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A data automaton is a finite automaton equipped with variables (counters or registers) ranging over infinite data domains. A trace of a data automaton is an alternating sequence of alphabet symbols and values taken by the counters during an execution of the automaton. The problem addressed in this paper is the inclusion between the sets of traces (data languages) recognized by such automata. Since the problem is undecidable in general, we give a semi-algorithm based on abstraction refinement, which is proved to be sound and complete, but whose termination is not guaranteed. We have implemented our technique in a prototype tool and show promising results on several non-trivial examples.

Introduction

In this paper, we address a trace inclusion problem for infinite-state systems. Given (i) a network of data automata A " xA 1 , . . . , A N y that communicate via a set of shared variables x A , ranging over an infinite data domain, and a set of input events Σ A , and (ii) a data automaton B whose set of variables x B is a subset of x A , does the set of (finite) traces of B contain the traces of A? Here, by a trace, we understand an alternating sequence of valuations of the variables from the set x B and input events from the set Σ A X Σ B , starting and ending with a valuation. Typically, the network of automata A is an implementation of a concurrent system and B is a specification of the set of good behaviors of the system.

Consider, for instance, the network xA 1 , . . . , A N y of data automata equipped with the integer-valued variables x and v shown in Fig. 1-left. The automata synchronize on the init symbol and interleave their a 1,...,N actions. Each automaton A i increases the shared variable x and writes its identifier i into the shared variable v as long as the value of x is in the interval rpi ´1q∆, i∆ ´1s, and it is inactive outside this interval, where ∆ ě 1 is an unbounded parameter of the network. A possible specification for this network might require that each firing sequence is of the form init a 1,...,N a 2 a 2,...,N . . . a i a i for some 1 ď i ď N, and that v is increased only on the first occurrence of the events a 2 , . . . , a i , in this order. This condition is encoded by the automaton B (Fig. 1-right). Observe that only the v variable is shared between the network xA 1 , . . . , A N y and the specification automaton B-we say that v is observable in this case. An example of a trace, for ∆ " 2 and N ě 3, is: pv " 0q init pv " 1q a 1 pv " 1q a 1 pv " 1q a 2 pv " 2q a 2 pv " 2q a 3 pv " 3q. Our problem is to check that this, and all other traces of the network, are included in the language of the specification automaton, called the observer. The trace inclusion problem has multiple applications, e.g.: -Decision procedures for logics describing array structures within imperative programs [START_REF] Habermehl | What else is decidable about integer arrays?[END_REF][START_REF] Habermehl | A logic of singly indexed arrays[END_REF] that use a translation of array formulae to integer counter automata which encode the set of array models of a formula. The expressiveness of such logics is currently limited by the decidability of the emptiness (reachability) problem for counter automata. If we give up on decidability, we can reduce an entailment between two array formulae to the trace inclusion of two integer counter automata, and use the method presented in this paper as a semi-decision procedure. To assess this claim, we have applied our trace inclusion method to several verification conditions for programs with unbounded arrays of integers [START_REF] Bozga | Automatic verification of integer array programs[END_REF].
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-Timed automata and regular specifications of timed languages [START_REF] Alur | A theory of timed automata[END_REF] can be both represented by finite automata extended with real-valued variables [START_REF] Fribourg | A closed-form evaluation for extended timed automata[END_REF]. The verification problem boils down to the trace inclusion of two real-valued data automata. In this context, our method has been tested on several timed verification problems, including communication protocols and boolean circuits [START_REF] Tripakis | The analysis of timed systems in practice[END_REF].

When developing a method for checking the inclusion between trace languages of automata extended with variables ranging over infinite data domains, the first problem is the lack of determinisation and/or complementation results. In fact, certain classes of infinite state systems, such as timed automata [START_REF] Alur | A theory of timed automata[END_REF], cannot be determinized and are provably not closed under complement. This is the case due to the fact that the clock variables of a timed automaton are not observable in its timed language, which records only the time lapses between successive events. However, if we require that the values of all variables of a data automaton be part of its trace language, we obtain a determinisation result, which generalizes the classical subset construction by taking into account the data valuations. Building on this first result, we define the complement of a data language and reduce the trace inclusion problem to the emptiness of a product data automaton LpA ˆBq " H. It is crucial, for this reduction, that the variables x B of the right-hand side data automaton B (the one being determinized) are also controlled by the left-hand side automaton A, in other words, that B has no hidden variables.

The language emptiness problem for data automata is, in general, undecidable [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF]. Nevertheless, several semi-algorithms and tools for this problem (better known as the reachability problem) have been developed [START_REF] Bardin | Fast: Fast acceleration of symbolic transition systems[END_REF][START_REF] Henzinger | Software Verification with Blast[END_REF][START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF][START_REF] Grebenshchikov | Synthesizing software verifiers from proof rules[END_REF]. Among those, the technique of lazy predicate abstraction [START_REF] Henzinger | Software Verification with Blast[END_REF] combined with counterexample-driven refinement using interpolants [START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF] has been shown to be particularly successful in proving emptiness of rather large infinite-state systems. Moreover, this technique shares similar aspects with the antichain-based algorithm for language inclusion in the case of a finite alpha-bet [START_REF] Abdulla | When simulation meets antichains[END_REF]. An important similarity is that both techniques use a partial order on states, to prune the state space during the search.

The main result of this paper is a semi-algorithm that combines the principle of the antichain-based language inclusion algorithm [START_REF] Abdulla | When simulation meets antichains[END_REF] with the interpolant-based abstraction refinement semi-algorithm [START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF], via a general notion of language-based subsumption relation. We have implemented our semi-algorithm in a prototype tool and carried out a number of experiments, involving hardware, real-time systems, and array logic problems. Since our procedure tests inclusion within a set of good traces, instead of empty intersection with a set of error traces, we can encode rather complex verification conditions concisely, using automata of relatively small size.

Overview
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We introduce the reader to our trace inclusion method by means of an example. Let us consider the network of data automata xA 1 , A 2 y and the data automaton B from Fig. 1. We prove that, for any value of ∆, any trace of the network xA 1 , A 2 y, obtained as an interleaving of the actions of A 1 and A 2 , is also a trace of the observer B. To this end, our procedure will fire increasingly longer sequences of input events, in search for a counterexample trace. We keep a set of predicates associated with each state pxq 1 , q 2 y, Pq of the product automaton where q i is a state of A i and P is a set of states of B. These predicates are formulae that define over-approximations of the data values reached simultaneously by the network, when A i is the state q i , and by the observer B, in every state from P.

The first input event is init, on which A 1 and A 2 synchronize, moving together from the initial state xq 1 0 , q 2 0 y to xq 1 1 , q 2 1 y. In response, B can chose to either(i) move from tp 0 u to tp 1 u, matching the only transition rule from p 0 , or (ii) ignore the transition rule and move to the empty set. In the first case, the values of v match the relation of the

rule p 0 init,v 1 "1
Ý ÝÝÝ Ñ p 1 , while in the second case, these values match the negated relation pv 1 " 1q. The second case is impossible because the action of the network requires x 1 " 0 ^v1 " 1. The only successor state is thus pxq 1 1 , q 2 1 y, tp 1 uq in Fig. 2 (a). Since no predicates are initially available at this state, the best over-approximation of the set of reachable data valuations is the universal set (J).

The second input event is a 1 , on which A 1 moves from q 1 1 back to itself, while A 2 makes an idle step because no transition with a 1 is enabled from q 2 1 . Again, B has the choice between moving from tp 1 u either to H or tp 1 u. Let us consider the first case, in which the successor state is pxq 1 1 , q 2 1 y, H, Jq. Since q 1 1 and q 2 1 are final states of A 1 and A 2 , respectively, and no final state of B is present in H, we say that the state is accepting. If the accepting state (in dashed boxes in Fig. 2) is reachable according to the transition constraints along the input sequence init.a 1 , we have found a counterexample trace that is in the language of xA 1 , A 2 y but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of the path formula corresponding to the composition of the transition constraints x 1 " 0 v1 " 1 (init) and 0 ď x ă ∆ ^x1 " x `1 ^v1 " 1 ^ pv 1 " vq (a 1 ) in Fig. 2 (a). This formula is unsatisfiable, and the proof of infeasibility provides the interpolant xv " 1y. This formula is an explanation for the infeasibility of the path because it is implied by the first constraint and it is unsatisfiable in conjunction with the second constraint. By associating the new predicate v " 1 with the state pxq 1 1 , q 2 1 y, tp 1 uq, we ensure that the same spurious path will never be explored again.

We delete the spurious counterexample and recompute the states along the input sequence init.a 1 with the new predicate. In this case, pxq 1 1 , q 2 1 y, Hq is unreachable, and the outcome is pxq 1 1 , q 2 1 y, tp 1 u, v " 1q. However, this state was first encountered after the sequence init, so there is no need to store a second occurrence of this state in the tree. We say that the node init.a 1 is subsumed by init, and indicate this by a dashed arrow in Fig. 2 (b).

We continue with a 2 from the state pxq 1 1 , q 2 1 y, tp 1 u, v " 1q. In this case, A 1 makes an idle step and A 2 moves from q 2 1 to itself. In response, B has the choice between moving from tp 1 u to either(i) tp 1 u with the constraint v 1 " v, (ii) tp 2 u with the constraint v 1 " v `1, (iii) tp 1 , p 2 u with the constraint v 1 " v ^v1 " v `1 Ñ K (this possibility is discarded), (iv) H for data values that satisfy pv 1 " vq ^ pv 1 " v `1q. The last case is also discarded because the value of v after init constrained to 1 and the A 2 imposes further the constraint v 1 " 2 and v " 1 ^v1 " 2 ^ pv 1 " vq ^ pv 1 " v `1q Ñ K. Hence, the only a 2 -successor of pxq 1 1 , q 2 1 y, tp 1 u, v " 1q is pxq 1 1 , q 2 1 y, tp 2 u, Jq, in Fig. 2 (b). By firing the event a 1 from this state, we reach pxq 1 1 , q 2 1 y, H, v " 1q, which is, again, accepting. We check whether the path init.a 2 .a 1 is feasible, which turns out not to be the case. For efficiency reasons, we find the shortest suffix of this path that can be proved infeasible. It turns out that the sequence a 2 .a 1 is infeasible starting from the state pxq 1 1 , q 2 1 y, tp 1 u, v " 1q, which is called the pivot. This proof of infeasibility yields the interpolant xv " 1, ∆ ă xy, and a new predicate ∆ ă x is associated with pxq 1 1 , q 2 1 y, tp 2 uq. The refinement phase rebuilds only the subtree rooted at the pivot state, in Fig. 2 (b).

The procedure then builds the tree on Fig. 2 (c) starting from the pivot node and finds the accepting state pxq 1 1 , q 2 1 y, H, ∆ ă xq as the result of firing the sequence init.a 2 .a 2 .

This path is spurious, and the new predicate v " 2 is associated with the location pxq1 1 , q 2 1 y, tp 2 uq. The pivot node is the same as in Fig. 2 (b), and, by recomputing the subtree rooted at this node with the new predicates, we obtain the tree in Fig. 2 (d), in which all frontier nodes are subsumed by their predecessors. Thus, no new event needs to be fired, and the procedure can stop reporting that the trace inclusion holds.

