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Abstra
t. One approa
h to model 
he
king program sour
e 
ode is to view a model


he
ker as a target ma
hine. In this setting, program sour
e 
ode is translated to a

model 
he
ker's input language using a pro
ess that shares mu
h in 
ommon with

program 
ompilation. For example, well-de�ned intermediate program representa-

tions are used to stage the translation through a series of analyses and optimizing

transformations and target-spe
i�
 details are isolated in 
ode generation modules.

In this paper, we present the Bandera Intermediate Representation (BIR) { a

guarded-assignment transition system language that has been designed to support

the translation of Java programs to a variety of model 
he
kers. BIR in
ludes


onstru
ts, su
h as inheritan
e, dynami
 
reation of data, and lo
king primitives,

that are designed to model the semanti
s of Java primitives. BIR also in
ludes

several non-deterministi
 
hoi
e 
onstru
ts that support abstra
tion in modeling

and spe
i�
ation of properties of dynami
 heap stru
tures.

We have developed a BIR-based tool infrastru
ture that has been applied to

develop 
ustomized analysis frameworks for several di�erent input languages using

di�erent model 
he
king tools. We present BIR's type system and operational se-

manti
s in suÆ
ient detail to support similar appli
ations by other resear
hers. This

semanti
s details several state spa
e redu
tions and state spa
e sear
h variations.

We des
ribe the translation of Java to BIR and how BIR is translated to the input

of several model 
he
kers.

1. Introdu
tion

Several resear
h e�orts [4, 10, 14, 30, 34, 50, 51℄ are demonstrating

that exhaustive state-exploration te
hniques su
h as model-
he
king


an be e�e
tive for identifying defe
ts in software that are diÆ
ult to

�nd using 
onventional testing methods.

Tool development e�orts in software model-
he
king have been based

on two di�erent ar
hite
tures. Some have taken an interpretation ap-

proa
h by building a dedi
ated model 
he
ker for a spe
i�
 program-

ming language. For example, SLAM [4℄ and BLAST [30℄ are analysis

tools that work dire
tly on C, while Java Path Finder (JPF) [50℄ works

dire
tly on Java byte
odes. Others have taken a translation approa
h

�
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by 
ompiling programs dire
tly into a relatively expressive veri�er input

language. For example, FeaVer translates C programs into PROMELA,

the input language of the SPIN model 
he
ker [33℄, an earlier version

of Java Path Finder [29℄ translated Java to PROMELA, and JCAT

translates Java into the input language dSPIN [15℄ { an extension of

SPIN that provides support for programming language features su
h

as dynami
 obje
t 
reation, garbage 
olle
tion, and method 
alls.

We have taken the translation approa
h in developing the Bandera

tool set be
ause at present it is un
lear what 
olle
tion of state-spa
e

representation, redu
tion, abstra
tion and sear
h methods are best-

suited for model-
he
king software. In fa
t, resear
h has shown that


hanging the 
omputation style or ar
hite
ture of a parti
ular 
on-


urrent program 
an dramati
ally impa
t the relative performan
e of

di�erent state-spa
e exploration te
hniques; di�erent te
hniques per-

form better on di�erent systems [3℄. Moreover, if one is interested in

experimenting with a new te
hnique on a real programming language

like Java, numerous infrastru
ture 
omponents su
h as parsers, inter-

mediate representations, stati
 analyses, and visualization fa
ilities,

are required before one 
an build a system upon whi
h an empiri
al

evaluation 
an be 
arried out.

1.1. The Ar
hite
ture of Bandera

The goal of Bandera is to provide an open infrastru
ture that allows

for easy in
orporation and experimentation with multiple analysis and

veri�
ation te
hniques. Bandera translates Java sour
e 
ode to a model

expressed in the input language of one of several veri�
ation tools

in
luding SPIN [33℄, dSPIN [15℄, HSF-SPIN [20℄, NuSMV [8℄, and JPF

[50℄. The ar
hite
ture of Bandera shares mu
h in 
ommon with that

of modern optimizing 
ompilers [43℄, but it di�ers in several important

respe
ts. Similarities in
lude the staged appli
ation of a series of pro-

gram analyses and transformations, the use of well-de�ned intermediate

program representations to whi
h those transformations are applied,

and the isolation of target spe
i�
 details in 
ode generation modules.

