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Abstraction Refinement and Antichains for Trace
Inclusion of Infinite State Systems

Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar

CNRS/Verimag, France and FIT BUT, Czech Republic

Abstract. A data automaton is a finite automaton equipped with variables (coun-
ters or registers) ranging over infinite data domains. A trace of a data automaton is
an alternating sequence of alphabet symbols and values taken by the counters dur-
ing an execution of the automaton. The problem addressed in this paper is the in-
clusion between the sets of traces (data languages) recognized by such automata.
Since the problem is undecidable in general, we give a semi-algorithm based on
abstraction refinement, which is proved to be sound and complete, but whose ter-
mination is not guaranteed. We have implemented our technique in a prototype
tool and show promising results on several non-trivial examples.

1 Introduction

In this paper, we address a trace inclusion problem for infinite-state systems. Given
(i) a network of data automata A “ xA1, . . . ,ANy that communicate via a set of shared
variables xA , ranging over an infinite data domain, and a set of input events ΣA , and
(ii) a data automaton B whose set of variables xB is a subset of xA , does the set of (finite)
traces of B contain the traces of A? Here, by a trace, we understand an alternating
sequence of valuations of the variables from the set xB and input events from the set
ΣA XΣB, starting and ending with a valuation. Typically, the network of automata A is
an implementation of a concurrent system and B is a specification of the set of good
behaviors of the system.

Consider, for instance, the network xA1, . . . ,ANy of data automata equipped with the
integer-valued variables x and v shown in Fig. 1–left. The automata synchronize on the
init symbol and interleave their a1,...,N actions. Each automaton Ai increases the shared
variable x and writes its identifier i into the shared variable v as long as the value of x is
in the interval rpi´1q∆, i∆´1s, and it is inactive outside this interval, where ∆ě 1 is an
unbounded parameter of the network. A possible specification for this network might
require that each firing sequence is of the form init a˚1,...,N a2 a˚2,...,N . . .ai a˚i for some
1 ď i ď N, and that v is increased only on the first occurrence of the events a2, . . . ,ai,
in this order. This condition is encoded by the automaton B (Fig. 1–right). Observe that
only the v variable is shared between the network xA1, . . . ,ANy and the specification
automaton B—we say that v is observable in this case. An example of a trace, for ∆“ 2
and N ě 3, is: pv“ 0q init pv“ 1q a1 pv“ 1q a1 pv“ 1q a2 pv“ 2q a2 pv“ 2q a3 pv“ 3q.
Our problem is to check that this, and all other traces of the network, are included in
the language of the specification automaton, called the observer. The trace inclusion
problem has multiple applications, e.g.:
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v1 “ v`1

a2...N aN

aN

v1 “ v`1
pN. . .qi
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Fig. 1. An instance of the trace inclusion problem.

– Decision procedures for logics describing array structures within imperative pro-
grams [16, 15] that use a translation of array formulae to integer counter automata
which encode the set of array models of a formula. The expressiveness of such log-
ics is currently limited by the decidability of the emptiness (reachability) problem
for counter automata. If we give up on decidability, we can reduce an entailment
between two array formulae to the trace inclusion of two integer counter automata,
and use the method presented in this paper as a semi-decision procedure. To as-
sess this claim, we have applied our trace inclusion method to several verification
conditions for programs with unbounded arrays of integers [6].

– Timed automata and regular specifications of timed languages [2] can be both rep-
resented by finite automata extended with real-valued variables [13]. The verifica-
tion problem boils down to the trace inclusion of two real-valued data automata.
In this context, our method has been tested on several timed verification problems,
including communication protocols and boolean circuits [27].

When developing a method for checking the inclusion between trace languages of
automata extended with variables ranging over infinite data domains, the first problem
is the lack of determinisation and/or complementation results. In fact, certain classes
of infinite state systems, such as timed automata [2], cannot be determinized and are
provably not closed under complement. This is the case due to the fact that the clock
variables of a timed automaton are not observable in its timed language, which records
only the time lapses between successive events. However, if we require that the values
of all variables of a data automaton be part of its trace language, we obtain a determini-
sation result, which generalizes the classical subset construction by taking into account
the data valuations. Building on this first result, we define the complement of a data
language and reduce the trace inclusion problem to the emptiness of a product data
automaton LpAˆBq “ H. It is crucial, for this reduction, that the variables xB of the
right-hand side data automaton B (the one being determinized) are also controlled by
the left-hand side automaton A, in other words, that B has no hidden variables.

The language emptiness problem for data automata is, in general, undecidable [23].
Nevertheless, several semi-algorithms and tools for this problem (better known as the
reachability problem) have been developed [3, 18, 21, 14]. Among those, the technique
of lazy predicate abstraction [18] combined with counterexample-driven refinement us-
ing interpolants [21] has been shown to be particularly successful in proving emptiness
of rather large infinite-state systems. Moreover, this technique shares similar aspects
with the antichain-based algorithm for language inclusion in the case of a finite alpha-



bet [1]. An important similarity is that both techniques use a partial order on states, to
prune the state space during the search.

The main result of this paper is a semi-algorithm that combines the principle of the
antichain-based language inclusion algorithm [1] with the interpolant-based abstraction
refinement semi-algorithm [21], via a general notion of language-based subsumption
relation. We have implemented our semi-algorithm in a prototype tool and carried out
a number of experiments, involving hardware, real-time systems, and array logic prob-
lems. Since our procedure tests inclusion within a set of good traces, instead of empty
intersection with a set of error traces, we can encode rather complex verification condi-
tions concisely, using automata of relatively small size.

1.1 Overview
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Fig. 2. Sample run of our semi-algorithm.

We introduce the reader to our trace inclusion method by means of an example. Let
us consider the network of data automata xA1,A2y and the data automaton B from Fig. 1.
We prove that, for any value of ∆, any trace of the network xA1,A2y, obtained as an in-
terleaving of the actions of A1 and A2, is also a trace of the observer B. To this end, our
procedure will fire increasingly longer sequences of input events, in search for a coun-
terexample trace. We keep a set of predicates associated with each state pxq1,q2y,Pq
of the product automaton where qi is a state of Ai and P is a set of states of B. These
predicates are formulae that define over-approximations of the data values reached si-
multaneously by the network, when Ai is the state qi, and by the observer B, in every
state from P.

The first input event is init, on which A1 and A2 synchronize, moving together from
the initial state xq1

0,q
2
0y to xq1

1,q
2
1y. In response, B can chose to either(i) move from



tp0u to tp1u, matching the only transition rule from p0, or (ii) ignore the transition rule
and move to the empty set. In the first case, the values of v match the relation of the

rule p0
init,v1“1
ÝÝÝÝÑ p1, while in the second case, these values match the negated relation

 pv1 “ 1q. The second case is impossible because the action of the network requires
x1 “ 0^ v1 “ 1. The only successor state is thus pxq1

1,q
2
1y,tp1uq in Fig. 2 (a). Since no

predicates are initially available at this state, the best over-approximation of the set of
reachable data valuations is the universal set (J).

The second input event is a1, on which A1 moves from q1
1 back to itself, while A2

makes an idle step because no transition with a1 is enabled from q2
1. Again, B has the

choice between moving from tp1u either toH or tp1u. Let us consider the first case, in
which the successor state is pxq1

1,q
2
1y,H,Jq. Since q1

1 and q2
1 are final states of A1 and

A2, respectively, and no final state of B is present inH, we say that the state is accepting.
If the accepting state (in dashed boxes in Fig. 2) is reachable according to the transition
constraints along the input sequence init.a1, we have found a counterexample trace that
is in the language of xA1,A2y but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of the
path formula corresponding to the composition of the transition constraints x1 “ 0^
v1 “ 1 (init) and 0 ď x ă ∆^ x1 “ x` 1^ v1 “ 1^ pv1 “ vq (a1) in Fig. 2 (a). This
formula is unsatisfiable, and the proof of infeasibility provides the interpolant xv“ 1y.
This formula is an explanation for the infeasibility of the path because it is implied by
the first constraint and it is unsatisfiable in conjunction with the second constraint. By
associating the new predicate v “ 1 with the state pxq1

1,q
2
1y,tp1uq, we ensure that the

same spurious path will never be explored again.
We delete the spurious counterexample and recompute the states along the input

sequence init.a1 with the new predicate. In this case, pxq1
1,q

2
1y,Hq is unreachable, and

the outcome is pxq1
1,q

2
1y,tp1u,v“ 1q. However, this state was first encountered after the

sequence init, so there is no need to store a second occurrence of this state in the tree.
We say that the node init.a1 is subsumed by init, and indicate this by a dashed arrow in
Fig. 2 (b).

We continue with a2 from the state pxq1
1,q

2
1y,tp1u,v“ 1q. In this case, A1 makes an

idle step and A2 moves from q2
1 to itself. In response, B has the choice between mov-

ing from tp1u to either(i) tp1u with the constraint v1 “ v, (ii) tp2u with the constraint
v1 “ v`1, (iii) tp1, p2u with the constraint v1 “ v^ v1 “ v`1ÑK (this possibility is
discarded), (iv) H for data values that satisfy  pv1 “ vq^ pv1 “ v`1q. The last case
is also discarded because the value of v after init constrained to 1 and the A2 imposes
further the constraint v1 “ 2 and v“ 1^v1 “ 2^ pv1 “ vq^ pv1 “ v`1qÑK. Hence,
the only a2-successor of pxq1

1,q
2
1y,tp1u,v“ 1q is pxq1

1,q
2
1y,tp2u,Jq, in Fig. 2 (b).

By firing the event a1 from this state, we reach pxq1
1,q

2
1y,H,v“ 1q, which is, again,

accepting. We check whether the path init.a2.a1 is feasible, which turns out not to
be the case. For efficiency reasons, we find the shortest suffix of this path that can be
proved infeasible. It turns out that the sequence a2.a1 is infeasible starting from the state
pxq1

1,q
2
1y,tp1u,v “ 1q, which is called the pivot. This proof of infeasibility yields the

interpolant xv“ 1,∆ă xy, and a new predicate ∆ă x is associated with pxq1
1,q

2
1y,tp2uq.

The refinement phase rebuilds only the subtree rooted at the pivot state, in Fig. 2 (b).
The procedure then builds the tree on Fig. 2 (c) starting from the pivot node and finds

the accepting state pxq1
1,q

2
1y,H,∆ ă xq as the result of firing the sequence init.a2.a2.



This path is spurious, and the new predicate v “ 2 is associated with the location
pxq1

1,q
2
1y,tp2uq. The pivot node is the same as in Fig. 2 (b), and, by recomputing the

subtree rooted at this node with the new predicates, we obtain the tree in Fig. 2 (d), in
which all frontier nodes are subsumed by their predecessors. Thus, no new event needs
to be fired, and the procedure can stop reporting that the trace inclusion holds.

1.2 Related Work

The trace inclusion problem has been previously addressed in the context of timed au-
tomata [25]. Although the problem is undecidable in general, decidability is recovered
when the left-hand side automaton has at most one clock, or the only constant appearing
in the clock constraints is zero. These are essentially the only known decidable cases of
language inclusion for timed automata.

