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Introduction

Separation Logic (SL) [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] is a logical framework for describing dynamically allocated mutable data structures generated by programs that use pointers and low-level memory allocation primitives. The logics in this framework are used by a number of academic (Space Invader [START_REF] Berdine | Shape analysis for composite data structures[END_REF]), and industrial (Infer [START_REF] Calcagno | Infer: An automatic program verifier for memory safety of c programs[END_REF]) tools for program verification. The main reason for choosing to work within the SL framework is its ability to provide compositional proofs of programs, based on the principle of local reasoning: analyzing different parts of the program (e.g. functions, threads), that work on disjoint parts of the heap, and combining the analysis results a posteriori.

The main ingredients of SL are: (i) the separating conjunction φ * ψ, which asserts that φ and ψ hold for separate portions of the memory (heap), and (ii) the magic wand ϕ -- * ψ, which asserts that any extension of the heap by a disjoint heap that satisfies ϕ must satisfy ψ. Consider, for instance, a memory configuration (heap), in which two cells are allocated, and pointed to by the program variables x and y, respectively, where the x cell has an outgoing selector field to the y cell, and vice versa. The heap can be split into two disjoint parts, each containing exactly one cell, and described by an atomic proposition x → y and y → x, respectively. Then the entire heap is described by the formula x → y * y → x, which reads "x points to y and, separately, y points to x".

The expressive power of SL comes with the inherent difficulty of automatically reasoning about the satisfiability of its formulae, as required by push-button program analysis tools. Indeed, SL becomes undecidable in the presence of first-order quantification, even when the fragment uses only points-to predicates, without the separating conjunction or the magic wand [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. Moreover, the quantifier-free fragment with no data constraints, using only points-to predicates x → (y, z), where x, y and z are interpreted as memory addresses, is PSPACE-complete, due to the implicit quantification over memory partitions, induced by the semantics of the separation logic connectives [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. This paper presents a decision procedure for quantifier-free SL which is entirely parameterized by a base theory T of heap locations and data, i.e. the sorts of memory addresses and their contents can be chosen from a large variety of available theories handled by Satisfiability Modulo Theories (SMT) solvers, such as linear integer (real) arithmetic, strings, sets, uninterpreted functions, etc. Given a base theory T , we call SL(T ) the set of separation logic formulae built on top of T , by considering points-to predicates and the separation logic connectives.

Contributions First, we show that the satisfiability problem for the quantifier-free fragment of SL(T ) is PSPACE-complete, provided that the satisfiability of the quantifierfree fragment of the base theory T is in PSPACE. Our method is based on a semanticspreserving translation of SL(T ) into second-order T formulae with quantifiers over a domain of sets and uninterpreted functions, whose cardinality is polynomially bound by the size of the input formula. For the fragment of T formulae produced by the translation from SL(T ), we developed a lazy quantifier instantiation method, based on counterexample-driven refinement. We show that the quantifier instantiation algorithm is sound, complete and terminates on the fragment under consideration. We present our algorithm for the satisfiability of quantifier-free SL(T ) logics as a component of a DPLL(T ) architecture, which is widely used by modern SMT solvers. We have implemented the technique as a subsolver of the CVC4 SMT solver [START_REF] Barrett | CAV'11[END_REF] and carried out experiments that handle non-trivial examples quite effectively. Applications of our procedure include:

1. Integration within theorem provers for SL with inductive predicates. Most inductive provers for SL use a high-level proof search strategy relying on a separate decision procedure for entailments in the non-inductive fragment, used to simplify the proof obligations, by discharging the non-inductive parts of both left-and right-hand sides, and attain an inductive hypothesis [START_REF] Brotherston | A generic cyclic theorem prover[END_REF]. Due to the hard problem of proving entailments in the non-inductive fragment of SL, these predicates use very simple non-inductive formulae (a list of points-to propositions connected with separating conjunction), for which entailments are proved by syntactic substitutions and matching. Our work aims at extending the language of inductive SL solvers, by outsourcing entailments in a generic non-inductive fragment to a specialized procedure. To this end, we conducted experiments on several entailments corresponding to finite unfoldings of inductive predicates used in practice (Section 6). 2. Use as back-end of a bounded model checker for programs with pointer and data manipulations, based on a complete weakest precondition calculus that involves the magic wand connective [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF]. To corroborate this hypothesis, we tested our procedure on verification conditions automatically generated by applying the weakest precondition calculus described in [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF] to several program fragments (Section 6).

Related Work

The study of the algorithmic properties of Separation Logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] has produced an extensive body of literature over time. We need to distinguish between SL with inductive predicates and restrictive non-inductive fragments, and SL without inductive predicates, which is the focus of this paper.

Regarding SL with fixed inductive predicates, Perez and Rybalchenko [START_REF] Navarro Pérez | Separation logic + superposition calculus = heap theorem prover[END_REF] define a theorem proving framework relying on a combination of SL inference rules dealing with singly-linked lists only, and a superposition calculus dealing with equalities and aliasing between variables. Concerning SL with generic user-provided inductive predicates, the theorem prover Cyclist [START_REF] Brotherston | A generic cyclic theorem prover[END_REF] builds entailment proofs using a sequent calculus. More recently, the tool Slide [START_REF] Iosif | Slide: Separation logic with inductive definitions[END_REF] reduces the entailment between inductive predicates to an inclusion between tree automata. The great majority of these inductive provers focus on applying induction strategies efficiently, and consider a very simple fragment of noninductive SL formulae, typically conjunctions of equalities and disequalities between location variables and separated points-to predicates, without negations or the magic wand. On a more general note, the tool Spen [START_REF] Enea | On automated lemma generation for separation logic with inductive definitions[END_REF] considers also arithmetic constraints between the data elements in the memory cells, but fixes the shape of the user-defined predicates.

The idea of applying SMT techniques to decide satisfiability of SL formulae is not new. In their work, Piskac, Wies and Zufferey translate from SL with singly-linked list segments [START_REF] Piskac | Automating separation logic using SMT[END_REF] and trees [START_REF] Piskac | Automating separation logic with trees and data[END_REF], respectively, into first-order logics (Grass and Grit) that are decidable in NP. The fragment handled in this paper is incomparable to the logics Grass [START_REF] Piskac | Automating separation logic using SMT[END_REF] and Grit [START_REF] Piskac | Automating separation logic with trees and data[END_REF]. On one hand, we do not consider predicates defining recursive data structures, such as singly-linked lists. On the other hand, we deal with the entire quantifier-free fragment of SL, including arbitrary nesting of the magic wand, separating conjunction and classical boolean connectives. As a result, the decision problem we consider is PSPACE-complete, due to the possibility of arbitrary nesting of the boolean and SL connectives. To the best of our knowledge, our implementation is also the first to enable theory combination involving SL, in a fine-grained fashion, directly within the DPLL(T ) loop.

