand side: U(q 1 , . . . , q, . . . , q) -→ s. This rule is changed by swapping the roles of q and s and producing a rule U new (q 1 , . . . , s rev , . . . q) -→ q rev where U new mirrors the change in the structure of U. Intuitively, the states {q rev |q ∈ Q} mark the unique path from the root of u to r(ε) ∈ dom(u). The recursion stops when either (i) s is a final state of A, (ii) The tile U does not specify a forward edge in the direction marked by q, or (iii) all states of A have been visited. Lemma 4. Let A = Q, T qc , ∆, F be a TA, and A r = ROTATETA(A) be the TA defining the rotation closure of A. Then L(

A r) = {u | u : N * f in T qc , ∃t ∈ L(A) . u ∼ qc t}. Moreover, |A r | = O(|A| 2).
The main result of this paper is given by the following theorem. The entailment problem for inductive systems is reduced, in polynomial time, to a language inclusion problem for tree automata. The inclusion test is always sound (if the answer is yes, the entailment holds), and complete, if the right-hand side is a local system (Def. 4).

Theorem 1. Let P = P i ≡ | m i j=1 R i, j k i=1 be a connected inductive system. Then, for any two predicates P i (x i,1 , . . . , x i,n i) and P j (x j,1 , . . . , x j,n j) of P such that n i = n j , and for any tuple of variables α = α 1 , . . . , α n i not used in P , the following holds for A 1 = SL2TA(P , P i , α) and A 2 = SL2TA(P , P j , α):

-(Soundness) P i (α) |= P P j (α) if L(A 1) ⊆ L(A r 2) and -(Completness) P i (α) |= P P j (α) only if L(A 1) ⊆ L(A r 2) provided P , P j is local. ∆ =                a → (b, d) ∧ a = c, / 0 () → q 1 a → (x, b), / 0, (x, a) (q 2) → q 1 ∃hd .hd → (d, p) ∧ hd = c ∧ hd = hd, (hd, p) () → q 2 ∃hd .hd → (x, p) ∧ hd hd, (hd, p), (x, hd) (q 2) → q 2 ∃hd .hd → (d, p) ∧ hd = c ∧ hd = hd, / 0, (p, hd) (q rev 2) → q f in a → (x, b), (a, x) () → q rev 2 ∃hd .hd → (x, p) ∧ hd = hd, (hd, x), (p, hd) (q rev 2) → q rev 2 ∃hd .hd → (x, p) ∧ hd = hd, / 0, (x, hd), (p, hd) (q 2 , q rev 2) → q f in               
Example 8 (cont. of Ex. 6). When applied on the tree automaton A, the operation of rotation closure produces the tree automaton A r = Σ, {q 1 , q 2 , q rev 2 , q f in }, ∆, {q 1 , q f in } where ∆ is shown above.

Complexity

In this section, we provide tight complexity bounds for the entailment problem in the fragment of SL with inductive definitions under consideration, i.e., with the connectivity and locality restrictions. The first result shows the need for connectivity within the system: allowing disconnected rules leads to undecidability of the entailment problem. As a remark, the general undecidability of entailments for SL with inductive definitions has already been proven in [START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF]. Our proof stresses the fact that undecidability occurs due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with disconnected rules.

The second result of this section provides tight complexity bounds for the entailment problem for local connected systems. We must point out that EXPTIME-hardness of entailments in the fragment of [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] was already proved in [START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF]. The result below is stronger since the fragment under consideration is a restriction of the fragment from [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] obtained by applying the locality condition. Theorem 3. Entailment is EXPTIME-complete for local connected inductive systems.

Experiments

We implemented a prototype tool called SLIDE (Separation Logic with Inductive DEfinitions) [START_REF] Iosif | Slide: Separation logic with inductive definitions[END_REF] that takes as input two rooted systems P lhs , P lhs and P rhs , P rhs and tests 1 provide information about the number of states/transitions of the respective TA. The tool answered all queries correctly (despite the incompleteness for non-local systems), and the running times were all under 1 sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared the SLIDE tool to the CYCLIST [START_REF] Brotherston | A generic cyclic theorem prover[END_REF] theorem prover on the examples from the CYCLIST distribution [START_REF] Gorogiannis | Cyclist: a cyclic theorem prover framework[END_REF]. Both tools run in less than 1 sec. on the examples from their common fragment of SL. CYCLIST does not handle examples where rotation is needed, while SLIDE fails on examples that generate an unbounded number of dangling pointers and are outside of the decidable fragment of [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF].

Conclusion

We presented a novel decision procedure for the entailment problem in a non-trivial subset of SL with inductive predicates, which deals with the problem that the same recursive structure may be represented differently, when viewed from different entry points. To this end, we use a special operation, which closes a given TA representation w.r.t. the rotations of its spanning trees. Our procedure is sound and complete for inductive systems with local edges. We have implemented a prototype tool which we tested through a number of non-trivial experiments, with encouraging results.

Fig. 1 .

 1 Fig. 1. Top: A DLL. Bottom: A TLL.

Definition 4 .Fig. 2 .

 42 Fig. 2. Two spanning trees of a DLL. The middle one is an unfolding tree when labeled by DLL 1 ≡ hd → (n, p) ∧ hd = tl and DLL 2 ≡ ∃x. hd → (x, p) * DLL(x, hd,tl, n).