The main di�eren
es are related to the fa
t that in a 
ompiler the

primary obje
tive is to redu
e the run-time of a program, whereas in

Bandera, the primary goal is to redu
e the amount of memory required

to represent the state spa
e of the program sin
e state explosion is the


hief barrier to s
alability of model 
he
king.

Figure 1 presents the internal ar
hite
ture of Bandera, and below

we brie
y summarize the fun
tionality of the 
omponents. Bandera is

built on top of the Soot Java 
ompiler framework [49℄ developed by

Laurie Hendren's Sable group at M
Gill University. Soot in
ludes an
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Figure 1. Internal ar
hite
ture of the Bandera Tool Set

intermediate language 
alled Jimple that is a language of 
ontrol-
ow

graphs where statements appear in three-address-
ode form and various

Java 
onstru
ts, su
h as syn
hronized statements, are represented in

terms of their virtual ma
hine 
ounterparts (su
h as monitorenter,

monitorexit byte
odes). A Java front-end produ
es a Jimple repre-

sentation of the input program.

Sour
e 
ode properties to be 
he
ked are written in the Bandera

Spe
i�
ation Language (BSL) [12℄. BSL 
onsists of a 
olle
tion of pa-

rameterized ma
ros [19℄ that 
an be instantiated to di�erent temporal

logi
s, su
h as linear temporal logi
 (LTL) [42℄. BSL spe
i�
ations

are parameterized by observables (predi
ates on program state) that

are de�ned in Java sour
e 
ode using Javado
 
omment notation. A

property front-end extra
ts all the observables de
lared in the given

sour
e program, type 
he
ks the de
lared observables, instantiates the

BSL spe
i�
ation to a parti
ular temporal logi
, and generates Jimple


ode that en
odes the observables used in the input spe
i�
ation.

Bandera's approa
h to model 
onstru
tion is to generate one model

for ea
h property to be 
he
ked. This approa
h is based on the in-

sight that, given a spe
i�
 property �, many parts of the software may

not in
uen
e � at all. Bandera applies model redu
tions based on the

semanti
s of � to the Jimple representation of the program. Bandera

uses both program sli
ing and data abstra
tion (abstra
t interpreta-

tion) to 
ustomize models. The Bandera sli
er takes as input all the

observables mentioned in the input property � and, using an enri
hed

set of program dependen
es [26℄, eliminates all Jimple statements that


an be shown to not in
uen
e the semanti
s of �'s observables [28℄.

Whereas sli
ing eliminates both data and 
ontrol states of a program,

Bandera's abstra
tion 
omponent automates support for redu
ing the

number of data states by redu
ing the size of the data domains over

whi
h program variables range [18, 27℄. User's sele
t or de�ne predi-


ates over program variables, for example, the data expressions in �'s

observables, and Bandera automati
ally synthesizes safely abstra
ting

bir-journal.tex; 3/04/2003; 21:48; p.3
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operator de�nitions and substitutes those operators into the Jimple

program representation.

The Bandera ba
k-end is like a 
ode generator, taking the sli
ed and

abstra
ted program and produ
ing veri�er-spe
i�
 models. The ba
k-

end also fun
tions like a debugger by providing a veri�er-independent

representation of 
ounter-example information. The ba
k-end 
ompo-

nents 
ommuni
ate through BIR whi
h a
ts as an intermediary between

the Java-based Jimple representation and veri�er-based transition sys-

tem representations (e.g., Promela). As shown in Figure 1, the ba
k-end

has one �xed 
omponent 
alled BIRC (Bandera Intermediate Represen-

tation Constru
tor) that a

epts Jimple and produ
es BIR. For ea
h

supported veri�er, there is also a translator 
omponent that a

epts

the program represented in BIR and generates input for that veri�er

and a 
omponent that translates veri�er 
ounter-examples into a tra
e

in the BIR transition system. Translators for SPIN, dSPIN, HSF-SPIN

[41℄, and NuSMV [8℄ have been built.