Related Work

The trace inclusion problem has been previously addressed in the context of timed automata [START_REF] Ouaknine | On the language inclusion problem for timed automata: Closing a decidability gap[END_REF]. Although the problem is undecidable in general, decidability is recovered when the left-hand side automaton has at most one clock, or the only constant appearing in the clock constraints is zero. These are essentially the only known decidable cases of language inclusion for timed automata.

The study of data automata [START_REF] Bojańczyk | Two-variable logic on data words[END_REF][START_REF] Decker | Ordered navigation on multi-attributed data words[END_REF] usually deals with the complexity of decision problems in logics describing data languages for simple theories, typically infinite data domains with equality. Here we provide a semi-decision procedure for the language inclusion between data automata controlled by generic first-order theories, whose language-theoretic problems are undecidable.

Data words are also studied in the context of symbolic visibly pushdown automata (SVPA) [START_REF] D'antoni | Symbolic visibly pushdown automata[END_REF]. Language inclusion is decidable for SVPAs with transition guards from a decidable theory because SVPAs are closed under complement and the emptiness can be reduced to a finite number of queries expressible in the underlying theory of guards. Decidability comes here at the cost of reducing the expressivity and forbidding comparisons between adjacent positions in the input (only comparisons between matching call/return positions of the input nested words are allowed).

Finally, several works on model checking infinite-state systems against CTL [START_REF] Beyene | Solving existentially quantified horn clauses[END_REF] and CTL* [START_REF] Cook | On automation of ctl* verification for infinite-state systems[END_REF] specifications are related to our problem as they check inclusion between the set of computation trees of an infinite-state system and the set of trees defined by a branching temporal logic specification. The verification of existential CTL formulae [START_REF] Beyene | Solving existentially quantified horn clauses[END_REF] is reduced to solving forall-exists quantified Horn clauses by applying counterexample guided refinement to discover witnesses for existentially quantified variables. The work [START_REF] Cook | On automation of ctl* verification for infinite-state systems[END_REF] on CTL* verification of infinite systems is based on partial symbolic determinization, using prophecy variables to summarize the future program execution. For finite-state systems, automata are a strictly more expressive formalism than temporal logics 1 . Such a comparison is, however, non-trivial for infinite-state systems. Nevertheless, we found the data automata considered in this paper to be a natural tool for specifying verification conditions of array programs [START_REF] Habermehl | What else is decidable about integer arrays?[END_REF][START_REF] Habermehl | A logic of singly indexed arrays[END_REF][START_REF] Bozga | Automatic verification of integer array programs[END_REF] and regular properties of timed languages [START_REF] Alur | A theory of timed automata[END_REF].

Preliminary Definitions

Let N denote the set of non-negative integers including zero. For any k, P N, k ď , we write rk, s for the set tk, k `1, . . . , u. We write K and J for the boolean constants false and true, respectively. Given a possibly infinite data domain D, we denote by ThpDq " xD, f 1 , . . . , f m y the set of syntactically correct first-order formulae with function symbols f 1 , . . . , f m . A variable x is said to be free in a formula φ, denoted as φpxq, iff it does not occur under the scope of a quantifier. Let x " tx 1 , . . . , x n u be a finite set of variables. A valuation ν : x Ñ D is an assignment of the variables in x with values from D. We denote by D x the set of such valuations. For a formula φpxq, we denote by ν |ù ThpDq φ the fact that substituting each variable x P x by νpxq yields a valid formula in the theory ThpDq. In this case, ν is said to be a model of φ. A formula is said to be satisfiable iff it has a model. For a formula φpx, x 1 q where x 1 " tx 1 | x P xu and two valuations ν, ν 1 P D x , we denote by pν, ν 1 q |ù ThpDq φ the fact that the formula obtained from φ by substituting each x with νpxq and each x 1 with ν 1 px 1 q is valid in ThpDq.

Data Automata. Data Automata (DA) are extensions of non-deterministic finite automata with variables ranging over an infinite data domain D, equipped with a first order theory ThpDq. Formally, a DA is a tuple A " xD, Σ, x, Q, ι, F, ∆y, where:

-Σ is a finite alphabet of input events and ˛P Σ is a special padding symbol, -x " tx 1 , . . . , x n u is a set of variables, -Q is a finite set of states, ι P Q is an initial state, F Ď Q are final states, and -∆ is a set of rules of the form q σ,φpx,x 1 q Ý ÝÝÝ Ñ q 1 where σ P Σ is an alphabet symbol and φpx, x 1 q is a formula in ThpDq. A configuration of A is a pair pq, νq P Q ˆDx . We say that a configuration pq 1 , ν 1 q is a successor of pq, νq if and only if there exists a rule q σ,φ Ý Ñ q 1 P ∆ and pν, ν 1 q |ù ThpDq φ. We denote the successor relation by pq, νq σ,φ Ý Ñ A pq 1 , ν 1 q, and we omit writing φ and A when no confusion may arise. We denote by succ A pq, νq " tpq 1 , ν 1 q | pq, νq Ý Ñ A pq 1 , ν 1 qu the set of successors of a configuration pq, νq.

A trace is a finite sequence w " pν 0 , σ 0 q, . . . , pν n´1 , σ n´1 q, pν n , ˛q of pairs pν i , σ i q taken from the infinite alphabet D x ˆΣ. A run of A over the trace w is a sequence of configurations π : pq 0 , ν 0 q

σ 0 Ý Ñ pq 1 , ν 1 q σ 1 Ý Ñ . . . σ n´1
Ý ÝÝ Ñ pq n , ν n q. We say that the run π is accepting if and only if q n P F, in which case A accepts w. The language of A, denoted LpAq, is the set of traces accepted by A.

Data Automata Networks. A data automata network (DAN) is a non-empty tuple

A " xA 1 , . . . , A N y of data automata A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y, i P r1, Ns whose sets of states are pairwise disjoint. A DAN is a succint representation of an exponentially larger DA A e " xD, Σ A , x A , Q A , ι A , F A , ∆ A y, called the expansion of A, where: 1 1 , . . . , q 1 N y if and only if (i) for all i P I, q i σ,ϕ i Ý Ý Ñ q 1 i , (ii) for all i R I, q i " q 1 i , and (iii) ϕ " Ź iPI ϕ i ^Ź jRI τ j , where I " ti P r1, Ns | q i σ,ϕ i Ý Ý Ñ q 1 i P ∆ i u is the set of DA that can move from q i to q 1 i while reading the input symbol σ, and τ j " Ź xPx j zp Ť iPI x i q x 1 " x propagates the values of the local variables in A j that are not updated by tA i u iPI .

-Σ A " Σ 1 Y . . . Y Σ N and x A " x 1 Y . . . Y x N , -Q A " Q 1 ˆ. . . ˆQN , ι A " xι 1 , . . . , ι N y and F A " F 1 ˆ. . . ˆFN , -xq 1 , . . . , q N y σ,ϕ Ý Ñ xq
Intuitively, all automata that can read an input symbol synchronize their actions on that symbol whereas the rest of the automata make an idle step and copy the values of their local variables which are not updated by the active automata. The language of the DAN A is defined as the language of its expansion DA, i.e. LpAq " LpA e q.

Trace Inclusion. Let A be a DAN and A e " xD, Σ, x A , Q A , ι A , F A , ∆ A y be its expansion. For a set of variables y Ď x A , we denote by νÓ y the restriction of a valuation ν P D x A to the variables in y. For a trace w " pν 0 , σ 0 q, . . . , pν n , ˛q P pD x A ˆΣA q ˚, we denote by wÓ y the trace pν 0 Ó y , σ 0 q, . . . , pν n´1 Ó y , σ n´1 q, pν n Ó y , ˛q P pD y ˆΣq ˚. We lift this notion to sets of words in the natural way, by defining LpAqÓ y " wÓ y | w P LpAq ( . We are now ready to define the trace inclusion problem on which we focus in this paper. Given a DAN A as before and a DA B " xD, Σ, x B , Q B , ι B , F B , ∆ B y such that x B Ď x A , the trace inclusion problem asks whether LpAqÓ x B Ď LpBq? The right-hand side DA B is called observer, and the variables in x B are called observable variables.

Boolean Closure Properties of Data Automata

We show first that data automata are closed under the boolean operations of union, intersection and complement and that they are amenable to determinisation. Clearly, the emptiness problem is, in general, undecidable, due to the result of Minsky on 2counter machines with integer variables, increment, decrement and zero test [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF].

Let A " xD, Σ, x, Q, ι, F, ∆y be a DA for the rest of this section. A is said to be deterministic if and only if, for each trace w P LpAq, A has at most one run over w.

The first result of this section is that, interestingly, any DA can be determinized while preserving its language. The determinisation procedure is a generalization of the classical subset construction for Rabin-Scott word automata on finite alphabets. The reason why determinisation is possible for automata over an infinite data alphabet D x ˆΣ is that the successive values taken by each variable x P x are tracked by the language LpAq Ď pD x ˆΣq ˚. This assumption is crucial: a typical example of automata over an infinite alphabet, that cannot be determinized, are timed automata [START_REF] Alur | A theory of timed automata[END_REF], where only the elapsed time is reflected in the language, and not the values of the variables (clocks).

Formally, the deterministic DA accepting the language LpAq is defined as

A d " xD, Σ, x, Q d , ι d , F d , ∆ d y, where Q d " 2 Q , ι d " tιu, F d " tP Ď Q | P X F ‰ Hu and ∆ d is the set of rules P σ,θ
Ý Ñ P 1 such that: for all p 1 P P 1 there exists p P P and a rule p

σ,ψ ÝÑ p 1 P ∆, -θpx, x 1 q " Ź p 1 PP 1 Ž p σ,ψ ÝÑp 1 P∆ pPP ψ ^Źp 1 PQzP 1 Ź p σ,ϕ Ý Ñp 1 P∆ pPP ϕ .
The main difference with the classical subset construction for Rabin-Scott automata is that here we consider all sets P 1 of states that have a predecessor in P, not just the maximal such set. This refined subset construction takes into account not just the alphabet symbols in Σ, but also the valuations of the variables in x. Observe, moreover, that A d can be built for any theory ThpDq that is closed under conjunction and negation. The following lemma states the main properties of A d .

Lemma 1. Given a DA A " xD, Σ, x, Q, ι, F, ∆y, (1) for any w P pD x ˆΣq ˚and P P Q d , A d has exactly one run on w that starts in P, and (2) LpAq " LpA d q.

Proof. (1) Let w " pν 0 , σ 0 q, . . . , pν n´1 , σ n´1 q, pν n , ˛q be an arbitrary trace and P Ď Q be a state of A d . We first build a run π " pP 0 , ν 0 q σ 0 ,θ 0

Ý ÝÝ Ñ pP 1 , ν 1 q . . . σ n´1 ,θ n´1
Ý ÝÝÝÝÝ Ñ pP n , ν n q of A d such that P 0 " P, by induction on n ě 0. If n " 0, then w " pν 0 , ˛q and π " pP 0 , ν 0 q is trivially a run of A d over w. For the induction step, let n ą 0 and suppose that A d has a run pP 0 , ν 0 q σ 0 ,θ 0 Ý ÝÝ Ñ . . . pP n´1 , ν n´1 q such that P 0 " P. We extend this run to a run over w, by considering:

P n " ! p P Q | Dq P P n´1 . q σ n´1 ,φ ÝÝÝÑ p P ∆ and pν n´1 , ν n q |ù ThpDq φ ) θ n " Ź p 1 PPn Ž p σ,ψ ÝÑp 1 P∆ pPP n´1 ψ ^Źp 1 PQzPn Ź p σ,ϕ Ý Ñp 1 P∆ pPP n´1 ϕ .
It is not hard to see that pν n´1 , ν n q |ù θ n , thus pP 0 , ν 0 q σ 0 ,θ 0 Ý ÝÝ Ñ . . .