The study of data automata [5, 11] usually deals with the complexity of deci-
sion problems in logics describing data languages for simple theories, typically infi-
nite data domains with equality. Here we provide a semi-decision procedure for the
language inclusion between data automata controlled by generic first-order theories,
whose language-theoretic problems are undecidable.

Data words are also studied in the context of symbolic visibly pushdown automata
(SVPA) [10]. Language inclusion is decidable for SVPAs with transition guards from
a decidable theory because SVPAs are closed under complement and the emptiness can
be reduced to a finite number of queries expressible in the underlying theory of guards.
Decidability comes here at the cost of reducing the expressivity and forbidding com-
parisons between adjacent positions in the input (only comparisons between matching
call/return positions of the input nested words are allowed).

Finally, several works on model checking infinite-state systems against CTL [4]
and CTL* [8] specifications are related to our problem as they check inclusion between
the set of computation trees of an infinite-state system and the set of trees defined by a
branching temporal logic specification. The verification of existential CTL formulae [4]
is reduced to solving forall-exists quantified Horn clauses by applying counterexam-
ple guided refinement to discover witnesses for existentially quantified variables. The
work [8] on CTL* verification of infinite systems is based on partial symbolic deter-
minization, using prophecy variables to summarize the future program execution. For
finite-state systems, automata are a strictly more expressive formalism than temporal
logics1. Such a comparison is, however, non-trivial for infinite-state systems. Never-
theless, we found the data automata considered in this paper to be a natural tool for
specifying verification conditions of array programs [16, 15, 6] and regular properties
of timed languages [2].

2 Preliminary Definitions

Let N denote the set of non-negative integers including zero. For any k, ` P N, k ď `,
we write rk, `s for the set tk,k`1, . . . , `u. We write K and J for the boolean constants

1 For (in)finite words, the class of LTL-definable languages coincides with the star-free lan-
guages, which are a strict subclass of (ω-)regular languages.



false and true, respectively. Given a possibly infinite data domain D , we denote by
ThpDq “ xD, f1, . . . , fmy the set of syntactically correct first-order formulae with func-
tion symbols f1, . . . , fm. A variable x is said to be free in a formula φ, denoted as φpxq,
iff it does not occur under the scope of a quantifier.

Let x “ tx1, . . . ,xnu be a finite set of variables. A valuation ν : x Ñ D is an as-
signment of the variables in x with values from D . We denote by Dx the set of such
valuations. For a formula φpxq, we denote by ν |ùThpDq φ the fact that substituting each
variable x P x by νpxq yields a valid formula in the theory ThpDq. In this case, ν is
said to be a model of φ. A formula is said to be satisfiable iff it has a model. For
a formula φpx,x1q where x1 “ tx1 | x P xu and two valuations ν,ν1 P Dx, we denote by
pν,ν1q |ùThpDq φ the fact that the formula obtained from φ by substituting each x with
νpxq and each x1 with ν1px1q is valid in ThpDq.

Data Automata. Data Automata (DA) are extensions of non-deterministic finite au-
tomata with variables ranging over an infinite data domain D , equipped with a first
order theory ThpDq. Formally, a DA is a tuple A“ xD,Σ,x,Q, ι,F,∆y, where:

– Σ is a finite alphabet of input events and ˛ P Σ is a special padding symbol,
– x“ tx1, . . . ,xnu is a set of variables,
– Q is a finite set of states, ι P Q is an initial state, F Ď Q are final states, and

– ∆ is a set of rules of the form q
σ,φpx,x1q
ÝÝÝÝÑ q1 where σ P Σ is an alphabet symbol and

φpx,x1q is a formula in ThpDq.
A configuration of A is a pair pq,νq P QˆDx. We say that a configuration pq1,ν1q is
a successor of pq,νq if and only if there exists a rule q σ,φ

ÝÑ q1 P ∆ and pν,ν1q |ùThpDq φ.

We denote the successor relation by pq,νq σ,φ
ÝÑ Apq1,ν1q, and we omit writing φ and A

when no confusion may arise. We denote by succApq,νq “ tpq1,ν1q | pq,νq ÝÑ Apq1,ν1qu
the set of successors of a configuration pq,νq.

A trace is a finite sequence w “ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q of pairs pνi,σiq

taken from the infinite alphabet DxˆΣ. A run of A over the trace w is a sequence of
configurations π : pq0,ν0q

σ0
ÝÑ pq1,ν1q

σ1
ÝÑ . . .

σn´1
ÝÝÝÑ pqn,νnq. We say that the run π is

accepting if and only if qn P F , in which case A accepts w. The language of A, denoted
LpAq, is the set of traces accepted by A.

Data Automata Networks. A data automata network (DAN) is a non-empty tuple
A “ xA1, . . . ,ANy of data automata Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy, i P r1,Ns whose sets
of states are pairwise disjoint. A DAN is a succint representation of an exponentially
larger DA Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay, called the expansion of A , where:

– ΣA “ Σ1Y . . .YΣN and xA “ x1Y . . .YxN ,
– QA “ Q1ˆ . . .ˆQN , ιA “ xι1, . . . , ιNy and FA “ F1ˆ . . .ˆFN ,
– xq1, . . . ,qNy

σ,ϕ
ÝÑ xq11, . . . ,q

1
Ny if and only if (i) for all i P I, qi

σ,ϕi
ÝÝÑ q1i, (ii) for all i R I,

qi “ q1i, and (iii) ϕ ”
Ź

iPI ϕi^
Ź

jRI τ j, where I “ ti P r1,Ns | qi
σ,ϕi
ÝÝÑ q1i P ∆iu is

the set of DA that can move from qi to q1i while reading the input symbol σ, and
τ j ”

Ź

xPx jzp
Ť

iPI xiq
x1 “ x propagates the values of the local variables in A j that are

not updated by tAiuiPI .



Intuitively, all automata that can read an input symbol synchronize their actions on that
symbol whereas the rest of the automata make an idle step and copy the values of their
local variables which are not updated by the active automata. The language of the DAN
A is defined as the language of its expansion DA, i.e. LpAq “ LpAeq.

Trace Inclusion. Let A be a DAN and Ae “ xD,Σ,xA ,QA , ιA ,FA ,∆Ay be its expan-
sion. For a set of variables y Ď xA , we denote by νÓy the restriction of a valuation
ν P DxA to the variables in y. For a trace w “ pν0,σ0q, . . . ,pνn,˛q P pDxA ˆΣAq

˚, we
denote by wÓy the trace pν0Óy,σ0q, . . . ,pνn´1Óy,σn´1q,pνnÓy,˛q P pDyˆΣq

˚. We lift
this notion to sets of words in the natural way, by defining LpAqÓy“

 

wÓy | w P LpAq
(

.
We are now ready to define the trace inclusion problem on which we focus in this

paper. Given a DAN A as before and a DA B “ xD,Σ,xB,QB, ιB,FB,∆By such that
xB Ď xA , the trace inclusion problem asks whether LpAqÓxB

Ď LpBq? The right-hand
side DA B is called observer, and the variables in xB are called observable variables.

3 Boolean Closure Properties of Data Automata

We show first that data automata are closed under the boolean operations of union,
intersection and complement and that they are amenable to determinisation. Clearly,
the emptiness problem is, in general, undecidable, due to the result of Minsky on 2-
counter machines with integer variables, increment, decrement and zero test [23].

Let A “ xD,Σ,x,Q, ι,F,∆y be a DA for the rest of this section. A is said to be
deterministic if and only if, for each trace w P LpAq, A has at most one run over w.
The first result of this section is that, interestingly, any DA can be determinized while
preserving its language. The determinisation procedure is a generalization of the clas-
sical subset construction for Rabin-Scott word automata on finite alphabets. The reason
why determinisation is possible for automata over an infinite data alphabet DxˆΣ is
that the successive values taken by each variable x P x are tracked by the language
LpAq Ď pDxˆΣq

˚. This assumption is crucial: a typical example of automata over an
infinite alphabet, that cannot be determinized, are timed automata [2], where only the
elapsed time is reflected in the language, and not the values of the variables (clocks).

Formally, the deterministic DA accepting the language LpAq is defined as Ad “

xD,Σ,x,Qd , ιd ,Fd ,∆dy, where Qd “ 2Q, ιd “ tιu, Fd “ tPĎ Q | PXF ‰Hu and ∆d

is the set of rules P σ,θ
ÝÑ P1 such that:

– for all p1 P P1 there exists p P P and a rule p σ,ψ
ÝÑ p1 P ∆,

– θpx,x1q ”
Ź

p1PP1
Ž

p
σ,ψ
ÝÑp1P∆

pPP

ψ^
Ź

p1PQzP1
Ź

p
σ,ϕ
ÝÑp1P∆

pPP

 ϕ .

The main difference with the classical subset construction for Rabin-Scott automata is
that here we consider all sets P1 of states that have a predecessor in P, not just the max-
imal such set. This refined subset construction takes into account not just the alphabet
symbols in Σ, but also the valuations of the variables in x. Observe, moreover, that Ad

can be built for any theory ThpDq that is closed under conjunction and negation. The
following lemma states the main properties of Ad .



Lemma 1. Given a DA A“ xD,Σ,x,Q, ι,F,∆y, (1) for any w P pDxˆΣq
˚ and P PQd ,

Ad has exactly one run on w that starts in P, and (2) LpAq “ LpAdq.

Proof. (1) Let w“ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q be an arbitrary trace and PĎQ be

a state of Ad . We first build a run π“ pP0,ν0q
σ0 ,θ0
ÝÝÝÑ pP1,ν1q . . .

σn´1 ,θn´1
ÝÝÝÝÝÝÑ pPn,νnq of Ad

such that P0 “ P, by induction on n ě 0. If n “ 0, then w “ pν0,˛q and π “ pP0,ν0q is
trivially a run of Ad over w. For the induction step, let ną 0 and suppose that Ad has a
run pP0,ν0q

σ0 ,θ0
ÝÝÝÑ . . .pPn´1,νn´1q such that P0 “ P. We extend this run to a run over w,

by considering:

Pn “

!

p P Q | Dq P Pn´1 . q
σn´1 ,φ
ÝÝÝÑ p P ∆ and pνn´1,νnq |ùThpDq φ

)

θn ”
Ź

p1PPn

Ž

p
σ,ψ
ÝÑp1P∆

pPPn´1

ψ^
Ź

p1PQzPn

Ź

p
σ,ϕ
ÝÑp1P∆

pPPn´1

 ϕ .

It is not hard to see that pνn´1,νnq |ù θn, thus pP0,ν0q
σ0 ,θ0
ÝÝÝÑ . . .

σn ,θn
ÝÝÝÑ pPn,νnq is indeed

a run of Ad over w. To show that π is unique, suppose, by contradiction, that there exists
a different run π1 “ pR0,ν0q

σ0 ,ω0
ÝÝÝÑ pR1,ν1q . . .