The first theoretical results on decidability and complexity of SL without inductive predicates were given by Calcagno, Yang and O'Hearn [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF]. They show that the quantifier-free fragment of SL without data constraints is PSPACE-complete by an argument that enumerates a finite (yet large) set of heap models. Their argument shows also the difficulty of the problem, however it cannot be directly turned into an effective decision procedure, because of the ineffectiveness of model enumeration. Building up on this small model property for the quantifier-free fragment of SL, a translation to first-order logic over uninterpreted sorts with empty signature is described in [START_REF] Calcagno | From separation logic to first-order logic[END_REF]. This translation is very similar to our translation to multi-sorted second-order logic, the main difference being using bounded tuples instead of sets of bounded cardinality. It also provides a decision procedure, though no implementation is available for comparison. A more elaborate tableau-based decision procedure is described by Méry and Galmiche [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF]. This procedure generates verification conditions on-demand, but here no data constraints are considered, either.

Our procedure relies on a decision procedure for quantifier-free parametric theory of sets and on-demand techniques for quantifier instantiation. Decision procedures for the theory of sets in SMT are given in [START_REF] Suter | Sets with cardinality constraints in satisfiability modulo theories[END_REF][START_REF] Bansal | Decision Procedures for Finite Sets with Cardinality and Local Theory Extensions[END_REF]. Techniques for model-driven quantifier instantiation were introduced in the context of SMT in [START_REF] Ge | Complete instantiation for quantified formulas in satisfiability modulo theories[END_REF], and have been developed recently in [START_REF] Reynolds | Counterexample guided quantifier instantiation for synthesis in CVC4[END_REF][START_REF] Bjørner | Playing with quantified satisfaction[END_REF].

Preliminaries

We consider formulae in multi-sorted first-order logic, over a signature Σ consisting of a countable set of sort symbols and a set of function symbols. We assume that signatures always include a boolean sort Bool with constants and ⊥ denoting true and false respectively, and that each sort σ is implicitly equipped with an equality predicate ≈ over σ × σ. Moreover, we may assume without loss of generality that equality is the only predicate belonging to Σ, since we can model other predicate symbols as function symbols with return sort Bool4 .

We consider a set Var of first-order variables, with associated sorts, and denote by ϕ(x) the fact that the free variables of the formula ϕ belong to x ⊆ Var. Given a signature Σ, well-sorted terms, atoms, literals, and formulae are defined as usual, and referred to respectively as Σ-terms. We denote by φ[ϕ] the fact that ϕ is a subformula (subterm) of φ and by φ[ψ/ϕ] the result of replacing ϕ with ψ in φ. We write ∀x.ϕ to denote universal quantification over variable x, where x occurs as a free variable in ϕ. If x = x 1 , . . . , x n is a tuple of variables, we write ∀x ϕ as an abbreviation of ∀x 1 • • • ∀x n ϕ. We say that a Σ-term is ground if it contains no free variables. We assume that Σ contains an if-thenelse operator ite(b, t, u), of sort Bool × σ × σ → σ, for each sort σ, that evaluates to t if b is true, and to u, otherwise.

A Σ-interpretation I maps: (i) each set sort symbol σ ∈ Σ to a non-empty set σ I , the domain of σ in I, (ii

) each function symbol f ∈ Σ of sort σ 1 × . . . × σ n → σ to a total function f I of sort σ I 1 × . . . × σ I n → σ I if n > 0,
and to an element of σ I if n = 0, and (iii) each variable x ∈ x to an element of σ I

x , where σ x is the sort symbol associated with x. We denote by t I the interpretation of a term t induced by the mapping I. The satisfiability relation between Σ-interpretations and Σ-formulae, written I | = ϕ, is defined inductively, as usual. We say that I is a model of ϕ if I | = ϕ.

A first-order theory is a pair T = (Σ, I) where Σ is a signature and I is a nonempty set of Σ-interpretations, the models of T . For a formula ϕ, we denote by

[[ϕ]] T = {I ∈ I | I | = ϕ} its set of T -models. A Σ-formula ϕ is T -satisfiable if [[ϕ]] T ∅, and T - unsatisfiable otherwise. A Σ-formula ϕ is T -valid if [[ϕ]] T = I, i.e. if ¬ϕ is T -unsatisfiable. A formula ϕ T -entails a Σ-formula ψ, written ϕ | = T ψ, if every model of T that satisfies ϕ also satisfies ψ. The formulae ϕ and ψ are T -equivalent if ϕ | = T ψ and ψ | = T ϕ, and equisatisfiable (in T ) if ψ is T -satisfiable if and only if ϕ is T -satisfiable.
Furthermore, formulas ϕ and ψ are equivalent (up to k) if they are satisfied by the same set of models (when restricted to the interpretation of variables k). The T -satisfiability problem asks, given a Σ-formula ϕ, whether [[ϕ]] T ∅, i.e. whether ϕ has a T -model.

Separation Logic

In the remainder of the paper we fix a theory T = (Σ, I), such that the T -satisfiability for the language of quantifier-free boolean combinations of equalities and disequalties between Σ-terms is decidable. We fix two sorts Loc and Data from Σ, with no restriction other than the fact that Loc is always interpreted as a countably infinite set. We refer to Separation Logic for T , written SL (T ), as the set of formulae generated by the syntax:

φ := t ≈ u | t → u | emp | φ 1 * φ 2 | φ 1 - - * φ 2 | φ 1 ∧ φ 2 | ¬φ 1
where t and u are well-sorted Σ-terms and that for any atomic proposition t → u, t is of sort Loc and u is of sort Data. Also, we consider that Σ has a constant nil of sort Loc, with the meaning that t → u never holds when t ≈ nil. In the following, we write φ ∨ ψ for ¬(¬φ ∧ ¬ψ) and φ ⇒ ψ for ¬φ ∨ ψ.

Given an interpretation I, a heap is a finite partial mapping h : Loc I fin Data I . For a heap h, we denote by dom(h) its domain. For two heaps h 1 and h 2 , we write

h 1 #h 2 for dom(h 1 ) ∩ dom(h 2 ) = ∅ and h = h 1 h 2 for h 1 #h 2 and h = h 1 ∪ h 2 .
For an interpretation I, a heap h : Loc I fin Data I and a SL(T ) formula φ, we define the satisfaction relation I, h | = SL φ inductively, as follows:

I, h | = SL emp ⇐⇒ h = ∅ I, h | = SL t → u ⇐⇒ h = {(t I , u I )} and t I ≈ nil I I, h | = SL φ 1 * φ 2 ⇐⇒ ∃h 1 , h 2 . h = h 1 h 2 and I, h i | = SL φ i , for all i = 1, 2 I, h | = SL φ 1 - - * φ 2 ⇐⇒ ∀h if h #h and I, h | = SL φ 1 then I, h h | = SL φ 2
The satisfaction relation for the equality atoms t ≈ u and the Boolean connectives ∧, ¬ are the classical ones from first-order logic. In particular t ≈ t is always true, denoted by , for any given heap. The (SL, T )-satisfiability problem asks, given an SL formula ϕ, if there is a T -model I such that (I, h) | = SL ϕ for some heap h.