σn,θn

Ý ÝÝ Ñ pP n , ν n q is indeed a run of A d over w. To show that π is unique, suppose, by contradiction, that there exists a different run π 1 " pR 0 , ν 0 q σ 0 ,ω 0

Ý ÝÝ Ñ pR 1 , ν 1 q . . . σ n´1 ,ω n´1
Ý ÝÝÝÝÝ Ñ pR n , ν n q such that P 0 " R 0 " P. Notice that the relation labeling any transition rule P i σ i ,θ i Ý Ý Ñ P i`1 is entirely determined by the sets P i and P i`1 , so two runs are different iff they differ in at least one state, i.e. and P j ‰ R j , for some j P r1, ns. Let i denote the smallest such j and suppose that there exists p P P i such that p R R i (the symmetrical case p P R i and p R P i is left to the reader). By the definition of ∆ d , there exists q P P i´1 " R i´1 such that q σ i´1 ,ψ

ÝÝÝÑ p P ∆. Since pν i´1 , ν i q |ù θ i´1 ^ωi´1 , we obtain that pν i´1 , ν i q |ù Ž tψ | q σ i´1 ,ψ
ÝÝÝÑ p P ∆, q P P i´1 u and pν i´1 ,

ν i q |ù Ź t ψ | q σ i´1 ,ψ
ÝÝÝÑ p P ∆, q P P i´1 u, contradiction. Thus π is the only run of A d over w, starting in P.

(2) Let w " pν 0 , σ 0 q, . . . , pν n´1 , σ n´1 q, pν n , ˛q be a trace. "Ď" If w P LpAq, then A has a run pq 0 , ν 0 q σ 0 ,φ 0 Ý ÝÝ Ñ . . .

σ n´1 ,φ n´1
Ý ÝÝÝÝÝ Ñ pq n , ν n q such that q 0 " ι and q n P F. By point [START_REF] Abdulla | When simulation meets antichains[END_REF],

A d has a unique run pP 0 , ν 0 q σ 0 ,θ 0 Ý ÝÝ Ñ . . . σ n´1 ,θ n´1
Ý ÝÝÝÝÝ Ñ pP n , ν n q over w. We prove that q i P P i , by induction on i P r0, ns. For i " 0, we have P 0 " tιu, by the definition of A d . For the induction step, suppose that i P r1, ns and q i´1 P P i´1 . By contradiction, assume that q i R P i . Since pν i´1 , ν i q |ù ThpDq θ i´1 , we obtain pν i´1 , ν i q |ù ThpDq φ i´1 , contradiction. Thus q i P P i for all i P r0, ns, and q n P P n , hence P n X F ‰ H. Then P n P F d , and w P

LpA d q. "Ě" If w P LpA d q, then A d has a (unique) run pP 0 , ν 0 q σ 0 ,θ 0 Ý ÝÝ Ñ pP 1 , ν 1 q . . . σ n´1 ,θ n´1
Ý ÝÝÝÝÝ Ñ pP n , ν n q over w, such that P 0 " tιu and P n X F ‰ H. Then there exists p n P P n X F and, by the definition of A d , there exists p n´1 P P n´1 such that p n´1 σ n´1 ,ψ n´1 Ý ÝÝÝÝÝ Ñ p n P ∆ and pν n´1 , ν n q |ù ThpDq ψ n´1 . Continuing this argument backwards, we can find a run

pq 0 , ν 0 q σ 0 ,ψ 0 Ý ÝÝ Ñ . . . σ n´1 ,ψ n´1
Ý ÝÝÝÝÝ Ñ pq n , ν n q of A over w, such that q i P P i , for all i P r0, ns. Since P 0 " tιu and q n P F, we obtain that w P LpAq.

[ \ The construction of a deterministic DA recognizing the language of A is key to defining a DA that recognizes the complement of A.

Let A " xD, Σ, x, Q d , ι d , Q d zF d , ∆ d y.
In other words, A has the same structure as A d , and the set of final states consists of those subsets that contain no final state, i.e. tP Ď Q | P X F " Hu. Using Lemma 1, it is not difficult to show that LpAq " pD x ˆΣq ˚zL pAq.

Next, we show closure of DA under intersection. Let B " xD, Σ, x, Q 1 , ι 1 , F 1 , ∆ 1 y be a DA and define A ˆB " xD, Σ, x, Q ˆQ1 , pι, ι 1 q, F ˆF1 , ∆ ˆy, where pq, q 1 q σ,ϕ Ý Ñ pp, p 1 q P ∆ ˆif and only if q σ,φ Ý Ñ p P ∆, q 1 σ,ψ ÝÑ p 1 P ∆ 1 and ϕ " φ ^ψ. It is easy to show that LpAB q " LpAq X LpBq. DA are also closed under union, since LpAq Y LpBq " LpA ˆBq.

Let us turn now to the trace inclusion problem. The following lemma shows that this problem can be effectively reduced to an equivalent language emptiness problem. However, note that this reduction does not work when the trace inclusion problem is generalized by removing the condition x B Ď x A . In other words, if the observer uses local variables not shared with the network2 , i.e. x B zx A ‰ H, the generalized trace inclusion problem LpAqÓ x A Xx B Ď LpBqÓ x A Xx B has a negative answer iff there exists a trace w " pν 0 , σ 0 q, . . . , pν n , ˛q P LpAq such that, for all valuations µ 0 , . . . , µ n P D x B zx A , we have

w 1 " pν 0 Ó x A Xx B Y µ 0 , σ 0 q, . . . , pν n Ó x A Xx B Y µ n , ˛q R
LpBq. This kind of quantifier alternation cannot be easily accommodated within the framework of language emptiness, in which only one type of (existential) quantifier occurs.

Lemma 2. Given DA A " xD, Σ, x A , Q A , ι A , F A , ∆ A y and B " xD, Σ, x B , Q B , ι B , F B , ∆ B y such that x B Ď x A . Then LpAqÓ x B Ď LpBq if and only if LpA ˆBq " H. Proof. We have LpAqÓ x B Ď LpBq iff LpAq Ó x B XLpBq " LpA ˆBqÓ x B " H iff LpA Bq " H.
[ \ The trace inclusion problem is undecidable, which can be shown by reduction from the language emptiness problem for DA (take B such that LpBq " H). However the above lemma shows that any semi-decision procedure for the language emptiness problem can also be used to deal with the trace inclusion problem.

Abstract, Check, and Refine for Trace Inclusion

This section describes our semi-algorithm for checking the trace inclusion between a given network A and an observer B. Let A e denote the expansion of A, defined in the previous. In the light of Lemma 2, the trace inclusion problem LpAqÓ x B Ď LpBq, where the set of observable variables x B is included in the set of network variables, can be reduced to the language emptiness problem LpA e ˆBq " H.

Although language emptiness is undecidable for data automata [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF], several costeffective semi-algorithms and tools [START_REF] Henzinger | Lazy abstraction[END_REF][START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF][START_REF] Grebenshchikov | Synthesizing software verifiers from proof rules[END_REF][START_REF] Bardin | Fast: Fast acceleration of symbolic transition systems[END_REF] have been developped, showing that it is possible, in many practical cases, to provide a yes/no answer to this problem. However, to apply one of the existing off-the-shelf tools to our problem, one needs to build the product automaton A e ˆB prior to the analysis. Due to the inherent state explosion caused by the interleaving semantics of the network as well as by the complementation of the observer, such a solution would not be efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an overapproximation of the (possibly infinite) set of reachable configurations of A e ˆB. This over-approximation is defined using the approach of lazy predicate abstraction [START_REF] Henzinger | Lazy abstraction[END_REF],

combined with counterexample-driven abstraction refinement using interpolants [START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF]. We store the explored abstract states in a structure called an antichain tree. In general, antichain-based algorithms [START_REF] Wulf | Antichains: A new algorithm for checking universality of finite automata[END_REF] store only states which are incomparable w.r.t. a partial order called subsumption. Our method can be thus seen as an extension of the antichainbased language inclusion algorithm [START_REF] Abdulla | When simulation meets antichains[END_REF] to infinite state systems by means of predicate abstraction and interpolation-based refinement. Since the trace inclusion problem is undecidable in general, termination of our procedure is not guaranteed; in the following, we shall, however, call our procedure an algorithm for the sake of brevity.

Antichain Trees

In this section, we define antichain trees, which are the main data structure of the trace inclusion (semi-)algorithm. Let A " xA 1 , . . . , A N y be a network of automata where

A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y, for all i P r1, Ns, and let B " xD, Σ, x B , Q B , ι B , F B , ∆ B y be an observer such that x B Ď Ť N i"1 x i .
We also denote by A e " xD, Σ A , x A , Q A , ι A , F A , ∆ A y the expansion of the network A and by A e ˆB " xD, Σ A , x A , Q p , ι p , F p , ∆ p y the product automaton used for checking language inclusion. An antichain tree for the network A and the observer B is a tree whose nodes are labeled by product states (see Fig. 2 for examples). Intuitively, a product state is an over-approximation of the set of configurations of the product automaton A e ˆB that share the same control state. Formally, a product state for A and B is a tuple s " pq, P, Φq where(i) pq, Pq is a state of A e ˆB with q " xq 1 , . . . , q N y being a state of the network expansion A e and P being a set of states of the observer B, and (ii) Φpx A q P ThpDq is a formula which defines an over-approximation of the set of valuations of the variables x A that reach the state pq, Pq in A e ˆB. A product state s " pq, P, Φq is a fi- nite representation of a possibly infinite set of configurations of A e ˆB, denoted as rrsss " tpq, P, νq | ν |ù ThpDq Φu.

To build an over-approximation of the set of reachable states of the product automaton, we need to compute, for a product state s, an over-approximation of the set of configurations that can be reached in one step from s. To this end, we define first a finite abstract domain of product states, based on the notion of predicate map. A predicate map is a partial function that associates sets of facts about the values of the variables used in the product automaton, called predicates, with components of a product state, called substates. The reason behind the distribution of predicates over substates is twofold. First, we would like the abstraction to be local, i.e. the predicates needed to define a certain subtree in the antichain must be associated with the labels of that subtree only. Second, once a predicate appears in the context of a substate, it should be subsequently reused whenever that same substate occurs as part of another product state.