σn´1 ,ωn´1
ÝÝÝÝÝÝÑ pRn,νnq such that P0 “ R0 “ P.

Notice that the relation labeling any transition rule Pi
σi ,θi
ÝÝÑ Pi`1 is entirely determined

by the sets Pi and Pi`1, so two runs are different iff they differ in at least one state, i.e.
and Pj ‰ R j, for some j P r1,ns. Let i denote the smallest such j and suppose that there
exists p P Pi such that p R Ri (the symmetrical case p P Ri and p R Pi is left to the reader).
By the definition of ∆d , there exists q P Pi´1 “ Ri´1 such that q

σi´1 ,ψ
ÝÝÝÑ p P ∆. Since

pνi´1,νiq |ù θi´1^ωi´1, we obtain that pνi´1,νiq |ù
Ž

tψ | q
σi´1 ,ψ
ÝÝÝÑ p P ∆, q P Pi´1u

and pνi´1,νiq |ù
Ź

t ψ | q
σi´1 ,ψ
ÝÝÝÑ p P ∆, q P Pi´1u, contradiction. Thus π is the only

run of Ad over w, starting in P.
(2) Let w “ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q be a trace. “Ď” If w P LpAq, then A

has a run pq0,ν0q
σ0 ,φ0
ÝÝÝÑ . . .

σn´1 ,φn´1
ÝÝÝÝÝÝÑ pqn,νnq such that q0 “ ι and qn P F . By point (1),

Ad has a unique run pP0,ν0q
σ0 ,θ0
ÝÝÝÑ . . .

σn´1 ,θn´1
ÝÝÝÝÝÝÑ pPn,νnq over w. We prove that qi P Pi,

by induction on i P r0,ns. For i “ 0, we have P0 “ tιu, by the definition of Ad . For the
induction step, suppose that i P r1,ns and qi´1 P Pi´1. By contradiction, assume that
qi R Pi. Since pνi´1,νiq |ùThpDq θi´1, we obtain pνi´1,νiq |ùThpDq  φi´1, contradiction.
Thus qi P Pi for all i P r0,ns, and qn P Pn, hence PnXF ‰ H. Then Pn P Fd , and w P

LpAdq. “Ě” If w PLpAdq, then Ad has a (unique) run pP0,ν0q
σ0 ,θ0
ÝÝÝÑpP1,ν1q . . .

σn´1 ,θn´1
ÝÝÝÝÝÝÑ

pPn,νnq over w, such that P0 “ tιu and Pn X F ‰ H. Then there exists pn P Pn X F
and, by the definition of Ad , there exists pn´1 P Pn´1 such that pn´1

σn´1 ,ψn´1
ÝÝÝÝÝÝÑ pn P ∆

and pνn´1,νnq |ùThpDq ψn´1. Continuing this argument backwards, we can find a run

pq0,ν0q
σ0 ,ψ0
ÝÝÝÑ . . .

σn´1 ,ψn´1
ÝÝÝÝÝÝÑ pqn,νnq of A over w, such that qi P Pi, for all i P r0,ns. Since

P0 “ tιu and qn P F , we obtain that w P LpAq. [\

The construction of a deterministic DA recognizing the language of A is key to
defining a DA that recognizes the complement of A. Let A“xD,Σ,x,Qd , ιd ,QdzFd ,∆dy.
In other words, A has the same structure as Ad , and the set of final states consists of those
subsets that contain no final state, i.e. tPĎ Q | PXF “Hu. Using Lemma 1, it is not
difficult to show that LpAq “ pDxˆΣq

˚
zLpAq.



Next, we show closure of DA under intersection. Let B “ xD,Σ,x,Q1, ι1,F 1,∆1y be
a DA and define AˆB“ xD,Σ,x,QˆQ1,pι, ι1q,FˆF 1,∆ˆy, where pq,q1q σ,ϕ

ÝÑ pp, p1q P
∆ˆ if and only if q σ,φ

ÝÑ p P ∆, q1 σ,ψ
ÝÑ p1 P ∆1 and ϕ” φ^ψ. It is easy to show that LpAˆ

Bq “ LpAqXLpBq. DA are also closed under union, since LpAqYLpBq “ LpAˆBq.
Let us turn now to the trace inclusion problem. The following lemma shows that

this problem can be effectively reduced to an equivalent language emptiness problem.
However, note that this reduction does not work when the trace inclusion problem is
generalized by removing the condition xB Ď xA. In other words, if the observer uses lo-
cal variables not shared with the network2, i.e. xBzxA ‰H, the generalized trace inclu-
sion problem LpAqÓxAXxB

Ď LpBqÓxAXxB
has a negative answer iff there exists a trace

w“pν0,σ0q, . . . ,pνn,˛q PLpAq such that, for all valuations µ0, . . . ,µn PDxBzxA , we have
w1 “ pν0 ÓxAXxB

Y µ0,σ0q, . . . ,pνn ÓxAXxB
Y µn,˛q R LpBq. This kind of quantifier alter-

nation cannot be easily accommodated within the framework of language emptiness, in
which only one type of (existential) quantifier occurs.

Lemma 2. Given DA A “ xD,Σ,xA,QA, ιA,FA,∆Ay and B “ xD,Σ,xB,QB, ιB,FB,∆By

such that xB Ď xA. Then LpAqÓxB
Ď LpBq if and only if LpAˆBq “H.

Proof. We have LpAqÓxB
Ď LpBq iff LpAq ÓxB

XLpBq “ LpAˆBqÓxB
“H iff LpAˆ

Bq “H. [\

The trace inclusion problem is undecidable, which can be shown by reduction from
the language emptiness problem for DA (take B such that LpBq “ H). However the
above lemma shows that any semi-decision procedure for the language emptiness prob-
lem can also be used to deal with the trace inclusion problem.

4 Abstract, Check, and Refine for Trace Inclusion

This section describes our semi-algorithm for checking the trace inclusion between
a given network A and an observer B. Let Ae denote the expansion of A , defined in
the previous. In the light of Lemma 2, the trace inclusion problem LpAqÓxB

Ď LpBq,
where the set of observable variables xB is included in the set of network variables, can
be reduced to the language emptiness problem LpAeˆBq “H.

Although language emptiness is undecidable for data automata [23], several cost-
effective semi-algorithms and tools [17, 21, 14, 3] have been developped, showing that
it is possible, in many practical cases, to provide a yes/no answer to this problem. How-
ever, to apply one of the existing off-the-shelf tools to our problem, one needs to build
the product automaton AeˆB prior to the analysis. Due to the inherent state explosion
caused by the interleaving semantics of the network as well as by the complementation
of the observer, such a solution would not be efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an over-
approximation of the (possibly infinite) set of reachable configurations of AeˆB. This
over-approximation is defined using the approach of lazy predicate abstraction [17],

2 For timed automata, this is the case since the only shared variable is the time, and the observer
may have local clocks.



combined with counterexample-driven abstraction refinement using interpolants [21].
We store the explored abstract states in a structure called an antichain tree. In general,
antichain-based algorithms [28] store only states which are incomparable w.r.t. a partial
order called subsumption. Our method can be thus seen as an extension of the antichain-
based language inclusion algorithm [1] to infinite state systems by means of predicate
abstraction and interpolation-based refinement. Since the trace inclusion problem is
undecidable in general, termination of our procedure is not guaranteed; in the following,
we shall, however, call our procedure an algorithm for the sake of brevity.

4.1 Antichain Trees

In this section, we define antichain trees, which are the main data structure of the
trace inclusion (semi-)algorithm. Let A “ xA1, . . . ,ANy be a network of automata where
Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy, for all i P r1,Ns, and let B“ xD,Σ,xB,QB, ιB,FB,∆By be an
observer such that xB Ď

ŤN
i“1 xi. We also denote by Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay

the expansion of the network A and by AeˆB“ xD,ΣA ,xA ,Qp, ιp,F p,∆py the product
automaton used for checking language inclusion.

An antichain tree for the network A and the observer B is a tree whose nodes are
labeled by product states (see Fig. 2 for examples). Intuitively, a product state is an
over-approximation of the set of configurations of the product automaton AeˆB that
share the same control state. Formally, a product state for A and B is a tuple s“pq,P,Φq
where(i) pq,Pq is a state of AeˆB with q “ xq1, . . . ,qNy being a state of the network
expansion Ae and P being a set of states of the observer B, and (ii) ΦpxAq P ThpDq
is a formula which defines an over-approximation of the set of valuations of the vari-
ables xA that reach the state pq,Pq in Ae ˆ B. A product state s “ pq,P,Φq is a fi-
nite representation of a possibly infinite set of configurations of Ae ˆB, denoted as
rrsss “ tpq,P,νq | ν |ùThpDq Φu.

To build an over-approximation of the set of reachable states of the product au-
tomaton, we need to compute, for a product state s, an over-approximation of the set of
configurations that can be reached in one step from s. To this end, we define first a finite
abstract domain of product states, based on the notion of predicate map. A predicate
map is a partial function that associates sets of facts about the values of the variables
used in the product automaton, called predicates, with components of a product state,
called substates. The reason behind the distribution of predicates over substates is two-
fold. First, we would like the abstraction to be local, i.e. the predicates needed to define
a certain subtree in the antichain must be associated with the labels of that subtree only.
Second, once a predicate appears in the context of a substate, it should be subsequently
reused whenever that same substate occurs as part of another product state.

Formally, a substate of a state pxq1, . . . ,qNy,Pq PQp of the product automaton Aeˆ

B is a pair pxqi1 , . . . ,qiky,Sq such that (i) xqi1 , . . . ,qiky is a subsequence of xq1, . . . ,qNy,
and (ii) S‰H only if SXP‰H. We denote the substate relation by pxqi1 , . . . ,qiky,Sq Ÿ
pxq1, . . . ,qNy,Pq. The substate relation requires the automata Ai1 , . . . ,Aik of the network
A to be in the control states qi1 , . . . ,qik simultaneously, and the observer B to be in
at least some state of S provided S ‰ H (if S “ H, the state of B is considered to be
irrelevant). Let SxA ,By “ tr | Dq P Qp . r Ÿ qu be the set of substates of a state of AeˆB.



A predicate map Π : SxA ,By Ñ 2ThpDq associates each substate pr,Sq P Qi1 ˆ . . .ˆ

Qik ˆ 2QB with a set of formulae πpxq where (i) x “ xi1 Y . . .Y xik Y xB if S ‰H, and
(ii) x“ xi1Y . . .Yxik if S“H. Notice that a predicate associated with a substate refers
only to the local variables of those network components Ai1 , . . . ,Aik and of the observer
B that occur in the particular substate.