1.2. Contributions of this paper

This paper makes two main 
ontributions: (1) we des
ribe several novel

BIR 
onstru
ts that are useful for modeling a variety of software de-

s
riptions and argue that support for those 
onstru
ts would be useful

additions to model 
he
ker input languages; and (2) we des
ribe the

Bandera ba
k-end whi
h is a ri
h tool infrastru
ture that applied model


he
king resear
hers 
an exploit to qui
kly develop model 
he
king

frameworks for software design and implementation notations.

BIR is a guarded-
ommand language whose design is balan
ed be-

tween several (sometimes 
ompeting) goals. First, BIR is designed to

be similar to the input languages of existing model-
he
kers so that

translations to existing model-
he
king tools 
an be written with min-

imal e�ort. Se
ond, BIR provides built-in support for Java language

features su
h as lo
ks and subtyping to fa
ilitate translations from

Java/Jimple into BIR. Rather than present these features at the level of

granularity found in sour
e languages, su
h as Java, we have developed

�ner grain support that is amenable to translation to a broader set of

target model 
he
kers and allows translations to minimize the state-

spa
e based on a program's usage of language features. Third, BIR

in
orporates operators for modeling forms of non-deterministi
 
hoi
e

that are essential for de�ning a ri
h 
lass of program properties and ab-

stra
ted programs. While most model 
he
ker input languages support

some form of non-determinism, they do not support non-deterministi



hoi
e over the kinds of 
omplex data stru
tures found in languages

like Java. We believe this kind of support is essential for modeling

bir-journal.tex; 3/04/2003; 21:48; p.4
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modern obje
t-based software notations and that model 
he
ker input

languages should evolve to in
lude them.

To support the e�e
tive use of BIR and the Bandera ba
k-end fa
il-

ities we des
ribe the features and semanti
s of the BIR language and

dis
uss the strategies that developers should follow when (a) translating

Java and other design notations into BIR, and (b) translating BIR to

input languages of model-
he
kers and other veri�
ation/analysis tools.

Spe
i�
ally, we present the BIR intermediate language, des
ribe how

Bandera translates Java into BIR, des
ribe how Bandera translates

BIR into Promela and outline general strategies that developers should

follow when translating BIR to other model-
he
ker input languages.

Finally, we give an overview of the semanti
s of BIR and address sub-

tle issues regarding the translation of BIR's virtual 
oarsening and

non-deterministi
-
hoi
e 
onstru
ts. To supplement this presentation,

the Bandera Proje
t web site http://www.
is.ksu.edu/bandera pro-

vides the Bandera open-sour
e distribution, user's manual, and an

example repository. In parti
ular, a BIR Ba
k-end Developers Kit is

available whi
h provides the BIR parser, sour
e 
ode for BIR ba
k-end

translators to illustrate translation te
hniques, and do
umentation.

1.3. Organization

The rest of this paper is organized as follows. Se
tion 2 introdu
es a

Java example that we will use to illustrate the prin
iples for translating

Java to BIR and then translating BIR to model-
he
ker input lan-

guages. Se
tion 3 outlines the Java to BIR translation, while Se
tion 4

outlines the translations from BIR to model-
he
ker input languages

like Promela { the input language of the SPIN model-
he
ker. Se
tion 5

gives a formal presentation of the novel features of BIR. Se
tion 6

presents related work, and Se
tion 7 
on
ludes.