In this paper we tackle the (SL, T )-satisfiability problem, under the assumption that the quantifier-free data theory T = (Σ, I) has a decidable satisfiability problem for constraints involving Σ-terms. It has been proved [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF] that the satisfiability problem is PSPACE-complete for the fragment of separation logic in which Data is interpreted as the set of pairs of sort Loc. We generalize this result to any theory whose satisfiability problem, for the quantifier-free fragment, is in PSPACE. This is, in general, the case of most SMT theories, which are typically in NP, such as the linear arithmetic of integers and reals, possibly with sets and uninterpreted functions, etc.

Reducing SL (T ) to Multisorted Second-Order Logic

It is well-known [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] that separation logic cannot be formalized as a classical (unsorted) first-order theory, for instance, due to the behavior of the * connective, that does not comply with the standard rules of contraction φ ⇒ φ * φ and weakening φ * ϕ ⇒ φ5 . The basic reason is that φ * ϕ requires that φ and ϕ hold on disjoint heaps. Analogously, φ -- * ϕ holds on a heap whose extensions, by disjoint heaps satisfying φ, must satisfy ϕ. In the following, we leverage from the expressivity of multi-sorted first-order theories and translate SL(T ) formulae into quantified formulae in the language of T , assuming that T subsumes a theory of sets and uninterpreted functions.

The integration of separation logic within the DPLL(T) framework [START_REF] Ganzinger | Dpll(t): Fast decision procedures[END_REF] requires the input logic to be presented as a multi-sorted logic. To this end, we assume, without loss of generality, the existence of a fixed theory T = (Σ, I) that subsumes a theory of sets Set(σ) [START_REF] Bansal | Decision Procedures for Finite Sets with Cardinality and Local Theory Extensions[END_REF], for any sort σ of set elements, whose functions are the union ∪, intersection ∩ of sort Set(σ) × Set(σ) → Set(σ), singleton {.} of sort σ → Set(σ) and emptyset ∅ of sort Set(σ). We write ⊆ as a shorthand for ∪ ≈ and t ∈ for {t} ⊆ , for any terms and of sort Set(σ) and t of sort σ. The interpretation of the functions in the set theory is the classical (boolean) one.

Also, we assume that Σ contains infinitely many function symbols pt, pt , . . . ∈ Σ of sort Loc → Data, where Loc and Data are two fixed sorts of T , such that for any interpretation I ∈ I, Loc I is an infinite countable set.

The main idea is to express the atoms and connectives of separation logic in multisorted second-order logic by means of a transformation, called labeling, which introduces (i) constraints over variables of sort Set(Loc) and (ii) terms over uninterpreted points-to functions of sort Loc → Data. We describe the labeling transformation using judgements of the form φ [ , pt], where φ is a SL(T ) formula, = 1 , . . . , n is a tuple of variables of sort Set(Loc) and pt = pt 1 , . . . , pt n is a tuple of uninterpreted function symbols occurring under the scopes of universal quantifiers. To ease the notation, we write and pt instead of the singleton tuples and pt . In the following, we also write for

1 ∪ . . . ∪ n , ∩ for ∩ 1 , . . . , ∩ n , • for , 1 , . . . , n and ite(t ∈ , pt(t) = u) for ite(t ∈ 1 , pt 1 (t) = u, ite(t ∈ 2 , pt 2 (t) = u, . . . , ite(t ∈ n , pt n (t) = u, ) . . .)).
Intuitively, a labeled formula φ [ , pt] says that it is possible to build, from any of its satisfying interpretations I, a heap h such that

I, h | = SL φ, where dom(h) = I 1 ∪ . . . ∪ I n and h = pt I 1 ↓ I 1 ∪ . . . ∪ pt I n ↓ I n 6
. More precisely, a variable i defines a slice of the domain of the heap, whereas the restriction of pt i to (the interpretation of) i describes the heap relation on that slice. Observe that each interpretation of and pt, such that I i ∩ I j = ∅, for all i j, defines a unique heap.

First, we translate an input SL(T ) formula φ into a labeled second-order formula, with quantifiers over sets and uninterpreted functions, defined by the rewriting rules in Figure 1. A labeling step φ[ϕ] =⇒ φ[ψ/ϕ] applies if ϕ and ψ match the antecedent and consequent of one of the rules in Figure 1, respectively. It is not hard to show that this rewriting system is confluent, and we denote by φ⇓ the normal form of φ with respect to the application of labeling steps. Example 1. Consider the SL(T ) formula (x → a -- * y → b) ∧ emp. The reduction to second-order logic is given below:

(φ * ψ) [ , pt] ¬∀ 1 ∀ 2 . ¬( 1 ∩ 2 ≈ ∅ ∧ 1 ∪ 2 ≈ ∧ φ [ 1 ∩ , pt] ∧ ψ [ 2 ∩ , pt]) (φ ∧ ψ) [ , pt] φ [ , pt] ∧ ψ [ , pt] (φ - - * ψ) [ , pt] ∀ ∀pt . ( ∩ ( ) ≈ ∅ ∧ φ [ , pt ]) ⇒ ψ [ • , pt • pt] (¬φ) [ , pt] ¬(φ [ , pt]) t → u [ , pt] ≈ {t} ∧ ite(t ∈ , pt(t) ≈ u) ∧ t ≈ nil emp [ , pt] ≈ ∅ ϕ [ , pt] ϕ ϕ is pure
((x → a - - * y → b) ∧ emp) [ , pt] =⇒ * ≈ ∅ ∧ ∀ ∀pt . ∩ ≈ ∅ ∧ ≈ {x} ∧ ite(x ∈ , pt (x) ≈ a, ) ∧ x ≈ nil ⇒ ∪ ≈ {y} ∧ ite(y ∈ , pt (y) ≈ b, ite(y ∈ , pt(y) ≈ b, )) ∧ y ≈ nil
The following lemma reduces the (SL, T )-satisfiability problem to the satisfiability of a quantified fragment of the multi-sorted second-order theory T , that contains sets and uninterpreted functions. For an interpretation I, a variable x and a value s ∈ σ I

x , we denote by I[x ← s] the extension of I which maps x into s and behaves like I for all other symbols. We extend this notation to tuples x = x 1 , . . . , x n and s = s 1 , . . . , s n and write

I[x ← s] for I[x 1 ← s 1 ] . . . [x n ← s n ].
For a tuple of heaps h = h 1 , . . . , h n we write dom(h) for dom(h 1 ), . . . , dom(h n ) .