Example 1. The antichain in Fig. 2 (d) uses the predicate map pxq1
1,q

2
1y,tp1uq ÞÑ tv“ 1u,

pxq1
1,q

2
1y,tp2uq ÞÑ t∆ă x,v“ 2u. �

We are now ready to define the abstract semantics of the product automaton AeˆB,
induced by a given predicate map. For convenience, we define first a set Postpsq of
concrete successors of a product state s “ pq,P,Φq such that pr,S,Ψq P Postpsq if and
only if(i) the product automaton AeˆB has a rule pq,Pq σ,θ

ÝÑ pr,Sq P ∆p and ΨpxAq ”
Dx1A . Φpx1Aq^θpx1A ,xAq Û K. The set of concrete successors does not contain states
with empty set of valuations because these states are unreachable in AeˆB.

Given a predicate map Π, the set PostΠpsq of abstract successors of a product state
s is defined as follows: pr,S,Ψ7q P PostΠpsq if and only if (i) there exists a product state
pr,S,Ψq P Postpsq and (ii) Ψ7pxAq ”

Ź

rŸpr,Sq
Ź

tπ PΠprq |ΨÑ πu. In other words,
the set of data valuations that are reachable by an abstract successor is the tightest over-
approximation of the concrete set of reachable valuations, obtained as the conjunction
of the available predicates from the predicate map that over-approximate this set.

Example 2. (contd. from Ex. 1) Consider the antichain from Fig. 2 (d). The concrete
successors of s“ pxq1

1,q
2
1y,tp1u,v“ 1q are pxq1

1,q
2
1y,tp1u,Ψ1q and pxq1

1,q
2
1y,tp2u,Ψ2q:

Ψ1 ” Dv1,x1,∆1 . v1 “ 1^ x“ x1`1^ v“ 1^∆“ ∆1^0ď x1 ă ∆^ v“ v1

Ψ2 ” Dv1,x1,∆1 . v1 “ 1^ x“ x1`1^ v“ 2^∆“ ∆1^∆ď x1 ă 2∆^ v“ v1`1

With predicate map Π from Ex. 1, PostΠpsq“ tpxq1
1,q

2
1y,tp1u,Ψ

7

1q,pxq
1
1,q

2
1y,tp2u,Ψ

7

2qu:

Ψ1 Ñ v“ 1 ñ Ψ
7

1 ” v“ 1
Ψ2 Ñ v“ 2 and Ψ2 Ñ ∆ă x ñ Ψ

7

2 ” v“ 2^∆ă x . �

Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose
nodes are labeled with product states and whose edges are labeled by input symbols and
concrete transition relations. Let N˚ be the set of finite sequences of natural numbers
that denote the positions in the tree. For a tree position p PN˚ and i PN, the position p.i
is a child of p. A set SĎN˚ is said to be prefix-closed if and only if, for each p P S and
each prefix q of p, we have q P S as well. The root of the tree is denoted by the empty
sequence ε.

Formally, an antichain T is a set of pairs xs, py, where s is a product state and
p P N˚ is a tree position, such that(1) for each position p P N˚ there exists at most
one product state s such that xs, py P T , (2) the set tp | xs, py P T u is prefix-closed,
(3) prootxA ,By,εq P T where rootxA ,By “ pxι1, . . . , ιNy,tιBu,Jq is the label of the root,
and (4) for each edge pxs, py,xt, p.iyq in T , there exists a predicate map Π such that t P
PostΠpsq. For the latter condition, if s“ pq,P,Φq and t “ pr,S,Ψq, there exists a unique
rule pq,Pq σ,θ

ÝÑ pr,Sq P ∆p, and we shall sometimes denote the edge as s σ,θ
ÝÑ t or simply

s θ
ÝÑ t when the tree positions are not important.



Each antichain node n “ ps,d1 . . .dkq P T is naturally associated with a path from

the root to itself ρ : n0
σ1 ,θ1
ÝÝÝÑ n1

σ2 ,θ2
ÝÝÝÑ . . .

σ2 ,θk
ÝÝÑ nk. We denote by ρi the node ni for each

i P r0,ks, and by |ρ| “ k the length of the path. The path formula associated with ρ is
Θpρq ”

Źk
i“1 θpxi´1

A ,xi
Aqwhere xi

A “
 

xi | x P xA
(

is a set of indexed variables for each
i P r0,ks.

Example 3. Consider the path ρ : pxq1
0,q

2
0y,tp0u,Jq

init
ÝÑ pxq1

1,q
2
1y,tp1u,v “ 1q

a2
ÝÑ

pxq1
1,q

2
1y,tp2u,∆ă xq

a2
ÝÑ pxq1

1,q
2
1y,H,∆ă xq in the antichain from Fig. 2 (c). The path

formula of ρ is Θpρq ” θ1^θ2^θ3 where:

θ1 ” v1 “ 1^ x1 “ 0^0ă ∆1
θ2 ” v2 “ v1`1^∆2 “ ∆1^ v2 “ 2^ x2 “ x1`1^∆1 ď x1 ă 2∆1^ pv2 “ v1q

θ3 ” v3 “ 2^∆3 “ ∆2^ x3 “ x2`1^∆2 ď x2 ă 2∆2^ pv3 “ v2q . �

4.2 Counterexample-driven Abstraction Refinement

A counterexample is a path from the root of the antichain to a node which is labeled
by an accepting product state. A product state pq,P,Φq is said to be accepting iff pq,Pq
is an accepting state of the product automaton AeˆB, i.e. q P FA and PXFB “ H.
A counterexample is said to be spurious if its path formula is unsatisfiable, i.e. the
path does not correspond to a concrete execution of AeˆB. In this case, we need to
(i) remove the path ρ from the current antichain and (ii) refine the abstract domain in
order to exclude the occurrence of ρ from future state space exploration.

Let ρ : rootxA ,By “ pq0,P0,Φ0q
θ1
ÝÑ pq1,P1,Φ1q

θ2
ÝÑ . . .

θk
ÝÑ pqk,Pk,Φkq be a spurious

counterexample in the following. For efficiency reasons, we would like to save as much
work as possible and remove only the smallest suffix of ρ which caused the spurious-
ness. For some j P r0,ks, let Θ jpρq ” Φ jpx0

Aq^
Źk

i“ j θipx
i´ j
A ,xi´ j`1

A q be the formula
defining all sequences of data valuations that start in the set Φ j and proceed along the
suffix pq j,Pj,Φ jq ÝÑ . . .ÝÑ pqk,Pk,Φkq of ρ. The pivot of a path ρ is the maximal posi-
tion j P r0,ks such that Θ jpρq “ K, and ´1 if ρ is not spurious.

Example 4. (contd. from Ex. 3) The path formula Θpρq ” θ1^ θ2^ θ3 from Ex. 3 is
unsatisfiable, thus ρ is a spurious counterexample. Moreover, we have Θ1pρq ” J^

θ2^ θ3 Ñ K because of the unsatisfiable subformula v2 “ 2^ v3 “ 2^ pv3 “ v2q.
Since Θ2pρq is satisfiable, the pivot of ρ is 1. �

Finally, we describe the refinement of the predicate map, which ensures that a given
spurious counterexample will never be found in a future iteration of the abstract state
space exploration. The refinement is based on the notion of interpolant [21].

Definition 1. Given a formula Φpxq and a sequence xθ1px,x1q, . . . ,θkpx,x1qy of formu-
lae, an interpolant is a sequence of formulae I “ xI0pxq, . . . , Ikpxqy where:(1) ΦÑ I0,
(2) Ik ÑK, and (3) Ii´1pxq^θipx,x1q Ñ Iipx1q for all i P r1,ks.

Any given interpolant is a witness for the unsatisfiability of a (suffix) path formula
Θ jpρq. Dually, if Craig’s Interpolation Lemma [9] holds for the considered first-order
data theory ThpDq, any infeasible path formula is guaranteed to have an interpolant.



Example 5. (contd. from Ex. 4) The path formula Θ1pρq in Ex. 4 has the interpolant
I “ xJ,v“ 2,Ky. �

Given a spurious counterexample ρ with pivot jě 0, an interpolant I“xI0, . . . , Ik´ jy

for the infeasible path formula Θ jpρq can be used to refine the abstract domain by aug-
menting the predicate map Π. As an effect of this refinement, the antichain construction
algorithm will avoid every path with the suffix pq j,Pj,Φ jq ÝÑ . . .ÝÑ pqk,Pk,Φkq in a fu-
ture iteration. If Ii ô C1

i py1q^ . . .^Cmi
i pymiq is a conjunctive normal form (CNF) of

the i-th component of the interpolant, we consider the substate pr`i ,S`i q for each C`
i py`q

where l P r1,mis:
– r`i “ xqi1 , . . . ,qihy where 1 ď i1 ă . . . ă ih ď N is the largest sequence of indices

such that xigXy` ‰H for each g P r1,hs and the set xig of variables of the network
component DA Aig ,

– S`i “ Pj if xBXy` ‰H, and S`i “H, otherwise.

A predicate map Π is said to be compatible with a spurious path ρ : s0
θ1
ÝÑ . . .

θk
ÝÑ sk

with pivot j ě 0 if s j “ pq j,Pj,Φ jq and there is an interpolant I “ xI0, . . . , Ik´ jy of the
suffix xθ1, . . . ,θky wrt. Φ j such that, for each clause C of some equivalent CNF of Ii,
i P r0,k´ js, it holds that C P Πprq for some substate r Ÿ si` j. The following lemma
proves that, under a predicate map compatible with a spurious path ρ, the antichain
construction will exclude further paths that share the suffix of ρ starting with its pivot.

Lemma 3. Let ρ : pq0,P0,Φ0q
θ0
ÝÑ pq1,P1,Φ1q

θ1
ÝÑ . . .

θk´1
ÝÝÑ pqk,Pk,Φkq be a spurious

counterexample and Π be a predicate map compatible with ρ. Then, there is no se-
quence of product states pq j,Pj,Ψ0q, . . . ,pqk,Pk,Ψk´ jq such that:(1) Ψ0 Ñ Φ j and
(2) pqi`1,Pi`1,Ψi´ j`1q P PostΠppqi,Pi,Ψi´ jqq for all i P r j,k´1s.

Proof. Let j P r0,ks be the pivot of ρ. Since ρ is spurious, there exists an interpolant
I “ xI0, . . . , Ik´ jy for Φ j and xθ j, . . . ,θky. It is sufficient to prove that Ψi Ñ Ii for all
i P r0,k´ js. Since Ik´ j “K, we obtain Ψk´ j “K, and consequently pqk´ j,Pk´ j,Kq P
PostΠppqk´ j´1,Pk´ j´1,Ψk´ j´1qq. By the definition of PostΠ, we have pqk´ j,Pk´ j,Kq P
Postppqk´ j´1,Pk´ j´1,Ψk´ j´1qq, which contradicts with the definition of Post. We show
that Ψi Ñ Ii for all i P r0,k´ js, by induction on k´ j. For the base case k´ j “ 0, we
have Ψ0 ÑΦ j Ñ I0. For the induction step, we assume Ψi Ñ Ii for all i P r0,k´ j´1s
and prove Ψk´ j Ñ Ik´ j. By the induction hypothesis, we have:

Ψk´ j´1pxAq Ñ Ik´ j´1pxAq
Ψk´ j´1pxAq^θk´ j´1pxA ,x1Aq Ñ Ik´ j´1pxAq^θk´ j´1pxA ,x1Aq Ñ Ik´ jpx1Aq .