2. Example

This se
tion introdu
es an example that will be followed throughout the

paper in order to show how Java programs are translated by Bandera

into �nite-state models. The program fragment in Figure 2 illustrates

the implementation of a message dispat
her that enables 
ommuni-


ation between an arbitrary number of 
lients and servers. Messages

are instan
es of a 
lass Msg, 
ontaining priority numbers as illustrated

in Figure 3. Messages are produ
ed by 
lient threads and sent to the

message queue using its send method. The implementation of the dis-

pat
her ensures that the messages will be re
eived in priority order.

bir-journal.tex; 3/04/2003; 21:48; p.5



6


lass MsgQueue {

[1℄ Msg tail;

[2℄ int max, no;

[3℄ MsgQueue(int max) {

[4℄ this.tail = null;

[5℄ this.
ap = max;

[6℄ this.no = 0; }

/**

* �observable

* INVOKE 
alled(this, Msg msg):

* msg == m;

*/

[7℄ syn
hronized void send(Msg m) {

[8℄ while (no == max) {

[9℄ try { wait(); }

[10℄ 
at
h(...) { return; }

[11℄ }

[12℄ Msg 
urr = tail;

[13℄ Msg last = tail;

[14℄ while (
urr != null &&

[15℄ 
urr.prio >= m.prio) {

[16℄ last = 
urr;

[17℄ 
urr = 
urr.next; }

[18℄ if (last == null ||

[19℄ 
urr == last)

[20℄ tail = m;

[21℄ else

[22℄ last.next = m;

[23℄ m.next = 
urr;

[24℄ no ++;

[25℄ notifyAll(); }

/**

* �observable

* RETURN returns(this, Msg msg):

* $ret == msg;

*/

[26℄ syn
hronized Msg re
v() {

[27℄ while (no == 0) {

[28℄ try { wait(); }

[29℄ 
at
h(...) { return null; }

[30℄ }

[31℄ Msg m = tail;

[32℄ tail = tail.next;

[33℄ no --;

[34℄ notifyAll();

[35℄ return m; }

Figure 2. Message Queue Example

The MsgQueue 
lass is designed to be thread-safe, as the send and

re
v methods use the 
ommon wait-notify syn
hronization 
oding

pattern.

To formalize the prioritized re
eipt of messages, we de
lare a set of

atomi
 propositions, en
oded as BSL observables 
alled(this, msg)

and returns(this, msg). The BSL predi
ate 
alled(this, msg) holds

when 
ontrol is at the �rst line of the method send and the refer-

en
e value bound to the predi
ate parameter msg equals the referen
e

value of the method parameter m. The BSL predi
ate returns(this,

msg) holds when 
ontrol is immediately after any return statement of

method re
v and the referen
e value bound to the predi
ate parameter

msg equals the return value of the method. In addition, we 
onsider

the predi
ate higher(m

1

, m

2

) whi
h formally en
odes the m1.prio >

m2.prio 
ondition. Using these predi
ate, we 
an use BSL to state that

for all instan
es of the Msg and MsgQueue 
lasses, whenever messages

m

1

and m

2

are to be returned from a given queue, it must be the 
ase

that the higher priority message is returned before the lower priority

message. Without going into all the details (the reader is referred

to [12℄), we simply note that the resulting BSL spe
i�
ation 
an be

mapped down to the following enhan
ed LTL formula:

bir-journal.tex; 3/04/2003; 21:48; p.6
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8q : Q;m

1

;m

2

: M;m

1

6= m

2

[2((3returns(q;m

1

) ^3returns(q;m

2

))

) (higher(m

1

;m

2

) () !returns(q;m

2

) U returns(q;m

1

)))℄

Here, Q and M denote the �nite sets of instan
es of the MsgQueue

and Msg 
lasses, respe
tively that are used to represent BSL universal

quanti�
ation. Universal quanti�
ation in a BSL spe
i�
ation binds

ea
h allo
ated instan
e of a designated type (e.g., MsgQueue) to a

named variable (e.g., q), and then 
he
ks the temporal spe
i�
ation

with those bindings. The predi
ates returns and higher are evalu-

ated on the instan
es bound by the quanti�
ations. This requirement


aptures an important aspe
t of 
orre
t message queue behavior.

Another 
orre
tness issue is related to the fairness of the dispat
her.

In our implementation (see Figure 2) messages with lower priorities 
an

be forever negle
ted. This issue 
an be addressed by using the appro-

priate LTL fairness requirement as an assumption for other 
orre
tness

properties

1

.