Lemma 1. Given a SL(T ) formula ϕ and tuples = 1 , . . . , n and pt = pt 1 , . . . , pt n for n > 0, for any interpretation I of T and any heap h: I, h | = SL ϕ if and only if

1. for all heaps h = h 1 , . . . , h n such that h = h 1 . . . h n , 2. for all heaps h = h 1 , . . . ,

h n such that h 1 ⊆ h 1 , . . . , h n ⊆ h n , we have I[ ← dom(h)][pt ← h ] | = T ϕ [ , pt]⇓ .
Although, in principle, satisfiability is undecidable in the presence of quantifiers and uninterpreted functions, the result of the next section strengthens this reduction, by adapting the labeling rules for * and -- * (Figure 1) to use bounded quantification over finite (set) domains.

A Reduction of SL (T ) to Quantifiers Over Bounded Sets

In the previous section, we have reduced any instance of the (SL, T )-satisfiability problem to an instance of the T -satisfiability problem in the second-order multi-sorted theory T which subsumes the theory Set(Loc) and contains several quantified uninterpreted function symbols of sort Loc → Data. A crucial point in the translation is that the only quantifiers occurring in T are of the forms ∀ and ∀pt, where is a variable of sort Set(Loc) and pt is a function symbol of sort Loc → Data. Leveraging from a small model property for SL over the data domain Data = Loc × Loc [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF], we show that it is sufficient to consider only the case when the quantified variables range over a bounded domain of sets. In principle, this allows us to eliminate the universal quantifiers by replacing them with finite conjunctions and obtain a decidability result based on the fact that the quantifier-free theory T with sets and uninterpreted functions is decidable. Since the cost of a-priori quantifier elimination is, in general, prohibitive, in the next section we develop an efficient lazy quantifier instantiation procedure, based on counterexample-driven refinement.

For reasons of self-containment, we quote the following lemma [START_REF] Yang | Local Reasoning for Stateful Programs[END_REF] and stress the fact that its proof is oblivious of the assumption Data = Loc × Loc on the range of heaps. Given a formula φ in the language SL(T ), we first define the following measure:

|φ * ψ| = |φ| + |ψ| |φ - - * ψ| = |ψ| |φ ∧ ψ| = max(|φ|, |ψ|) |¬φ| = |φ| |t → u| = 1 |emp| = 1 |φ| = 0 if φ is a Σ-formula
Intuitively, |φ| gives the maximum number of invisible locations in the domain of a heap h, that are not in the range of I and which can be distinguished by φ. For instance, if Then, for any heap h, we have

I, h | = SL
I, h | = SL φ iff I, h | = SL φ, for any heap h such that: -dom(h ) ⊆ L ∪ Pt(φ) I , -for all ∈ dom(h ), h ( ) ∈ Pt(φ) I ∪ {v}
Based on the fact that the proof of Lemma 2 [START_REF] Yang | Local Reasoning for Stateful Programs[END_REF] does not involve reasoning about data values, other than equality checking, we refine our reduction from the previous section, by bounding the quantifiers to finite sets of constants of known size. To this end, we assume the existence of a total order on the (countable) set of constants in Σ of sort Loc, disjoint from any Σ-terms that occur in a given formula φ, and define Bnd(φ,C) = {c m+1 , . . . , c m+|φ| }, where m = max{i | c i ∈ C}, and m = 0 if C = ∅. Clearly, we have Pt(φ) ∩ Bnd(φ,C) = ∅ and also C ∩ Bnd(φ,C) = ∅, for any C and any φ.

We now consider labeling judgements of the form ϕ [ , pt,C], where C is a finite set of constants of sort Loc, and modify all the rules in Figure 1 Observe that the result of the labeling process is a formula in which all quantifiers are of the form ∀ 1 . . .

∀ n ∀pt 1 . . . ∀pt n . n i=1 i ⊆ L i ∧ n i=1 pt i ⊆ L i × D i ⇒ ψ( , pt)
, where L i 's and D i 's are finite sets of terms, none of which involves quantified variables, and ψ is a formula in the theory T with sets and uninterpreted functions. Moreover, the labeling rule for φ -- * ψ [ , pt,C] uses a fresh constant d that does not occur in φ or ψ. Example 2. We revisit below the labeling of the formula (x → a -- * y → b) ∧ emp:

φ * ψ [ , pt,C] ¬∀ 1 ∀ 2 . 1 ∪ 2 ⊆ C ∪ Pt(φ * ψ) ⇒ ¬( 1 ∩ 2 ≈ ∅ ∧ 1 ∪ 2 ≈ ∧ φ [ 1 ∩ , pt,C] ∧ ψ [ 2 ∩ , pt,C]) φ - - * ψ [ , pt,C] ∀ ∀pt . ⊆ C ∪ Pt(φ - - * ψ) ∧ pt ⊆ (C ∪ Pt(φ - - * ψ)) × (Pt(φ - - * ψ) ∪ {d}) ⇒ ( ∩ ( ) ≈ ∅ ∧ φ [ , pt ,C ]) ⇒ ψ [ • , pt • pt,C] C = Bnd(φ ∧ ψ,C) d Pt(φ - - * ψ)
((x → a - - * y → b) ∧ emp) [ , pt,C] =⇒ * ≈ ∅ ∧ ∀ ⊆ {x, y, a, b, c} ∀pt ⊆ {x, y, a, b, c} × {x, y, a, b, d}) . ∩ ≈ ∅ ∧ ≈ {x} ∧ ite(x ∈ , pt (x) ≈ a, ) ∧ x ≈ nil ⇒ ∪ ≈ {y} ∧ ite(y ∈ , pt (y) ≈ b, ite(y ∈ , pt(y) ≈ b, )) ∧ y ≈ nil .
where Pt((x → a -- * y → b) ∧ emp) = {x, y, a, b}. Observe that the constant c was introduced by the bounded quantifier labeling of the term x → a -- * y → b.

The next lemma states the soundness of the translation of SL(T ) formulae in a fragment of T that contains only bounded quantifiers, by means of the rules in Figure 2.

Lemma 3. Given a formula ϕ in the language SL(T ), for any interpretation I of T , let L ⊆ Loc I \ Pt(ϕ) I be a set of locations such that | |L| | = |ϕ| and v ∈ Data I \ Pt(ϕ) I be a data value. Then there exists a heap h such that I, h | = SL ϕ iff there exist heaps h = h 1 , . . . , h n and h = h 1 , . . . , h n such that:

1. for all 1 ≤ i < j ≤ n, we have h i #h j , 2. for all 1 ≤ i ≤ n, we have h i ⊆ h i and 3.