Let C1^ . . .^C` be the CNF of Ik´ j. Since Π is compatible with ρ, for each clause Ci,
there exists a substate r Ÿ pqk,Pkq such that Ci P Πprq. By the definition of PostΠ, we
obtain that Ψk´ j ÑCi for each i P r1, `s, hence Ψk´ j Ñ Ik´ j. [\

Observe that the refinement induced by interpolation is local since Π associates
sets of predicates with substates of the states in AeˆB, and the update impacts only the
states occurring within the suffix of that particular spurious counterexample.



4.3 Subsumption

The main optimization of antichain-based algorithms [1] for checking language inclu-
sion of automata over finite alphabets is that product states that are subsets of already
visited states are never stored in the antichain. On the other hand, language empti-
ness semi-algorithms, based on predicate abstraction [21] use a similar notion to cover
newly generated abstract successor states by those that were visited sooner and that rep-
resent larger sets of configurations. In this case, state coverage does not only increase
efficiency but also ensures termination of the semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain algo-
rithms with the notion of coverage from predicate abstraction, and we define a more
general notion of subsumption for data automata. Given a state pq,Pq of the product
automaton AeˆB and a valuation ν P DxA , the residual language Lpq,P,νqpAeˆBq is
the set of traces w accepted by Ae ˆ B from the state pq,Pq such that ν is the first
valuation which occurs on w. This notion is then lifted to product states as follows:
LspAeˆBq “

Ť

pq,P,νqPrrsssLpq,P,νqpAeˆBq where rrsss is the set of configurations of the
product automaton AeˆB represented by the given product state s.

Definition 2. Given a DAN A and a DA B, a partial order Ď is a subsumption provided
that, for any two product states s and t, we have s Ď t only if LspAeˆBq Ď LtpAeˆBq.

A procedure for checking the emptiness of AeˆB needs not continue the search
from a product state s if it has already visited a product state t that subsumes s. The in-
tuition is that any counterexample discovered from s can also be discovered from t. The
trace inclusion semi-algorithm described below in Section 4.4 works, in principle, with
any given subsumption relation. In practice, our implementation uses the subsumption
relation defined by the lemma below:

Lemma 4. The relation defined s.t. pq,P,ΦqĎimg pr,S,Ψqô q“ r, PĚ S, and ΦÑΨ

is a subsumption.

Proof. For any valuation ν PDxA , we have Lpq,P,νqpAeˆBq “ Lpq,νqpAeqXLpP,νqpBq.
Since PĚ S, we have LpP,νqpBq Ě LpS,νqpBq, thus LpP,νqpBq Ď LpS,νqpBq. We obtain that
Lpq,P,νqpAeˆBq Ď Lpr,νqpAeqXLpS,νqpBq “ Lpr,S,νqpAeˆBq. Since moreover ΦÑΨ,
we have that Lpq,P,ΦqpAeˆBq Ď Lpr,S,ΦqpAeˆBq Ď Lpr,S,ΨqpAeˆBq. [\

Example 6. In the antichain from Fig. 2 (d), pxq1
1,q

2
1y,tp1u,v“ 1qĎimg pxq1

1,q
2
1y,tp1u,

v“ 1q because xq1
1,q

2
1y “ xq

1
1,q

2
1y, tp1u Ě tp1u, and v“ 1Ñ v“ 1. �

As a remark, the language inclusion algorithm for non-deterministic automata on
finite alphabets [1] uses also a more sophisticated subsumption relation based on a pre-
computed simulation [22] between the states of the automata. We have defined a similar
notion of simulation for data automata and an algorithm for computing such simulations
[20]. The integration of data simulations within the framework of antichain-based ab-
straction refinement and its practical assessment are considered as future work.



Algorithm 1 Trace Inclusion Semi-algorithm
input:

1. a DAN A “ xA1, . . . ,ANy such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns,
2. a DA B“ xD,Σ,xB,QB, ιB,FB,∆By such that xB Ď

ŤN
i“1 xi .

output: true if LpAqÓxB
Ď LpBq, otherwise a trace τ P LpAqÓxB

zLpBq .

1: ΠÐH, VisitedÐH, NextÐxrootxA ,By,εy, SubsumeÐH

2: while Next‰H do
3: chose curr P Next and move curr from Next to Visited
4: match curr with xs, py
5: if s is an accepting product state then
6: let ρ be the path from the root to curr and k be the pivot of ρ

7: if kě 0 then
8: ΠÐ REFINEPREDICATEMAPBYINTERPOLATIONpΠ,ρ,kq
9: remÐ SUBTREEpρkq

10: for pn,mq P Subsume such that m P rem do
11: move n from Visited to Next
12: remove rem from pVisited,Next,Subsumeq
13: add ρk to Next
14: else
15: return EXTRACTCOUNTEREXAMPLEpρq

16: else
17: iÐ 0
18: for t P PostΠpsq do
19: if there exists m“ xt1, p1y P Visited such that t Ď t1 then
20: add pcurr,mq to Subsume
21: else
22: remÐtn P Next | n“ xt1, p1y and t1 < tu
23: succÐxt, p.iy
24: iÐ i`1
25: for n P Visited such that n has a successor m P rem do
26: add pn,succq to Subsume

27: for pn,mq P Subsume such that m P rem do
28: add pn,succq to Subsume

29: remove rem from pVisited,Next,Subsumeq
30: add succ to Next

4.4 The Trace Inclusion Semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking trace
inclusion. It uses a classical worklist iteration loop (lines 2-30) that builds an antichain
tree by simultaneously unfolding the expansion Ae of the network A and the comple-
ment B of the the observer B, while searching for a counterexample trace w PLpAeˆBq.
Both Ae and B are built on-the-fly, during the abstract state space exploration.

The processed antichain nodes are kept in the set Visited, and their abstract suc-
cessors, not yet processed, are kept in the set Next. Initially, Visited“H and Next“
 

rootA ,B
(

. The algorithm uses a predicate map Π, which is initially empty (line 1).
We keep a set of subsumption edges Subsume Ď Visitedˆ pVisitedYNextq

with the following meaning: pxs, py,xt,qyq P Subsume for two antichain nodes, where
s, t are product states and p,q P N˚ are tree positions, if and only if there exists an
abstract successor s1 P PostΠpsq such that s1 Ď t (Definition 2). Observe that we do not
explicitly store a subsumed successor of a product state s from the antichain; instead, we
add a subsumption edge between the node labeled with s and the node that subsumes
that particular successor. The algorithm terminates when each abstract successors of
a node from Next is subsumed by some node from Visited.



An iteration of Algorithm 1 starts by chosing a current antichain node curr“ xs, py
from Next and moving it to Visited (line 3). If the product state s is accepting (line 5)
we check the counterexample path ρ, from the root of the antichain to curr, for spuri-
ousness, by computing its pivot k. If kě 0, then ρ is a spurious counterexample (line 7),
and the path formula of the suffix of ρ, which starts with position k, is infeasible. In this
case, we compute an interpolant for the suffix and refine the current predicate map Π by
adding the predicates from the interpolant to the corresponding substates of the product
states from the suffix (line 8).

The computation of the interpolant and the update of the predicate map are done
by the REFINEPREDICATEMAPBYINTERPOLATION function using the approach de-
scribed in Section 4.2. Subsequently, we remove (line 12) from the current antichain the
subtree rooted at the pivot node ρk, i.e. the k-th node on the path ρ (line 9), and add ρk
to Next in order to trigger a recomputation of this subtree with the new predicate map.
Moreover, all nodes with a successor previously subsumed by a node in the removed
subtree are moved from Visited back to Next in order to reprocess them (line 11).

On the other hand, if the counterexample ρ is found to be real (k “ ´1), any valu-
ation ν P

Ť|ρ|

i“0 Dxi
A that satisfies the path formula Θpρq yields a counterexample trace

w P LpAq ÓxB
zLpBq, obtained by ignoring all variables from xAzxB (line 15).

If the current node is not accepting, we generate its abstract successors (line 18). In
order to keep in the antichain only nodes that are incomparable w.r.t. the subsumption
relation Ď, we add a successor t of s to Next (lines 23 and 30) only if it is not subsumed
by another product state from a node m P Visited. Otherwise, we add a subsumption
edge pcurr,mq to the set Subsume (line 20). Furthermore, if t is not subsumed by
another state in Visited, we remove from Next all nodes xt 1, p1y such that t strictly
subsumes t 1 (lines 22 and 29) and add subsumption edges to the node storing t from all
nodes with a removed successor (line 26) or a removed subsumption edge (line 28).

The following theorem states the soundness of our trace inclusion semi-algorithm.
The theorem is proved in the appendix together with the other results presented above.

Theorem 1. Let A “ xA1, . . . ,ANy be a DAN such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for
all i P r1,Ns, and let B “ xD,Σ,xB,QB, ιB,FB,∆By be a DA such that xB Ď

ŤN
i“1 xi. If

Algorithm 1 terminates and returns true on input A and B, then LpAqÓxB
Ď LpBq.

The dual question “if there exists a counterexample trace w P LpAq ÓxB
zLpBq, will

Algorithm 1 discover it?” can also be answered positively, using an implementation
that enumerates the abstract paths in a systematic way, e.g. by using a breadth-first path
exploration. This can be done using a queue to implement the Next set in Algorithm 1.

4.5 Proof of Theorem 1

Given a network A “ xA1, . . . ,ANy where Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns
and an observer B“xD,Σ,xB,QB, ιB,FB,∆By, we recall that a configuration of the prod-
uct automaton AeˆB is a tuple pxq1, . . . ,qNy,P,νq P Q1ˆ . . .ˆQN ˆ 2QB ˆDxA , and
a node of the antichain T is a pair xs, py where s is a product state for A and B and
p P N˚ is a tree position. Moreover, rootxA ,By “ pxι1, . . . , ιNy,tιBu,Jq is the product
state that labels the root of T . In the following, let Γ “ pΠ,Visited,Next,Subsumeq



be an antichain state where Π is the predicate map, and Visited, Next, and Subsume

are the sets of antichain nodes handled by Algorithm 1.
We say that Γ is a closed antichain state if and only if, for all nodes xs, py P Visited

and every successor pq,P,νq P succAeˆBprrsssq of a configuration of the product automa-
ton AeˆB represented by the product state s, there exists a node xt,ry P VisitedY
Next such that Lpq,P,νqpAeˆBq Ď LtpAeˆBq and one of the following holds:

– r“ p.i for some i PN, i.e. xt,ry is a child of xs, py in the antichain T “ VisitedY

Next, or
– pxs, py,xt,ryq P Subsume.

In other words, the current antichain T , defined as the union of the sets Visited and
Next, is in a closed state, if the residual language of every successor of a configuration
of the product automaton Ae ˆ B that is covered by a visited product state must be
included in the residual language of a product state stored in the antichain, either as a
direct successor in the tree or via a subsumption edge.