In order to verify the MsgQueue 
lass with respe
t to its spe
i�
ations

we 
omplete the implementation with the 
ode of 
lient and server

threads and a main method that instantiates several su
h threads

as shown in Figure 4. Clients internal de
isions about sending data

(DataMsg) and request (RequestMsg) messages to servers is abstra
ted

using non-deterministi
 
hoi
e (
hoose()). Both DataMsg and RequestMsg

are sub
lasses of Msg as shown in Figure 3. Upon re
eiving a mes-

sage, the server will extra
t the message and pro
ess it depending on

the dynami
 type of the message; for this example, requests indi
ate

whether subsequent integer data should be added to or subtra
ted from

a running total.

The sample Java 
ode from Figures 2, 3, and 4 uses the following

language features: dynami
 
reation of obje
ts and threads, monitor-

based and 
ondition-based syn
hronization, and inheritan
e and dy-

nami
 type lookup. In the remainder of the paper, we will fo
us on

these aspe
ts of Java programs, while des
ribing the design of BIR,

and translations to and from BIR.

3. Translating to BIR

The 
ore of BIR is a guarded assignment language and as su
h it 
an

model a wide variety of state-based system des
riptions. We have de-

veloped translators for several su
h des
ription languages in addition

1

To verify a property P under the fair dispat
her assumption we verify the

property: 8q : Q;m : M [2((
alled(q;m)) 3returns(q;m))) P )℄

bir-journal.tex; 3/04/2003; 21:48; p.7
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/**

* �observable

* stati
 EXP higher(Msg m1,

* Msg m2):

* m1.prio > m2.prio;

*/

[36℄ 
lass Msg {

[37℄ Msg next; int prio;

[38℄ Msg(int p) { this.prio = p; }

}

[39℄ 
lass DataMsg extends Msg {

[40℄ int data;

[41℄ DataMsg(int p, int d) {

[42℄ super(p); data = d;

[43℄ }

[44℄ int get() { return data; } }

[45℄ 
lass RequestMsg extends Msg {

[46℄ 
har req;

[47℄ RequestMsg(int p, 
har r) {

[48℄ super(p); req = r;

[49℄ }

[50℄ 
har get() { return req; } }

Figure 3. Data and Requests

[51℄ publi
 stati
 void main(...) {

[52℄ MsgQueue q = new MsgQueue(10);

[53℄ Server s = new Server(q);

[54℄ (new Client(q,1)).start();

[55℄ (new Client(q,2)).start();

[56℄ s.start(); }

[57℄ 
lass Client extends Thread {

[58℄ MsgQueue q; int p;

[59℄ Client(MsgQueue q, int p) {

[60℄ this.q = q; this.p = p;

[61℄ }

[62℄ publi
 void run() {

[63℄ int i;

[64℄ while (true) {

[65℄ Msg m;

[66℄ if (
hoose())

[67℄ m = new RequestMsg(p,

[68℄ 
hoose() ? "+" : "-"));

[69℄ else

[70℄ m = new DataMsg(p,i++));

[71℄ q.send(m);

[72℄ }

[73℄ } }

[74℄ 
lass Server extends Thread {

[75℄ MsgQueue q;

[76℄ Server(MsgQueue q) {

[77℄ this.q = q;

[78℄ }

[79℄ publi
 void run() {

[80℄ int total:

[81℄ boolean lastAdd = true;

[82℄ while (true) {

[83℄ Msg m = queue.re
v();

[84℄ if (m instan
eof DataMsg)

[85℄ if (lastAdd)

[86℄ total += ((DataMsg)m).get();

[87℄ else

[88℄ total -= ((DataMsg)m).get();

[89℄ else

[90℄ lastAdd =

[91℄ ((RequestMsg)m).get()=='+');

[92℄ }

[93℄ } }

Figure 4. Sample Client and Server

to Java, in
luding state
harts [38℄ and syn
hronization poli
y spe
i-

�
ations [16℄. To e�e
tively model Java programs, BIR has been de-

signed to in
lude primitives for modeling obje
t-oriented, dynamism

and 
on
urren
y features that are spe
i�
 to the JVM [40℄. In this se
-

tion, we des
ribe how these features are translated from a Java/Jimple

representation of a program to BIR.

