Pierre Ganty

Radu Iosif

Interprocedural Reachability for Flat Integer Programs

We study programs with integer data, procedure calls and arbitrary call graphs. We show that, whenever the guards and updates are given by octagonal relations, the reachability problem along control flow paths within some language w 1 . . . w d over program statements is decidable in Nexptime. To achieve this upper bound, we combine a program transformation into the same class of programs but without procedures, with an Np-completeness result for the reachability problem of procedure-less programs. Besides the program, the expression w 1 . . . w d is also mapped onto an expression of a similar form but this time over the transformed program statements. Several arguments involving contextfree grammars and their generative process enable us to give tight bounds on the size of the resulting expression. The currently existing gap between Np-hard and Nexptime can be closed to Np-complete when a certain parameter of the analysis is assumed to be constant.

Introduction

This paper studies the complexity of the reachability problem for a class of programs featuring procedures and local/global variables ranging over integers. In general, the reachability problem for this class is undecidable [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF]. Thus, we focus on a special case of the reachability problem which restricts both the class of input programs and the set of executions considered. The class of input programs is restricted by considering that all updates to the integer variables x are defined by octagonal constraints, that are conjunctions of atoms of the form ˘x ˘y ď c, with x, y P x Y x 1 , where x 1 denote the future values of the program variables. The reachability problem is restricted by limiting the search to program executions conforming to a regular expression of the form w 1 . . . w d where the w i 's are finite sequences of program statements.

We call this problem flat-octagonal reachability (fo-reachability, for short). Concretely, given: (i) a program P with procedures and local/global variables, whose statements are specified by octagonal constraints, and (ii) a bounded expression b " w 1 . . . w d , where w i 's are sequences of statements of P, the foreachability problem REACH fo pP, bq asks: can P run to completion by executing a sequence of program statements w P b ? Studying the complexity of this problem provides the theoretical foundations for implementing efficient decision procedures, of practical interest in areas of software verification, such as bugfinding [START_REF] Esparza | Complexity of pattern-based verification for multithreaded programs[END_REF], or counterexample-guided abstraction refinement [START_REF] Kroening | Under-approximating loops in C programs for fast counterexample detection[END_REF][START_REF] Hojjat | Accelerating interpolants[END_REF].

Our starting point is the decidability of the fo-reachability problem in the absence of procedures. Recently, the precise complexity of this problem was coined to Np-complete [START_REF] Bozga | Safety problems are np-complete for flat integer programs with octagonal loops[END_REF]. However, this result leaves open the problem of dealing with procedures and local variables, let alone when the graph of procedure calls has cycles, such as in the example of Fig. 1 (a). Pinning down the complexity of the fo-reachability problem in presence of (possibly recursive) procedures, with local variables ranging over integers, is the challenge we address here.

The decision procedure we propose in this paper reduces REACH fo pP, bq, from a program P with arbitrary call graphs, to procedure-less programs as follows:

1. we apply a source-to-source transformation returning a procedure-less program Q, with statements also defined by octagonal relations, such that REACH fo pP, bq is equivalent to the unrestricted reachability problem for Q, when no particular bounded expression is supplied. 2. we compute a bounded expression Γ b over the statements of Q, such that REACH fo pP, bq is equivalent to REACH fo pQ, Γ b q.

The above reduction allows us to conclude that the fo-reachability problem for programs with arbitrary call graphs is decidable and in Nexptime. Naturally, the Np-hard lower bound [START_REF] Bozga | Safety problems are np-complete for flat integer programs with octagonal loops[END_REF] for the fo-reachability problem of procedure-less programs holds in our setting as well. Despite our best efforts, we did not close the complexity gap yet. However we pinned down a natural parameter, called index, related to programs with arbitrary call graphs, such that, when setting this parameter to a fixed constant (like 3 in 3-SAT), the complexity of the resulting fo-reachability problem for programs with arbitrary call graphs becomes Np-complete. Indeed, when the index is fixed, the aforementioned reduction computing REACH fo pQ, Γ b q runs in polynomial time. Then the Np decision procedure for the fo-reachability of procedure-less programs [START_REF] Bozga | Safety problems are np-complete for flat integer programs with octagonal loops[END_REF] shows the rest.

The index parameter is better understood in the context of formal languages. The control flow of procedural programs is captured precisely by the language of a context-free grammar. A k-index (k ą 0) underapproximation of this language is obtained by filtering out the derivations containing a sentential form with k `1 occurrences of nonterminals. The key to our results is a toolbox of language theoretic constructions of independent interest that enables to reason about the structure of context-free derivations generating words into b " w 1 . . . w d , that is, words of the form w i1 1 . . . w i d d for some integers i 1 , . . . , i d ě 0. To properly introduce the reader to our result, we briefly recall the important features of our source-to-source transformation through an illustrative example. We apply first our program transformation [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF] to the program P shown in Fig. 1 (a). The call graph of this program consists of a single state P with a self-loop. The output program Q given Fig. 1 (e), has no procedures and it can thus be analyzed using any existing intra-procedural tool [START_REF] Bozga | Fast acceleration of ultimately periodic relations[END_REF][START_REF] Bardin | Fast: Fast acceleration of symbolic transition systems[END_REF]. The relation between the variables x and z of the input program can be inferred from the analysis of the output program. For instance, the input-output relation of the program P is defined by z 1 " 2x, which matches the precondition z O " 2x I of the program Q. Consequently, any assertion such as "there exists a value n ą 0 such that

x J " z K " 0 x 1 " x x J " x I ´1 z L " z K x L " x I havocpq z O " 0 x I " 0 t 2 t 3 t 1 X x0y 1 X x0y 3 X x0y 3 X x1y 3 p 1 p 3 X x0y 3 X x1y 1 X x1y 3 ¨¨p 1 ε X x0y 3 p 3 (c) X x0y 2 X x0y 1 X x0y 3 X x0y 3 X 3 X 2 X 1
x " 0 z 1 " 0

x 1 " x z 1 " z `2 z 1 " Ppx ´1q x 1 " x X x0y 3 X x1y 2 X x0y 3 X x1y 1 z O " z L `2 x O " x L p 1 : X 1 Ñ t 1 X 2 p 2 : X 2 Ñ xt 2 X 1 t 2 y X 3 p 3 : X 3 Ñ t 3 p 4 : X 1 Ñ t 4 X x0y 1 (b)
The program P x I " x O

x 1 I " x J x 1 O " x K havocpx L , x J , x K q (d) (e) The program Q x I ą 0 havocpx I q x 1 I " x L
x ą 0 Fig. 1: x I " tx I , z I u (x O " tx O , z O u) are for the input (output) values of x and z, respectively. x J,K,L provide extra copies. havocpyq stands for Ź xPx I,O,J,K,L zy x 1 " x, and x 1 α " x β for

Ź xPx x 1 α " x β .
Ppnq ă n" can be phrased as: "there exist values n ă m such that Qpn, mq reaches its final state". While the former can be encoded by a reachability problem on P, by adding an extra conditional statement, the latter is an equivalent reachability problem for Q.

For the sake of clarity, we give several representations of the input program P that we assume the reader is familiar with including the text of the program in Fig. 1 (a) and the corresponding control flow graph in Fig. 1 (b).

In this paper, the formal model we use for programs is based on context-free grammars. The grammar for P is given at Fig. 1 (c). The rôle of the grammar is to define the set of interprocedurally valid paths in the control-flow graph of the program P. Every edge in the control-flow graph matches one or two symbols from the finite alphabet tt 1 , xt 2 , t 2 y, t 3 , t 4 u, where xt 2 and t 2 y denote the call and return, respectively. The set of nonterminals is tX 1 , X 2 , X 3 , X 4 u. Each edge in the graph translates to a production rule in the grammar, labeled p 1 to p 4 . For instance, the call edge X 2 t 2 Ý Ñ X 3 becomes X 2 Ñ xt 2 X 1 t 2 yX 3 . The language of the grammar of Fig. 1 (c) (with axiom X 1) is the set L " tpt 1 xt 2 q n t 4 pt 2 yt 3 q n | n P Nu of interprocedurally valid paths in the control-flow graph. Observe that L is included in the language of the regular expression b " pt 1 xt 2 q ˚t4 ˚pt 2 yt 3 q ˚.

Our program transformation is based on the observation that the semantics of P can be precisely defined on the set of derivations of the associated grammar. In principle, one can always represent this set of derivations as a possibly infinite automaton (Fig. 1 (d)), whose states are sequences of nonterminals annotated with priorities (called ranks) 1 , and whose transitions are labeled with production rules. Each finite path in this automaton, starting from X x0y 1 , defines a valid prefix of a derivation. Since L Ď b, Luker [START_REF] Luker | A family of languages having only finite-index grammars[END_REF] shows that it is sufficient to keep a finite sub-automaton, enclosed with a dashed box in Fig. 1 (d), in which each state consists of a finite number of ranked nonterminals (in our case at most 2).

Finally, we label the edges of this finite automaton with octagonal constraints that capture the semantics of the relations labeling the control-flow graph from Fig. 1 (b). We give here a brief explanation for the labeling of the finite automaton in Fig. 1 (e), in other words, the output program Q (see [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF] for more details). The idea is to compute, for each production rule p i , a relation ρ i px I , x O q, based on the constraints associated with the symbols occurring in p i (labels from Fig. 1 (b)). For instance, in the transition X

rx I s xt 2 rx J s X 1 rx K s t 2 y rx L s X 3 rx O s.
The guard of the transition can be understood by noticing that xt 2 gives rise to the constraint x J " x I ´1, t 2 y to z L " z K , x I " x L corresponds to the frame condition of the call, and havocpq copies all current values of x I,J,K,L,O to the future ones. It is worth pointing out that the constraints labeling the transitions of the program Q are necessarily octagonal if the statements of P are defined by octagonal constraints.

An intra-procedural analysis of the program Q in Fig. 1 (e) infers the precondition x I ě 0 ^zO " 2x I which coincides with the input/output relation of the recursive program P in Fig. 1 (a), i.e. x ě 0 ^z1 " 2x. The original query Dn ą 0 : Ppnq ă n translates thus into the satisfiability of the formula x I ą 0 ^zO " 2x I ^xI ă z O , which is clearly false.

The paper is organised as follows: basic definitions are given Section 2, Section 3 defines the fo-reachability problem, Section 4 presents an alternative program semantics based on derivations and introduces subsets of derivations which are sufficient to decide reachability, Section 5 starts with on overview of our decision procedure and our main complexity results and continues with the key steps of our algorithms. The appendix contains all the missing details.

Preliminaries

Let Σ be a finite nonempty set of symbols, called an alphabet. We denote by Σ the set of finite words over Σ which includes ε, the empty word. The concatenation of two words u, v P Σ ˚is denoted by u ¨v or u v. Given a word w P Σ ˚, let |w| denote its length and let pwq i with 1 ď i ď |w| be the ith symbol of w. Given w P Σ ˚and Θ Ď Σ, we write wÓ Θ for the word obtained by deleting from w all symbols not in Θ, and sometimes we write wÓ a for wÓ tau . A bounded expression b over alphabet Σ is a regular expression of the form w 1 . . . w d , where w 1 , . . . , w d P Σ ˚are nonempty words and its size is given by |b| "

ř d i"1 |w i |.
We use b to denote both the bounded expression and its language. We call a language L bounded when L Ď b for some bounded expression b.

A grammar is a tuple G " xΞ, Σ, ∆y where Ξ is a finite nonempty set of nonterminals, Σ is an alphabet of terminals, such that Ξ X Σ " H, and ∆ Ď Ξ ˆpΣ Y Ξq ˚is a finite set of productions. For a production pX, wq P ∆, often conveniently noted X Ñ w, we define its size as |pX, wq| " |w| `1, and |G| " ř pP∆ |p| defines the size of G. Given two words u, v P pΣ Y Ξq ˚, a production pX, wq P ∆ and a position 1 ď j ď |u|, we define a step u pX,wq{j ù ùùù ñ G v if and only if puq j " X and v " puq 1 ¨¨¨puq j´1 w puq j`1 ¨¨¨puq |u| . We omit pX, wq or j above the arrow when clear from the context. A control word is a finite word γ P ∆ over the alphabet of productions. A step sequence

u γ ù ñ G v is a sequence u " w 0 pγq 1 ù ù ñ G w 1 . . . w n´1 pγqn ù ù ñ G w n " v where n " |γ|.
If u P Ξ is a nonterminal and v P Σ ˚is a word without nonterminals, we call the step sequence u γ ù ñ G v a derivation. When the control word γ is not important, we write u ñ G v instead of u γ ù ñ G v, and we chose to omit the grammar G when clear from the context.

Given a nonterminal X P Ξ and Y P Ξ Y tεu, i.e. Y is either a nonterminal or the empty word, we define the set L X,Y pGq " tu v P Σ ˚| X ñ ˚u Y vu. The set L X,ε pGq is called the language of G produced by X, and is denoted L X pGq in the following. For a set Γ Ď ∆ ˚of control words (also called a control set), we denote by LX,Y pΓ, Gq " tu v P Σ ˚| Dγ P Γ : X γ ù ñ u Y vu the language generated by G using only control words from Γ . We also write LX pΓ, Gq for LX,ε pΓ, Gq.

Let x denote a nonempty finite set of integer variables, and

x 1 " tx 1 | x P xu. A valuation of x is a function ν : x Ý Ñ Z.
The set of all such valuations is denoted by Z x . A formula φpx, x 1 q is evaluated with respect to two valuations ν, ν 1 P Z x , by replacing each occurrence of x P x with νpxq and each occurrence of x 1 P x 1 with ν 1 pxq. We write pν, ν 1 q |ù φ when the formula obtained from these replacements is valid. A formula φ R px, x 1 q defines a relation R Ď Z x ˆZx whenever for all ν, ν 1 P Z x , we have pν, ν 1 q P R iff pν, ν 1 q |ù φ R . The composition of two relations R 1 , R 2 Ď Z x ˆZx defined by formulae ϕ 1 px, x 1 q and ϕ 2 px, x 1 q, respectively, is the relation R 1 ˝R2 Ď Z x ˆZx , defined by Dy . ϕ 1 px, yq ^ϕ2 py, x 1 q. For a finite set S, we denote its cardinality by ||S||.