Formally, a substate of a state pxq 1 , . . . , q N y, Pq P Q p of the product automaton A e B is a pair pxq i 1 , . . . , q i k y, Sq such that (i) xq i 1 , . . . , q i k y is a subsequence of xq 1 , . . . , q N y, and (ii) S ‰ H only if S X P ‰ H. We denote the substate relation by pxq i 1 , . . . , q i k y, Sq Ÿ pxq 1 , . . . , q N y, Pq. The substate relation requires the automata A i 1 , . . . , A i k of the network A to be in the control states q i 1 , . . . , q i k simultaneously, and the observer B to be in at least some state of S provided S ‰ H (if S " H, the state of B is considered to be irrelevant). Let S xA,By " tr | Dq P Q p . r Ÿ qu be the set of substates of a state of A e ˆB.

A predicate map Π : S xA,By Ñ 2 ThpD q associates each substate pr,

Sq P Q i 1 ˆ. . . Qi k ˆ2Q B with a set of formulae πpxq where (i) x " x i 1 Y . . . Y x i k Y x B if S ‰ H, and (ii) x " x i 1 Y . . . Y x i k if S " H.
Notice that a predicate associated with a substate refers only to the local variables of those network components A i 1 , . . . , A i k and of the observer B that occur in the particular substate.

Example 1. The antichain in Fig. 2 (d) uses the predicate map pxq 1 1 , q 2 1 y, tp 1 uq Þ Ñ tv " 1u, pxq 1 1 , q 2 1 y, tp 2 uq Þ Ñ t∆ ă x, v " 2u.

We are now ready to define the abstract semantics of the product automaton A e ˆB, induced by a given predicate map. For convenience, we define first a set Postpsq of concrete successors of a product state s " pq, P, Φq such that pr, S, Ψq P Postpsq if and only if(i) the product automaton A e ˆB has a rule pq, Pq σ,θ Ý Ñ pr, Sq P ∆ p and Ψpx A q " Dx 1

A . Φpx 1 A q ^θpx 1 A , x A q Û K. The set of concrete successors does not contain states with empty set of valuations because these states are unreachable in A e ˆB.

Given a predicate map Π, the set Post Π psq of abstract successors of a product state s is defined as follows: pr, S, Ψ 7 q P Post Π psq if and only if (i) there exists a product state pr, S, Ψq P Postpsq and (ii)

Ψ 7 px A q " Ź rŸpr,Sq Ź tπ P Πprq | Ψ Ñ πu.
In other words, the set of data valuations that are reachable by an abstract successor is the tightest overapproximation of the concrete set of reachable valuations, obtained as the conjunction of the available predicates from the predicate map that over-approximate this set.

Example 2. (contd. from Ex. 1) Consider the antichain from Fig. 2 (d). The concrete successors of s " pxq 1 1 , q 2 1 y, tp 1 u, v " 1q are pxq 1 1 , q 2 1 y, tp 1 u, Ψ 1 q and pxq 1 1 , q 2 1 y, tp 2 u, Ψ 2 q:

Ψ 1 " Dv 1 , x 1 , ∆ 1 . v 1 " 1 ^x " x 1 `1 ^v " 1 ^∆ " ∆ 1 ^0 ď x 1 ă ∆ ^v " v 1 Ψ 2 " Dv 1 , x 1 , ∆ 1 . v 1 " 1 ^x " x 1 `1 ^v " 2 ^∆ " ∆ 1 ^∆ ď x 1 ă 2∆ ^v " v 1 `1
With predicate map Π from Ex. 1, Post Π psq " tpxq 1 1 , q 2 1 y, tp 1 u, Ψ 7 1 q, pxq 1 1 , q 2 1 y, tp 2 u, Ψ 7 2 qu:

Ψ 1 Ñ v " 1 ñ Ψ 7 1 " v " 1 Ψ 2 Ñ v " 2 and Ψ 2 Ñ ∆ ă x ñ Ψ 7 2 " v " 2 ^∆ ă x .
Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose nodes are labeled with product states and whose edges are labeled by input symbols and concrete transition relations. Let N ˚be the set of finite sequences of natural numbers that denote the positions in the tree. For a tree position p P N ˚and i P N, the position p.i is a child of p. A set S Ď N ˚is said to be prefix-closed if and only if, for each p P S and each prefix q of p, we have q P S as well. The root of the tree is denoted by the empty sequence ε.

Formally Ý Ñ t or simply s θ Ý Ñ t when the tree positions are not important.

Each antichain node n " ps, d 1 . . . d k q P T is naturally associated with a path from the root to itself ρ :

n 0 σ 1 ,θ 1 Ý ÝÝ Ñ n 1 σ 2 ,θ 2 Ý ÝÝ Ñ . . . σ 2 ,θ k
ÝÝÑ n k . We denote by ρ i the node n i for each i P r0, ks, and by |ρ| " k the length of the path. The path formula associated with ρ is Θpρq "

Ź k i"1 θpx i´1 A , x i A q where x i A " x i | x P x A
( is a set of indexed variables for each i P r0, ks.

Example 3. Consider the path ρ : pxq 1 0 , q 2 0 y, tp 0 u, Jq

init Ý Ñ pxq 1 1 , q 2 1 y, tp 1 u, v " 1q a 2 Ý Ñ pxq 1 1 , q 2 1 y, tp 2 u, ∆ ă xq a 2
Ý Ñ pxq 1 1 , q 2 1 y, H, ∆ ă xq in the antichain from Fig. 2 (c). The path formula of ρ is Θpρq " θ 1 ^θ2 ^θ3 where:

θ 1 " v 1 " 1 ^x1 " 0 ^0 ă ∆ 1 θ 2 " v 2 " v 1 `1 ^∆2 " ∆ 1 ^v2 " 2 ^x2 " x 1 `1 ^∆1 ď x 1 ă 2∆ 1 ^ pv 2 " v 1 q θ 3 " v 3 " 2 ^∆3 " ∆ 2 ^x3 " x 2 `1 ^∆2 ď x 2 ă 2∆ 2 ^ pv 3 " v 2 q .

Counterexample-driven Abstraction Refinement

A counterexample is a path from the root of the antichain to a node which is labeled by an accepting product state. A product state pq, P, Φq is said to be accepting iff pq, Pq is an accepting state of the product automaton A e ˆB, i.e. q P F A and P X F B " H.

A counterexample is said to be spurious if its path formula is unsatisfiable, i.e. the path does not correspond to a concrete execution of A e ˆB. In this case, we need to (i) remove the path ρ from the current antichain and (ii) refine the abstract domain in order to exclude the occurrence of ρ from future state space exploration.

Let ρ : root xA,By " pq 0 , P 0 , Φ 0 q

θ 1 Ý Ñ pq 1 , P 1 , Φ 1 q θ 2 Ý Ñ . . . θ k
Ý Ñ pq k , P k , Φ k q be a spurious counterexample in the following. For efficiency reasons, we would like to save as much work as possible and remove only the smallest suffix of ρ which caused the spuriousness. For some j P r0, ks, let Θ j pρq " Φ j px 0 A q ^Źk i" j θ i px i´j A , x i´j`1

A q be the formula defining all sequences of data valuations that start in the set Φ j and proceed along the suffix pq j , P j , Φ j q Ý Ñ . . . Ý Ñ pq k , P k , Φ k q of ρ. The pivot of a path ρ is the maximal position j P r0, ks such that Θ j pρq " K, and ´1 if ρ is not spurious.

Example 4. (contd. from Ex. 3) The path formula Θpρq " θ 1 ^θ2 ^θ3 from Ex. 3 is unsatisfiable, thus ρ is a spurious counterexample. Moreover, we have Θ 1 pρq " J θ2 ^θ3 Ñ K because of the unsatisfiable subformula v 2 " 2 ^v3 " 2 ^ pv 3 " v 2 q. Since Θ 2 pρq is satisfiable, the pivot of ρ is 1.

Finally, we describe the refinement of the predicate map, which ensures that a given spurious counterexample will never be found in a future iteration of the abstract state space exploration. The refinement is based on the notion of interpolant [START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF].

Definition 1. Given a formula Φpxq and a sequence xθ 1 px, x 1 q, . . . , θ k px, x 1 qy of formulae, an interpolant is a sequence of formulae I " xI 0 pxq, . . . , I k pxqy where:(1) Φ Ñ I 0 , (2) I k Ñ K, and (3) I i´1 pxq ^θi px, x 1 q Ñ I i px 1 q for all i P r1, ks.

Any given interpolant is a witness for the unsatisfiability of a (suffix) path formula Θ j pρq. Dually, if Craig's Interpolation Lemma [START_REF] Craig | Three uses of the herbrand-gentzen theorem in relating model theory and proof theory[END_REF] holds for the considered first-order data theory ThpDq, any infeasible path formula is guaranteed to have an interpolant.

Example 5. (contd. from Ex. 4) The path formula Θ 1 pρq in Ex. 4 has the interpolant I " xJ, v " 2, Ky.

Given a spurious counterexample ρ with pivot j ě 0, an interpolant I " xI 0 , . . . , I k´j y for the infeasible path formula Θ j pρq can be used to refine the abstract domain by augmenting the predicate map Π. As an effect of this refinement, the antichain construction algorithm will avoid every path with the suffix pq j , P j , Φ j q Ý Ñ . . . Ý Ñ pq k , P k , Φ k q in a future iteration. If I i ô C 1 i py 1 q ^. . . ^Cm i i py m i q is a conjunctive normal form (CNF) of the i-th component of the interpolant, we consider the substate pr i , S i q for each C i py q where l P r1, m i s:

-r i " xq i 1 , . . . , q i h y where 1 ď i 1 ă . . . ă i h ď N is the largest sequence of indices such that x i g X y ‰ H for each g P r1, hs and the set x i g of variables of the network component DA A i g , -S i " P j if x B X y ‰ H, and S i " H, otherwise.

A predicate map Π is said to be compatible with a spurious path ρ :

s 0 θ 1 Ý Ñ . . . θ k
Ý Ñ s k with pivot j ě 0 if s j " pq j , P j , Φ j q and there is an interpolant I " xI 0 , . . . , I k´j y of the suffix xθ 1 , . . . , θ k y wrt. Φ j such that, for each clause C of some equivalent CNF of I i , i P r0, k ´js, it holds that C P Πprq for some substate r Ÿ s i`j . The following lemma proves that, under a predicate map compatible with a spurious path ρ, the antichain construction will exclude further paths that share the suffix of ρ starting with its pivot.

Lemma 3. Let ρ : pq 0 , P 0 , Φ 0 q θ 0 Ý Ñ pq 1 , P 1 , Φ 1 q θ 1 Ý Ñ . . . θ k´1
ÝÝÑ pq k , P k , Φ k q be a spurious counterexample and Π be a predicate map compatible with ρ. Then, there is no sequence of product states pq j , P j , Ψ 0 q, . . . , pq k , P k , Ψ k´j q such that:(1) Ψ 0 Ñ Φ j and (2) pq i`1 , P i`1 , Ψ i´j`1 q P Post Π ppq i , P i , Ψ i´j qq for all i P r j, k ´1s.