- 1 =

 1 x bw 0 ∪ . . . ∪ x bw d-1) ∩ {y 0 , . . . , y m-1 } = / 0 and Π ≡ x f w z ∧ d-1 i=0 x bw i = z. 7 We denote by port f w i (T) and port bw i (T) the tuples x f w i and x bw i , respectively, for all -1 ≤ i < d. The set of canonical tiles is denoted as T c . Definition 6. A tree t : N * f in T c is called canonical iff #(t(p)) = # t (p) for any p ∈ dom(t) and, moreover, for each 0

Fig. 3 .

 3 Fig. 3. The DLL from Fig. 1 with two of its canonical trees (related by a canonical rotation r).

1

 1 is a canonical tile, Π is pure formula, and: 1. for each 0 ≤ i < |x eq -1 |, either (x eq -1) i ∈ FV (ϕ) or (x eq -1) i = Π (x eq k) j for some unique indices 0 ≤ k < d and 0 ≤ j < |x f w k |. 2. for each 0 ≤ k < d and each 0 ≤ j < |x eq k |, either (x eq k) j ∈ FV (ϕ) or exactly one of the following holds: (i) (x eq k) j = Π (x eq -1) i for some unique index 0 ≤ i < |x eq -1 | or (ii) (x eq k) j = Π (x eq r) s for some unique indices 0 ≤ r < d and 0 ≤ s < |x eq r |.

Fig. 4 .

 4 Fig.4. A quasi-canonically tiled tree for the tree with linked leaves from Fig.1.

Fig. 5 .

 5 Fig. 5. An example of a rotation.

- 1

 1 p))[σ p] ≡ if j ≥ 0 then port f w j (u(r(p))) else port bw -1 (u(r(p))) port bw i (t(p))[σ p] ≡ if j ≥ 0 then port bw j (u(r(p))) else port f w (u(r(p)))

 (a, nil, c, nil) True 2/4 4/8 12/18 DLL mid (a, nil, c, nil) |= DLL(a, nil, c, nil) True 4/8 2/4 5/8 ∃x, n, b. x → (n, b) * DLL rev (a, nil, b, x) * DLL(n, x, c, nil) |= DLL(a, nil, c, nil) True 3/5 2/4 5/8 DLL(a, nil, c, nil) |= ∃x, n, b. x → (n, b) * DLL rev (a, nil, b, x) * DLL(n, x, c, nil) False 2/4 3/5 9/13 ∃y, a. x → (y, nil) * y → (a, x) * DLL(a, y, c, nil) |= DLL(x, nil, c, nil) True 3/4 2/4 5/8 DLL(x, nil, c, nil) |= ∃y, a. x → (nil, y) * y → (a, x) * DLL(a, y, c, nil) False 2/4 3/4 8/10 ∃x, b.DLL(x, b, c, nil) * DLL rev (a, nil, b, x) |= DLL(a, nil, c, nil) True 3/6 2/4 5

Table 1 .

 1 Experimental results. The upper table contains local systems, while the lower table nonlocal ones. Sizes of initial TA (col. 3,4) and rotated TA (col. 5) are in numbers of states/transitions. Entailment LHS |= RHS Answer |A lhs | |A rhs | |A r rhs | DLL(a, nil, c, nil) |= DLL rev (a, nil, c, nil) True 2/4 2/4 5/8 DLL rev (a, nil, c, nil) |= DLL mid

 /8 DLL(a, nil, c, nil) |= DLL 0+ (a, nil, c, nil) True 2/4 2/4 5/8 TREE pp (a, nil) |= TREE rev pp (a, nil) True 2/4 3/8 6/11 TREE rev pp (a, nil) |= TREE pp (a, nil) True 3/8 2/4 5/10 TLL pp (a, nil, c, nil) |= TLL rev pp (a, nil, c, nil) True 4/8 4/8 13/22 TLL rev pp (a, nil, c, nil) |= TLL pp (a, nil, c, nil) True 4/8 4/8 13/22 ∃l, r, z. a → (l, r, nil, nil) * TLL(l, c, z) * TLL(r, z, nil) |= TLL(a, c, nil) True 4/7 4/8 13/22 TLL(a, c, nil) |= ∃l, r, z. a → (l, r, nil, nil) * TLL(l, c, z) * TLL(r, z, nil) False 4/8 4/7 13/21 the validity of the entailment P lhs |= P lhs ∪P rhs P rhs . Table 1 lists the entailment queries on which we tried out our tool; all examples are public and available on the web [15]. The upper part of the table contains local systems, whereas the bottom part contains non-local systems. Apart from the DLL and TLL predicates from Sect. 2.1, the considered entailment queries contain the following predicates: DLL rev (resp. DLL mid) that encodes a DLL from the end (resp. middle), DLL 0+ that encodes a possibly empty DLL, TREE pp encoding trees with parent pointers, TREE rev pp that encodes trees with parent pointers defined starting with an arbitrary leaf, TLL pp encoding TLLs with parent pointers, and TLL rev pp which encodes TLLs with parent pointers starting from their leftmost leaf. Columns |A lhs |, |A rhs |, and |A r rhs | of Table

In practice, we allow frontier or root rules to have empty heads.

This restriction can be lifted at the expense of an exponential blowup in the size of the TA.

The restriction can be lifted by testing double allocation as in[START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] (with an exponential cost).

For two tuples x = x 1 , . . . , x k and y = y 1 , . . . , y k , we write x = y for k i=1 x i = y i .

For a tuple x = x 1 , . . . , x k , we write x = z for k i=1 x i = z.

Acknowledgment. This work was supported by the Czech Science Foundation under the project 14-11384S, the EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, and the internal BUT projects FIT-S-12-1 and FIT-S-14-2486.