I[ ← dom(h )][pt ← h ][C ← L][d ← v] | = T ϕ [ , pt,C]⇓ .

A Counterexample-Guided Approach for Solving SL (T ) Inputs

This section presents a novel decision procedure for the (SL, T )-satisfiability of the set of quantifier-free SL (T ) formulae ϕ. To this end, we present an efficient decision procedure for the T -satisfiability of (ϕ [ , pt,C])⇓, obtained as the result of the transformation described in Section 4. The main challenge in doing so is treating the universal quantification occurring in (ϕ [ , pt,C])⇓. As mentioned, the key to decidability is that all quantified formulae in (ϕ [ , pt,C])⇓ are equivalent to formulas of the form ∀x.( x ⊆ s) ⇒ ϕ, where each term in the tuple s is a finite set (or product of sets) of ground Σ-terms. For brevity, we write ∀x ⊆ s.ϕ to denote a quantified formula of this form. While such formulae are clearly equivalent to a finite conjunction of instances, the cost of constructing these instances is in practice prohibitively expensive. Following recent approaches for handling universal quantification [START_REF] Ge | Complete instantiation for quantified formulas in satisfiability modulo theories[END_REF][START_REF] Reynolds | Counterexample guided quantifier instantiation for synthesis in CVC4[END_REF][START_REF] Bjørner | Playing with quantified satisfaction[END_REF][START_REF] Reynolds | An instantiation-based approach for solving quantified linear arithmetic[END_REF], we use a counterexample-guided approach for choosing instances of quantified formulae that are relevant to the satisfiability of our input. The approach is based on an iterative procedure maintaining an evolving set of quantifier-free Σ-formulae Γ, which is initially a set of formulae obtained from ϕ by a purification step, described next. We associate with each closed quantified formula a boolean variable A, called the guard of ∀x.ϕ, and a (unique) set of Skolem symbols k of the same sort as x. We write (A, k) ∀x.ϕ to denote that A and k are associated with ∀x.ϕ. For a set of formulae Γ, we write Q(Γ) to denote the set of quantified formulae whose guard occurs within a formula in Γ. We write ψ for the result of replacing in ψ all closed quantified formulae (not occurring beneath other quantifiers in ψ) with their corresponding guards. Conversely, we write Γ to denote the result of replacing all guards in Γ by the quantified formulae they are associated with. Then ψ * denotes the smallest set of Σ-formulae: solve T (Γ):

1. If Γ is T -unsatisfiable, return "unsat", else let I be a T -model of Γ. 2. If Γ, A | = T ψ[k/x] for all ∀x.ψ ∈ Q(Γ), where (A, k) ∀x.ψ and A I = , return "sat", else let J be a T -model of Γ ∪ {A, ¬ ψ[k/x] } for some ≺ Γ,I -minimal ∀x ⊆ s.ψ,
where (A, k) ∀x ⊆ s.ψ. 3. Let t be a vector of terms, such that t ⊆ s, and 

t J = k J . Return solve T ( Γ ∪ A ⇒ ψ[t/x] * ).
ψ ∈ ψ * (¬A ⇒ ¬ϕ[k/x] ) ∈ ψ * if ∀x.ϕ ∈ Q( ψ * ) where (A, k) ∀x.ϕ.
In other words, ψ * contains clauses that witness the negation of each universally quantified formula occurring in ψ. It is easy to see that if ψ is a Σ-formula possibly containing quantifiers, then ψ * is a set of quantifier-free Σ-formulae, and if all quantified formulas in ψ are of the form ∀x ⊆ s.ϕ mentioned above, then all quantified formulas in Q( ψ * ) are also of this form.

Example 3. If ψ is the formula ∀x.(P(x) ⇒ ¬∀y.R(x, y)), then ψ * is the set:

{A 1 , ¬A 1 ⇒ ¬(P(k 1 ) ⇒ A 2 ), ¬A 2 ⇒ ¬R(k 1 , k 2 )}
where (A 1 , k 1 ) ∀x.(P(x) ⇒ ¬∀y.R(x, y)) and (A 2 , k 2 ) ∀y.R(k 1 , y).

Our algorithm solve SL(T) for determining the (SL, T )-satisfiability of input ϕ is given in Figure 3. It first constructs the set C based on the value of |ϕ|, which it computes by traversing the structure of ϕ. It then invokes the subprocedure solve T on the set (ϕ [ , pt,C])⇓ * where and pt are fresh free symbols.

At a high level, the recursive procedure solve T takes as input a (quantifier-free) set of T -formulae Γ, where Γ is T -unsatisfiable if and only if (ϕ [ , pt,C])⇓ is. On each invocation, solve T will either (i) terminate with "unsat", in which case ϕ is Tunsatisfiable, (ii) terminate with "sat", in which case ϕ is T -satisfiable, or (iii) add the set corresponding to the purification of the instance A ⇒ ψ[t/x] * to Γ and repeats.

In more detail, in Step 1 of the procedure, we determine the T -satisfiability of Γ using a combination of a satisfiability solver and a decision procedure for T 7 . If Γ is T -unsatisfiable, since Γ is T -entailed by Γ , we may terminate with "unsat". Otherwise, there is a T -model I for Γ and T . In Step 2 of the procedure, for each A that is interpreted to be true by I, we check whether Γ ∪ {A} T -entails ψ[k/x] for fresh free constants k, which can be accomplished by determining whether Γ ∪ {A, ¬ ψ[k/x] } is T -unsatisfiable. If this check succeeds for a quantified formula ∀x.ψ, the algorithm has established that ∀x.ψ is entailed by Γ. If this check succeeds for all such quantified formulae, then Γ is equivalent to Γ , and we may terminate with "sat". Otherwise, let Q + I (Γ) be the subset of Q(Γ) for which this check did not succeed. We call this the set of active quantified formulae for (I, Γ). We consider an active quantified formula that is minimal with respect to the relation ≺ Γ,I over Q(Γ), where:

ϕ ≺ Γ,I ψ if and only if ϕ ∈ Q( ψ * ) ∩ Q + I (Γ)
By this ordering, our approach considers innermost active quantified formulae first. Let ∀x.ψ be minimal with respect to ≺ Γ,I , where (A, k) ∀x.ψ. Since Γ, A does not T -entail ψ[k/x] , there must exist a model J for Γ ∪ { ¬ψ[k/x] } where A J = . In Step 3 of the procedure, we choose a tuple of terms t = (t 1 , . . . , t n ) based on the model J, and add to Γ the set of formulae obtained by purifying A ⇒ ψ[t/x], where A is the guard of ∀x ⊆ s.ψ. Assume that s = (s 1 , . . . , s n ) and recall that each s i is a finite union of ground Σ-terms. We choose each t such that t i is a subset of s i for each i = 1, . . . n, and t J = k J . These two criteria are the key to the termination of the algorithm: the former ensures that only a finite number of possible instances can ever be added to Γ, and the latter ensures that we never add the same instance more than once.