Proof. Let j P r0, ks be the pivot of ρ. Since ρ is spurious, there exists an interpolant I " xI 0 , . . . , I k´j y for Φ j and xθ j , . . . , θ k y. It is sufficient to prove that Ψ i Ñ I i for all i P r0, k ´js. Since I k´j " K, we obtain Ψ k´j " K, and consequently pq k´j , P k´j , Kq P Post Π ppq k´j´1 , P k´j´1 , Ψ k´j´1 qq. By the definition of Post Π , we have pq k´j , P k´j , Kq P Postppq k´j´1 , P k´j´1 , Ψ k´j´1 qq, which contradicts with the definition of Post. We show that Ψ i Ñ I i for all i P r0, k ´js, by induction on k ´j. For the base case k ´j " 0, we have Ψ 0 Ñ Φ j Ñ I 0 . For the induction step, we assume Ψ i Ñ I i for all i P r0, k ´j ´1s and prove Ψ k´j Ñ I k´j . By the induction hypothesis, we have:

Ψ k´j´1 px A q Ñ I k´j´1 px A q Ψ k´j´1 px A q ^θk´j´1 px A , x 1 A q Ñ I k´j´1 px A q ^θk´j´1 px A , x 1 A q Ñ I k´j px 1 A q .
Let C 1 ^. . . ^C be the CNF of I k´j . Since Π is compatible with ρ, for each clause C i , there exists a substate r Ÿ pq k , P k q such that C i P Πprq. By the definition of Post Π , we obtain that Ψ k´j Ñ C i for each i P r1, s, hence Ψ k´j Ñ I k´j .

[ \ Observe that the refinement induced by interpolation is local since Π associates sets of predicates with substates of the states in A e ˆB, and the update impacts only the states occurring within the suffix of that particular spurious counterexample.

Subsumption

The main optimization of antichain-based algorithms [START_REF] Abdulla | When simulation meets antichains[END_REF] for checking language inclusion of automata over finite alphabets is that product states that are subsets of already visited states are never stored in the antichain. On the other hand, language emptiness semi-algorithms, based on predicate abstraction [START_REF] Mcmillan | Lazy abstraction with interpolants[END_REF] use a similar notion to cover newly generated abstract successor states by those that were visited sooner and that represent larger sets of configurations. In this case, state coverage does not only increase efficiency but also ensures termination of the semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain algorithms with the notion of coverage from predicate abstraction, and we define a more general notion of subsumption for data automata. Given a state pq, Pq of the product automaton A e ˆB and a valuation ν P D x A , the residual language L pq,P,νq pA e ˆBq is the set of traces w accepted by A e ˆB from the state pq, Pq such that ν is the first valuation which occurs on w. This notion is then lifted to product states as follows:

L s pA e ˆBq " Ť pq,P,νqPrrsss L pq,P,νq pA e ˆBq where rrsss is the set of configurations of the product automaton A e ˆB represented by the given product state s. Definition 2. Given a DAN A and a DA B, a partial order Ď is a subsumption provided that, for any two product states s and t, we have s Ď t only if L s pA e ˆBq Ď L t pA e ˆBq.

A procedure for checking the emptiness of A e ˆB needs not continue the search from a product state s if it has already visited a product state t that subsumes s. The intuition is that any counterexample discovered from s can also be discovered from t. The trace inclusion semi-algorithm described below in Section 4.4 works, in principle, with any given subsumption relation. In practice, our implementation uses the subsumption relation defined by the lemma below: Lemma 4. The relation defined s.t. pq, P, Φq Ď img pr, S, Ψq ô q " r, P Ě S, and Φ Ñ Ψ is a subsumption.

Proof. For any valuation ν P D x A , we have L pq,P,νq pA e ˆBq " L pq,νq pA e q X L pP,νq pBq. Since P Ě S, we have L pP,νq pBq Ě L pS,νq pBq, thus L pP,νq pBq Ď L pS,νq pBq. We obtain that L pq,P,νq pA e ˆBq Ď L pr,νq pA e q X L pS,νq pBq " L pr,S,νq pA e ˆBq. Since moreover Φ Ñ Ψ, we have that L pq,P,Φq pA e ˆBq Ď L pr,S,Φq pA e ˆBq Ď L pr,S,Ψq pA e ˆBq.

[ \ Example 6. In the antichain from Fig. 2 (d),

pxq 1 1 , q 2 1 y, tp 1 u, v " 1q Ď img pxq 1 1 , q 2 1 y, tp 1 u, v " 1q because xq 1 1 , q 2 1 y " xq 1 1 , q 2 1 y, tp 1 u Ě tp 1 u, and v " 1 Ñ v " 1.
As a remark, the language inclusion algorithm for non-deterministic automata on finite alphabets [START_REF] Abdulla | When simulation meets antichains[END_REF] uses also a more sophisticated subsumption relation based on a precomputed simulation [START_REF] Milner | An algebraic definition of simulation between programs[END_REF] between the states of the automata. We have defined a similar notion of simulation for data automata and an algorithm for computing such simulations [START_REF] Iosif | Abstraction refinement for trace inclusion of data automata[END_REF]. The integration of data simulations within the framework of antichain-based abstraction refinement and its practical assessment are considered as future work.

Algorithm 1 Trace Inclusion Semi-algorithm

input: 

1. a DAN A " xA 1 , . . . , A N y such that A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y for all i P r1, Ns, 2. a DA B " xD, Σ, x B , Q B , ι B , F B , ∆ B y such that x B Ď Ť N i"1 x i . output: true if LpAqÓ x B Ď LpBq

24:

i Ð i `1

25:

for n P Visited such that n has a successor m P rem do

26:

add pn, succq to Subsume

27:

for pn, mq P Subsume such that m P rem do

28:

add pn, succq to Subsume

29:

remove rem from pVisited, Next, Subsumeq

30:

add succ to Next

The Trace Inclusion Semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking trace inclusion. It uses a classical worklist iteration loop (lines 2-30) that builds an antichain tree by simultaneously unfolding the expansion A e of the network A and the complement B of the the observer B, while searching for a counterexample trace w P LpA e ˆBq.

Both A e and B are built on-the-fly, during the abstract state space exploration.

The processed antichain nodes are kept in the set Visited, and their abstract successors, not yet processed, are kept in the set Next. Initially, Visited " H and Next " root A,B ( . The algorithm uses a predicate map Π, which is initially empty (line 1). We keep a set of subsumption edges Subsume Ď Visited ˆpVisited Y Nextq with the following meaning: pxs, py, xt, qyq P Subsume for two antichain nodes, where s,t are product states and p, q P N ˚are tree positions, if and only if there exists an abstract successor s 1 P Post Π psq such that s 1 Ď t (Definition 2). Observe that we do not explicitly store a subsumed successor of a product state s from the antichain; instead, we add a subsumption edge between the node labeled with s and the node that subsumes that particular successor. The algorithm terminates when each abstract successors of a node from Next is subsumed by some node from Visited.

An iteration of Algorithm 1 starts by chosing a current antichain node curr " xs, py from Next and moving it to Visited (line 3). If the product state s is accepting (line 5) we check the counterexample path ρ, from the root of the antichain to curr, for spuriousness, by computing its pivot k. If k ě 0, then ρ is a spurious counterexample (line 7), and the path formula of the suffix of ρ, which starts with position k, is infeasible. In this case, we compute an interpolant for the suffix and refine the current predicate map Π by adding the predicates from the interpolant to the corresponding substates of the product states from the suffix (line 8).

The computation of the interpolant and the update of the predicate map are done by the REFINEPREDICATEMAPBYINTERPOLATION function using the approach described in Section 4.2. Subsequently, we remove (line 12) from the current antichain the subtree rooted at the pivot node ρ k , i.e. the k-th node on the path ρ (line 9), and add ρ k to Next in order to trigger a recomputation of this subtree with the new predicate map. Moreover, all nodes with a successor previously subsumed by a node in the removed subtree are moved from Visited back to Next in order to reprocess them (line 11).

On the other hand, if the counterexample ρ is found to be real (k " ´1), any valu-

ation ν P Ť |ρ| i"0 D x i
A that satisfies the path formula Θpρq yields a counterexample trace w P LpAq Ó x B zLpBq, obtained by ignoring all variables from x A zx B (line 15).

If the current node is not accepting, we generate its abstract successors (line 18). In order to keep in the antichain only nodes that are incomparable w.r.t. the subsumption relation Ď, we add a successor t of s to Next (lines 23 and 30) only if it is not subsumed by another product state from a node m P Visited. Otherwise, we add a subsumption edge pcurr, mq to the set Subsume (line 20). Furthermore, if t is not subsumed by another state in Visited, we remove from Next all nodes xt 1 , p 1 y such that t strictly subsumes t 1 (lines 22 and 29) and add subsumption edges to the node storing t from all nodes with a removed successor (line 26) or a removed subsumption edge (line 28).

The following theorem states the soundness of our trace inclusion semi-algorithm. The theorem is proved in the appendix together with the other results presented above.

Theorem 1. Let A " xA 1 , . . . , A N y be a DAN such that A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y for all i P r1, Ns, and let B " xD, Σ, x B , Q B , ι B , F B , ∆ B y be a DA such that x B Ď Ť N i"1 x i . If
Algorithm 1 terminates and returns true on input A and B, then LpAqÓ x B Ď LpBq.

The dual question "if there exists a counterexample trace w P LpAq Ó x B zLpBq, will Algorithm 1 discover it?" can also be answered positively, using an implementation that enumerates the abstract paths in a systematic way, e.g. by using a breadth-first path exploration. This can be done using a queue to implement the Next set in Algorithm 1.

Proof of Theorem 1

Given a network A " xA 1 , . . . , A N y where A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y for all i P r1, Ns and an observer B " xD, Σ, x B , Q B , ι B , F B , ∆ B y, we recall that a configuration of the product automaton A e ˆB is a tuple pxq 1 , . . . , q N y, P, νq P Q 1 ˆ. . . ˆQN ˆ2Q B ˆDx A , and a node of the antichain T is a pair xs, py where s is a product state for A and B and p P N ˚is a tree position. Moreover, root xA,By " pxι 1 , . . . , ι N y, tι B u, Jq is the product state that labels the root of T . In the following, let Γ " pΠ, Visited, Next, Subsumeq be an antichain state where Π is the predicate map, and Visited, Next, and Subsume are the sets of antichain nodes handled by Algorithm 1.

We say that Γ is a closed antichain state if and only if, for all nodes xs, py P Visited and every successor pq, P, νq P succ A e ˆBprrsssq of a configuration of the product automaton A e ˆB represented by the product state s, there exists a node xt, ry P Visited Y Next such that L pq,P,νq pA e ˆBq Ď L t pA e ˆBq and one of the following holds:

r " p.i for some i P N, i.e. xt, ry is a child of xs, py in the antichain T " Visited Y Next, or pxs, py, xt, ryq P Subsume.

In other words, the current antichain T , defined as the union of the sets Visited and Next, is in a closed state, if the residual language of every successor of a configuration of the product automaton A e ˆB that is covered by a visited product state must be included in the residual language of a product state stored in the antichain, either as a direct successor in the tree or via a subsumption edge.

For a product state s, we define Distpsq " min |w| | w P L s pA e ˆBq ( , and Distpsq " 8 if and only if L s pA e ˆBq " H. For a finite non-empty set of antichain nodes S, we define DistpSq " min tDistpsq | xs, py P Su with DistpHq " 8.

Lemma 5. Given a network A and an observer B, for any product state s of A and B, we have succ A e ˆBprrsssq " Ť tPPostpsq rrtss.