Interprocedural Flat Octogonal Reachability

In this section we define formally the class of programs and reachability problems considered. An octagonal relation R Ď Z x ˆZx is a relation defined by a finite conjunction of constraints of the form ˘x ˘y ď c, where x, y P x Y x 1 and c P Z. The set of octagonal relations over the variables in x and x 1 is denoted as Octpx, x 1 q. The size of an octagonal relation R, denoted |R| is the size of the binary encoding of the smallest octagonal constraint defining R.

An octagonal program is a tuple P " xG, I, r r.s sy, where G is a grammar G " xΞ, Σ, ∆y, I P Ξ is an initial location, and r r.s s : L I pGq Ñ Octpx, x 1 q is a mapping of the words produced by the grammar G, starting with the initial location I, to octagonal relations. The alphabet Σ contains a symbol t for each internal program statement (that is not a call to a procedure) and two symbols xt, ty for each call statement t. The grammar G has three kinds of productions: (i) pX, tq if t is a statement leading from X to a return location, (ii) pX, t Y q if t leads from X to Y , and (iii) pX, xt Y ty Zq if t is a call statement, Y is the initial location of the callee, and Z is the continuation of the call. Through several program transformations, we may generate another grammar with other kinds of productions. The only property we need for our results is that every grammar G with we deal with has each of its productions pX, wq satisfying: |wÓ Σ | ď 2 and |wÓ Ξ | ď 2 where Σ and Ξ are the terminals and nonterminals of G, respectively. Each edge t that is not a call has an associated octagonal relation ρ t P Octpx, x 1 q and each matching pair xt, ty has an associated frame condition φ t P Octpx, x 1 q, which equates the values of the local variables, that are not updated by the call, to their future values. The size of an octagonal program P " xG, I, r r.s sy, with G " xΞ, Σ, ∆y, is the sum of the sizes of all octagonal relations labeling the productions of 1 (a,b) is represented by the grammar in Fig. 1 (c). The terminals are mapped to octagonal relations as: ρ t1 " x ą 0 ^x1 " x, ρ xt2 " x 1 " x´1, ρ t2y " z 1 " z, ρ t3 " x 1 " x^z 1 " z `2 and ρ t4 " x " 0^z 1 " 0. The frame condition is φ t2 " x 1 " x, as only z is updated by the call z 1 " Ppx´1q. Word-based semantics. For each word w P L I pGq, each occurrence of a terminal xt in w is matched by an occurrence of ty, and the matching positions are nested 2 . The semantics of the word r rws s is an octagonal relation defined inductively 3 on the structure of w: (i) r rts s " ρ t , (ii) r rt ¨vs s " ρ t ˝r rvs s, and (iii) r rxt ¨u ¨ty ¨vs s " ``ρ xt ˝r rus s ˝ρty ˘X φ t ˘˝r rvs s, for all t, xt, ty P Σ such that xt and ty match. For instance, the semantics of the word w " t 1 xt 2 t 4 t 2 yt 3 P L X1 pGq, for the grammar G given in Fig. 1 (c), is r rws s " x " 1 ^z1 " 2. Observe that this word defines the effect of an execution of the program in Fig. 1 (a) where the function P is called twice-the first call is a top-level call, and the second is a recursive call (line 3). Reachability problem. The semantics of a program P " xG, I, r r.s sy is defined as r rPs s " Ť wPL I pGq r rws s. Consider, in addition, a bounded expression b, we define r rPs s b " Ť wPL I pGqXb r rws s. The problem asking whether r rPs s b ‰ H for a pair P, b is called the flat-octagonal reachability problem. We use REACH fo pP, bq to denote a particular instance.

Index-bounded depth-first derivations

In this section, we give an alternate but equivalent program semantics based on derivations. Although simple, the word semantics is defined using a nesting relation that pairs the positions of a word labeled with matching symbols xt and ty. In contrast, the derivation-based semantics just needs the control word.

2 A relation Ď t1, . . . , |w|u ˆt1, . . . , |w|u is said to be nested [START_REF] Alur | Adding nesting structure to words[END_REF] when no two pairs i j and i 1 j 1 cross each other, as in i ă i 1 ď j ă j 1 . 3 Octagonal relations are closed under intersections and compositions [START_REF] Miné | The octagon abstract domain[END_REF].

To define our derivation based semantics, we first define structured subsets of derivations namely the depth-first and bounded-index derivations. The reason is two-fold: (a) the correctness proof of our program transformation [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF] returning the procedure-less program Q depends on bounded-index depth-first derivations, and (b) in the reduction of the REACH fo pP, bq problem to that of REACH fo pQ, Γ b q, the computation of Γ b depends on the fact that the control structure of Q stems from a finite automaton recognizing bounded-index depthfirst derivations. Key results for our decision procedure are those of Luker [START_REF] Luker | A family of languages having only finite-index grammars[END_REF][START_REF] Luker | Control sets on grammars using depth-first derivations[END_REF] who, intuitively, shows that if L X pGq Ď b then it is sufficient to consider depthfirst derivations in which no step contains more than k simultaneous occurrences of nonterminals, for some k ą 0 (Theorem 1). Depth-first derivations. It is well-known that a derivation can be associated a unique parse tree. A derivation is said to be depth-first if it corresponds to a depth-first traversal of the corresponding parse tree. More precisely, given a step sequence w 0 pX 0 ,v 0 q{j 0 ù ùùùùù ñ w 1 . . . w n´1 pX n´1 ,v n´1 q{j n´1 ù ùùùùùùùùùù ñ w n , and two integers m and i such that 0 ď m ă n and 1 ď i ď |w m | define f m piq to be the index of the first word w of the step sequence in which the particular occurrence of pw m q i appears. A step sequence is depth-first [START_REF] Luker | Control sets on grammars using depth-first derivations[END_REF] iff for all m, 0 ď m ă n:

f m pj m q " maxtf m piq | 1 ď i ď |w m | and pw m q i P Ξu . For example, X pX,Y Y q{1 ù ùùùù ñ Y Y pY,Zq{2 ù ùùù ñ Y Z pZ,aq{2 ù ùùù ñ Y a is depth-first, whereas X pX,Y Y q{1 ù ùùùù ñ Y Y pY,Zq{2 ù ùùù ñ Y Z pY,Zq{1
ù ùùù ñ ZZ is not. We have f 2 p1q " 1 because pw 2 q 1 " Y first appeared at w 1 , f 2 p2q " 2 because pw 2 q 2 " Z first appeared at w 2 , j 2 " 1 and f 2 p2q ę f 2 pj 2 q since 2 ę 1. We denote by u Depth-first derivation-based semantics. In previous work [START_REF] Ganty | Underapproximation of procedure summaries for integer programs[END_REF], we defined the semantics of a procedural program based on the control word of the derivation instead of the produced words. We briefly recall this definition here. Given a depth-first derivation X γ ù ñ df w, the relation r rγs s Ď Z x ˆZx is defined inductively on γ as follows: (i) r rpX, tqs s " ρ t , (ii) r rpX, t Y q ¨γ1 s s " ρ t ˝r rγ 1 s s where Y pGq when Y " ε, and drop G from the previous notations, when the grammar is clear from the context. For instance, for the grammar in Fig. 1 (c), we have L p2q X1 pGq " tpt 1 xt 2 q n t 4 pt 2 yt 3 q n | n P Nu " L X1 pGq and Γ df p2q

X1

" pp 1 p 2 p 3 q ˚pp 4 Y p 1 p 2 p 4 p 3 q.

Theorem 1 (Lemma 2 [START_REF] Luker | Control sets on grammars using depth-first derivations[END_REF], Theorem 1 [START_REF] Luker | A family of languages having only finite-index grammars[END_REF]). Given a grammar G " xΞ, Σ, ∆y and X P Ξ:

for all w P Σ ˚, X ùñ pkq ˚w if and only if X ùùñ df pkq ˚w;

if L X pGq Ď b for a bounded expression b over Σ then L X pGq " L pKq X pGq where K " Op|G|q.

The introduction of the notion of index naturally calls for an index dependent semantics and an index dependent reachability problem. As we will see later, we have tight complexity results when it comes to the index dependent reachability problem. Given k ą 0, let r rPs s pkq " Ť Finite representations of bounded-index depth-first control sets. It is known that the set of k-index depth-first derivations of a grammar G is recognizable by a finite automaton [21, Lemma 5]. Below we give a formal definition of this automaton, that will be used to produce bounded control sets for covering the language of G. Moreover, we provide an upper bound on its size, which will be used to prove an upper bound for the time to compute this set (Section 5).

Given k ą 0 and a grammar G " xΞ, Σ, ∆y, we define a labeled graph A df pkq G such that its paths defines the set of k-index depth-first step sequences of G. To define the vertices and edges of this graph, we introduce the notion of ranked words, where the rank plays the same rôle as the value f m piq defined previously. The advantage of ranks is that only k of them are needed for k-index depth-first derivations whereas the set of f m piq values grows with the length of derivations. Since we restrict ourselves to k-index depth-first derivations, we thus only need k ranks, from 0 to k ´1. The rank based definition of depth-first derivations can be found in Appendix B.1. For a d-dimensional vector v P N d , we write pvq i for its ith element (1 ď i ď d). A vector v P N d is said to be contiguous if tpvq 1 , . . . , pvq d u " t0, . . . , ku, for some k ě 0. Given an alphabet Σ define the ranked alphabet Σ N to be the set tσ xiy | σ P Σ, i P Nu. A ranked word is a word over a ranked alphabet. Given a word w of length n and an n-dimensional vector α P N n , the ranked word w α is the sequence pwq 1 xpαq1y . . . pwq n xpαqny , in which the ith element of α annotates the ith symbol of w. We also denote w xxcyy " pwq 1 xcy . . . pwq |w| xcy as a shorthand.

Let A df pkq G " xQ, ∆, Ñy be the following labeled graph, where:

Q " tw α | w P Ξ ˚, |w| ď k, α P N |w| is contiguous, pαq 1 ď ¨¨¨ď pαq |w| u
is the set of vertices, the edges are labeled by the set ∆ of productions of G, and the edge relation is defined next. For all vertices q, q 1 P Q and labels pX, wq P ∆, we have q pX,wq Ý ÝÝÝ Ñ q 1 if and only if q " u X xiy v for some u, v, where i is the maximum rank in q, and

-q 1 " u v pwÓ Ξ q xxi 1 yy , where |u v pwÓ Ξ q xxi 1 yy | ď k and i 1 " $ ' & ' % 0 if u v " ε i else if pu vqÓ Ξ xiy " ε i `1 else We denote by |A df pkq G | " ||Q|| the size (number of vertices) of A df pkq G .
In the following, we omit the subscript G from A df pkq G , when the grammar is clear from the context. For example, the graph A df p2q for the grammar from Fig. 1 (c), is the subgraph of Fig. 1 (d) enclosed in a dashed line.

Lemma 1. Given G " xΞ, Σ, ∆y, and k ą 0, for each X P Ξ, Y P Ξ Y tεu and γ P ∆ ˚, we have γ P Γ df pkq X,Y pGq if and only if

X x0y γ Ý Ñ Y x0y is a path in A df pkq G . Moreover, we have |A df pkq G | " |G| Opkq .

A Decision Procedure for REACH fo pP, bq

In this section we describe a decision procedure for the problem REACH fo pP, bq where P " xG, I, r r.s sy is an octagonal program, whose underlying grammar is G " xΞ, Σ, ∆y, and b " w 1 . . . w d is a bounded expression over Σ. The procedure follows the roadmap described next. First, we compute, in time polynomial in the sizes of P and b, a set of programs tP

i " xG X , X i , r r.s syu i"1 , such that L I pGq X b " Ť i"1 L Xi pG X q, which implies r rPs s b " Ť i"1 r rP i s s.
The grammar G X is an automata-theoretic product between the grammar G and the bounded expression b. For space reasons, the formal definition of G X is deferred to Appendix A, and we refer the reader to Example 1. Deciding REACH fo pP, bq reduces thus to deciding several instances tREACH fo pP i , bqu i"1 of the fo-reachability problem.

Example 1. Let us consider the bounded expression b " pacq ˚pabq ˚pdbq ˚. Consider the grammar G b with the following productions:

q p1q 1 Ñ a q p1q 2 | ε, q p2q 1 Ñ a q p2q 2 | ε, q p3q 1 Ñ d q p3q 2 | ε, q p1q 2 Ñ c q p1q 1 | c q p2q 1 | c q p3q 1 , q p2q 2 Ñ b q p2q 1 | b q p3q 1 , q p3q 2 Ñ b q p3q 1 . It is easy to check that b " Ť 3 i"1 L q piq 1 pG b q. Let G " xtX, Y, Z, T u, ta, b, c, du, ∆y where ∆ " tX Ñ aY, Y Ñ Zb, Z Ñ cT, Z Ñ ε, T Ñ Xdu,
i.e. we have L X pGq " tpacq n ab pdbq n | n P Nu. The following productions define a grammar G X :

rq pjq 1 Xq p3q 1 s p 1 Ñ a rq pjq 2 Y q p3q 1 s rq p1q 2 Y q p3q 1 s p 2 Ñ rq p1q 2 Zq p3q 2 s b rq p1q 2 Zq p3q 2 s p 3 Ñ c rq pjq 1 T q p3q 2 s rq p2q 2 Zq p2q 2 s p 4 Ñ ε rq pjq 1 T q p3q 2 s p 5 Ñ rq pjq 1 Xq p3q 1 s d , for j " 1, 2 rq p2q 1 Xq p3q 1 s p 6 Ñ a rq p2q 2 Y q p3q 1 s rq p2q 2 Y q p3q 1 s p 7 Ñ rq p2q 2 Zq p2q 2 s b One can check L X pGq " L X pGq X b " L rq p1q 1 Xq p3q 1 s pG X q Y L rq p2q 1 Xq p3q 1 s pG X q.
A bounded expression b " w 1 . . . w d over alphabet Σ is said to be d-letterbounded (or simply letter-bounded, when d is not important) when |w i | " 1, for all i " 1, . . . , d. A letter-bounded expression r b is strict if all its symbols are distinct. A language L Ď Σ ˚is (strict, letter-) bounded iff L Ď b, for some (strict, letter-) bounded expression b. Second, we reduce the problem from b " w 1 . . . w d to the strict letter-bounded case r b " a 1 . . . a d , by building a grammar G ' , with the same nonterminals as G X , such that, for each i " 1, . . . , (i)

L Xi pG ' q Ď r b, (ii) w i1 1 . . . w i d d P L pkq Xi pG X q iff a i1 1 . . . a i d d P L
pkq Xi pG ' q, for all k ą 0 (iii) from each control set Γ that covers the language L pkq Xi pG ' q Ď LXi pΓ, G ' q for some k ą 0, one can compute, in polynomial time, a control set r Γ that covers the language L pkq Xi pG X q Ď LXi p r Γ , G X q.