Theorem 1. For all SL (T ) formulae ϕ, solve SL(T) (ϕ):

1. Answers "unsat" only if ϕ is (SL, T )-unsatisfiable. 2. Answers "sat" only if ϕ is (SL, T )-satisfiable.

Terminates.

By Theorem 1, solve SL(T) is a decision procedure for the (SL, T )-satisfiability of the language of quantifier-free SL (T ) formulae. The following corollary gives a tight complexity bound for the (SL, T )-satisfiability problem.

Corollary 1. The (SL, T )-satisfiability problem is PSPACE-complete for any theory T whose satisfiability (for the quantifier-free fragment) is in PSPACE.

In addition to being sound and complete, in practice, the approach solve SL(T) terminates in much less time that its theoretical worst-case complexity, given by the above corollary. This fact is corroborated by our evaluation of our prototype implementation of the algorithm, described in Section 6, and in the following example. and pt of sorts Set(Loc) and Loc → Data respectively. The formula (ϕ [ , pt,C])⇓ is ≈ ∅ ∧ ∀ 4 ∀pt .ψ ∧ y ≈ nil, where after simplification ψ is:

ψ 4 ≡ ( 4 ⊆ {y, 0, 1, c} ∧ pt ⊆ {y, 0, 1, c} × {y, 0, 1, d}) ⇒ ( 4 ∩ ≈ ∅ ∧ 4 ≈ {y} ∧ pt (y) ≈ 0 ∧ y ≈ nil) ⇒ ( 4 ∪ ≈ {y} ∧ ite(y ∈ 4 , pt (y) ≈ 1, pt(y) ≈ 1) ∧ y ≈ nil) Let (A 4 , (k 1 , k 2 )) ∀ 4 ∀pt .ψ 4 .
We call the subprocedure solve T on Γ 0 , where:

Γ 0 ≡ (ϕ [ , pt,C])⇓ * ≡ { ≈ ∅ ∧ A 4 ∧ y ≈ nil, ¬A 4 ⇒ ¬ψ 4 [k 1 , k 2 / 4 , pt ]}.
The set Γ 0 is T -satisfiable with a model I 0 where A

I 0 4 = .
Step 2 of the procedure determines a model J for

Γ 0 ∪ {A 4 , ¬ψ 4 [k 1 , k 2 / 4 , pt ]}.
Let t 1 be {y}, where we know t J 1 = k J 1 since J must satisfy k 1 ≈ {y} as a consequence of ¬ψ 4 [k 1 , k 2 / 4 , pt ]. Let t 2 be a well-sorted subset of {y, 0, 1, c} × {y, 0, 1, d} such that t J 2 = k J 2 . Such a subset exists since J satisfies k 2 ⊆ {y, 0, 1, c} × {y, 0, 1, d}. Notice that t 2 (y) J = 0 J since J must satisfy k 2 (y) ≈ 0. Step 3 of the procedure recursively invokes solve T on Γ 1 , where:

Γ 1 ≡ Γ 0 ∪ A 4 ⇒ ψ 4 [t 1 , t 2 / 4 , pt ] * ≡ Γ 0 ∪ {A 4 ⇒ y ≈ nil ⇒ ({y} ≈ {y} ∧ ite(y ∈ {y}, 0 ≈ 1, pt(y) ≈ 1) ∧ y ≈ nil)} ≡ Γ 0 ∪ {A 4 ⇒ y ≈ nil ⇒ ⊥}
The set Γ 1 is T -unsatisfiable, since the added constraint contradicts A 4 ∧ y ≈ nil.

Integration in DPLL(T )

We have implemented the algorithm described in this section within the SMT solver CVC4 [START_REF] Barrett | CAV'11[END_REF]. Our implementation accepts an extended syntax of SMT-LIB version 2 format [START_REF] Barrett | The SMT-LIB 2.5 standard[END_REF] for specifying SL (T ) formulae. In contrast to the presentation so far, our implementation does not explicitly introduce quantifiers, and instead treats SL atoms natively using an integrated subsolver that expands the semantics of these atoms in lazy fashion.

In more detail, given a SL (T ) input ϕ, our implementation lazily computes the expansion of (ϕ [ , pt,C])⇓ based on the translation rules in Figures 1 and2 and the counterexample-guided instantiation procedure in Figure 3. This is accomplished by a module, which we refer to as the SL solver, that behaves analogously to a DPLL(T )style theory solver, that is, a dedicated solver specialized for the T -satisfiability of a conjunction of T -constraints.

The DPLL(T ) solving architecture [START_REF] Ganzinger | Dpll(t): Fast decision procedures[END_REF] used by most modern SMT solvers, given as input a set of quantifier-free T -formulae Γ, incrementally constructs of set of literals over the atoms of Γ until either it finds a set M that entail Γ at the propositional level, or determines that such a set cannot be found. In the former case, we refer to M as a satisfying assignment for Γ. If T is a combination of theories T 1 ∪ . . . ∪ T n , then M is partitioned into M 1 ∪ . . . ∪ M n where the atoms of M i are either T i -constraints or (dis)equalities shared over multiple theories. We use a theory solver (for T i ) to determine the T i -satisfiability of the set M i , interpreted as a conjunction. Given M i , the solver will either add additional formulae to Γ, or otherwise report that M i is T i -satisfiable.

For SL (T ) inputs, we extend our input syntax with a set of functions:

→: Loc × Data → Bool * n : Bool n → Bool emp : Bool - - * : Bool × Bool → Bool lbl : Bool × Set(Loc) → Bool
which we call spatial functions 8 . We refer to lbl as the labeling predicate, which can be understood as a placeholder for the transformation in Figures 1 and2. We refer to p(t) as an unlabeled spatial atom if p is one of {emp, →, * n ,-- * } and t is a vector of terms not containing lbl. If a is an unlabeled spatial atom, We refer to lbl(a, ) as a labeled spatial atom, and extend these terminologies to literals. We assume that all occurrences of spatial functions in our input ϕ occur only in unlabeled spatial atoms. Moreover, during execution, our implementation transforms all spatial atoms into a normal form, by applying associativity to flatten nested applications of * , and distributing Σ-formulae over spatial connectives, e.g.