Proof. Let s " pq, P, Φq. "Ď" Let pr, S, µq P succ A e ˆBprrsssq be a configuration of A e ˆB for which there exists pq, P, νq P rrsss such that pq, P,

Ý Ñ pr, S, µq. Then there exists a unique rule pq, Pq σ,θ Ý Ñ pr, Sq P ∆ p such that pν, µq |ù ThpDq θ. Moreover, if pq, P, νq P rrsss, we have ν |ù ThpDq Φ. Let t " pr, S, Ψq P Postpsq where Ψpx A q " Dx 1 A . Φpx 1 A q θpx 1 A , x A q. We have µ |ù ThpDq Ψ, hence pr, S, µq P rrtss. "Ě" Let pr, S, µq P rrtss for some t P Postpsq. Then we have t " pr, S, Ψq where Ψpx A q " Dx 1 A . Φpx 1 A q ^θpx 1 A , x A q. Since µ |ù ThpDq Ψ, there exists ν |ù ThpDq Φ such that pq, P, νq σ,θ Ý Ñ pr, S, µq. Hence pq, P, νq P rrsss, thus pr, S, µq P succ A e ˆBprrsssq.

[ \ Lemma 6. Given a network A, an observer B, and a predicate map Π, for any product state s of A e ˆB and any product state t P Postpsq there exists t 1 P Post Π psq such that rrtss Ď rrt 1 ss.

Proof. Let t " pr, S, Ψq P Postpsq. By the definition of Post Π , we have t 1 " pr, S, Ψ 7 q P Post Π psq, where Ψ Ñ Ψ 7 , thus rrtss Ď rrt 1 ss.

[ \ Lemma 7. Given a network A, an observer B, and a predicate map Π, for each product state s and each configuration pq, P, νq P succ A e ˆBprrsssq there exists a product state t P Post Π psq such that pq, P, νq P rrtss.

Proof. We use the fact that succ A e ˆBprrsssq " Ť tPPostpsq rrtss (Lemma 5) and that for each t P Postpsq there exists t 1 P Post Π psq such that rrtss Ď rrt 1 ss (Lemma 6).

[ \

The proof of soundness of Algorithm 1 relies on the inductive invariants (Inv 1 ) and (Inv 2 ) from the following lemma.

L s pA e ˆBq be a trace such that DistpVisited new q " n. Then there exists a run pq 0 , P 0 , ν 0 q

σ 0 Ý Ñ pq 1 , P 1 , ν 1 q σ 1 Ý Ñ . . . σ n´1
Ý ÝÝ Ñ pq n , P n , ν n q of A e ˆB over w such that pq 0 , P 0 , ν 0 q P rrsss and pq n , P n q a final state of A e ˆB. Since Γ new is closed due to (Inv 1 ) and pq 1 , P 1 , ν 1 q P succ A e ˆBprrsssq, there exists a node xs 1 , p 1 y P Visited new Y Next new such that L pq 1 ,P 1 ,ν 1 q pA e ˆBq Ď L s 1 pA e ˆBq. If xs 1 , p 1 y P Next new , we obtain that DistpNext new q ď n´1, and we are done. Otherwise, xs 1 , p 1 y P Visited new , and we can repeat the same argument inductively, to discover a sequence of nodes xs 1 , p 1 y, . . . , xs n , p n y P Visited new such that L pq i ,P i ,ν i q pA e ˆBq Ď L s n pA e ˆBq for all i P r1, ns. Since pq n , P n q is a final state of A e ˆB, we have pν n , ˛q P L pq i ,P i ,ν i q pA e Bq, thus pν n , ˛q P L s n pA e ˆBq, and s n is an accepting product state. But this contradicts with the fact that accepting product states are never stored in the antichain.

[ \ Back to the proof of Theorem 1:

Proof. If Algorithm 1 terminates and reports true, this is because Next " H, hence DistpNextq " 8. By Lemma 8 (Inv 2 ), we obtain that Distproot xA,By q " 8. Suppose, by contradiction, that LpAqÓ x B Ę LpBq. By Lemma 2, there exists a trace w " pν 0 , σ 0 qpν 1 , σ 1 q . . . pν n , ˛q P LpA e ˆBq .

Thus we have a run of A e ˆB over w:

pq 0 , P 0 , ν 0 q σ 0 Ý Ñ pq 1 , P 1 , ν 1 q σ 1 Ý Ñ . . . σ n´1
Ý ÝÝ Ñ pq n , P n , ν n q where q 0 " xι 1 , . . . , ι N y, P 0 " tι B u, q n is final in A e , P n XF B " H. But, since pq 0 , P 0 , ν 0 q P rrroot xA,By ss, we have w P L root xA,By pA e ˆBq. Hence, Distproot xA,By q ď n, which is in contradiction with the fact that Distproot xA,By q " 8. Consequently, it must be the case that LpAqÓ x B Ď LpBq.

[ \

Computing Simulations of Data Automata

In the case of classical Rabin-Scott finite automata over finite alphabets, a simulation [START_REF] Milner | An algebraic definition of simulation between programs[END_REF] is a relation on the states of an automaton, which is invariant with respect to the transition relation of the automaton. The simulation-based approach for checking language inclusion between two automata A and B first computes a simulation relation on the union of the states of A and B, then checks whether the pair of initial states is a member of the simulation relation. This method is not complete because there exist automata, such that LpAq Ď LpBq, but the initial state of A is not simulated by the initial state of B. A pre-computed simulation relation can be used however to speed up the convergence of the antichain-based method, by weakening the subsumption relation used by the antichain construction algorithm [START_REF] Abdulla | When simulation meets antichains[END_REF].

In this section, we define a notion of simulation between data automata and give an algorithm that computes useful under-approximations of the weakest simulation on a data automaton. The simulation relation can be used to enhance the convergence of Algorithm 1, similar to the way in which classical simulations are integrated with the antichain-based language inclusion algorithm for automata over finite alphabets [START_REF] Abdulla | When simulation meets antichains[END_REF]. Definition 3. A relation R Ď QˆD x ˆQ is a data simulation for a DA A " xΣ, D,x,Q,ι,F,∆y if and only if, for all pq, ν, q 1 q P R the following hold:

1. q P F only if q 1 P F, and 2. for all σ P Σ and all pr, ν 1 q P Q ˆDx such that pq, νq σ Ý Ñ A pr, ν 1 q there exists r 1 P Q such that pq 1 , νq σ Ý Ñ A pr 1 , ν 1 q and pr, ν 1 , r 1 q P R.

Observe that, while a classical simulation is a binary relation on states, a data simulation is a ternary relation involving also a valuation of the variables. The following lemma shows that a data simulation preserves residual languages. Lemma 9. Given a DA A " xΣ, D,x,Q,ι,F,∆y and R Ď Q ˆDx ˆQ a data simulation for A, for any tuple pq, ν, q 1 q P R we have L pq,νq pAq Ď L pq 1 ,νq pAq.

Proof. Let pq, νq " pq 0 , ν 0 q σ 0 Ý Ñ . . .

σ n´1
Ý ÝÝ Ñ pq n , ν n q be a run of A such that q n P F. By induction on n ě 0 we find a run pq 1 , νq " pq 1 0 , ν 0 q σ 0 Ý Ñ . . .

σ n´1
Ý ÝÝ Ñ pq 1 n , ν n q of A, such that pq i , ν i , q 1 i q P R, for all i P r0, ns. Moreover, since q n P F, we also obtain q 1 n .

[ \ Let A " xΣ, D,x,Q,ι,F,∆y, where Q " tq 1 , . . . , q k u, for some k ą 0, be a DA for the rest of this section. The data simulation algorithm (Algorithm 2) given in this section manipulates sets of valuations from D x that are definable by first-order formulae in ThpDq. A relation R Ď Q ˆDx ˆQ is said to be definable if and only if there exists a matrix Φ " rφ i j s k i, j"1 of formulae φ i j pxq P ThpDq such that pq i , ν, q j q P R ô ν |ù φ i j . For P r1, ks, we denote by Φ the -th row of the matrix Φ.

Algorithm 2 is a refinement algorithm which handles two matrices of formulae that define the relations Sim, PrevSim Ď Q ˆDx ˆQ. In the following we shall use the same names to denote the relations and their matrix representations. Intuitively, PrevSim is the previous candidate for simulation, whereas Sim is a entry-wise stronger relation, that refines PrevSim. The refinement step is performed backwards, with respect to each transition rule q i σ,φ Ý Ñ q of the automaton. Namely, for each pair of valuations such that pν, ν 1 q |ù ThpDq φ and pq , ν 1 , q m q P PrevSim for some state q m , we add the tuple pq i , ν, q j q P Sim for all predecessors q j of q m , such that q j σ,ψ ÝÑ q m and pν, ν 1 q |ù ThpDq ψ. This update guarantees that, for every transition pq i , νq σ Ý Ñ A pq , ν 1 q, where pq i , ν, q j q P Sim there exists a state q m such that pq j , νq σ Ý Ñ A pq m , ν 1 q and pq , ν 1 , q m q P PrevSim. The algorithm stops when Sim and PrevSim define the same relation, which is, moreover, a simulation.

To define the update, we use the following function:

PreSim σ pi, j, , Rq " @x 1 . φpx, x 1 q Ñ ł q j σ,ψ ÝÑqm ψpx, x 1 q ^R m px 1 q, where q σ,φ Ý Ñ q 1 P ∆ .

We define also the sets post σ pqq "

! q 1 | q σ,φ Ý Ñ q 1 P ∆ )
and pre σ pqq "

! q 1 | q 1 σ,φ Ý Ñ q P ∆
) . With this notation, Algorithm 2 describes the procedure that computes a data simulation for a given data automaton.

Initially, the matrix PrevSim is true everywhere (line 3). The current simulation candidate Sim is initialized to false for all i, j P r1, ks such that q i P F and q j R F (line 7). Observe that, in this case q j cannot simulate q i , by Definition 3 [START_REF] Abdulla | When simulation meets antichains[END_REF]. Otherwise, we initialize Sim i j to the strongest pre-simulation with respect to PrevSim (line 9). In the iterative loop (lines 10-20) the algorithm choses a state q for which the current simulation candidate Sim is not equivalent to the previous one PrevSim (line 10) and sharpens the set Sim i j , with respect to the transition rule q i σ,φ Ý Ñ q , for all input symbols σ P Σ and all peer states q j , j P r1, ks (line 14). The following invariants are key to proving the correctness of Algorithm 2.

Lemma 10. The following invariants hold each time Algorithm 2 reaches line 10:

-(SimInv 1 ) @i, j P r1, ks : Sim i j Ñ PrevSim i j .

-(SimInv 2 ) @σ P Σ @i, j, P r1, ks @ν, ν 1 P D x : ν |ù ThpDq Sim i j and pq i , νq σ Ý Ñ pq , ν 1 q ñ Dm P r1, ks : pq j , νq σ Ý Ñ pq m , ν 1 q and ν 1 |ù ThpDq PrevSim m .

Proof. Let Sim 1 and PrevSim 1 denote the global matrices after one iteration of the loop on lines 10-20.