Example 2 (contd. from Example 1). Let A " ta 1 , a 2 , a 3 u, r b " a 1 a 2 a 3 and h : A Ñ Σ ˚be the homomorphism given by hpa 1 q " ac, hpa 2 q " ab and hpa 3 q " db. The grammar G ' results from deleting a's and d's in G X and replacing b in p 2 by a 3 , b in p 7 by a 2 and c by a 1 . Then, it is easy to check that h ´1pL X pGqq X r b "

L rq p1q 1 Xq p3q 1 s pG ' q Y L rq p2q 1 Xq p3q 1 s pG ' q " ta n 1 a 2 a n 3 | n P Nu.
Third, for the strict letter-bounded grammar G ' , we compute a control set Γ Ď p∆ ' q ˚using the result of Theorem 3, which yields a set of bounded expressions

S r b " tΓ i,1 , . . . , Γ i,mi u, such that L pkq Xi pG ' q Ď Ť mi j"1 LXi pΓ i,j X Γ df pk`1q
Xi , G ' q.

By applying the aforementioned transformation (iii) from Γ to r Γ , we obtain that

L pkq Xi pG X q Ď Ť mi j"1 LXi p r Γ i,j X Γ df pk`1q
Xi , G X q. Theorem 1 allows to effectively compute value K ą 0 such that L Xi pG X q " L pKq Xi pG X q, for all i " 1, . . . , . Thus we obtain 4

L Xi pG X q " Ť mi j"1 LXi p r Γ i,j X Γ df pK`1q
Xi , G X q, for all i " 1, . . . , . The final step consists in building a finite automaton A df pK`1q that recognizes the control set Γ df pK`1q Xi (Lemma 1). This yields a procedure-less program Q, whose control structure is given by A df pK`1q , and whose labels are given by the semantics of control words. We recall that, for every word w P L Xi pG X q there exists a control word γ P Γ df pK`1q Xi such that r rws s ‰ H iff r rγs s ‰ H. We have thus reduced each of the instances tREACH fo pP i , bqu i"1 of the fo-reachability problem to a set of instances tREACH fo pQ, r Γ i,j q | 1 ď i ď , 1 ď j ď m i u. The latter problem, for procedure-less programs, is decidable in Nptime [START_REF] Bozga | Safety problems are np-complete for flat integer programs with octagonal loops[END_REF]. Next is our main result whose proof is in Appendix B.6. Theorem 2. Let P " xG, I, r r.s sy be an octagonal program, where G " xΞ, Σ, ∆y is a grammar, and b is a bounded expression over Σ. Then the problem REACH fo pP, bq is decidable in Nexptime, with a Np-hard lower bound. If, moreover, k is a constant, REACH pkq fo pP, bq is Np-complete.

The rest of this section describes the construction of the control sets S r b and gives upper bounds on the time needed for this computation. We use the following ingredients: (i) Algorithm 1 for building bounded control sets for s-letter bounded languages, where s ě 0 is a constant (in our case, at most 2) (Section 5.1), and (ii) a decomposition of k-index depth-first derivations, that distinguishes between

4 Because LX i pG X q Ď L pKq X i pG X q Ď Ť m i j"1 LX i p r Γi,j X Γ df pk`1q X i , G X q Ď LX i pG X q .
a prefix producing a word from the 2-letter bounded expression a 1 a d , and a suffix producing two words included in bounded expressions strictly smaller than r b (Section 5.2). The decomposition enables the generalization from sletter bounded languages where s is a constant to arbitrary letter bounded languages. In particular, the required set of bounded expressions S

Constant s-Letter Bounded Languages

Here we define an algorithm for building bounded control sets that are sufficient for covering a s-letter bounded language L X pGq Ď a 1 . . . a s , when s ě 0 is a constant5 , i.e. not part of the input of the algorithm. In the following, we consider the labeled graph A df pkq " xQ, ∆, Ñy, whose paths correspond to the k-index depth-first step sequences of G (Lemma 1). Recall that the number of vertices in this graph is

|A df pkq | ď |G| 2k .
Given q, q 1 P Q, we denote by Πpq, q 1 q the set of paths with source q and destination q 1 . For a path π, we denote by ωpπq P ∆ ˚the sequence of edge labels on π. A path π is a cycle if its endpoints coincide. Furthermore, the path is said to be an elementary cycle if it contains no other cycle than itself. Finally, π is acyclic if it contains no cycle. The word induced by a path in A df pkq is the sequence of terminal symbols generated by the productions fired along that path. Observe that, since L X pGq Ď a 1 . . . a s , any word induced by a subpath of some path π P ΠpX x0y , εq is necessarily of the form a i1 1 . . . a is s , for some i 1 , . . . , i s ě 0. Algorithm 1 describes the effective construction of a bounded expression Γ over the productions of G using the sets of elementary cycles of A df pkq . The crux is to find, for each vertex q of A df pkq , a subset C q of elementary cycles having q at the endpoints, such that the set of words induced by C q is that of the entire set of elementary cycles having q at endpoints. Since the only vertex occurring more than once in an elementary cycle ρ is the endpoint q, we have that |ρ| is at most the number of vertices |A df pkq |, and each production rule generates at most 2 terminal symbols, hence no word induced by a elementary cycle is longer than 2|A df pkq | ď 2|G|

2k . The number of words a i1 1 . . . a is s induced by elementary cycles with endpoints q is thus bounded by the number of nonnegative solutions of the inequality x 1 `¨¨¨`x s ď 2|G| 2k , which, in turn, is of the order of |G| Opkq .

So for each vector v P N s such that pvq 1 `¨¨¨`pvq s ď 2|G| 2k , it suffices to include in C q only one elementary cycle inducing the word a . Thus it is sufficient to consider sets C q of cardinality ||C q || " |G| Opkq , for all q P Q. Lines (2-5) of Algorithm 1 build a graph H with vertices xq, a i1 1 . . . a is s y, where q P Q is a vertex of A df pkq and i 1 , . . . , i s a solution to the above inequality (line 2), hence H is a finite and computable graph. There is an edge between two vertices xq, a i1 1 . . . a is s y and xq 1 , a j1 1 . . . a js s y in H if and only if q p Ý Ñ q 1 in A df pkq and a j " a i ¨ppÓ a q for every , that is j is the sum of i and the number of occurrences of a produced by p (which is precisely captured by the word pÓ a) (line 4). The sets C q are computed by applying the Dijkstra's single source shortest path algorithm 6 to the graph H (line 7) and retrieving in C q the paths xq, εy Ñ ˚xq, a i1 1 . . . a is s y, such that i 1 `¨¨¨`i s ď 2|G| 2k (line 9). For a finite set of words S " tu 1 , . . . , u h u, the function ConcatpSq returns the bounded expression u 1 . . . u h. Algorithm 1 uses this function to build a bounded expression Γ that covers all words induced by paths from ΠpX x0y , εq. This construction relies on the following argument: for each π P ΠpX x0y , εq, there exists another path π 1 P ΠpX x0y , εq, such that their induced words coincide, and, moreover, π 1 can be factorizedas ς 1 ¨θ1 ¨¨¨ς ¨θ ¨ς `1, where ς 1 P ΠpX x0y , q 1 q, ς `1 P Πpq , εq and ς j P Πpq j´1 , q j q for each 1 ă j ď are acyclic paths, θ 1 , . . . , θ are elementary cycles with endpoints q 1 , . . . , q , respectively, and ď |A df pkq |. Thus we can cover each segment ς i by a bounded expression C " Concatp∆q |G| 2k ´1 (line 13), and each segment θ j by the bounded expression B 0 " Concatp ωpπq | π P C qj (q (line 10), yielding the required expression Γ . The following lemma proves the correctness of Algorithm 1 and gives an upper bound on its runtime. Lemma 2. Let G " xΞ, A, ∆y be a grammar and a 1 . . . a s is a strict s-letterbounded expression over A, where s ě 0 is a constant. Then, for each k ą 0 there exists a bounded expression Γ over ∆ such that, for all X P Ξ and Y P Ξ Y tεu, we have

L pkq X,Y pGq " LX,Y pΓ X Γ df pkq X,Y , Gq, provided that L X,Y pGq Ď a 1 . . . a s . Moreover, Γ is computable in time |G| Opkq .

The General Case

The key to the general case is a lemma decomposing derivations. Decomposition Lemma. Our construction of a bounded control set that covers a strict letter-bounded context-free language L X pGq Ď a

Val Ð ta k 1 1 ¨¨¨a ks s | ř s j"1 kj ď 2|G| 2k u 3: V Ð Q ˆVal Ź Q are the vertices of A df pkq , considering ||Q|| ď |G| 2k suffices 4: δ Ð txq, a i 1 1 . . . a is s y p Ý Ñ xq 1 , a j 1 1 . . . a js s y | q p Ý Ñ q 1 in A df
Γ Ð Γ ¨C ¨B0
17:

Γ Ð Γ ¨C ¨B0 ¨C 18:
return Γ Without loss of generality, the decomposition lemma assumes the bounded expression covering L X pGq to be minimal : a strict letter-bounded expression r b is minimal for a language L iff L Ď r b and for every subexpression b 1 , resulting from deleting some a i from r b, we have L Ę b 1 . Clearly, each strict letter-bounded language has a unique minimal expression.

Basically, for every k-index depth-first derivation with control word γ, its productions can be rearranged into a pk `1q-index depth-first derivation, consisting of a prefix γ 7 producing a word in a 1 a d , then a production pX i , wq followed by two control words γ 1 and γ 2 that produce words contained within two bounded expressions a ˚ . . . a m and a m . . . a r , respectively, where maxpm ´ , r ´mq ă d ´1 (Lemma 3). Let us first define the partition pΞ

y 1..d , Ξ } 1..d q of Ξ, as follows: Y P Ξ y 1..d ô L Y pGq X pa 1 ¨A˚q ‰ H and L Y pGq X pA ˚¨a d q ‰ H . Naturally, define Ξ } 1..d " ΞzΞ y 1..d .
Since the bounded expression a 1 . . . a d is, by assumption, minimal for L X pGq, then a 1 occurs in some word of L X pGq and a d occurs in some word of L X pGq. Thus it is always the case that Ξ

∆ 7 " tpX j , wq P ∆ | X j P Ξ } 1..d u Y tpX j , u X r vq P ∆ | X j , X r P Ξ y 1..d u .
Then, for each production pX i , wq P ∆ such that X i P Ξ y 1..d and w P pΞ

} 1..d Y Aq ˚,
we define the grammar G i,w " xΞ, A, ∆ i,w y, where:

∆ i,w " tpX j , vq P ∆ | X j P Ξ } 1..d u Y tpX i , wqu .
The decomposition of derivations is formalized by the following lemma: Lemma 3. Given a grammar G " xΞ, A, ∆y, a nonterminal X P Ξ such that L X pGq Ď a 1 . . . a d for some d ě 3, and k ą 0, for every derivation X γ ùùñ df pkq G w, there exists a production p " pX i , a y b zq P ∆ with X i P Ξ .d Y tεu, and control words γ 7 P p∆ 7 q ˚, γ y , γ z P p∆ i,aybz q ˚, such that γ 7 p γ y γ z is a permutation of γ and:

1. X γ 7 ù ùùù ñ df pk`1q G 7 u X i v is a step sequence in G 7 with u, v P A ˚;
2. y γy ùùùñ df pky q G i,aybz u y and z γz ùùùñ df pkz q G i,aybz u z are (possibly empty) derivations in G i,aybz (u y , u z P A ˚), for some integers k y , k z ą 0, such that maxpk y , k z q ď k and minpk y , k z q ď k ´1; by Algorithm 2 (function LetterBoundedControlSet) follows the structure of the decomposition of control words given by Lemma 3. For every k-index depth-first derivation with control word γ, its productions can be rearranged into a pk`1q-index depth-first derivation, consisting of (i) a prefix γ 7 producing a word in a 1 a d , then (ii) a pivot production pX i , wq followed by two words γ 1 and γ 2 such that: (iii) γ 1 and γ if L X 0 ,X i pG 7 q Ď a j1 a js then 13:

∆ i,aybz Ð tpXj , vq P ∆ | Xj P Ξ j 1 .
.js u Y tpXi, a y b zqu 14: expr Ð ε

G i,aybz Ð xΞ, A, ∆ i,

3:

for " 1, . . . , d do

4:

if L X pGq X pA ˚¨ai ¨A˚q ‰ H then

5:

expr Ð expr ¨ai

6:

return expr 1: function partitionNonterminals(G, a j1 a js) 2:

match G with xΞ, A, ∆y

3:

vars Ð H

4:

for Y P Ξ do

5:

if L Y pGqXaj 1 A ˚‰H ^LY pGqXA ˚ajs ‰H then

6:

vars Ð vars Y tY u

7:

return pvars, Ξzvarsq Lemma 4. For every k ą 0 there exists a grammar G " xΞ, Σ, ∆y and X P Ξ such that |G| " Opkq and every bounded expression Γ , such that L X pGq " LX pΓ X Γ df pk`1q X , Gq has length |Γ | ě 2 k´1 .