((x → y ∧ t ≈ u) * z → w) ⇐⇒ t ≈ u ∧ (x → y * z → w).
When constructing satisfying assignments for ϕ, we relegate the set of all spatial literals M k to the SL solver. For all unlabeled spatial literals (¬)a, we add to Γ the formula (a ⇔ lbl(a, 0 )), where 0 is a distinguished free constant of sort Set(Loc). Henceforth, it suffices for the SL solver to only consider the labeled spatial literals in M k . To do so, firstly, it adds to Γ formulae based on the following criteria, which model one step of the reduction from Figure 1:

lbl(emp, ) ⇔ ≈ ∅ if (¬)lbl(emp, ) ∈ M k lbl(t → u, ) ⇔ ≈ {t} ∧ pt(t) ≈ u ∧ t ≈ nil if (¬)lbl(t → u, ) ∈ M k lbl((ϕ 1 * . . . * ϕ n ), ) ⇒ (ϕ 1 [ 1 ] ∧ . . . ∧ ϕ n [ n ]) if lbl((ϕ 1 * . . . * ϕ n ), ) ∈ M k ¬lbl((ϕ 1 - - * ϕ 2 ), ) ⇒ (ϕ 1 [ 1 ] ∧ ¬ϕ 2 [ 2 ]) if ¬lbl((ϕ 1 - - * ϕ 2 ), ) ∈ M k
where each i is a fresh free constant, and ϕ i [ i ] denotes the result of replacing each top-level spatial atom a in ϕ i with lbl(a, i ). These formulae are added eagerly when such literals are added to M k . To handle negated * -atoms and positive -- * -atoms, the SL solver adds to Γ formulae based on the criteria:

¬lbl((ϕ 1 * . . . * ϕ n ), ) ⇒ (¬ϕ 1 [t 1 ] ∨ . . . ∨ ¬ϕ n [t n ]) if ¬lbl((ϕ 1 * . . . * ϕ n ), ) ∈ M k lbl((ϕ 1 - - * ϕ 2 ), ) ⇒ (¬ϕ 1 [t 1 , f 1 ] ∨ ϕ 2 [t 2 , f 2 ]) if lbl((ϕ 1 - - * ϕ 2 ), ) ∈ M k
where each t i and f i is chosen based on the same criterion as described in Figure 3. For wand, we write ϕ i [t i , f i ] to denote ϕ i [t i ], where ϕ i is the result of replacing all atoms of the form t → u where t ∈ t 1 in ϕ i by f i (t) ≈ u. CVC4 uses a scheme for incrementally checking the T -entailments required by solve T , as well as constructing models J satisfying the negated form of the literals in literals in M k before choosing such terms [START_REF] Reynolds | An instantiation-based approach for solving quantified linear arithmetic[END_REF]. The formula of the above form are added to Γ lazily, that is, after all other solvers (for theories T i ) have determined their corresponding sets of literals M i are T i -satisfiable. Partial Support for Quantifiers In many practical cases it is useful to check the validity of entailments between existentially quantified SL(T ) formulae such as ∃x . φ(x) and ∃y . ψ(y). Typically, this problem translates into a satisfiability query for an SL(T ) formula ∃x∀y . φ(x) ∧ ¬ψ(y), with one quantifier alternation. A partial solution to this problem is to first check the satisfiability of φ. If φ is not satisfiable, the entailment holds trivially, so let us assume that φ has a model. Second, we check satisfiability of φ ∧ ψ. Again, if this is unsatisfiable, then the entailment cannot hold, because there exists a model of φ which is not a model of ψ. Else, if φ ∧ ψ has a model, we add an equality x = y for each pair of variables (x, y) ∈ x × y that are mapped to the same term in this model, the result being a conjunction E(x, y) of equalities. Finally, we check the satisfiability of the formula φ ∧ ¬ψ ∧ E. If this formula is unsatisfiable, the entailment is valid, otherwise, the test is inconclusive. In section 6, we applied this method manually, to test entailments between existentially quantified variables -general procedure for quantifier instantiation for SL(T ) is envisaged in the near future.

Evaluation

We tested our implementation of the (SL, T )-satisfiability procedure in CVC4 (version 1.5 prerelease) 9 on two kinds of benchmarks: (i) finite unfoldings of inductive predicates with data constraints, mostly inspired by existing benchmarks, such as SL-COMP'14 [START_REF] Sighireanu | Report on SL-COMP 2014[END_REF], and (ii) verification conditions automatically generated by applying the weakest precondition calculus of [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF] to the program loops in Figure 4 several times. All experiments were run on a 2.80GHz Intel(R) Core(TM) i7 CPU machine with with 8MB of cache 10 . For a majority of benchmarks, the runtime of CVC4 is quite low, with the exception of the n = 4, 8 cases of the entailments between tree n 1 and tree n 2 formulae, which resulted in a timeout after 300 seconds. For benchmarks where CVC4 times out, the performance bottleneck resides in its ground decision procedure for finite sets, indicating efficient support for this theory is important for our approach to separation logic. The first set of experiments is reported in Table 1. We have considered inductive predicates commonly used as verification benchmarks [START_REF] Sighireanu | Report on SL-COMP 2014[END_REF]. Here we check the validity x →a * neg 5 (a,y) 0.02s 0.05s 0.14s 0.32s 3.69s of the entailment between lhs and rhs, where both predicates are unfolded n = 1, 2, 3, 4, 8 times. The second set of experiments, reported in Table 1, considers the verification conditions of the forms ϕ ⇒ wp(l, φ) and ϕ ⇒ wp n (l, φ), where wp(l, φ) denotes the weakest precondition of the SL formula φ with respect to the sequence of statements l, and wp n (l, φ) = wp(l, . . . wp(l, wp(l, φ)) . . .) denotes the iterative application of the weakest precondition n times in a row. We consider the loops depicted in Figure 4, where, for each loop l we consider the variant zl as well, which tests that the data values contained within the memory cells are 0, by the assertions on line 2. The postconditions are specified by finite unfoldings of the inductive predicates ls and zls (Figure 4).

Conclusions

We have presented a decision procedure for quantifier-free SL (T ) formulas that relies on a efficient, counterexample-guided approach for establishing the T -satisfiability of formulas having quantification over bounded sets. We have described an implementation of the approach as an integrated subsolver in the DPLL(T )-based SMT solver CVC4, showing the potential of the procedure as a backend for tools reasoning about low-level pointer and data manipulations.

Fig. 1 .