For a product state s, we define Distpsq “min
 

|w| | w P LspAeˆBq
(

, and Distpsq “
8 if and only if LspAeˆBq “ H. For a finite non-empty set of antichain nodes S, we
define DistpSq “mintDistpsq | xs, py P Su with DistpHq “8.

Lemma 5. Given a network A and an observer B, for any product state s of A and B,
we have succAeˆBprrsssq “

Ť

tPPostpsq rrtss.

Proof. Let s“ pq,P,Φq. “Ď” Let pr,S,µq P succAeˆBprrsssq be a configuration of AeˆB

for which there exists pq,P,νq P rrsss such that pq,P,νq σ,θ
ÝÑ pr,S,µq. Then there exists

a unique rule pq,Pq σ,θ
ÝÑ pr,Sq P ∆p such that pν,µq |ùThpDq θ. Moreover, if pq,P,νq P

rrsss, we have ν |ùThpDq Φ. Let t “ pr,S,Ψq P Postpsq where ΨpxAq ” Dx1A . Φpx1Aq^
θpx1A ,xAq. We have µ |ùThpDq Ψ, hence pr,S,µq P rrtss. “Ě” Let pr,S,µq P rrtss for some
t P Postpsq. Then we have t “ pr,S,Ψq where ΨpxAq ” Dx1A . Φpx1Aq^θpx1A ,xAq. Since

µ |ùThpDq Ψ, there exists ν |ùThpDq Φ such that pq,P,νq σ,θ
ÝÑ pr,S,µq. Hence pq,P,νq P rrsss,

thus pr,S,µq P succAeˆBprrsssq. [\

Lemma 6. Given a network A , an observer B, and a predicate map Π, for any product
state s of AeˆB and any product state t P Postpsq there exists t 1 P PostΠpsq such that
rrtss Ď rrt 1ss.

Proof. Let t “ pr,S,Ψq P Postpsq. By the definition of PostΠ, we have t 1 “ pr,S,Ψ7q P
PostΠpsq, where ΨÑΨ7, thus rrtss Ď rrt 1ss. [\

Lemma 7. Given a network A , an observer B, and a predicate map Π, for each product
state s and each configuration pq,P,νq P succAeˆBprrsssq there exists a product state
t P PostΠpsq such that pq,P,νq P rrtss.

Proof. We use the fact that succAeˆBprrsssq “
Ť

tPPostpsq rrtss (Lemma 5) and that for
each t P Postpsq there exists t 1 P PostΠpsq such that rrtss Ď rrt 1ss (Lemma 6). [\

The proof of soundness of Algorithm 1 relies on the inductive invariants (Inv1) and
(Inv2) from the following lemma.



Lemma 8. The following invariants hold each time line 2 is reached in Algorithm 1:
– (Inv1) Γ“ pΠ,Visited,Next,Subsumeq is closed,
– (Inv2) DistprootxA ,Byq ă 8ñ DistpVisitedq ą DistpNextq.

Proof. Initially, when coming to line 2 for the first time, we have Visited “H, thus
DistpVisitedq “ 8, and both invariants hold trivially. For the case when coming to
line 2 after executing the loop body, we denote by:

Γold “ pΠold,Visitedold,Nextold,Subsumeoldq

Γnew “ pΠnew,Visitednew,Nextnew,Subsumenewq

the antichain states before and after the execution of the main loop. We assume that
both invariants hold for Γold.

(Inv1) Let xs, py P Visitednew and pq,P,νq P succAeˆBprrsssq. We distinguish two cases
according to the control path taken inside the main loop:
(1) If the test on line 5 is positive, the predicate map is augmented, i.e. Πnew Ě Πold

(line 8). Let Γ1 “ pΠnew,Visitedold,Nextold,Subsumeoldq be the next antichain
state. Clearly Γ1 is closed provided that Γold is. Next, let npivot P Visitedold be the
pivot of the path to the current node (line 6) and define the following sets of nodes:

T “ SUBTREEpnpivotq

S “ tn P Visitedold | Dm P T . pn,mq P Subsumeoldu

Then we obtain (lines 10–13):

Visitednew “ VisitedoldzpSYT q
Nextnew “ ppNextoldYSqzT qYtnpivotu

VisitednewYNextnew “ ppVisitedoldYNextoldqzT qYtnpivotu

Since Γ1 is closed, there exists a node xt,ry P Visitedold Y Nextold such that
Lpq,P,νqpAeˆBq Ď LtpAeˆBq and either r “ p.i for some i P N or pxs, py,xt,ryq P
Subsumeold. We distinguish two cases:
(a) xt,ry R T . Then xt,ry P Visitednew Y Nextnew and, because Subsumenew “

Subsumeold XpVisitednewˆpVisitednewY Nextnewqq, we obtain that Γnew
is closed as well.

(b) xt,ry P T . Then we distinguish two further cases:
(i) If r“ p.i for some i PN, since we have assumed that xs, py P Visitednew,

we have xs, py R T . The only possibility is then xt,ry “ npivot and xs, py is
the parent of npivot. In this case, we have xt,ry P Nextnew.

(ii) If pxs, py,xt,ryq P Subsumeold, then xs, py P S, which contradicts the as-
sumption xs, py P Visitednew.

(2) Otherwise, the test on line 5 is negative, in which case we have Πnew “ Πold and
Visitednew “ VisitedoldYtcurru. For each pq,P,νq P succAeˆBprrsssq there ex-
ists t P PostΠpsq such that Lpq,P,νqpAeˆBq Ď LtpAeˆBq (by Lemma 7). We distin-
guish two cases:
(a) xs, py “ curr. In this case, either(i) there is xt 1, p1y P Visitedold such that

t Ď t 1, and then we also have Lpq,P,νqpAeˆBq Ď Lt1pAeˆBq (Definition 2) and



pxs, py,xt 1, p1yq P Subsumenew (added on line 20), or (ii) pt, p.iq P Nextnew for
some i P N (added on lines 23 and 30).

(b) Otherwise xs, py P Visitedold. As Γ1 is closed, there is xu,ry P VisitedoldY

Nextold such that Lpq,P,νqpAeˆBq Ď LupAeˆBq and either r “ p.i for some
i P N or pxs, py,xu,ryq P Subsumeold. We distinguish two sub-cases:

(i) xu,ry P rem (line 22). Then LupAe ˆ Bq Ď LtpAe ˆ Bq (Definition 2),
hence Lpq,P,νqpAe ˆ Bq Ď LtpAe ˆ Bq. If r “ p.i, then pxs, py,xt,r1yq P
Subsumenew for some r1 P N˚ (added on line 26). Else, if pxs, py,xu,ryq P
Subsumeold, we have pxs, py,xt,r1yq P Subsumenew for some r1 PN˚ (added
on line 28). In both cases, we obtain that Γnew is closed.

(ii) xu,ry R rem. Then xu,ry P VisitednewY Nextnew. Since Subsumenew “

Subsumeold XpVisitednewˆpVisitednewY Nextnewqq, we obtain that
Γnew is closed.

(Inv2) We distinguish two cases:
1. If DistpVisitednewq“8, it is sufficient to show that DistpNextnewqă8. Suppose,

by contradiction, that DistpNextnewq “ 8, hence DistpVisitednewY Nextnewq “

8, and since rootxA ,By P VisitednewY Nextnew, we obtain DistprootxA ,Byq “ 8,
contradiction.

2. Otherwise, DistpVisitednewq ă 8 and there exists a node xs, py P Visitednew
such that DistpVisitednewq “Distpsq ă8. Let w“ pν0,σ0q,pν1,σ1q, . . . ,pνn,˛q P
LspAe ˆ Bq be a trace such that DistpVisitednewq “ n. Then there exists a run
pq0,P0,ν0q

σ0
ÝÑ pq1,P1,ν1q

σ1
ÝÑ . . .

σn´1
ÝÝÝÑ pqn,Pn,νnq of Ae ˆ B over w such that

pq0,P0,ν0q P rrsss and pqn,Pnq a final state of AeˆB. Since Γnew is closed due to
(Inv1) and pq1,P1,ν1q P succAeˆBprrsssq, there exists a node xs1, p1y P VisitednewY

Nextnew such that Lpq1,P1,ν1qpA
eˆBq Ď Ls1pAeˆBq. If xs1, p1y P Nextnew, we ob-

tain that DistpNextnewqď n´1, and we are done. Otherwise, xs1, p1y P Visitednew,
and we can repeat the same argument inductively, to discover a sequence of nodes
xs1, p1y, . . . ,xsn, pny P Visitednew such that Lpqi,Pi,νiqpAeˆBq Ď LsnpAeˆBq for
all i P r1,ns. Since pqn,Pnq is a final state of AeˆB, we have pνn,˛q PLpqi,Pi,νiqpAeˆ

Bq, thus pνn,˛q P LsnpAeˆBq, and sn is an accepting product state. But this contra-
dicts with the fact that accepting product states are never stored in the antichain.

[\

Back to the proof of Theorem 1:

Proof. If Algorithm 1 terminates and reports true, this is because Next “ H, hence
DistpNextq “8. By Lemma 8 (Inv2), we obtain that DistprootxA ,Byq “8. Suppose, by
contradiction, that LpAqÓxB

Ę LpBq. By Lemma 2, there exists a trace

w“ pν0,σ0qpν1,σ1q . . .pνn,˛q P LpAeˆBq .

Thus we have a run of AeˆB over w:

pq0,P0,ν0q
σ0
ÝÑ pq1,P1,ν1q

σ1
ÝÑ . . .

σn´1
ÝÝÝÑ pqn,Pn,νnq



where q0“xι1, . . . , ιNy, P0“tιBu, qn is final in Ae, PnXFB“H. But, since pq0,P0,ν0q P

rrrootxA ,Byss, we have w P LrootxA ,BypA
eˆBq. Hence, DistprootxA ,Byq ď n, which is in

contradiction with the fact that DistprootxA ,Byq “ 8. Consequently, it must be the case
that LpAqÓxB

Ď LpBq. [\

5 Computing Simulations of Data Automata

In the case of classical Rabin-Scott finite automata over finite alphabets, a simulation
[22] is a relation on the states of an automaton, which is invariant with respect to the
transition relation of the automaton. The simulation-based approach for checking lan-
guage inclusion between two automata A and B first computes a simulation relation
on the union of the states of A and B, then checks whether the pair of initial states is
a member of the simulation relation. This method is not complete because there exist
automata, such that LpAq Ď LpBq, but the initial state of A is not simulated by the ini-
tial state of B. A pre-computed simulation relation can be used however to speed up
the convergence of the antichain-based method, by weakening the subsumption relation
used by the antichain construction algorithm [1].

In this section, we define a notion of simulation between data automata and give
an algorithm that computes useful under-approximations of the weakest simulation on
a data automaton. The simulation relation can be used to enhance the convergence of
Algorithm 1, similar to the way in which classical simulations are integrated with the
antichain-based language inclusion algorithm for automata over finite alphabets [1].