Related Work

The programs we have studied feature unbounded control (the call stack) and unbounded data (the integer variables). The decidability and complexity of the reachability problem for such programs pose challenging research questions. A long standing and still open one is the decidability of the reachability problem for programs where variables behave like Petri net counters and control paths are taken in a context-free language. A lower bound exists [START_REF] Lazic | The reachability problem for vector addition systems with a stack is not elementary[END_REF] but decidability remains open. Atig and Ganty [START_REF] Atig | Approximating petri net reachability along context-free traces[END_REF] showed decidability when the context-free language is of bounded index. The complexity of reachability was settled for branching VASS by Lazic and Schmitz [START_REF] Lazic | Non-elementary complexities for branching VASS, MELL, and extensions[END_REF]. When variables updates/guards are given by gap-order constraints, reachability is decidable [START_REF] Abdulla | Push-down automata with gap-order constraints[END_REF][START_REF] Revesz | A closed-form evaluation for datalog queries with integer (gap)-order constraints[END_REF]. It is in PSPACE when the set of control paths is regular [START_REF] Bozzelli | Verification of gap-order constraint abstractions of counter systems[END_REF]. More general updates and guard (like octagons) immediately leads to undecidability. This explains the restriction to bounded control sets. Demri et al. [START_REF] Demri | Taming past ltl and flat counter systems[END_REF] studied the case of updates/guards of the form ř n i"1 a i ¨xi `b ď 0 ^x1 " x `c. They show that LTL is Np-complete on for bounded regular control sets, hence reachability is in Np. Godoy and Tiwari [START_REF] Godoy | Invariant checking for programs with procedure calls[END_REF] studied the invariant checking problem for a class of procedural programs where all executions conform to a bounded expression, among other restrictions.

Appendix

The appendix is divided in two parts. Appendix A contains easy results about context-free languages and have been included for the sake of being self-contained. They are variations of classical constructions so as to take into account index and depth-first policy. To keep proofs concise, we assume that the grammars are in 2-normal form (2NF for short). A grammar is in 2NF if all its productions pX, wq satisfy |w| ď 2. Any grammar G can be converted into an equivalent 2NF grammar H, such that |H| " Op|G|q, in time Op|G| 2 q [START_REF] Lange | To CNF or not to CNF? An efficient yet presentable version of the CYK algorithm[END_REF]. Note that 2NF is a special case of the general form we assumed where each production pX, wq is such that w contains at most 2 terminals and 2 nonterminals. Appendix B contains the rest of the proofs about the combinatorial properties of derivations.

A From Bounded to Letter-bounded Languages

It is well-known that the intersection between a context-free and a regular language is context-free. Below we define the grammar that generates the intersection between the language of a given grammar G " xΞ, Σ, ∆y and a regular language given by a bounded expression b " w 1 . . . w d over Σ where i denotes the length of each w i . Let G b " xΞ b , Σ, ∆ b y be the grammar generating the regular language of b, where:

Ξ b " ! q psq r | 1 ď s ď d ^1 ď r ď s) ∆ b " ! q psq i Ñ pw s q i q psq i`1 | 1 ď s ď d ^1 ď i ă s) Y ! q psq s Ñ pw s q s q ps 1 q 1 | 1 ď s ď s 1 ď d) Y ! q psq 1 Ñ ε | 1 ď s ď d) .
It is routine to check that tw | q piq 1 ñ ˚w for some 1 ď i ď du " b. Moreover, notice that the number of nonterminals in G b equals the size of b, i.e. ||Ξ b || " |b|.

Remark 1. Note that when b is letter-bounded (b " a 1 . . . a d), the grammar G b

1 " pΞ b 1 , Σ, ∆ b 1 q generating is given by:

Ξ b 1 " q psq | 1 ď s ď d (Y tq sink u ∆ b 1 " ! q psq Ñ a s 1 q ps 1 q | 1 ď s ď s 1 ď d) Y q psq Ñ b q sink | b P Σzta s , a s`1 , . . . , a d u (Y q psq Ñ ε | 1 ď s ď d (Y tq sink Ñ b q sink | b P Σu is such that L q p1q pG b 1 q " b. Furthermore, G b
1 is complete-all terminals can be produced from all nonterminals-and it is deterministic when b is strict. Then a grammar G b 1 , such that L q p1q pG b 1 q " Σ ˚zb, can be computed in time Op|G b 1 |q, by replacing each production q psq Ñ ε, 1 ď s ď d, with q sink Ñ ε.

Given G b , and a grammar G " pΞ, Σ, ∆q in 2NF and X P Ξ, our goal is to define a grammar G X " xΞ X , Σ, ∆ X y that produces the language L X pGq X Lpbq, for some X P Ξ. The definition of G X " xΞ X , Σ, ∆ X y follows:

-

Ξ X " ! rq prq s Xq puq v s | X P Ξ ^qprq s P Ξ b ^qpuq v P Ξ b ^r ď u)
-∆ X is defined as follows:

' for every production X Ñ w P ∆ where w P Σ ˚, ∆ X has a production

rq prq s Xq puq v s Ñ w if q prq s ñ ˚w q puq v ; (1)
' for every production X Ñ Y P ∆, where Y P Ξ, ∆ X has a production

rq prq s Xq puq v s Ñ rq prq s Y q puq v s ; (2)
' for every production X Ñ a Y P ∆, where a P Σ and Y P Ξ, ∆ X has a production

rq prq s Xq puq v s Ñ a rq pxq y Y q puq v s if q prq s Ñ a q pxq y P ∆ b ; (3)
' for every production X Ñ Y a P ∆, where Y P Ξ and a P Σ, ∆ X has a production

rq prq s Xq puq v s Ñ rq prq s Y q pxq y s a if q pxq y Ñ a q puq v P ∆ b ; (4)
' for every production X Ñ Y Z P ∆, ∆ X has a production rq prq s Xq puq v s Ñ rq prq s Y q pxq y s rq pxq y Zq puq v s ;

' ∆ X has no other production. Let ζ : Ξ X Ñ Ξ be the function that "strips" every nonterminal rq psq r Xq puq v s P Ξ X of the nonterminals from Ξ b , i.e. ζprq psq r Xq puq v sq " X. In the following, we abuse notation and extend the ζ function to symbols from Σ Y Ξ X , by defining ζpaq " a, for each a P Σ, and further to words w P pΣ Y Ξ X q ˚as ζpwq " ζppwq 1 q ¨¨¨ζppwq |w| q. Finally, for a production p " pX, wq P ∆ X , we define ζppq " pζpXq, ζpwqq, and for a control word γ P p∆ X q ˚, we write ζpγq for ζppγq 1 q ¨¨¨ζppγq |γ| q.

Lemma 5. Given a grammar G " xΞ, Σ, ∆y and a grammar G b " xΞ b , Σ, ∆ b y generating b, for every X P Ξ, q prq s , q puq v P Ξ b , w P Σ ˚, and every k ą 0, we have:

(i) for every γ P p∆ X q ˚, rq w in G.

For the induction step |γ| ą 1, we have γ " prq prq s Xq puq v s Ý Ñ τ q ¨γ1 , for some production rq prq s Xq puq v s Ý Ñ τ P ∆ X , and a word τ P pΣ Y Ξ X q ˚of length |τ | ď 2. We distinguish four cases, based on the structure of τ :

1. if τ " rq prq s Y q puq v s then τ γ 1 ùùñ df pkq
w is a derivation of G X . By the induction hypothesis, we obtain that q prq s ñ Gb w q puq v and Y

ζpγ 1 q ù ùù ñ df pkq w is a derivation of G. But X Ý Ñ Y P ∆-case (2) of the definition of ∆ X -hence ζpγq " pX Ý Ñ Y q ¨ζpγ 1 q and X ζpγq ùùñ df pkq
w is a derivation of G. w, since ζpγq " pX Ý Ñ aY q ¨ζpγ 1 q.

if τ " a rq

3. the case τ " rq prq s Y q pxq y s a is symmetric, using the case (4) of the definition of ∆ X . (ii) By induction on |δ| ą 0. For the base case |δ| " 1, we have δ " pX Ý Ñ wq P ∆. By the case (1) from the definition of ∆ X , G X has a rule rq

if τ " rq

20

For the induction step |δ| ą 1, we have δ " pX Ý Ñ τ q ¨δ1 . We distinguish four cases, based on the structure of τ :

1. if τ " Y , for some Y P Ξ, by the induction hypothesis, G X has a derivation

rq psq r Y q puq v s γ 1 ùùñ df pkq
w, for some γ 1 P ζ ´1pδ 1 q. Since q prq s ñ Gb w q puq v -by case

(2) of the definition of ∆ X -G X has a production p " prq psq r Xq puq v s Ý Ñ rq psq r Y q puq v sq. We define γ " p ¨γ1 . It is immediate to check that ζpγq " δ. 2. if τ " a Y , for some a P Σ and Y P Ξ, then w " a¨w 1 . Hence

q prq s ù ñ G b a q pxq y , q pxq y ù ñ Gb w 1 q puq v
and G has a derivation Y By the case (3) of the definition of ∆ X , there exists a production p " prq psq r Xq puq v s Ý Ñ aY q P ∆ X . We define γ " p ¨γ1 . It is immediate to check that ζpγq " δ, hence rq 3. the case τ " Y a, for some Y P Ξ and a P Σ, is symmetrical. 4. if τ " Y Z, for some Y, Z P Ξ, then, by Lemma 7, there exist words w 1 , w 2 P Σ ˚such that w " w 1 w 2 and either one of the following cases applies:

(a) Y δ1 ù ùùù ñ df pk´1q w 1 , Z δ2 ùùñ df pkq w 2 and δ 1 " δ 1 δ 2 , or (b) Y δ1 ùùñ df pkq w 1 , Z δ2 ù ùùù ñ df pk´1q w 2 and δ 1 " δ 2 δ 1 .
Moreover, we have q prq s ù ñ Gb w 1 q pxq y and q pxq y ù ñ Gb w 2 q puq v , for some q pxq y P Ξ b . We consider the first case only, the second being symmetric. Since |δ 1 | ă |δ| and |δ 2 | ă |δ| we apply the induction hypothesis and find two control words γ 1 P ζ ´1pδ 1 q and γ 2 P ζ ´1pδ 2 q such that G X has derivations [\

In the rest of this section, for a given bounded expression b " w 1 . . . w d over Σ, we associate the strict d-letter-bounded expression r b " a 1 . . . a d over an alphabet A, disjoint from Σ, i.e. A X Σ " H, and a homomorphism h : A Ñ Σ ˚mapping as follows: a i Þ Ñ w i , for all 1 ď i ď d. The next step is to define a grammar G ' " xΞ ' , A, ∆ ' y, such that Ξ ' " Ξ X and, for all X P Ξ, 1 ď s ď x ď d:

h ´1pL rq psq 1 Xq pxq 1 s pG X qq X r b " L rq psq 1 Xq pxq 1 s pG ' q .
The grammar G ' is defined from G X , by the following modification of the productions from ∆ X , defined by a function ι :

∆ X Þ Ñ ∆ ' : -ιprq prq s Xq puq v s Ñ wq " rq prq s Xq puq v s Ñ z where 1. if |w| " 0 then z " ε. 21 2. if |w| " 1 then we have q prq s ñ G b w q puq v and we let z " a r if v " 1 else z " ε. 3. if |w| " 2 then we have q prq s ñ G b pwq 1 q pyq x ñ G b pwq 1 pwq 2 q puq v
for some x, y. Define the word z " z 1 ¨z2 of length at most 2 such that z 1 " a r if x " 1; else z 1 " ε and z 2 " a y if v " 1 else z 2 " ε. ιppq " p otherwise. Let ∆ ' " tιppq | p P ∆ X u. In addition, for every control word γ P p∆ X q ˚of length n, let ιpγq " ιppγq 1 q ¨¨¨ιppγq n q P ∆ ' . A consequence of the following proposition is that the inverse relation ι ´1 Ď ∆ ' ˆ∆X is a total function. Proposition 1. For each production p P ∆ ' , the set ι ´1ppq is a singleton. Proof. By case split, based on the type of the production p P ∆ ' . Since G ' is in 2NF we have:

if p " prq if p " prq pG ' q Ď Lrq psq

1 Xq pxq 1 s pΓ, G ' q, we have L pkq rq psq 1 Xq pxq 1 s pG X q Ď Lrq psq 1 Xq pxq 1 s pι ´1pΓ q, G X q, 3. G ' is computable in time O `|b| 3 ¨|G| ˘.
Proof. We start by proving the following facts:

Fact 1. For all X P Ξ and 1 ď s ď x ď d, we have L rq psq

1 Xq pxq 1 s pG ' q Ď r b.
Proof. Let w P L rq psq 1 Xq pxq 1 s pG ' q. We have rq of G ' for some control word γ over ∆ ' . By contradiction, assume w R r b, that is there exist p, p 1 such that p ă p 1 and p wq p " a j and p wq p 1 " a i with i ă j. The definition of ι shows that there exists w P L rq psq

1 Xq pxq 1 s pG X q such that rq psq 1 Xq pxq 1 s ι ´1 pγq ù ùùù ñ w in G X , hence that w P b since L rq psq 1 Xq pxq 1 s pG X q Ď b,
and finally that q psq 1 ñ Gb w q pxq 1 . Now, the mapping ι is defined such that a production in its image produces a a r when, in the underlying G b , either control moves forward from q prq s to q puq 1 , e.g. rq prq s s a r . Therefore, by the previous assumption on w where a j occurs before a i , we have that a production of q pjq j Ñ pw j q j q puq 1 for some u ě j and then a production of q piq i Ñ pw i q i q pu 1 q 1 for some u 1 ě i necessarily occurs in that order in ι ´1pγq. But this is a contradiction because j ą i and the definition of G b prohibits control to move from q pjq pj to q piq pi for any p i , p j .

[\ Fact 2. For all X P Ξ, 1 ď s ď x ď d, γ P p∆ X q ˚, k ą 0 and i 1 , . . . , i d P N:

rq psq 1 Xq pxq 1 s γ ùñ pkq w i1 1 . . . w i d d in G X if and only if rq psq 1 Xq pxq 1 s ιpγq ù ù ñ pkq a i1 1 . . . a i d d in G ' .
Proof. By induction on |γ| ą 0, and case analysis on the right-hand side of pγq 1 .