(SimInv 1 ) When line 10 is reached for the first time, PrevSim i j " J, for all i, j P r1, ks, thus SimInv 1 holds initially. Since Sim is modified only at lines 14 or 17, we have Sim i j Ñ Sim 1 i j , for all i, j P r1, ks. Moreover, either PrevSim 1 i j " Sim i j , or PrevSim 1 i j " PrevSim i j , for all i, j P r1, ks (line 20). Thus PrevSim 1 i j Ñ Sim i j Ñ Sim 1 i j , for all i, j P r1, ks, by an application of the induction hypothesis.

(SimInv 2 ) We show that this invariant holds the first time the control reaches line 10. Let σ P Σ, i, j, P r1, ks and ν, ν 1 P D x such that ν |ù ThpDq Sim i j and pq i , νq σ Ý Ñ pq , ν 1 q. Since Algorithm 2 Data Simulation Algorithm input: a data automaton A " xΣ, D,x,Q,ι,F,∆y, where Q " tq 1 , . . . , q k u and a constant K ą 0 output: a data simulation R Ď Q ˆDx ˆQ for A global vars rSim i j s k i, j"1 , rPrevSim i j s k i, j"1 , rCnt i j s k i, j"1

1: for i " 1, . . . , k do 2: for j " 1, . . . , k do 3:

PrevSim i j Ð J 4:

Cnt i j Ð K

5:

for j " 1, . . . , k do 6:

if q i P F and q j R F then 7:

Sim i j Ð K 8: else 9:

Sim i j Ð Ź σPΣ Ź q Ppost σ pq i q PreSim σ pi, j, , PrevSimq 10: for all P r1, ks such that Sim ô PrevSim do 11:

for σ P Σ do 12:

for q i P pre σ pq q do 13:

for j " 1, . . . , k do 14:

Sim i j Ð Sim i j ^PreSim σ pi, j, , Simq 15: for all j " 1, . . . , k such that Sim j ô PrevSim j do 16:

if Cnt j " 0 then 17:

Sim j Ð K 18: else 19:

Cnt j Ð Cnt j ´1

20:

PrevSim Ð Sim 21: return Sim ν |ù ThpDq Sim i j (thus Sim i j ‰ K) and q P post σ pq i q we have that ν |ù ThpDq PreSim σ pi, j, , PrevSimq, where q i σ,φ Ý Ñ q P ∆. Since pq i , νq σ Ý Ñ pq , ν 1 q we obtain that pν, ν 1 q |ù ThpDq φpx, x 1 q, and consequently pν, ν 1 q |ù ThpDq ψpx, x 1 q ^PrevSim m px 1 q, for some m P r1, ks, such that q j σ,ψ ÝÑ q m P ∆. Hence SimInv 2 holds when the control first reaches line 10. For the induction step, let us assume that SimInv 2 holds at line 10 and we prove that it holds also after executing line 20. Let σ P Σ, i, j, P r1, ks and ν, ν 1 P D x such that ν |ù ThpDq Sim 1 i j and pq i , νq σ Ý Ñ pq , ν 1 q. We distinguish two cases: 1. if Sim ô PrevSim on line 10, since q i P pre σ pq q, then Sim 1 i j was updated at line 14. Since ν |ù ThpDq Sim 1 i j , we obtain ν |ù ThpDq PreSim σ pq i , q j , q , Simq. Moreover, PrevSim 1 is updated to Sim 1 at line 20, hence ν |ù ThpDq PreSim σ pq i , q j , q , PrevSim 1 q as well. Since pq i , νq σ Ý Ñ pq , ν 1 q, we obtain that pν, ν 1 q |ù ThpDq ψpx, x 1 q^PrevSim 1 m px 1 q, for some m P r1, ks such that q j σ,ψ ÝÑ q m P ∆, thus pν, ν 1 q |ù ThpDq ψpx, x 1 q and ν 1 |ù ThpDq PrevSim 1 m . Thus SimInv 2 holds for Sim 1 and PrevSim 1 . 2. else Sim ô PrevSim on line 10, PrevSim 1 ô PrevSim because the update on line 20 is skipped, and for all q i P pre σ pq q and all j P r1, ks, we have Sim 1 i j ô Sim i j . Then SimInv 2 holds for Sim 1 and PrevSim 1 because it holds for Sim and PrevSim, by the induction hypothesis.

[ \

The algorithm iterates the loop on lines [START_REF] D'antoni | Symbolic visibly pushdown automata[END_REF][START_REF] Decker | Ordered navigation on multi-attributed data words[END_REF][START_REF] Dhar | Algorithms For Model-Checking Flat Counter Systems[END_REF][START_REF] Fribourg | A closed-form evaluation for extended timed automata[END_REF][START_REF] Grebenshchikov | Synthesizing software verifiers from proof rules[END_REF][START_REF] Habermehl | A logic of singly indexed arrays[END_REF][START_REF] Habermehl | What else is decidable about integer arrays?[END_REF][START_REF] Henzinger | Lazy abstraction[END_REF][START_REF] Henzinger | Software Verification with Blast[END_REF][START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF][START_REF] Iosif | Abstraction refinement for trace inclusion of data automata[END_REF] until Sim and PrevSim define the same relation. Since, in general the data constraints Sim i j , at each iteration step, might form an infinitely decreasing sequence, we use the matrix Cnt of integer counters, initially set to some input value K ą 0 (line 4). Observe that each entry Cnt i j decreases every time Sim i j ô PrevSim i j (line 19). When the counter Cnt i j reaches zero, we set Sim i j to false (line 17), which guarantees that Sim i j ô PrevSim i j always in the future. Since the number of entries in the counter matrix is finite, the algorithm is guaranteed to terminate. The following theorem summarizes the main result of this section. Theorem 2. Let A " xΣ, D,x,Q,ι,F,∆y be a DA. Then Algorithm 2 terminates on input A and the output is a data simulation R Ď Q ˆDx ˆQ for A.

Proof. Let Sim n and PrevSim n denote the matrices Sim and PrevSim at the n-th iteration of the loop on lines 10-20, for n ě 0. Algorithm 2 terminates whenever Sim n i j ô PrevSim n i j , for all i, j P r1, ks (line 10). Suppose, by contradiction, that this never happens, thus there exist i, j P r1, ks such that Sim n i j ô PrevSim n i j , for all n ě 0. Then Cnt K i j " 0 (line 19) and Sim K`1 i j " PrevSim K`2 i j " K (lines 17 and 20). Since Sim n i j Ñ PrevSim n i j , by Lemma 10 (SimInv 1 ), we obtain that Sim K`2 i j " PrevSim K`2 i j , contradiction. To prove that the output of Algorithm 2 is a data simulation for A, we use Lemma 10 (SimInv 2 ) and the fact that, upon termination, we have Sim i j ô PrevSim i j , for all i, j P r1, ks.

[ \

Simulation and Subsumption

Finally, we explain how a data simulation relation computed by Algorithm 2 can be used to optimize the trace inclusion semi-algorithm. Let A " xA 1 , . . . , A N y be DAN, where A i " xD, Σ i , x i , Q i , ι i , F i , ∆ i y, for all i P r1, Ns, and B " xD, Σ, x B , Q B , ι B , F B , ∆ B y be an observer DA such that x B Ď Ť N i"1 x i . The main problem in using data simulation to enhance the convergence of our trace inclusion semi-algorithm is related to the fact that simulation relations are, in general, not compositional w.r.t. the interleaving semantics of the network. In other words, if we have N data simulations R i Ď Q i ˆDx i ˆQi , then their cross-product R Ď Q A ˆDx A QA defined as: @q 1 , r 1 P Q 1 . . . @q N , r N P Q N @ν P D x A : pxq 1 , . . . , q N y, ν, xr 1 , . . . , r N yq P R ô pq i , νÓ x i , r i q P R i is not necessarily a simulation on the network expansion A e . The reason for this can be seen for N " 2. Let σ 1 , σ 2 P Σ A , such that σ 1 R Σ 2 and σ 2 R Σ 1 . The execution of A e on the sequence of input symbols σ 1 σ 2 is pxq 1 , q 2 y, νq σ 1 Ý Ñ pxq 1 1 , q 2 y, ν 1 q σ 2 Ý Ñ pxq 1 1 , q 1 2 y, ν 2 q. Suppose that pq i , νÓ x i , r i q P R i , i " 1, 2. Then there exists r 1 1 P Q 1 such that pxr 1 , r 2 y, νq σ 1

Ý Ñ pxr 1 1 , r 2 y, ν 1 q and pq 1 1 , ν 1 Ó x 1 , r 1 1 q P R 1 . In order to use the simulation and build the continuation pxr 1 1 , r 2 y, ν 1 q σ 2 Ý Ñ pxr 1 1 , r 1 2 y, ν 2 q, we would need that pq 2 , ν 1 Ó x 2 , r 2 q P R 2 , which is not necessarily ensured by the hypothesis pq 2 , νÓ x 2 , r 2 q P R 2 .

We propose a partial solution to this problem, based on a restriction concerning the distribution of the network variables x A " Ť N i"1 x i over the components A 1 , . . . , A N : for each i P r1, Ns, we have x i " x g Y x i , where x g is a set of global variables, and x i are the local variables of A i . In other words, the only variables shared between more than one component are x g , which, moreover, are visible to all components.

Then the problem can be bypassed if none of the simulation relations R i Ď Q i Dx i ˆQi may constrain the global variables: Assumption 3. For each i P r1, Ns and each pq i , ν, r i q P R i we also have pq i , ν 1 , r i q P R i for each ν 1 P D x i such that νÓ x i " ν 1 Ó x i .

Under this assumption, we use pre-computed data simulations R i Ď Q i ˆDx g ˆQi and R B Ď Q B ˆDx B ˆQB to generalize the basic subsumption relation between product states (defined by Lemma 4) thus speeding up the convergence of Algorithm 1.

Lemma 11. Under assumption 3, the relation defined as: pxq 1 , . . . , q N y, P, Φq Ď sim pxr 1 , . . . , r N y, S, Ψq ô @i P r1, Ns @ν P D x A : ν |ù Φ ñ ν |ù Ψ and " pq i , νÓ x i , r i q P R i @p P SDq P P . pp, νÓ x B , qq P R B is a subsumption relation. Proof. Let s " pxq 1 , . . . , q N y, P, Φq and t " pxr 1 , . . . , r N y, S, Ψq be two product states, such that s Ď sim t. According to Definition 2, we need to prove that L s pA e ˆBq Ď L t pA e ˆBq. To this end, it is sufficient to prove that for each ν P D x A such that ν |ù Φ:

1. L pxq 1 ,...,q N y,νq pA e q Ď L pxr 1 ,...,r N y,νq pA e q, and 2. for all p P S there exists q P P such that L p p, νÓ x B qpBq Ď L p q, νÓ x B qpBq.