Definition 3. A relation RĎQˆDxˆQ is a data simulation for a DA A“xΣ,D,x,Q, ι,F,∆y
if and only if, for all pq,ν,q1q P R the following hold:
1. q P F only if q1 P F, and
2. for all σ P Σ and all pr,ν1q P QˆDx such that pq,νq σ

ÝÑ A pr,ν1q there exists r1 P Q
such that pq1,νq σ

ÝÑ A pr1,ν1q and pr,ν1,r1q P R.

Observe that, while a classical simulation is a binary relation on states, a data simulation
is a ternary relation involving also a valuation of the variables. The following lemma
shows that a data simulation preserves residual languages.

Lemma 9. Given a DA A“ xΣ,D,x,Q, ι,F,∆y and RĎ QˆDxˆQ a data simulation
for A, for any tuple pq,ν,q1q P R we have Lpq,νqpAq Ď Lpq1,νqpAq.

Proof. Let pq,νq “ pq0,ν0q
σ0
ÝÑ . . .

σn´1
ÝÝÝÑ pqn,νnq be a run of A such that qn P F . By

induction on ně 0 we find a run pq1,νq “ pq10,ν0q
σ0
ÝÑ . . .

σn´1
ÝÝÝÑ pq1n,νnq of A, such that

pqi,νi,q1iq P R, for all i P r0,ns. Moreover, since qn P F , we also obtain q1n. [\

Let A“ xΣ,D,x,Q, ι,F,∆y, where Q“ tq1, . . . ,qku, for some ką 0, be a DA for the
rest of this section. The data simulation algorithm (Algorithm 2) given in this section
manipulates sets of valuations from Dx that are definable by first-order formulae in
ThpDq. A relation R Ď QˆDxˆQ is said to be definable if and only if there exists a
matrix Φ “ rφi js

k
i, j“1 of formulae φi jpxq P ThpDq such that pqi,ν,q jq P R ô ν |ù φi j.

For ` P r1,ks, we denote by Φ` the `-th row of the matrix Φ.



Algorithm 2 is a refinement algorithm which handles two matrices of formulae that
define the relations Sim,PrevSimĎQˆDxˆQ. In the following we shall use the same
names to denote the relations and their matrix representations. Intuitively, PrevSim is
the previous candidate for simulation, whereas Sim is a entry-wise stronger relation,
that refines PrevSim. The refinement step is performed backwards, with respect to each
transition rule qi

σ,φ
ÝÑ q` of the automaton. Namely, for each pair of valuations such that

pν,ν1q |ùThpDq φ and pq`,ν1,qmq PPrevSim for some state qm, we add the tuple pqi,ν,q jq P

Sim for all predecessors q j of qm, such that q j
σ,ψ
ÝÑ qm and pν,ν1q |ùThpDq ψ. This update

guarantees that, for every transition pqi,νq
σ
ÝÑ Apq`,ν1q, where pqi,ν,q jq P Sim there

exists a state qm such that pq j,νq
σ
ÝÑ Apqm,ν

1q and pq`,ν1,qmq P PrevSim. The algorithm
stops when Sim and PrevSim define the same relation, which is, moreover, a simulation.

To define the update, we use the following function:

PreSimσpi, j, `,Rq ” @x1 . φpx,x1q Ñ
ł

q j
σ,ψ
ÝÑqm

ψpx,x1q^R`mpx1q, where q σ,φ
ÝÑ q1 P ∆ .

We define also the sets postσpqq“
!

q1 | q σ,φ
ÝÑ q1 P ∆

)

and preσpqq“
!

q1 | q1 σ,φ
ÝÑ q P ∆

)

.
With this notation, Algorithm 2 describes the procedure that computes a data simulation
for a given data automaton.

Initially, the matrix PrevSim is true everywhere (line 3). The current simulation
candidate Sim is initialized to false for all i, j P r1,ks such that qi P F and q j R F (line
7). Observe that, in this case q j cannot simulate qi, by Definition 3 (1). Otherwise,
we initialize Simi j to the strongest pre-simulation with respect to PrevSim (line 9). In
the iterative loop (lines 10–20) the algorithm choses a state q` for which the current
simulation candidate Sim` is not equivalent to the previous one PrevSim` (line 10) and
sharpens the set Simi j, with respect to the transition rule qi

σ,φ
ÝÑ q`, for all input symbols

σ P Σ and all peer states q j, j P r1,ks (line 14). The following invariants are key to
proving the correctness of Algorithm 2.

Lemma 10. The following invariants hold each time Algorithm 2 reaches line 10:
– (SimInv1) @i, j P r1,ks : Simi j Ñ PrevSimi j .

– (SimInv2) @σ PΣ @i, j, ` P r1,ks @ν,ν1 PDx : ν |ùThpDq Simi j and pqi,νq
σ
ÝÑpq`,ν1q ñ

Dm P r1,ks : pq j,νq
σ
ÝÑ pqm,ν

1q and ν1 |ùThpDq PrevSim`m .

Proof. Let Sim1 and PrevSim1 denote the global matrices after one iteration of the loop
on lines 10–20.

(SimInv1) When line 10 is reached for the first time, PrevSimi j “ J, for all i, j P r1,ks,
thus SimInv1 holds initially. Since Sim is modified only at lines 14 or 17, we have
Simi j Ñ Sim1i j, for all i, j P r1,ks. Moreover, either PrevSim1i j “ Simi j, or PrevSim1i j “

PrevSimi j, for all i, j P r1,ks (line 20). Thus PrevSim1i j Ñ Simi j Ñ Sim1i j, for all i, j P
r1,ks, by an application of the induction hypothesis.

(SimInv2) We show that this invariant holds the first time the control reaches line 10. Let
σ P Σ, i, j, ` P r1,ks and ν,ν1 PDx such that ν |ùThpDq Simi j and pqi,νq

σ
ÝÑ pq`,ν1q. Since



Algorithm 2 Data Simulation Algorithm
input: a data automaton A“ xΣ,D,x,Q, ι,F,∆y, where Q“ tq1, . . . ,qku and a constant K ą 0
output: a data simulation RĎ QˆDxˆQ for A
global vars rSimi js

k
i, j“1, rPrevSimi js

k
i, j“1, rCnti js

k
i, j“1

1: for i“ 1, . . . ,k do
2: for j “ 1, . . . ,k do
3: PrevSimi j ÐJ

4: Cnti j Ð K

5: for j “ 1, . . . ,k do
6: if qi P F and q j R F then
7: Simi j ÐK

8: else
9: Simi j Ð

Ź

σPΣ

Ź

q`Ppostσpqiq
PreSimσpi, j, `,PrevSimq

10: for all ` P r1,ks such that Sim` ­ô PrevSim` do
11: for σ P Σ do
12: for qi P preσpq`q do
13: for j “ 1, . . . ,k do
14: Simi j Ð Simi j^PreSimσpi, j, `,Simq

15: for all j “ 1, . . . ,k such that Sim` j ­ô PrevSim` j do
16: if Cnt` j “ 0 then
17: Sim` j ÐK

18: else
19: Cnt` j Ð Cnt` j´1

20: PrevSim`Ð Sim`

21: return Sim

ν |ùThpDq Simi j (thus Simi j ‰K) and q` P postσpqiqwe have that ν |ùThpDq PreSimσpi, j, `,PrevSimq,

where qi
σ,φ
ÝÑ q` P ∆. Since pqi,νq

σ
ÝÑ pq`,ν1q we obtain that pν,ν1q |ùThpDq φpx,x1q, and

consequently pν,ν1q |ùThpDq ψpx,x1q ^ PrevSim`mpx1q, for some m P r1,ks, such that
q j

σ,ψ
ÝÑ qm P ∆. Hence SimInv2 holds when the control first reaches line 10.
For the induction step, let us assume that SimInv2 holds at line 10 and we prove that

it holds also after executing line 20. Let σ P Σ, i, j, ` P r1,ks and ν,ν1 P Dx such that
ν |ùThpDq Sim1i j and pqi,νq

σ
ÝÑ pq`,ν1q. We distinguish two cases:

1. if Sim` ­ô PrevSim` on line 10, since qi P preσpq`q, then Sim1i j was updated at line
14. Since ν |ùThpDq Sim1i j, we obtain ν |ùThpDq PreSimσpqi,q j,q`,Simq. Moreover,
PrevSim1` is updated to Sim1` at line 20, hence ν |ùThpDq PreSimσpqi,q j,q`,PrevSim1q
as well. Since pqi,νq

σ
ÝÑpq`,ν1q, we obtain that pν,ν1q |ùThpDq ψpx,x1q^PrevSim1`mpx1q,

for some m P r1,ks such that q j
σ,ψ
ÝÑ qm P∆, thus pν,ν1q |ùThpDq ψpx,x1q and ν1 |ùThpDq

PrevSim1`m. Thus SimInv2 holds for Sim1 and PrevSim1.
2. else Sim`ô PrevSim` on line 10, PrevSim1`ô PrevSim` because the update on line

20 is skipped, and for all qi P preσpq`q and all j P r1,ks, we have Sim1i j ô Simi j.
Then SimInv2 holds for Sim1 and PrevSim1 because it holds for Sim and PrevSim,
by the induction hypothesis.

[\



The algorithm iterates the loop on lines (10–20) until Sim and PrevSim define the
same relation. Since, in general the data constraints Simi j, at each iteration step, might
form an infinitely decreasing sequence, we use the matrix Cnt of integer counters, ini-
tially set to some input value K ą 0 (line 4). Observe that each entry Cnti j decreases
every time Simi j ­ô PrevSimi j (line 19). When the counter Cnti j reaches zero, we set
Simi j to false (line 17), which guarantees that Simi j ô PrevSimi j always in the future.
Since the number of entries in the counter matrix is finite, the algorithm is guaranteed
to terminate. The following theorem summarizes the main result of this section.

Theorem 2. Let A“ xΣ,D,x,Q, ι,F,∆y be a DA. Then Algorithm 2 terminates on input
A and the output is a data simulation RĎ QˆDxˆQ for A.

Proof. Let Simn and PrevSimn denote the matrices Sim and PrevSim at the n-th itera-
tion of the loop on lines 10–20, for n ě 0. Algorithm 2 terminates whenever Simn

i j ô

PrevSimn
i j, for all i, j P r1,ks (line 10). Suppose, by contradiction, that this never hap-

pens, thus there exist i, j P r1,ks such that Simn
i j ­ôPrevSimn

i j, for all ně 0. Then CntK
i j “

0 (line 19) and SimK`1
i j “ PrevSimK`2

i j “K (lines 17 and 20). Since Simn
i j Ñ PrevSimn

i j,
by Lemma 10 (SimInv1), we obtain that SimK`2

i j “ PrevSimK`2
i j , contradiction.