[\ pG ' q Ď Lrq psq 1 Xq pxq 1 s pΓ, G ' q, there exists a control word γ P Γ such that rq (3) Given that each production p ' P ∆ ' is the image of a production p X P ∆ X via ι, we have |p 1 such that L q p1q pG b 1 q " Σ ˚zr b (see Remark 1) and checking L X pGq X L q p1q pG b 1 q

? " H. A similar argument shows that queries L X pGq X pA [\

B.1 Proof of Lemma 1

First, we formally define the notion of depth-first derivations by annotating symbols occurring in every step with a positive integer called the rank. Intuitively, the rank assigns a priority between symbols in a word. For a set S of symbols (e.g. the terminals and nonterminals) and a set I Ď N, we define S I " ts xiy | s P S, i P Iu and call S I a ranked alphabet. We also sometimes write S xiy when I is a singleton. A ranked word (r-word) is a word over a ranked alphabet. Given a word w of length n and an n-dimensional vector α P N n , the ranked word w α is the sequence pwq 1 xpαq1y . . . pwq n xpαqny , in which the ith element of α annotates the ith symbol of w. We also denote w xxcyy " pwq 1 xcy . . . pwq |w| xcy as a shorthand.

Let G " xΞ, Σ, ∆y be a grammar and u pZ,wq{j ù ùùù ñ v be a step, for a vector α P N |u| , we define the ranked step (r-step) u α pZ,wq{j ù ùùù ñ v β if and only if puq j " Z and v β " pu α q 1 ¨¨¨pu α q j´1 w xxm`1yy pu α q j`1 ¨¨¨pu α q |u| where each symbol in w has rank m `1 and

m " max ptpαq i | Di : 1 ď i ď |u|, i ‰ j, puq i P Ξu Y t´1uq
is the maximum among the ranks of the nonterminals in u α , with position j omitted7 . An r-step is said to be depth-first, denoted u α ù ñ df v β iff the rank of the nonterminal at position j where the rule applies is maximal, i.e. pαq j " m.

For instance the transition labelled p 2 in Fig. 1 (d) is a depth-first r-step. A r-step sequence is said to be depth-first if all of its r-steps are depth-first. Finally, an unranked step sequence w 0

pγq 1 ù ù ñ w 1 . . . w n´1 pγqn ù ù ñ w n is said to be depth-first, written w 0 γ ù ñ df w n , iff there exist vectors α 1 P N |w1| , . . . , α n P N |wn| such that w xx0yy 0 pγq 1 ù ù ñ df w α1 1 . . . w αn´1 n´1 pγqn ù ù ñ df w αn n holds. Let Υ pkq " tw α | Du β : u β " pw α qÓ Ξ N , |u β | ď k, β is contiguous, max i pβq i ď
k´1u be the set of r-words such that when deleting ranked terminals, the resulting word is no longer than k and has ranks between 0 and k ´1. It is routine to check that Υ pkq is closed for the relation ùùñ df pkq . For a r-word w α P Υ pkq , let rw α s be the r-word pw α Ó Ξ x0y q pw α Ó Ξ x1y q . . . pw α Ó Ξ xky q. Intuitively, rw α s projects out the terminals of w, and orders the remaining nonterminals in the increasing order of their ranks. For instance, " a x1y Y x1y Z x0y ‰ " Z x0y Y x1y . The r.s operator is naturally lifted from r-words to sets of r-words. Recall that we define the set Q of states of A df pkq " pQ, ∆, Ñq as Q " tw α | w P Ξ ˚, |w| ď k, α is contiguous, pαq 1 ď ¨¨¨ď pαq |w| u. It is routine to check that " Υ pkq ‰ " Q holds. Now let us consider Ñ which we defined as follows. Let q, q 1 P Q, pX, wq P ∆ we have q pX,wq Ý ÝÝÝ Ñ q 1 iff q " u X xiy v for some u, v and where i is the maximum rank in q, and

-q 1 " u v pwÓ Ξ q xxi 1 yy where |u v pwÓ Ξ q xxi 1 yy | ď k and i 1 " $ ' & ' % 0 if u v " ε i else if pu vqÓ Ξ xiy " ε i `1 else
As q P Q, we find that q P " Υ pkq ‰ . Furthermore, it is an easy exercise to show that q pX,wq Ý ÝÝÝ Ñ q 1 iff there exists w η P Υ pkq such that q pX,wq ùùùñ df pkq w η and rw η s " q 1 . It follows that, we can equivalently write A df pkq G " x " Υ pkq ‰ , ∆, Ñy for the labeled graph the edge relation, is defined as:

u α p Ý Ñ v β iff Dw η P Υ pkq . u α p ùùñ df pkq w η ^vβ " rw η s.
Proof (of Lemma 1). "ñ" We shall prove the following more general statement. Let u α γ ùùñ df pkq w β where u α P Υ pkq be a k-index depth-first r-step sequence. By induction on |γ| ě 0, we show the existence of a path ru α s γ Ý Ñ " w β ‰ in A df pkq . For the base case |γ| " 0, we have u α " w β which yields ru α s " " w β ‰ and since u α P Υ pkq the hypothesis shows that u α , w β P Υ pkq , hence that ru α s , " w β ‰ P " Υ pkq ‰ and we are done. For the induction step |γ| ą 0, let v η p ùùñ df pkq w β be the last step of the sequence, for some p P ∆, i.e. γ " σ ¨p with σ P ∆ ˚. By the induction hypothesis, A df pkq has a path ru α s σ Ý Ñ rv η s. Since rv η s , "

w β ‰ P " Υ pkq ‰ and v η p ùùñ df pkq w β , we have that rv η s p Ý Ñ " w β ‰ by definition of Ñ, hence we obtain a path ru α s γ Ý Ñ " w β ‰ . "ð" We prove a more general statement. Let U γ Ý Ñ W be a path in A df pkq

G

, for some words U, W P " Υ pkq ‰ . We show by induction on |γ| that there exist r-words u α , w β P Υ pkq , such that ru α s " U , " w β ‰ " W , and u α γ ùùñ df pkq w α . The base case |γ| " 0 is trivial, because U " W and since U P " Υ pkq ‰ then there exists u α P Υ pkq such that ru α s " U " W and we are done. For the induction step |γ| ą 0, let γ " σ ¨p, for some production p P ∆ and σ P ∆ ˚. By the induction hypothesis, there exist r-words w β for some w β P Υ pkq such that " w β ‰ " W . For the upper bound on the size of A df pkq , recall that each vertex of A df pkq is a ranked word of length at most k, consisting of non-terminals only, with ranks in the interval r0, k ´1s. Moreover, the productions of G do not produce more than 2 nonterminals at a time. Hence, in every vertex of A df pkq , at most 2 positions carry the same rank. Since the length of each vertex in Q is at most k and, for each i P r0, k ´1s, there are at most ||Ξ|| 2 choices of nonterminals with rank i,

u α , v η P Υ pkq such that U " ru α s σ Ý Ñ rv η s p Ý Ñ W is a path in A df pkq
we have |A df pkq G | ď ||Ξ|| 2k ď |G| 2k . [\ B.2 Proof of Lemma 2
When L X,Y pGq Ď r b, because r b " a 1 . . . a s is a strict s-letter-bounded expression with s a fixed constant, for every step sequence X γ ù ñ G u Y v, we have u v " γÓ a1 . . . γÓ as . Also remark that u v " a for some v P N s , hence that pvq " |γÓ a | for each " 1, . . . , s. For convenience, given γ P ∆ ˚, we denote γÓ r b " γÓ a1 . . . γÓ as . We recall the definition of the labeled graph A df pkq " xQ, ∆, Ñy whose number of vertices we denote by N . Due to the form of the productions in G, we can safely restrict Q to r-words with at most 2 nonterminals having the same rank, hence N ď |G| 2k . We define Ωpqq is the set of elementary cycles with q P Q as endpoints.

Proposition 2. Let G " xΞ, Σ, ∆y be a grammar, X P Ξ be a nonterminal and r b " a 1 . . . a s be a strict s-letter bounded expression, for some s ě 0. For any two vertices q, q 1 P Q of A df pkq , and any path π P Πpq, q 1 q, there exists a path π 1 P Πpq, q 1 q such that |π| " |π 1 |, ωpπqÓ r b " ωpπ 1 qÓ r b and π 1 is of the form ς 1 ¨θ1 ¨¨¨ς ¨θ ¨ς `1, where ς 1 P Πpq, q 1 q, ς `1 P Πpq , q 1 q and ς j P Πpq j´1 , q j q, for each 1 ă j ď , are acyclic paths, θ 1 P pΩpq 1 qq ˚, . . . , θ P pΩpq qq ˚are cycles, and ď ||Q||.

Proof. The proof goes along the lines of that of Lemma 7.3.2 in Lin's PhD thesis [START_REF] Lin | Model Checking Infinite-State Systems: Generic and Specific Approaches[END_REF]. This proof is carried on graphs labeled with integer tuples, and addition, instead of concatenation. Since the only property of integer tuple addition, used in the proof of [START_REF] Lin | Model Checking Infinite-State Systems: Generic and Specific Approaches[END_REF]Lemma 7.3.2], is commutativity, it suffices to observe that ωpπqÓ r b " ωpπ 1 qÓ r b , whenever ωpπq is a permutation of ωpπ 1 q.

[\ Proof (of Lemma 2). Given two step sequences

X γ ù ñ G u Y v, X γ 1 ù ñ G u 1 Y v 1
, the following are equivalent:

-

|γÓ a | " |γ 1 Ó a | for all " 1, . . . , s, -γÓ r b " γ 1 Ó r b , -u v " u 1 v 1 . Since L X,Y pGq Ď r
b where r b is a strict s-letter bounded expression, for every π P Ωpqq the induced word a k1 1 . . . a ks s " ωpπqÓ r b is such that: ř s j"1 k j ď 2N , i.e. each production in ∆ issues at most 2 symbols from ta 1 , . . . , a s u, and each elementary cycle is of length at most N . The nonnegative solutions of the inequation ř s j"1 k j ď 2N are solutions to the equation ř s j"1 k j `y " 2N , for a nonnegative slack variable y ě 0. Since the number of nonnegative solutions to the latter equation8 is `s`2N

s ˘, we have:

||tωpπqÓ r b | π P Ωpqqu|| " ˆs `2N s ˙" OpN s q . (6)
For each vertex q, we are interested in a set C q Ď Ωpqq such that ||C q || " OpN s q and, moreover, for each π P Ωpqq there exists π 1 P C q such that ωpπqÓ r b " ωpπ 1 qÓ r b when ΠpX x0y , qq ‰ H and Πpq, Y x0y q ‰ H holds. For now we assume we have computed such sets tC q u qPQ (their effective computation will be described later). We are now ready to define the bounded expression Γ r b . Given a finite set Γ " tγ 1 , . . . , γ n u Ď ∆ ˚of control words indexed following some total ordering (e.g. we assume a total order ă on Ξ YA, and define pX 1 , w 1 q ă ∆ pX 2 , w 2 q ô X 1 ¨w1 ă lex X 2 ¨w2 in the lexicographical extension of ă, then extend ă ∆ to a lexicographical order ă lex ∆ on control words), we define the bounded expression: concatpΓ q " γ 1 ¨¨¨γ n . Let Q " tq 1 , . . . , q N u be the set of vertices of A df pkq , taken in some order. We define the set tB i u iě0 of bounded expressions as follows:

B 0 " concatptωpπq | π P C q1 uq ¨¨¨concatptωpπq | π P C q N uq B 1 " concatp∆q N ´1 ¨B0 ¨concatp∆q N ´1 B i " concatp∆q N ´1 ¨B0 ¨Bi´1 , for all i ě 2
u 1 Y v 1 and u v " u 1 v 1 .
Because Lemma 1 shows that each path π P ΠpX x0y , Y x0y q corresponds to a control word ωpπq such that X . We apply the result from Prop. 2 which shows that there exists a path ρ P ΠpX x0y , Y x0y q, such that |ρ| " |π|, ωpρqÓ r b " ωpπqÓ r b and ρ is of the form ς 1 ¨θ1 ¨¨¨ς ¨θ ¨ς `1, where ς 1 P ΠpX x0y , q i1 q, ς `1 P Πpq i , Y x0y q, and ς j P Πpq ij´1 , q ij q for each 1 ă j ď are acyclic paths, θ 1 P pΩpq i1 qq ˚, . . . , θ P pΩpq i qq ˚are cycles, q i1 , . . . , q i are vertices, and ď ||Q||. Hence we conclude that ωpς j q P concatp∆q N ´1, for all 1 ď j ď `1, for each cycle θ j P pΩpq ij qq ˚, consisting of a concatenation of several elementary cycles θ 1 j , . . . , θ j j P Ωpq ij q, the cycle θ lex j obtained by a lexicographic reordering of θ 1 j , . . . , θ j j (based on the lexicographic order of their value in ∆ ˚) belongs to B 0 , for all 1 ď j ď . Second, it is easy to see that the words produced by θ j and θ lex j are the same, since the order of productions labeling θ j (θ lex j) is not important. Let π 1 be the path ς 1 ¨θlex 1 ¨¨¨ς ¨θlex ¨ς `1. By Prop. 2, we have that ωpπqÓ

r b " ωpπ 1 qÓ r b . Moreover, ωpπ 1 q P B N " Γ r b . Since X ωpπq ùùñ df pkq u Y v and X ωpπ 1 q ù ùù ñ df pkq u 1 Y v 1
are step sequences of G, the previous equality implies u v " u 1 v 1 .