bir-journal.tex; 3/04/2003; 21:48; p.8
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Prior to the Jimple to BIR translation implemented in the BIRC


omponent, our 
urrent tools perform two Jimple transformations: vir-

tual 
all resolution and method inlining. Virtual 
all resolution de-

termines the possible re
eiver types at a method 
all site via 
lass

hierar
hy analysis [13℄ and introdu
es expli
it type tests to guard 
alls

to the appropriate method for the tested type. This enables inlining

of methods sin
e the guards ensure that a single re
eiver type rea
hes

ea
h 
all site. Inlining is then performed with appropriate renaming of

lo
al variables and mapping of a
tual parameters and return values to

formals. Ongoing work on Bandera is adapting BIR for model-
he
kers

su
h as dSPIN [36℄ that 
an model virtual method invo
ation; this will

allow treatment of re
ursive methods.

Mu
h of our Jimple to BIR translation is analogous to well-understood


ode-generation te
hniques from program 
ompilation. Unlike tradi-

tional 
ompilers, however, we exploit the fa
t that the entire program

is available during translation. This allows us to optimize the generated

BIR transition system so that it only models program 
omponents that

are potentially used during some program run. For example, data that

a JVM asso
iates with ea
h Java obje
t in order to implement lo
king

and the semanti
s of wait-notify is only generated for types whose

instan
es are a
tually lo
ked or on whom wait or notify is 
alled.

Similarly, storage for instan
es of 
lasses is allo
ated only for those


lasses that appear in new statements. Thus in our example no storage

will be allo
ated to store instan
es of 
lass Msg sin
e no new Msg()

expressions appear in the program. This helps to minimize the size of

ea
h program state that is explored during model 
he
king.

Our translation treats basi
 Java library 
lasses, su
h as java.lang.Obje
t,

java.lang.Thread and interfa
e java.lang.Runnable. Referen
e to

and instantiation of these 
lasses is supported in a limited form. Spe
i�-


ally, methods start(), exit(), run(), and �eld target of java.lang.Thread,

and wait(), notify(), and notifyAll() of java.lang.Obje
t are

mapped to appropriate BIR representations. Other library 
ode 
an be

used, but it must be expli
itly in
luded in sour
e 
ode form as part of

the program and any native method 
alls must be repla
ed with pure

Java 
ode.

Our 
urrent translation approa
h has several limitations. Floating

point types are maximally abstra
ted by transforming all test expres-

sions over 
oating point values to non-deterministi
 
hoi
e over a boolean

domain. Re
ursion and user thrown and 
aught ex
eptions are not

supported in the 
urrent version of our tools, but work is ongoing to

support them in BIR in the near future. Some methods of basi
 library

routines, su
h as getClass(), hashCode(), 
lone(), finalize(), and
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timed versions of wait() in java.lang.Obje
t are not supported,

neither is program input or output.

Our presentation is driven by identifying extra
ts of the example

from Se
tion 2 and des
ribing the 
orresponding fragments of BIR.

The BIR fragments have been modi�ed to improve their readability

by shortening variable names and eliding details. Temporary variables

that model JVM sta
k lo
ations are named with tmp pre�xes. We

begin with an overview of BIR whi
h at the highest level of stru
ture

has two parts: (1) a passive part that de
lares the data layout of the

system, and (2) an a
tive part that de
lares the threads of 
ontrol and

transitions of the system. The syntax of BIR is given in Appendix A.

Passive BIR De
larations: Typi
ally, the data de
laration se
tion

will des
ribe a bounded data spa
e by bounding both basi
 data types

(e.g., integer values are bounded by subranges) and dynami
ally al-

lo
ated data (e.g., obje
ts are allo
ated from pools of bounded size).