To prove that the output of Algorithm 2 is a data simulation for A, we use Lemma
10 (SimInv2) and the fact that, upon termination, we have Simi j ô PrevSimi j, for all
i, j P r1,ks. [\

5.1 Simulation and Subsumption

Finally, we explain how a data simulation relation computed by Algorithm 2 can be
used to optimize the trace inclusion semi-algorithm. Let A “ xA1, . . . ,ANy be DAN,
where Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy, for all i P r1,Ns, and B “ xD,Σ,xB,QB, ιB,FB,∆By

be an observer DA such that xB Ď
ŤN

i“1 xi.
The main problem in using data simulation to enhance the convergence of our trace

inclusion semi-algorithm is related to the fact that simulation relations are, in general,
not compositional w.r.t. the interleaving semantics of the network. In other words, if we
have N data simulations Ri Ď QiˆDxi ˆQi, then their cross-product RĎ QA ˆDxA ˆ

QA defined as:

@q1,r1 PQ1 . . .@qN ,rN PQN@ν PDxA : pxq1, . . . ,qNy,ν,xr1, . . . ,rNyq PRôpqi,νÓxi
,riq PRi

is not necessarily a simulation on the network expansion Ae. The reason for this can be
seen for N “ 2. Let σ1,σ2 P ΣA , such that σ1 R Σ2 and σ2 R Σ1. The execution of Ae on
the sequence of input symbols σ1σ2 is pxq1,q2y,νq

σ1
ÝÑ pxq11,q2y,ν

1q
σ2
ÝÑ pxq11,q

1
2y,ν

2q.
Suppose that pqi,νÓxi

,riq PRi, i“ 1,2. Then there exists r11 PQ1 such that pxr1,r2y,νq
σ1
ÝÑ

pxr11,r2y,ν
1q and pq11,ν

1Óx1
,r11q P R1. In order to use the simulation and build the contin-

uation pxr11,r2y,ν
1q

σ2
ÝÑ pxr11,r

1
2y,ν

2q, we would need that pq2,ν
1Óx2

,r2q P R2, which is
not necessarily ensured by the hypothesis pq2,νÓx2

,r2q P R2.
We propose a partial solution to this problem, based on a restriction concerning the

distribution of the network variables xA “
ŤN

i“1 xi over the components A1, . . . ,AN : for
each i P r1,Ns, we have xi “ xgY x`i , where xg is a set of global variables, and x`i are



the local variables of Ai. In other words, the only variables shared between more than
one component are xg, which, moreover, are visible to all components.

Then the problem can be bypassed if none of the simulation relations Ri Ď Qiˆ

Dxi ˆQi may constrain the global variables:

Assumption 3. For each i P r1,Ns and each pqi,ν,riq P Ri we also have pqi,ν
1,riq P Ri

for each ν1 PDxi such that νÓx`i
“ ν1Óx`i

.

Under this assumption, we use pre-computed data simulations Ri Ď QiˆDxg
ˆQi

and RB ĎQBˆDxBˆQB to generalize the basic subsumption relation between product
states (defined by Lemma 4) thus speeding up the convergence of Algorithm 1.

Lemma 11. Under assumption 3, the relation defined as:

pxq1, . . . ,qNy,P,ΦqĎsim pxr1, . . . ,rNy,S,Ψq
ô

@i P r1,Ns @ν PDxA : ν |ùΦñ ν |ùΨ and
"

pqi,νÓxi
,riq P Ri

@p P SDq P P . pp,νÓxB
,qq P RB

is a subsumption relation.

Proof. Let s “ pxq1, . . . ,qNy,P,Φq and t “ pxr1, . . . ,rNy,S,Ψq be two product states,
such that s Ďsim t. According to Definition 2, we need to prove that LspAe ˆ Bq Ď
LtpAeˆBq. To this end, it is sufficient to prove that for each ν PDxA such that ν |ùΦ:
1. Lpxq1,...,qNy,νqpAeq Ď Lpxr1,...,rNy,νqpAeq, and
2. for all p P S there exists q P P such that Lpp,νÓxB

qpBq Ď Lpq,νÓxB
qpBq.

Assuming that the above statements hold, we have:

LspAeˆBq “
Ť

ν|ùΦ

´

Lpxq1,...,qNy,νqpAeqX
Ş

qPP Lpq,νÓxB q
pBq

¯

Ď
Ť

ν|ùΦ

´

Lpxr1,...,rNy,νqpAeqX
Ş

pPS Lpp,νÓxB q
pBq

¯

Ď
Ť

ν|ùΨ

´

Lpxr1,...,rNy,νqpAeqX
Ş

pPS Lpp,νÓxB q
pBq

¯

“ LtpAeˆBq

and we are done. Moreover, the second point above is a direct consequence of the sec-
ond point of the definition of Ďsim and Definition 2. We are left with proving the first
point. Let pxq1, . . . ,qNy,νq

σ
ÝÑpxq11, . . . ,q

1
Ny,ν

1q be a transition of Ae and let pxr1, . . . ,rNy,νq
be a configuration of Ae such that pqi,νÓxi

,riq P Ri, for each i P r1,Ns. Let i P r1,Ns be
an arbitrary component, and distinguish two cases:

– if qi
σ,φi
ÝÝÑ q1i P ∆i and pνÓxi

,ν1Óxi
q |ùThpDq φi, i.e. pqi,νÓxi

q
σ
ÝÑ pq1i,ν

1Óxi
q, then, since

pqi,νÓxi
,riq P Ri there exists r1i P Qi s.t. pri,νÓxi

q
σ
ÝÑ pr1i ,νÓxi

q and pq1i,νÓxi
,r1iq P Ri.

– otherwise, qi “ q1i and νÓx`i
“ ν1Óx`i

. By Assumption 3, we obtain pqi,ν
1Óxi

,riq P Ri.
By chosing r1i “ ri, we obtain pq1i,ν

1Óxi
,r1iq P Ri.

Hence pq1i,ν
1Óxi

,r1iq P Ri, for all i P r1,Ns. Thus, the relation defined as:

pxq1, . . . ,qNy,ν,xr1, . . . ,rNyq P Rô@i P r1,Ns : pqi,νÓxi
,riq P Ri

is a data simulation (Definition 3), thus, by Lemma 9, we obtain that Lpxq1,...,qNy,νqpAeqĎ

Lpxr1,...,rNy,νqpAeq, for all ν PDxA , such that ν |ùThpDq Φ, and the first point above holds.
[\



6 Experimental Results

We have implemented Algorithm 1 in a prototype tool3 using the MATHSAT SMT
solver [7] for answering the satisfiability queries and computing the interpolants. The
results of the experiments are given in Tables 1 and 2. The results were obtained on an
Intel i7-4770 CPU @ 3.40GHz machine with 32GB RAM.

Table 1. Experiments with single-component networks.

Example A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Arrays shift 3/3 3/4 5 ok ă 0.1s
Array rotation 1 4/5 4/5 7 ok 0.1s
Array rotation 2 8/21 6/24 11 ok 34s
Array split 20/103 6/26 14 ok 4m32s
HW counter 1 2/3 1/2 2 ok 0.2s
HW counter 2 6/12 1/2 2 ok 0.4s
Synchr. LIFO 4/34 2/15 4 ok 2.5s
ABP-error 14/20 2/6 14 cex 2s
ABP-correct 14/20 2/6 14 ok 3s

Table 1 contains experiments where the network A consists of a single component.
We applied the tool on several verification conditions generated from imperative pro-
grams with arrays [6] (Array shift, Array rotation 1+2, Array split) available online [24].
Then, we applied it on models of hardware circuits (HW Counter 1+2, Synchronous
LIFO) [26]. Finally, we checked two versions (correct and faulty) of the timed Alter-
nating Bit Protocol [29].

Table 2 provides a list of experiments where the network A has N ą 1 components.
First, we have the example of Fig. 1 (Running). Next, we have several examples of real-
time verification problems [27]: a controller of a railroad crossing [19] (Train) with
T trains, the Fischer Mutual Exclusion protocol with deadlines ∆ and Γ (Fischer), and
a hardware communication circuit with K stages, composed of timed NOR gates (Stari).
Third, we have modelled a Producer-Consumer example [12] with a fixed buffer size B.
Fourth, we have experimented with several models of parallel programs that manipulate
arrays (Array init, Array copy, Array join) with window size ∆.

For the time being, our implementation is a proof-of-concept prototype that leaves
plenty of room for optimization (e.g. caching intermediate computation results) likely
to improve the performance on more complicated examples. Despite that, we found the
results from Tables 1 and 2 rather encouraging.

7 Conclusions

We have presented an interpolation-based abstraction refinement method for trace in-
clusion between a network of data automata and an observer where the variables used

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/



Table 2. Experiments with multiple-component networks (e.g., 2ˆ2{2`2ˆ3{3 in column A means that A
is a network with 4 components, of which 2 DA with 2 states and 2 rules, and 2 DA with 3 states and 3 rules).

Example N A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Running 2 2ˆ2/2 3/4 3 ok 0.2s
Running 10 10ˆ2/2 11/20 3 ok 25s
Train (T “ 5) 7 5ˆ3/3 + 4/4 + 4/4 2/38 1 ok 4s
Train (T “ 20) 22 20ˆ3/3 + 4/4 + 4/4 2/128 1 ok 6m26s
Fischer (∆“ 1, Γ“ 2) 2 2ˆ5/6 1/10 4 ok 8s
Fischer (∆“ 1, Γ“ 2) 3 3ˆ5/6 1/15 4 ok 2m48s
Fischer (∆“ 2, Γ“ 1) 2 2ˆ5/6 1/10 4 cex 3s
Fischer (∆“ 2, Γ“ 1) 3 3ˆ5/6 1/15 4 cex 32s
Stari (K “ 1) 5 4/5 + 2/4 + 5/7 + 5/7 + 5/7 3/6 3 ok 0.5s
Stari (K “ 2) 8 4/5 + 2/4 + 2ˆ5/7 + 2ˆ5/7 + 2ˆ5/7 3/6 3 ok 0.5s
Prod-Cons (B“ 3) 2 4/4 + 4/4 2/7 2 ok 10s
Prod-Cons (B“ 6) 2 4/4 + 4/4 2/7 2 ok 2m32s
Array init (∆“ 2) 5 5ˆ2/2 2/6 2 ok 3s
Array init (∆“ 2) 15 15ˆ2/2 2/16 2 ok 3m15s
Array copy (∆“ 20) 20 20ˆ2/2 2/21 3 ok 0.3s
Array copy (∆“ 20) 150 150ˆ2/2 2/151 3 ok 43s
Array join (∆“ 10) 4 2ˆ2/2 + 2ˆ3/3 2/3 2 ok 6s
Array join (∆“ 20) 6 3ˆ2/2 + 3ˆ3/3 2/4 2 ok 1m9s

by the observer are a subset of those used by the network. The procedure builds on
a new determinization result for DAs and combines in a novel way predicate abstrac-
tion and interpolation with antichain-based inclusion checking. The procedure has been
successfully applied to several examples, including verification problems for array pro-
grams, real-time systems, and hardware designs. Future work includes an extension of
the method to data tree automata and its application to logics for heaps with data. Also,
we foresee an extension of the method to handle infinite traces.
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