Concerning the time needed to construct the bounded expression Γ r b , the main ingredient in the previous, is the definition of the sets of cycles tC q u qPQ , such that ||C q || " OpN s q and, moreover, for each π P Ωpqq there exists π 1 P C q such that ωpπqÓ Define Val " ta 1 1 . . . a s s P r b | ř s j"1 j ď 2N u. Using previous arguments (i.e. equation (6)), it is routine to check that ||Val || " OpN s q. Consider the labeled graph H " xV, ∆, Ý Ñy, defined upon A df pkq , where: -V " Q ˆVal , and xq 1 , a i1 1 . . . a is s y pZ,zq Ý ÝÝ Ñ xq 2 , a j1 1 . . . a js s y iff q 1 pZ,zq Ý ÝÝ Ñ q 2 and a j " a i ¨zÓ a for each First, observe that the number of vertices in this graph is

||V || ď N 2k s`2N s ˘" |G| Opkq .
Second, it is routine to check (by induction on the length of a path) that given a path π P Π H pxq, εy, xq, a i1 1 . . . a is s yq for some i 1 , . . . , i s P N we have ωpπqÓ r b " a i1 1 . . . a is s . Next, for each q P Q define the set P q of paths of H consisting for each a i1 1 . . . a is s P Val of a single path (one with the least number of edges) from xq, εy to xq, a i1 1 . . . a is s y. By definition of Val , we have that ||P q || " ||Val || " OpN s q and, moreover, for each ρ P Ωpqq (ρ is a path of A df pkq) there exists a path π P P q such that ωpρqÓ 1 . . . a is s y are the endpoints of π. Hence, we define C q to be the set of cycles in A df pkq corresponding to the paths in P q . The latter can be computed applying Dijkstra's single source shortest path algorithm on H, with source vertex xq, εy, and assuming that the distance between adjacent vertices is always 1. The running time of the Dijkstra's algorithm is Op||V || 2 q " |G| Opkq . Upon termination, one can reconstruct a shortest path π from xq, εy to each vertex xq, a i1 1 . . . a is s y, and add the corresponding cycle of A df pkq to C q . Since there are at most |G| Opkq vertices xq, a i1 1 . . . a is s y in V , and building a shortest path for each such vertex takes at most |G| Opkq time, we can populate the set C q in time |G| Opkq . Once the sets C q are built, it remains to compute the bounded expressions concatptωpπq | π P C q uq, concatp∆q N ´1 and B 0 , . . . , B N . As shown below, they are all computable in time |G| y in H. For each q, this set is kept in a variable C q (line 9). The variable B 0 at the end of the loop contains the expression concatptωpπq | π P P q1 uq ¨¨¨concatptωpπq | π P P q N uq, Since both ||Q|| " |G|

ù ñ G 7 u X i v. (v) If L 1 , L 2 Ď r
b and L 1 ¨L2 Ď a ˚ . . . a r , for some 1 ď ď r ď d, then there exists ď q ď r such that L 1 Ď a ˚ . . . a q and L 2 Ď a q . . . a r . Assume, by contradiction, that there is no such q. Then there exist words w 1 " a i . . . a ir r P L 1 and w 2 " a j . . . a jr r P L 2 , two positions p 1 , p 2 such that ď p 2 ă p 1 ď r such that i p1 ‰ 0, j p2 ‰ 0. Because all a i are distinct, we conclude that w 1 ¨w2 R a ˚ . . . a r , hence a contradiction.

We continue with the proof of the five items of the lemma: ù ùùù ñ v β where pu α q j " Y xay , and pv β q " Z xby for some j ď ď j ´1 `|t|. Let pγq p " pX ip , a y b zq be the last occurrence, in γ, of a production with head X ip P Ξ be the sequence of ranked ancestors of X ip in the r-step sequence, and pγq j " pX ij , a y mj b X ij`1 q P ∆ (or, symmetrically pγq j " pX ij , a X ij`1 b z mj q P ∆), for some a, b P A Y tεu, z mj , y mj P Ξ Y tεu, be the productions introducing these nonterminals, for all 0 ď j ă p. If y mj P Ξ, let γ j be the subword of γ corresponding to the derivation y mj γ j ù ñ w mj , for some w mj P A ˚. Notice that no X i has y mj for ancestor, and that y mj γ j ù ñ w mj must be a depth-first derivation because X γ ù ñ w is. Otherwise, if y mj " ε, let γ j " ε. Let γ 7 " pγq 0 ¨γ0 ¨pγq 1 ¨γ1 ¨¨¨pγq p´1 ¨γp´1 .

Observe that, since each y mj γ j ù ñ w mj is a depth-first derivation, we have

X xby ij`1 y xby mj γ j ù ñ X xby ij`1 w α mj (
or with X ij`1 and y mj swapped) is a depth-first step sequence because y mj and X ij`1 have the same rank b. Clearly, γ 7 corresponds to a valid step sequence of G which, moreover, is depth first, since whenever pγq j fires, X ij is the only nonterminal left (and whose rank is therefore maximal). It follows from pivq that because X

γ 7 ù ñ G u X ip v holds and X, X ip P Ξ y 1..d then X γ 7 ù ñ G 7 u X ip v holds (notice the use of G 7 instead of G). Moreover, the definition of γ 7 shows that X γ 7 ù ñ G 7 u X ip v is a depth-first step sequence and u, v P A ˚.
Since X γ ù ñ G w is a k-index derivation, each step sequence y mj γj ù ñ w mj are of index at most k. Therefore the index of each step sequence X ij`1 y mj γj ù ñ X ij`1 w mj (or in reverse order) is at most k `1. Also, when each pγq j fires, X ij is the only nonterminal left and so the index of the step is at most 2.

Therefore we find that X γ 7 ùùùñ pk`1q u X ip v, and finally that X u z such that maxpk z , k y q ď k and minpk z , k y q ď k ´1 (see Lem. 7 for a proof). Assume k y ď k ´1, the other case being symmetric. Since the only production in pγq p ¨¨¨pγq n whose left hand side is a nonterminal from Ξ y 1..d is pγq p " pX ip , a y b zq, which, moreover, occurs only in the first position, we have that γ y P Γ df pk´1q y pG ip,aybz q and γ z P Γ df pkq z pG ip,aybz q, by the definition of G ip,aybz . 3. It suffices to notice that γ 7 ¨pγq p ¨¨¨pγq n results from reordering the productions of γ and that reordering the productions of γ result into a step sequence producing the same word w " a i1 1 . . . a i d d since L X pGq Ď r b where r b is a strict d-letter bounded expression. That the resulting derivation has index k and is depth-first follow easily from p1q and p2q. 4. Given that ∆ 7 Ď ∆ we find that X ù ñ G7 u X ip v implies X ù ñ G u X ip v, hence Qpu, vq holds by piiq and X, X ip P Ξ y 1..d . By the definition of Qpu, vq, we have:

tu 1 P pΞ Y Aq ˚| u ù ñ ˚u1 u Ď pta 1 u Y Ξ } 1..d q ˚and tv 1 P pΞ Y Aq ˚| v ù ñ ˚v1 u Ď pta d u Y Ξ } 1..d q Since G is reduced, tu 1 P A ˚| u ù ñ ˚u1 u ‰ H and tv 1 P A ˚| v ù ñ ˚v1 u ‰ H. But because X ip P Ξ y 1.
.d , it must be the case that tu 1 P A ˚| u ù ñ ˚u1 u Ď a 1 and tv 1 P A ˚| v ù ñ ˚v1 u Ď a d , otherwise we would contradict the fact that L X pGq Ď r b.

Since

X γ 7 ù ñ G u X ip v pXi p ,a y b zq ùùùùùùùñ G u a y b z v and G is reduced, we have that tu 1 P A ˚| u ù ñ G u 1 u ¨a ¨Ly pGq ¨b ¨Lz pGq ¨tv 1 P A ˚| v ù ñ G v 1 u Ď L X pGq Ď r
b, and thus L y pGq ¨Lz pGq Ď r b. We consider only the case y, z P Ξ } 1..d -the cases y " ε or z " ε use similar arguments, and are left as an easy exercise. Hence, our proof falls into 4 cases: (a) L y pG i,a y b z q X pa 1

¨A˚q " H and L z pG i,a y b z q X pa 1 ¨A˚q " H. Thus L y pG i,a y b z q ¨Lz pG i,a y b z q Ď a 2 . . . a d . Then fact (v) for " 2 and r " d concludes this case. (b) L y pG i,a y b z q X pA ˚¨a d q " H and L z pG i,a y b z q X pA ˚¨a d q " H. Thus L y pG i,a y b z q ¨Lz pG i,a y b z q Ď a 1 . . . a d´1 . Then fact (v) for " 1 and r " d ´1 concludes this case.

(c) L y pG i,a y b z q X pA ˚¨a d q " H and L z pG i,a y b z q X pa 1 ¨A˚q " H. Thus we have L y pG i,a y b z q Ď a 1 . . . a d´1 and L z pG i,a y b z q Ď a 2 . . . a d . By the fact (v) (with " 1, r " d) there exists q, 1 ď q ď d such that L y pG i,a y b z q Ď a 1 . . . a q and L z pG i,a y b z q Ď a q . . . a d . Next we show 1 ă q ă d holds. In fact, assume the inclusions hold for q " 1. Then they also hold for q " 2 since L z pG i,a y b z q Ď a 2 . . . a d . A similar reasoning holds when q " d since L y pG i,a y b z q Ď a 1 . . . a d´1 . (d) L y pG i,a y b z qXpa 1

¨A˚q " H and L z pG i,a y b z qXpA ˚¨a d q " H. We first observe that it cannot be the case that L y pG i,a y b z q contains some word where a d occurs and L z pG i,a y b z q contains some word where a 1 occurs for otherwise concatenating those two words shows L y pG i,a y b z q ¨Lz pG i,a y b z q Ę a 1 . . . a d . This leaves us with three cases: (a) If L y pG i,a y b z qXpA ˚¨a d q ‰ H we find that L z pG i,a y b z q Ď a d , hence that L y pG i,a y b z q Ď a 2 . . . a d since L y pG i,a y b z q X pa 1 ¨A˚q " H. (b) If L z pG i,a y b z q X pa 1 ¨A˚q ‰ H we find that L y pG i,a y b z q Ď a 1 , hence that L z pG i,a y b z q Ď a 1 . . . a d´1 since L z pG i,a y b z q X pA ˚¨a d q " H. (c) Then L y pG i,a y b z q X pA ˚¨a d q " H and L z pG i,a y b z q X pa 1 ¨A˚q " H. Hence L y pG i,a y b z q ¨Lz pG i,a y b z q Ď a 2 . . . a d´1 and by the fact (v) for " 2 and r " d´1 there exists 1 ă q ă d such that L y pG i,a y b z q Ď a 2 . . . a q and L z pG i,a y b z q Ď a q . . . a d´1 . By Lemma 2, for each X i P Ξ, such that L X,Xi pGq Ď a 1 a d , there exists a bounded expression Γ X,Xi where 2 T pd´1q is the time needed for the two recursive calls at lines 16 and 19 to complete. Because T p0q " Op|G|q `|G| Opkq , we find that T pdq " |G| Opkq`d . Finally, the time needed to build each bounded expression Γ P S r b can be evaluated by observing that each such expression is uniquely determined by a sequence σ P ∆ ˚of productions of G that are successively chosen at line 11. Let us consider now a slightly modified version of Algorithm 2 that is guided by a sequence σ P ∆ received in input -the function LetterBoundedControlSetpG, X, a s . . . a t , k, σq receives an extra parameter and returns also the suffix of σ that remains after processing the first production on σ, i.e. the recursive calls at lines 16 and 19 have returned. Since the sum of sizes of the bounded expressions for these recursive calls is at most t ´s, by Lemma 3, we obtain that, in total, Algorithm 2 initiates at most d calls to LetterBoundedControlSet. We recall also that the prefix of each call (before making recursive calls) takes time Op|G|q `|G| Opkq . Since Proof (of Lemma 4). Given k ą 0, consider the following grammar:

G " xtX i | 0 ď i ď ku, tau, tX i Ñ X i´1 X i´1 | 1 ď i ď ku Y tX 0 Ñ auy .
Notice that L X k pGq " ta 2 k u Ď a ˚and |G| " Opkq. Moreover, every depth-first derivation of G has index k `1.

For each i P t1, . . . , nu, let p i be the production X i Ñ X i´1 X i´1 of G n , and let p 0 be X 0 Ñ a. It is easy to see that, because the derivation is depth-first, the control word γ generating a 2 k from X k is unique. Now suppose that there exists Γ " w 1 . . . w d such that γ " w i1 1 . . . w i d d , for some i 1 , . . . , i d ě 0. Next we show that, for all j " 1, . . . , d we must have i j ď 2.

We first make this crucial observation, since the derivation tree is binary and its traversal is depth-first, we have that for every p i , every three consecutive occurrences 1 ă 2 ă 3 of p i -pγq 1 " pγq 2 " pγq 3 " p i -implies that there exists a position between 1 and 3 such that pγq " p i`1 . Otherwise that would imply that the derivation tree has a node X i`1 with three X i children; or that the tree was not traversed in depth-first.

Take an arbitrary w j in Γ and let g be the greatest index of a production occurring in w j . The number i j of repetitions of w j cannot be greater than two for otherwise p g contradicts the previous fact. So this concludes that no i j can be larger than 2. Now, since the only string of L X k pGq has length 2 k and that no rule produces more than one terminal then necessarily |γ| ě 2 k . So we show that |Γ | has to be at least 2 k´1 . By contradiction, suppose |Γ | ď p2 k´1 ´1q, then since in order to capture γ no word of Γ can occur more than twice, the longest control word that Γ can capture is 2 ¨p2 k´1 ´1q " 2 k ´2 which is shorter than 2 k " |γ|, hence a contradiction.

[\

B.6 Proof of Theorem 2

Proof (of Theorem 2). The Np-hard lower bound is by reduction from the Positive Integer Linear Programming (PILP) problem, which is known to be Np-complete [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF]Corollary 18.1a]. Consider the following instance of PILP, with variables k 1 , . . . , k m ranging over positive integers:

$ & % a 11 ¨k1 `. . . `am1 ¨km `c1 ď 0 ¨¨ä 1n ¨k1 `. . . `amn ¨km `cn ď 0 and denote a i " xa i1 , . . . , a in y P Z n , for all i " 1, . . . , m, and c " xc 1 , . . . , c n y P Z n . Let x " tx 1 , . . . , x n u be a set of integer variables. Consider the program P PILP " xG, X 0 , r r.s sy, where G " xΞ, Σ, ∆y:

-Ξ " tX 0 , . . . , X m`1 u, -Σ " tτ i | i " 0, . . . , m `1u Y tλ i | i " 0, . . . , mu, -∆ " tX i Ñ τ i X i`1 | i " 0, . . . , muYtX i Ñ λ i X i | i " 1, . . . , muYtX m`1 Ñ τ m`1 u, the semantics of the words w P L X0 pGq is defined by the following relations:

ρ τ0 " x 1 " 0 ρ τi " x 1 "
x for all i " 1, . . . , m ´1 ρ λi " x 1 " x `ai for all i " 1, . . . , m ρ τm " x 1 " x `c ρ τm`1 " x ď 0 Let r b PILP " τ 0 λ 1 τ 1 . . . λ mτ mτ m`1 be a bounded expression. It is immediate to check that the PILP problem has a solution if and only if REACH fo pP PILP , r b PILP q holds. This settles the Np-hard lower bound for the class of fo-reachability problems.