 1 Fig. 1. Labeling Rules 6 We denote by F↓ D the restriction of the function F to the domain D ⊆ dom(F).

  ¬emp * ¬emp and the domain of h contains more than two locations, then it is possible to restrict dom(h) to |¬emp * ¬emp| = 2 locations only, to satisfy this formula.Let Pt(φ) be the set of terms (of sort Loc ∪ Data) that occur on the left-or righthand side of a points-to atomic proposition in φ. Formally, we have Pt(t → u) = {t, u}, Pt(φ * ψ) = Pt(φ -- * ψ) = Pt(φ) ∪ Pt(ψ), Pt(¬φ) = Pt(φ) and Pt(emp) = Pt(φ) = ∅, for a Σ-formula φ. The small model property is given by the next lemma: Lemma 2. [24, Proposition 96] Given a formula φ ∈ SL(T ), for any interpretation I of T , let L ⊆ Loc I \ Pt(φ) I be a set of locations, such that | |L| | = |φ| and v ∈ Data I \ Pt(φ) I .

  , besides the ones with premises (φ * ψ) [ , pt] and (φ -- * ψ) [ , pt], by replacing any judgement ϕ [ , pt] with ϕ [ , pt,C]. The two rules in Figure 2 are the bounded-quantifier equivalents of the (φ * ψ) [ , pt] and (φ -- * ψ) [ , pt] rules in Figure 1. As usual, we denote by (ϕ [ , pt,C])⇓ the formula obtained by exhaustively applying the new labeling rules to ϕ [ , pt,C].

Fig. 2 .

 2 Fig. 2. Bounded Quantifier Labeling Rules

  solve SL(T) (ϕ): Let C be a set of fresh constants of sort Loc such that | |C| | = |ϕ|. Let and pt be a fresh symbols of sort Set(Loc) and Loc ⇒ Data respectively. Return solve T ( (ϕ [ , pt,C])⇓ * ).

Fig. 3 .

 3 Fig. 3. Procedure solve SL(T) for deciding (SL, T )-satisfiability of SL (T ) formula ϕ.

Example 4 .

 4 Consider the SL(T ) formula ϕ ≡ emp ∧ (y → 0 -- * y → 1) ∧ y ≈ nil. When running solve SL(T) (ϕ), we first compute the set C = {c}, and introduce fresh symbols the domain of k may be restricted to the set {c I | c ∈ S 1 } in models I found in Steps 1 and 2 of the procedure. This restriction comes with no loss of generality since, by construction of (ϕ [ , pt,C])⇓, k is applied only to terms occurring in S 1 .
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 14 Fig. 4. Program Loops

lhs rhs n = 1 n

 1 = 2 n = 3 n = 4 n = 8 Unfoldings of inductive predicates lseg 1 (x,y,a) emp∧x=y∨∃z∃b . lseg 2 (x,y,a) emp∧x=y∨∃z∃b . unsat unsat unsat unsat unsat x →(a,z) * lseg 1 (z,y,b)∧b=a+10 x →(a,z) * lseg 2 (z,y,b)∧a≤b < 0.01s < 0.01s < 0.01s 0.01s 0.01s tree 1 (x,a) emp∧x=nil∨∃y∃z∃b∃c . tree 2 (x,a) emp∧x=nil∨∃y∃z∃b∃c . unsat unsat unsat timeout timeout x →(a,y,z) * tree 1 (y,b) * tree 1 (z,c)∧ x →(a,y,z) * tree 2 (y,b) * tree 2 (z,c)∧ < 0.01s 0.06s 1.89s > 300s > 300s b=a-10∧c=a+10 b≤a∧a≤c pos 1 (x,a) x →a∨∃y∃b . neg 1 (x,a) ¬x →a∨∃y∃b . unsat unsat unsat unsat unsat x →a * pos 1 (y,b) x →a * neg 1 (y,b) 0.02s 0.04s 0.11s 0.25 s 3.01s pos 1 (x,a) x →a∨∃y∃b . neg 2 (x,a) x →a∨∃y∃b . unsat unsat unsat unsat unsat x →a * pos 1 (y,b) ¬x →a * neg 2 (y,b) 0.01s 0.05s 0.11s 0.23s 2.10s pos 1 (x,a) x →a∨∃y∃b . neg 3 (x,a) x →a∨∃y∃b . unsat unsat unsat unsat unsat x →a * pos 1 (y,b) x →a * ¬neg 3 (y,b) 0.02s 0.07s 0.24s 0.46s 4.05s pos 1 (x,a) x →a∨∃y∃b . neg 4 (x,a) x →a∨∃y∃b . unsat sat unsat sat sat x →a * pos 1 (y,b) ¬x →a * ¬neg 4 (y,b) 0.05s 0.24s 0.33s 2.77s 24.72s pos 2 (x,a) x →a∨∃y . neg 5 (x,a) ¬x →a∨∃y . unsat unsat unsat unsat unsat x →a * pos 2 (a,y)

Table 1 .

 1 pos 2 (x,a) x →a∨∃y . neg 6 (x,a) x →a∨∃y . sat unsat unsat unsat unsat x →a * pos 2 (a,y) ¬x →a * neg 6 (a,y) 0.02s 0.04s 0.13s 0.27s 2.22s (u) * ls 0 (v) wp(rev,ls n-1 (u) * ls 1 (v)) 0.06s 0.08s 0.14s 0.30s 2.83s ls n (u) * ls 0 (v) wp n (rev,u=nil∧ls n (v)) 0.06s 0.12s 0.56s 1.75s 27.82s zls n (u) * zls 0 (v) wp(zrev,zls n-1 (u) * zls 1 (v)) 0.22s 0.04s 0.12s 0.25s 2.16s zls n (u) * zls 0 (v) wp n (zrev,u=nil∧zls n (v)) 0.04s 0.10s 0.41s 1.27s 20.26s Experimental results

		Verification conditions	
	ls n (w)	wp(disp,ls n-1 (w))	< 0.01s 0.02s 0.05s 0.12s 1.97s
	ls n (w)	wp n (disp,emp∧w=nil)	< 0.01s 0.02s 0.12s 0.41s 22.97s
	zls n (w)	wp(zdisp,zls n-1 (w))	0.01s 0.02s 0.05s 0.11s 1.34s
	zls n (w)	wp n (zdisp,emp∧w=nil)	0.01s 0.02s 0.11s 0.43s 24.13s
	ls n		

For brevity, we may write p(t) as shorthand for p(t) ≈ , where p is a function into Bool.

Take for instance φ as x → 1 and ϕ as y → 2.

Non-constant Skolem symbols k introduced by the procedure may be treated as uninterpreted functions. Constraints of the form k ⊆ S 1 × S 2 are translated to c∈S 1 k(c) ∈ S 2 . Furthermore,

These functions are over the Bool sort. We refer to these functions as taking formulae as input, where formulae may be cast to terms of sort Bool through use of an if-then-else construct.

Available at http://cvc4.cs.nyu.edu/web/.

The CVC4 binary and examples used in these experiments are available at http://cvc4.cs. nyu.edu/papers/ATVA2016-seplog/.