Assuming that the above statements hold, we have:

L s pA e ˆBq " Ť ν|ùΦ ´Lpxq 1 ,...,q N y,νq pA e q X Ş qPP L pq,νÓ x B q pBq Ď Ť ν|ùΦ ´Lpxr 1 ,...,r N y,νq pA e q X Ş pPS L pp,νÓ x B q pBq Ď Ť ν|ùΨ ´Lpxr 1 ,...,r N y,νq pA e q X Ş pPS L pp,νÓ x B q pBq " L t pA e ˆBq and we are done. Moreover, the second point above is a direct consequence of the second point of the definition of Ď sim and Definition 2. We are left with proving the first point. Let pxq 1 , . . . , q N y, νq σ Ý Ñ pxq 1 1 , . . . , q 1 N y, ν 1 q be a transition of A e and let pxr 1 , . . . , r N y, νq be a configuration of A e such that pq i , νÓ x i , r i q P R i , for each i P r1, Ns. Let i P r1, Ns be an arbitrary component, and distinguish two cases:

if q i σ,φ i Ý Ý Ñ q 1 i P ∆ i and pνÓ x i , ν 1 Ó x i q |ù ThpDq φ i , i.e. pq i , νÓ x i q σ Ý Ñ pq 1 i , ν 1 Ó x i q, then, since pq i , νÓ x i , r i q P R i there exists r 1 i P Q i s.t. pr i , νÓ x i q σ Ý Ñ pr 1 i , νÓ x i q and pq 1 i , νÓ x i , r 1 i q P R i . otherwise, q i " q 1 i and νÓ x i " ν 1 Ó x i . By Assumption 3, we obtain pq i , ν 1 Ó x i , r i q P R i . By chosing r 1 i " r i , we obtain pq 1 i , ν 1 Ó x i , r 1 i q P R i . Hence pq 1 i , ν 1 Ó x i , r 1 i q P R i , for all i P r1, Ns. Thus, the relation defined as: pxq 1 , . . . , q N y, ν, xr 1 , . . . , r N yq P R ô @i P r1, Ns : pq i , νÓ x i , r i q P R i is a data simulation (Definition 3), thus, by Lemma 9, we obtain that L pxq 1 ,...,q N y,νq pA e q Ď L pxr 1 ,...,r N y,νq pA e q, for all ν P D x A , such that ν |ù ThpDq Φ, and the first point above holds.

[ \

Experimental Results

We have implemented Algorithm 1 in a prototype tool 3 using the MATHSAT SMT solver [START_REF] Cimatti | The MathSAT5 SMT Solver[END_REF] for answering the satisfiability queries and computing the interpolants. The results of the experiments are given in Tables 1 and2. The results were obtained on an Intel i7-4770 CPU @ 3.40GHz machine with 32GB RAM. Table 1 contains experiments where the network A consists of a single component.

We applied the tool on several verification conditions generated from imperative programs with arrays [START_REF] Bozga | Automatic verification of integer array programs[END_REF] (Array shift, Array rotation 1+2, Array split) available online [START_REF]Numerical Transition Systems Repository[END_REF].

Then, we applied it on models of hardware circuits (HW Counter 1+2, Synchronous LIFO) [START_REF] Smrcka | Verifying parametrised hardware designs via counter automata[END_REF]. Finally, we checked two versions (correct and faulty) of the timed Alternating Bit Protocol [START_REF] Zbrzezny | Sat-based reachability checking for timed automata with discrete data[END_REF].

Table 2 provides a list of experiments where the network A has N ą 1 components.

First, we have the example of Fig. 1 (Running). Next, we have several examples of realtime verification problems [START_REF] Tripakis | The analysis of timed systems in practice[END_REF]: a controller of a railroad crossing [START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF] (Train) with T trains, the Fischer Mutual Exclusion protocol with deadlines ∆ and Γ (Fischer), and a hardware communication circuit with K stages, composed of timed NOR gates (Stari). Third, we have modelled a Producer-Consumer example [START_REF] Dhar | Algorithms For Model-Checking Flat Counter Systems[END_REF] with a fixed buffer size B. Fourth, we have experimented with several models of parallel programs that manipulate arrays (Array init, Array copy, Array join) with window size ∆.

For the time being, our implementation is a proof-of-concept prototype that leaves plenty of room for optimization (e.g. caching intermediate computation results) likely to improve the performance on more complicated examples. Despite that, we found the results from Tables 1 and 2 rather encouraging.

Conclusions

We have presented an interpolation-based abstraction refinement method for trace inclusion between a network of data automata and an observer where the variables used 3 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/ by the observer are a subset of those used by the network. The procedure builds on a new determinization result for DAs and combines in a novel way predicate abstraction and interpolation with antichain-based inclusion checking. The procedure has been successfully applied to several examples, including verification problems for array programs, real-time systems, and hardware designs. Future work includes an extension of the method to data tree automata and its application to logics for heaps with data. Also, we foresee an extension of the method to handle infinite traces.

Fig. 1 .

 1 An instance of the trace inclusion problem.

  , an antichain T is a set of pairs xs, py, where s is a product state and p P N ˚is a tree position, such that(1) for each position p P N ˚there exists at most one product state s such that xs, py P T , (2) the set tp | xs, py P T u is prefix-closed, (3) proot xA,By , εq P T where root xA,By " pxι 1 , . . . , ι N y, tι B u, Jq is the label of the root, and (4) for each edge pxs, py, xt, p.iyq in T , there exists a predicate map Π such that t P Post Π psq. For the latter condition, if s " pq, P, Φq and t " pr, S, Ψq, there exists a unique rule pq, Pq Sq P ∆ p , and we shall sometimes denote the edge as s

	σ,θ Ý Ñ pr, σ,θ

  , otherwise a trace τ P LpAq Ó x B zLpBq . 1: Π Ð H, Visited Ð H, Next Ð xroot xA,By , εy, Subsume Ð H 2: while Next ‰ H do 3: chose curr P Next and move curr from Next to Visited ρ be the path from the root to curr and k be the pivot of ρ

	4:	match curr with xs, py
	5:	if s is an accepting product state then
	6:	
	7:	if k ě 0 then
	8:	Π Ð REFINEPREDICATEMAPBYINTERPOLATIONpΠ, ρ, kq
	9:	rem Ð SUBTREEpρ k q
	10:	for pn, mq P Subsume such that m P rem do
	11:	move n from Visited to Next
	12:	remove rem from pVisited, Next, Subsumeq
	13:	add ρ k to Next
	14:	else
	15:	return EXTRACTCOUNTEREXAMPLEpρq
	16:	else
	17:	i Ð 0
	18:	

let for t P Post Π psq do 19: if there exists m " xt 1 , p 1 y P Visited such that t Ď t 1 then 20: add pcurr, mq to Subsume 21: else 22: rem Ð tn P Next | n " xt 1 , p 1 y and t 1 < tu 23: succ Ð xt, p.iy

Table 1 .

 1 Experiments with single-component networks.

	Example	A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
	Arrays shift	3/3	3/4	5 ok ă 0.1s
	Array rotation 1	4/5	4/5	7 ok 0.1s
	Array rotation 2	8/21	6/24	11 ok	34s
	Array split	20/103	6/26	14 ok 4m32s
	HW counter 1	2/3	1/2	2 ok 0.2s
	HW counter 2	6/12	1/2	2 ok 0.4s
	Synchr. LIFO	4/34	2/15	4 ok 2.5s
	ABP-error	14/20	2/6	14 cex	2s
	ABP-correct	14/20	2/6	14 ok	3s

Table 2 .

 2 Experiments with multiple-component networks (e.g., 2 ˆ2{2 `2 ˆ3{3 in column A means that A is a network with 4 components, of which 2 DA with 2 states and 2 rules, and 2 DA with 3 states and 3 rules).

	Example	N	A (|Q|/|∆|)	B (|Q|/|∆|) Vars. Res. Time
	Running	2	2ˆ2/2	3/4	3 ok 0.2s
	Running	10	10ˆ2/2	11/20	3 ok 25s
	Train (T " 5)	7	5ˆ3/3 + 4/4 + 4/4	2/38	1 ok	4s
	Train (T " 20)	22	20ˆ3/3 + 4/4 + 4/4	2/128	1 ok 6m26s
	Fischer (∆ " 1, Γ " 2) 2	2ˆ5/6	1/10	4 ok	8s
	Fischer (∆ " 1, Γ " 2) 3	3ˆ5/6	1/15	4 ok 2m48s
	Fischer (∆ " 2, Γ " 1) 2	2ˆ5/6	1/10	4 cex 3s
	Fischer (∆ " 2, Γ " 1) 3	3ˆ5/6	1/15	4 cex 32s
	Stari (K " 1)	5	4/5 + 2/4 + 5/7 + 5/7 + 5/7	3/6	3 ok 0.5s
	Stari (K " 2)	8 4/5 + 2/4 + 2ˆ5/7 + 2ˆ5/7 + 2ˆ5/7	3/6	3 ok 0.5s
	Prod-Cons (B " 3)	2	4/4 + 4/4	2/7	2 ok 10s
	Prod-Cons (B " 6)	2	4/4 + 4/4	2/7	2 ok 2m32s
	Array init (∆ " 2)	5	5ˆ2/2	2/6	2 ok	3s
	Array init (∆ " 2)	15	15ˆ2/2	2/16	2 ok 3m15s
	Array copy (∆ " 20) 20	20ˆ2/2	2/21	3 ok 0.3s
	Array copy (∆ " 20) 150	150ˆ2/2	2/151	3 ok 43s
	Array join (∆ " 10)	4	2ˆ2/2 + 2ˆ3/3	2/3	2 ok	6s
	Array join (∆ " 20)	6	3ˆ2/2 + 3ˆ3/3	2/4	2 ok 1m9s

For (in)finite words, the class of LTL-definable languages coincides with the star-free languages, which are a strict subclass of (ω-)regular languages.

For timed automata, this is the case since the only shared variable is the time, and the observer may have local clocks.
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Lemma 8. The following invariants hold each time line 2 is reached in Algorithm 1:

-(Inv 1 ) Γ " pΠ, Visited, Next, Subsumeq is closed, -(Inv 2 ) Distproot xA,By q ă 8 ñ DistpVisitedq ą DistpNextq.

Proof. Initially, when coming to line 2 for the first time, we have Visited " H, thus DistpVisitedq " 8, and both invariants hold trivially. For the case when coming to line 2 after executing the loop body, we denote by:

the antichain states before and after the execution of the main loop. We assume that both invariants hold for Γ old .

(Inv 1 ) Let xs, py P Visited new and pq, P, νq P succ A e ˆBprrsssq. We distinguish two cases according to the control path taken inside the main loop:

(1) If the test on line 5 is positive, the predicate map is augmented, i.e. Π new Ě Π old (line 8). Let Γ 1 " pΠ new , Visited old , Next old , Subsume old q be the next antichain state. Clearly Γ 1 is closed provided that Γ old is. Next, let n pivot P Visited old be the pivot of the path to the current node (line 6) and define the following sets of nodes:

T " SUBTREEpn pivot q S " tn P Visited old | Dm P T . pn, mq P Subsume old u

Then we obtain (lines 10-13): Next old such that L pq,P,νq pA e ˆBq Ď L u pA e ˆBq and either r " p.i for some i P N or pxs, py, xu, ryq P Subsume old . We distinguish two sub-cases: (i) xu, ry P rem (line 22). Then L u pA e ˆBq Ď L t pA e ˆBq (Definition 2), hence L pq,P,νq pA e ˆBq Ď L t pA e ˆBq. such that DistpVisited new q " Distpsq ă 8. Let w " pν 0 , σ 0 q, pν 1 , σ 1 q, . . . , pν n , ˛q P