We show next that the class of fo-reachability problems REACH fo pP, bq is included in Nexptime. Let P " xG, I, r r.s sy be a given program, where G "

3 ,

 3 the auxiliary variables store intermediate results of the computation of p 2 as follows:

 step sequence and call it depth-first derivation when u P Ξ and w P Σ ˚.

2 .

 2 r rpX, xt Y ty Zq ¨γ1 ¨γ2 s s " r rpX, xt Y ty Zq ¨γ2 ¨γ1 s s " ``ρ xt ˝r rγ 1 s s ˝ρty ˘X φ t ˘˝r rγ 2 s s where Y We showed [11, Lemma 2] that, whenever X γ ù ñ df w, we have r rws s ‰ H iff r rγs s ‰ H. Index-bounded derivations. A step u ñ v is said to be k-index (k ą 0) iff neither u nor v contains k `1 occurrences of nonterminals, i.e. |uÓ Ξ | ď k and |vÓ Ξ | ď k. We denote by u γ ù ñ pkq v a k-index step sequence and by u γ ùùñ df pkq v a step sequence which is both depth-first and k-index. For X P Ξ, Y P Ξ Ytεu and k ą 0, we define the k-index language L pkq X,Y pGq " tu v P Σ ˚| Dγ P ∆ ˚: X γ ù ñ pkq u Y vu, the k-index depth-first control set Γ df pkq X,Y pGq " tγ P ∆ ˚| Du, v P Σ ˚: X γ ùùñ df pkq u Y vu. We write L pkq X pGq and Γ df pkq

X

I

 pGq r rws s and let r rPs s pkq b " Ť wPL pkq I pGqXb r rws s. Thus we define, for a constant k not part of the input, the problem REACH pkq fo pP, bq, which asks whether r rPs s pkq b ‰ H.

r

 b is built inductively over the structure of this decomposition, applying at each step Algorithm 1 which computes bounded control sets for 2-letter bounded languages. The main algorithm (Algorithm 2) returns a finite set S r b of bounded expressions tΓ 1 , . . . , Γ m u. Below we abuse notation and write Ť S r b for Ť m i"1 Γ i . The time needed to build each bounded expression Γ i P S r b is |G| Opkq and does not depend of | r b| " d, whereas the time needed to build the entire set S r b is |G| Opkq`d . These arguments come in handy when deriving an upper bound on the (nondeterministic) time complexity of the fo-reachability problem for programs with arbitrary call graphs. A non-deterministic version of Algorithm 2 that choses one set Γ i P S r b , instead of building the whole set S r b , is used to establish the upper bounds for the REACH fo pP, bq and REACH pkq fo pP, bq problems in the proof of Theorem 2.

y 1 .

 1 .d ‰ H, since X P Ξ y 1..d . The partition of nonterminals into Ξ y 1..d and Ξ } 1..d induces a decomposition of the grammar G. First, let G 7 " xΞ, A, ∆ 7 y, where:

x 1 .

 1 .d , a, b P A Y tεu and y, z P Ξ | 1.

3 . X γ 7

 37 p γy γz ù ùùùùù ñ df pk`1q G w if y γy ù ùùù ñ df pk´1qG i,aybz u y , and Xγ 7 p γz γy ù ùùùùù ñ df pk`1q G w if z γz ù ùùù ñ df pk´1q G i,aybz u z ; 4. L X,Xi pG 7 q Ď a 1 a d ; 5. L y pG i,aybz q Ď a ˚ . . . a m if y P Ξ | 1..d , and L z pG i,aybz q Ď a m . . . a r if z P Ξ | 1..d , for some integers 1 ď ď m ď r ď d, such that maxpm ´ , r ´mq ă d ´1. Let us now turn to the general case, in which the size of the strict letterbounded expression r b " a 1 . . . a d is not constant, i.e. d is part of the input of the algorithm. The output of Algorithm 2 is a finite set of bounded expressions S r b such that L pkq X pGq Ď LX p Ť S r b X Γ df pk`1q X , Gq. The construction of the set S r b

Theorem 3 .Algorithm 2 1 :js q 7 :∆ 7 1 ..js u 8 :G 7 9 :Γ 7 Ð 11 :

 321771879711 Given a grammar G " xΞ, A, ∆y, and X P Ξ, such that L X pGq Ď r b, where r b is the minimal strict d-letter bounded expression for L X pGq, for each k ą 0, there exists a finite set of bounded expressions S r b over ∆ such that L pkq X pGq Ď LX p Ť S r b X Γ df pk`1q X , Gq. Moreover, S r b can be constructed in time |G| Opkq`d and each Γ P S r b can be constructed in time |G| Opkq . The next lemma shows that the worst-case exponential blowup in the value k is unavoidable. Control Sets for Letter-Bounded Grammars input A grammar G " xΞ, A, ∆y, a nonterminal X P Ξ, a strict d-letter-bounded expression r b over A, such that L X pGq Ď r b, and k ą 0 output a set S r b of bounded expressions over ∆, such that L pkq X pGq Ď LX p function LetterBoundedControlSet(G0, X0, a i1 . . . a id , k) 2: match G0 with xΞ, A, ∆0y . . . , jsu Ď ti1, . . . , i d u 4: if |a j1 . . . a js | ď 2 then 5: return tConstantBoundedControlSetpG0, a j1 . . . a js , kqu 6: pΞ { j 1 ..js , Ξ j 1 ..js q Ð partitionNonterminalspG0, a j1 a Ð tpXj , wq P ∆0 | Xj P Ξ j 1 ..js u Y tpXj , u Xr vq P ∆0 | Xj , Xr P Ξ { j Ð xΞ, A, ∆ 7 y ConstantBoundedControlSetpG 7 , a j1 a js , k `1q for pXi, aybzq P ∆0 such that Xi P Ξ { j 1 ..js , a, b P A Y tεu and y, z P Ξ j 1 ..js Y tεu do 12:

1 :

 1 function minimizeExpression(G, X, a i1 . . . a id) 2:

1 s

 1 pG X q " L X pGq X b . Proof. (i) By induction on |γ| ą 0. For the base case |γ| " 1-γ is the production prq prq s Xq puq v s Ý Ñ wq P ∆ X with w P Σ ˚-by case (1) of the definition of ∆ X , we have q prq s ñ Gb w q puq v and there exists a production X Ý Ñ w P ∆. Since, moreover,

pxq y Y q puq v s then w " a ¨w1 and G X has derivation rq pxq y Y q puq v s γ 1 ùùñ df pkq w 1 .pxq y ù ñ Gb w 1 q puq v and G has a derivation Y ζpγ 1 q ù ùù ñ df pkq w 1 .

 111 By the induction hypothesis, we obtain q By the case (3) of the definition of ∆ X , we have q

2 w 2 Gb w 1 w 2 q puq v where w 1 w 2 "

 222 Zq puq v s then, by Lemma 7, there exist words w 1 , w 2 P Σ ˚such that w " w 1 w 2 and either one of the following applies: (a) rq prq and γ 1 " γ 1 γ 2 , or (b) rq prq and γ 1 " γ 2 γ 1 .We consider the first case only, the second being symmetric. Since |γ 1 | ă |γ| and |γ 2 | ă |γ|, we apply the induction hypothesis and find out that q w. By case (5) of the definition of ∆ X , ∆ has a production pX Ý Ñ Y Zq " ζprq prq s Xq puq v s Ý Ñ τ q. Since γ 1 " γ 1 γ 2 , then ζpγq " pX Ý Ñ Y Zq ¨ζpγ 1 q ζpγ 2 q, and G has a k-index depth-first derivation X

δ 1 ùùñ df pkq w 1 .Y q puq v s γ 1 ùùñ df pkq w 1 ,

 111 By the induction hypothesis, G X has a derivation rq pxq y for some γ 1 P ζ ´1pδ 1 q.

2 .

 2 By case[START_REF] Bouajjani | An efficient automata approach to some problems on context-free grammars[END_REF] of the definition of ∆ X , G X has a production p " prq Since δ 1 " δ 1 δ 2 , we define γ " p γ 1 γ 2 . It is immediate to check that ζpγq " δ and rq

 c " a r if y " 1; else c " ε. where c " a x if v " 1; else c " ε.

 step sequence of G b between q prq s and q puq v which is unique by G b and produces w P Σ ˚.

G b b q pxq y , for some y ‰ 1 .yLemma 6 . 2 .

 162 In this case b is uniquely determined by q prq s and q pxq y , thus we get ι ´1ppq " trq b q puq v , for some t ‰ z . In this case we get, symmetrically, ι ´1ppq " trq ι ´1ppq " tpu.if p " prq prq s Xq puq v s Ý Ñ a r rq pxq y Y q puq v sq for some a r P A, hence y " 1 (respectively, rq prq s Xq puq v s Ý Ñ rq prq s Y q pxq y s a r hence v " 1) and then the only possibility is ι ´1ppq " trq prq s Xq puq v s Ý Ñ pw r q r rq pxq y Y q puq v su (respectively, rq sq then ι ´1ppq " tpu.[\ Given a grammar G " xΞ, Σ, ∆y and a bounded expression b " w 1 . . . w d over Σ, for every X P Ξ, every 1 ď s ď x ď d and every k ą 0, the following holdfor each control set Γ Ď p∆ ' q ˚, such that L

psq 1 pxq 1 s 1 pxq 1 s 1 pxq 1 s(2)L pkq rq psq 1 pxq 1 s

 111111211 1) "Ď" Let w P L pkq rq Xq pG ' q. By Fact 1, we have that w P r b. It remains to show that w P h ´1pL rq psq 1 Xq pxq 1 s pG X qq, i.e. that hp wq P L rq psq 1 Xq pxq 1 s pG X q, which follows by Fact 2. "Ě" Let w P h ´1pL pkq rq psq Xq pG X qq X r b be a word, hence w " a i1 1 . . . a i d d for some i 1 , . . . , i d P N. Then hp wq P L pkq rq psq XqpG X q by Fact 2 and we are done. Let w " w i1 1 . . . w i d d P Xq pG X q be a word. Then G X has a derivation rq

1 pxq 1 s

 11 w i1 1 . . . w i d d in G X .Hence w P Lrq psq Xq pι ´1pΓ q, G X q.

Remark 2 .

 2 ' | " |ιpp X q| ď |p X |. Hence |G ' | ď |G X |. Now, each production p X P ∆ X corresponds to a production p of G, such that the nonterminals occurring on both sides of p are decorated with at most 3 nonterminals from Ξ b . Since ||Ξ b || " |b|, we obtain that, for each production p of G, G X has at most |b| 3 productions of size |p|. Hence |G ' | ď |G X | ď |b| 3 ¨|G|, and G ' can be constructed in time |b| 3 ¨|G|. [\ Given G " xΞ, A, ∆y, X P Ξ, and a strict d-letter-bounded expression r b " a 1 . . . a d , the check L X pGq Ď r b can be decided in time Op| r b| ¨|G|q, by building a grammar G b

w 2 pkq w 1 w 2 ,df pkq w 1 Y 2 ,

 2212 1 ď s ď d, can be answered in time Op|G|q [5, Section 5]. B Other proofs Lemma 7. Given G " xΞ, Σ, ∆y and a k-index depth-first step sequence X Y γ ùùñ df pkq w, for two nonterminals X, Y P Ξ, w P Σ ˚, and γ P ∆ ˚. There exist w 1 , w 2 P Σ such that w 1 w 2 " w, and γ 1 , γ 2 P ∆ ˚such that either one of the following holds: and γ " γ 2 γ 1 . Proof. The step sequence X Y γ ùùñ df pkq w has one of two possible forms, by the definition of a depth-first sequence: for some words w 1 , w 2 P Σ ˚and control words γ 1 , γ 2 P ∆ ˚. Let us consider the first case, the second being symmetric. Since X Y γ1 ùùñ is a k-index step sequence, the sequence X γ1 ù ñ w 1 obtained by erasing the Y nonterminal from the last position in all steps of the sequence, is of index k ´1, i.e. X γ1 by erasing the first |w 1 | symbols in all steps of the sequence. Clearly, in this case we have γ " γ 1 γ 2 .

 , and u α σ ùùñ df pkq v η is a k-index r-step sequence. The definition of the edge relation in A df pkq and rv η s p Ý Ñ w shows that v η p ùùñ df pkq

Finally

 Let us now prove the language inclusion. It follows from Theorem 1, that L pkq X,Y pGq " LX,Y pΓ df pkq X,Y , Gq for every X P Ξ, Y P Ξ Y tεu and k ą 0. Hence we trivially have LX,Y pΓ r b X Γ df pkq X,Y , Gq Ď LX,Y pΓ df pkq X,Y , Gq " L pkq X,Y pGq. For the contrapositive L pkq X,Y pGq Ď LX,Y pΓ r b X Γ df pkq X,Y , Gq, it suffices to show the following: given a k-index depth first step sequence X γ ùùñ df pkq u Y v, there exists a control word γ 1 P Γ r b such that X γ 1 ùùñ df pkq

 , and because L pkq X,Y pGq Ď r b where r b is a strict s-letter bounded expression, it suffices to show that exists a path ρ P ΠpX x0y , Y x0y q such that ωpρq P Γ r b and ωpπqÓ r b " ωpρqÓ r b

r b " ωpπ 1

 1 qÓ r b when ΠpX x0y , qq ‰ H and Πpq, Y x0y q ‰ H holds. Below we describe the construction of such sets.

 r b " ωpπqÓ r b " a i1 1 . . . a is s where xq, εy and xq, a i1

Opkq . Algorithm 1 1 .

 11 gives the construction of Γ r b . An upper bound on the time needed for building Γ r b can be derived by a close analysis of the running time of Algorithm 1. The input to the algorithm is a grammar G, a strict s-letter bounded expression r b and an integer k ą 0. First (lines 2-5) the algorithm builds the H graph, which takes time |G|Opkq . The loop on (lines 8-10) computes, for each vertex q P Q, and each s-dimensional vector v P Val , an elementary path from xq, εy to xq, a pvq1

1 .

 1 The derivation X γ ùùñ df pkq w, where |γ| " n, has a unique corresponding rstep sequence X x0y " w α0 0 pγq1 ù ù ñ w α1 1 . . . pγqn ùùñ w αn n " w αn . Now, we define a parent relationship in that step sequence, denoted Ÿ, between r-annotated nonterminals: Y xay Ÿ Z xby iff there exists a step in the sequence that rewrites Y xay to Z xby , that is u α pY,tq{j

y 1 .

 1 .d . Notice that such an occurrence always exists since X P Ξ y 1..d and moreover we have that a, b P A Y tεu, y, z P Ξ } 1..d Y tεu. In fact, since γ is a derivation, if y P Ξ y 1..d or z P Ξ y 1..d then pγq p would clearly not be the last such occurrence. Let X " X

u X ip v in G 7 . 2 .

 72 Assume that y, z P Ξ } 1..d (the cases y " ε or z " ε are similar). Since γ of length n induces a k-index depth first derivation, we have that y z pγq p `1 ...pγqn ù ùùùùùùùù ñ df pkq u y u z P A ˚can be split into two derivations of G as follows: y

B. 4

 4 Proof of Theorem 3 Proof (of Theorem 3). We prove the theorem by induction on d ą 0. If d " 1, 2, we obtain Γ r b from Lemma 2, and time needed to compute Γ r b , using Algorithm 1, is |G| Opkq . Moreover, we have L pkq X pGq " LX pΓ r b XΓ df pkq X , Gq Ď LX pΓ r b XΓ df pk`1q X , Gq. For the induction step, assume d ě 3. W.l.o.g. we assume that G is reduced for X, and that a 1 . . . a d is the minimal bounded expression such that L X pGq Ď a 1 . . . a d . Consider the partition Ξ y 1..d Y Ξ } 1..d " Ξ and Ξ y 1..d X Ξ } 1..d " H, defined in the previous. Since G is reduced for X, then X P Ξ y 1..d . Define ∆ pivot " tpX i , a y b zq P ∆ | X i P Ξ y 1..d and a, b P A Y tεu, y, z P Ξ } 1..d Y tεuu .

 " LX,Xi pΓ X,Xi 1,d X Γ df pk`1q X,Xi , Gq. Moreover, by the induction hypothesis, for each , m, r such that 1 ď ď m ď r ď d, m ´ ă d ´1 and r ´m ă d ´1, and for each Y, Z P Ξ such that L Y pGq Ď a ˚ . . . a m and L Z pGq Ď a m . . . a r , there exist two sets S Y ...m , S Z m...r of bounded expressions over ∆ i,aybz such thatL pkq Y pGq Ď LY p Ť S Y ...m X Γ df pk`1q Y , Gq and L pkq Z pGq Ď LZ p Ť S Z m...r X Γ df pk`1qZ , Gq. We extend this notation to ε, and assume that S ε i...j " tεu. We define:IH " tp , m, rq | 1 ď ď m ď r ď d, m ´ ă d ´1 ^r ´m ă d ´1u S r b " tΓ X,Xi1,d ¨pX i , a y b zq ˚¨Γ 1 ¨Γ 2 | pX i , a y b zq P ∆ pivot LX,Xi pGq Ď a 1 a d ^Γ 1 P S y ...m ^Γ 2 P S z m...r ^p , m, rq P IHu sion check on (line 12) is possible also in time Op|G|q (see Remark2). By Lemma 2, a call to ConstantBoundedControlSetpG, b, kq will take time |G| Opkq . Lemma 3 shows that the sizes of the bounded expression considered at lines 16 and 19, in a recursive call, sum up to the size of the bounded expression for the current call. Thus the total number of recursive calls is at most d. We thus let T pdq denote the time needed for the top-level call of the function LetterBoundedControlSetpG, X, a 1 . . . a d , kq to complete. Since the loop on (lines 11-21) will be taken at most ||∆|| ď |G| times, we obtain: T pdq " |G| Opkq `|G|pOp|G|q `2 T pd´1qq

LB. 5

 5 X pGq Ď r b, assuming that r b is minimal, we have | r b| ď |G|. Hence, the time needed to compute a bounded expression Γ P S r b is bounded by: d ¨pOp|G|q `|G|Opkq q ď |G| ¨pOp|G|q `|G| Opkq q " |G| Opkq .[\ Proof of Lemma 4

 1 . . . a d is by induction on d ě 1, and is inspired by a decomposition of the derivations in G, given by Ginsburg[START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF] Chapter 5.3, Lemma 5.3.3]. Because his decomposition is oblivious to the index or the depth-first policy, it is too weak for our needs. Therefore, we give first a stronger decomposition result for k-index depth-first derivations.Algorithm 1 Control Sets for the Case of Constant Size Bounded Expressionsinput A grammar G " xΞ, A, ∆y, a strict s-letter-bounded expression a 1 . . . a s over A, where s ě 0 is a fixed constant, and k ą 0 output a bounded expression Γ over ∆ such that L , Gq for all X P Ξ and Y P Ξ Y tεu, such that L X,Y pGq Ď a 1 . . . a function ConstantBoundedControlSet(G, a 1 . . . a s , k) 2:

	pkq X,Y pGq " LX,Y pΓ X Γ X,Y df pkq

s 1:

 pkq , @ P t1, . . . , su. a

			j "a i ¨`pÓ a	˘u
	5:	H Ð xV, ∆, δy
	6:	B0 Ð ε	
	7:	DijkstraShortestPathspHq
	8:	for q P Q do
	9: 10:	Cq Ð	Ť wPVal GetShortestPathpH, xq, εy, xq, wyq

B0 Ð B0 ¨Concatptωpπq | π P Cquq 11: C Ð ε 12: for i " 1 . . . |G| 2k ´1 do 13: C Ð C ¨Concatp∆q 14: Γ Ð ε 15: for i " 1 . . . |G| 2k do 16:

 (recall that both pw n´1 q and X belong to Ξ y 1..d). Thus we have pγq n P ∆ 7 , hence w n´1 pγqn ùùñ G 7 w n , and finally X

				γ
				Opkq
	and ||Val || " |G|	Opkq , the loop at (lines 8-10) takes time |G| Opkq as well.
	The remaining part of the algorithm computes first an over-approximation
	of concatp∆q N ´1 (lines 11-13) in the variable C-observe that the algorithm
	computes concatp∆q |G| 2k	´1 instead of concatp∆q N ´1. Finally, the control set
	Γ b with the needed property is produced by |G| r	2k ě N repeated concatenations
	of the bounded expression C ¨B0 , at lines (15-16). Since both loops take time at
	most |G|	2k , we conclude that Algorithm 1 runs in time |G| Opkq .	[\

The precise definition and use of ranks will be explained in Section 4.

In our case s " 0, 1, 2, but the construction can be generalized to any constant s ě 0.

We consider all edges to be of weight 1.

If Z " puqj is the only non-terminal in u, we have m `1 " ´1 `1 " 0.

The number of nonnegative solutions of an equation n " x1 `¨¨¨`xm is `m`n´1 m´1 ˘.

B.3 Proof of Lemma 3

A grammar G is said to be reduced for X iff L X,Y pGq ‰ H and L Y pGq ‰ H, for every Y P Ξ, X ‰ Y . A grammar can be reduced in polynomial time, by eliminating unreachable and unproductive nonterminals [START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF]Lemma 1.4.4].

Proof (of Lemma 3). We start by proving a series of five facts.

(i) First, no production of G has the form pY, vq, where Y P Ξ (ii) Define Qpu, vq to be the following proposition:

We show that Qpu, vq holds if X i ñ ˚u X j v with X i , X j P Ξ , there exists a step sequence u 1 ñ ˚u1 a u 2 P A ˚such that ą 1. Since X j P Ξ y 1..d , we have that X j v ñ ˚a1 u 3 P A ˚, hence that X i ñ ˚u1 a u 2 a 1 u 3 and finally that L X pGq Ę r b, since G is reduced, a contradiction. (iii) For every step sequence X j ñ ˚x, where X j P Ξ y 1..d , x cannot be of the form u 1 X d u 2 X e u 3 where X d , X e P Ξ y 1..d . In fact, take the decomposition u " u 1 and v " u 2 X e u 3 (the case u " u 1 X d u 2 and v " u 3 yields the same result). Because piiq applies, we find that Qpu, vq

.d and u " v " ε, which trivially yields a step sequence of G 7 . For the inductive case, because of piq we find that, necessarily, pw n´1 q P Ξ y 1..d for some . We thus can apply the induction hypothesis onto X pγq1...pγqn´1 ù ùùùùùùù ñ G w n´1 and conclude that X w be a k-index depth first derivation of w in G. Since w P L pkq X pGq, such a derivation is guaranteed to exist. By Lemma 3, there exists pX i , a y b zq P ∆ pivot , and γ 7 P p∆ 7 q ˚, γ y , γ z P p∆ i,aybz q ˚, such that γ 7 pX i , a y b zq ¨γy ¨γz is a permutation of γ, and:

y γy ùùùñ df pky q u y and z γz ùùùñ df pkz q u z are derivations of G i,aybz (hence u y u z P A ˚), maxpk y , k z q ď k and minpk y , k z q ď k ´1;

Let us consider the case where y, z P Ξ (the other cases of y " ε or z " ε being similar, are left to the reader). We also assume k y ď k ´1 the other case being symmetric.

Therefore, by the induction hypothesis there exist bounded expressions Γ 1 P S y ...m and Γ 2 P S z m...r such that y and k z `1 ď k `1, respectively. Hence the overall index of the foregoing derivation with control word pγ 7 pX i , aybzq γ 1 γ 2 q is at most k `1. Since it is also a depth-first derivation, we finally find that w

X , Gq. In the following, we address the time complexity of the construction of S r b , and of each bounded expression Γ P S r b . We refer to Algorithm 2 in the following. Notice first that both the minimizeExpression and partition-Nonterminals functions take time Op|G|q, because emptiness of the intersection between a context-free grammar and a finite automaton of constant size is linear in the size of the grammar [5, Section 5]. Moreover, the inclu-xΞ, Σ, ∆y is its underlying grammar, and b " w 1 . . . w d a bounded expression. By Lemma 5, there exists a grammar G X " xΞ X , Σ, ∆ X y such that:

Moreover, we have that |G X | " Op|b| 3 ¨|G|q. Let P s,x " xG X , rq Let A " ta 1 , . . . , a d u be an alphabet disjoint from Σ and r b " a 1 . . . a d be a strict letter-bounded expression, such that b " hp r bq, where h : A Ñ Σ ˚is the homomorphism hpa i q " w i , for all i " 1, . . . , d. By Lemma 6 there exists a grammar G ' " xΞ X , A, ∆ ' y such that, for every k ą 0:

1. L pkq X pG ' q " h ´1pL pkq X pG X qq X r b, 2. for each Γ Ď p∆ ' q ˚, such that L pkq X pG ' q Ď LX pΓ, G ' q, we have L pkq X pG X q Ď LX pι ´1pΓ q, G X q.

Moreover, we have |G ' | " Op|b| 3 ¨|G|q. Since L pkq X pG ' q Ď r b, by Theorem 3, there exists a set S r b of bounded expressions over ∆ ' such that:

Hence, by Lemma 6, we obtain:

We used the fact that ι ´1pΓ df pk`1q X pG ' qq " Γ df pk`1q X pG X q. Because L X pG X q Ď b, there exists K " Op|G X |q such that L X pG X q " L pKq X pG X q as Theorem 1 shows. Hence K " Op|b| 3 ¨|G|q as well. We obtain the following:

X pG X q, G X ˘. Assume that S r b " tΓ 1 , . . . , Γ m u, for some m ą 0, and denote ι ´1pΓ i q by r Γ i . We have that, for each derivation X γ ù ùùù ñ df pk`1q w of G X , r rws s " H iff r rγs s " H [11, Lemma 2]. As a result, r rP s,x s s ‰ H iff there exists i " 1, . . . , m and γ P r Γ i X Γ df pk`1q X pG X q, such that r rγs s ‰ H. By Theorem 3, each set Γ i can be constructed in time:

3 ¨|G|q OpKq " p|b| 3 ¨|G|q Op|b| 3 ¨|G|q " 2 Op|b| 3 ¨|G|¨plog |b|`log |G|qq .

We have used the facts |G ' | " Op|b| 3 ¨|G|q and K " Op|b| 3 ¨|G|q. By Lemma 1, there exists a finite automaton A df pK`1q G X that recognizes the language Γ df pK`1q X pG X q. Equivalently, we consider a grammar G df pK`1q , such that L X x0y pG df pK`1q q " Γ df pK`1q X pG X q, where X x0y is the ranked nonterminal corresponding to the initial state of A df pK`1q G X in Lemma 1. Let Q " xG df pK`1q , X x0y , r r.s sy be the program associated with G df pK`1q . If P was assumed to be an octagonal program, then so is Q.

The problem REACH fo pP s,x , bq is thus equivalent to the finite set of problems REACH fo pQ, r Γ i q, for i 1, . . . , m. The size of G df pK`1q is

Hence the size of the input to each problem REACH fo pQ, r Γ i q is 2 Op|b| 3 ¨|G|¨plog |b|`log |G|qq . Since Q is a procedure-less octagonal program, and each such problem can be solved in Nptime [7, Theorem 10], this provides a Nexptime decision procedure for the problem REACH fo pP s,x , bq.

We are left with proving that the REACH fo pP, bq problem is in Np, when r rP s s " r rP s s pkq , for a constant k ą 0. To this end, we define a grammar G k " xΞ ˆ 0, 0, . . . , k, k(, Σ, ∆ k y such that L X pGq pkq " L pX,kq pG k q [22, Definition 3.1]. Using the fact that, for each production pZ, wq P ∆, there are at most two nonterminals in w, we establish that |G k | ď 3k|G| `kpk `1q, hence |G k | " Opk 2 ¨|G|q.

The corresponding program is P k " xG k , pI, kq, r r.s sy. By applying the reduction above, we obtain a set of problems REACH fo pQ k , r Γ i q, each of which of size p|b| 3 ¨|G k |q Opkq " p|b| 3 ¨pk 2 ¨|G|qq Opkq . Since k is constant, we can solve this problem in Nptime, using an Np procedure [7, Theorem 10]. Since the Np-hard lower bound was proved above, the problem is Np-complete.

[\