However, when generating BIR system des
riptions for translation to

model-
he
kers that do not require su
h bounds (e.g., dSPIN supports

dynami
 obje
t 
reation and garbage 
olle
tion dire
tly), they 
an be

omitted as appropriate.

BIR provides four 
ategories of types. Primitive types in
lude boolean,

integer subranges, and enumerated types. Lo
k types are used to im-

plement thread syn
hronization. Aggregate types in
lude re
ords and

arrays. Referen
e types are pointers to aggregate types. BIR's type-


he
king strategy for re
ords and enumerated types is similar to C/C++

in that is it based on name-equivalen
e instead of stru
tural-equivalen
e

[22℄.

A referen
e type de
laration in
ludes the type of obje
ts to whi
h

the referen
e 
an refer, and a list of 
olle
tions that 
an hold obje
ts to

whi
h the referen
e 
an refer. Supplying an obje
t type in a referen
e

type de
laration allows type-
he
king to easily produ
e a stati
 type of

an obje
t returned by a dereferen
e expression (�a la Java). Supplying

a 
olle
tion list allows ba
k-end translators to produ
e more eÆ
ient

pro
edures for obje
t dereferen
ing and enables optimizations based on

(non)aliasing information.

Variables of lo
k type are used to represent the impli
it lo
k �eld

asso
iated with ea
h Java obje
t. In Java, lo
ks 
an be reentrant (i.e.,

a
quired more than on
e by the same thread) [40℄, and threads 
an

also wait (i.e., suspend themselves) on a lo
k. Extra state data is

required to maintain information about reentrant lo
ks and lo
ks upon

whi
h wait() is invoked. If stati
 analysis determines that a obje
t's

lo
k is not reentrant or not involved in a wait(), those quali�ers 
an

be removed from the lo
k variable's type. This me
hanism informs
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ba
k-end translators that unne
essary state 
omponents in a lo
k's

representation 
an be omitted.

To 
arry out appropriate type-
he
king and to implement Java oper-

ations su
h as instan
eof, type 
asts, and virtual method invo
ations,

BIR allows de
laration of an inheritan
e hierar
hy whi
h gives rise to

a subtyping relation; to a

ommodate a variety of sour
e languages,

BIR supports any a
y
li
 subtyping relation. Any type identi�er that

appears in the inheritan
e hierar
hy de
laration must be bound to a

re
ord type spe
i�
ation.

Colle
tions provide a 
exible representation of the heap in several

ways. First, they allow alternative heap representations depending on

the target model-
he
ker. For example, when translating to a model-


he
ker like SPIN whi
h does not provide any built-in symmetry re-

du
tions, using a di�erent 
olle
tion for ea
h allo
ator site in a Java

program a
hieves a simple but e�e
tive form of symmetry redu
tion

(explained later in this se
tion). However, when translating to dSPIN

whi
h provides built-in heap symmetry redu
tions, it is more e�e
tive

to use a single 
olle
tion for ea
h Java 
lass. Se
ond, the 
olle
tion rep-

resentation allows heap data to be bounded in a 
exible way (explained

in Se
tion 4).

A
tive BIR De
larations: Thread de
larations are used to de�ne in-

dependently exe
uting transition systems. In ea
h thread, de
larations

of lo
al variables are followed by a sequen
e of lo
ations. When system

exe
ution begins, 
ontrol in ea
h thread begins at the start lo
ation {

the �rst lo
ation in the thread's lo
ation sequen
e. At any given time,

a thread is at one of its lo
ations, 
alled the 
urrent lo
ation of the

thread.

Ea
h lo
ation is the sour
e of one or more guarded transitions. Ea
h

transition 
onsists of a boolean guard expression followed by a sequen
e

of a
tions ending in the target lo
ation indi
ating the sour
e of next

transition in the thread to be exe
uted. To generate a su

essor of a

given state, a transition whose guard is true and whose sour
e lo
ation

is the 
urrent lo
ation of its thread is sele
ted. The transition's a
tions

are exe
uted sequentially, updating the system state (atomi
ally) to

produ
e the next state. Transitions may be annotated as invisible in-

di
ating that it is safe to 
ollapse the transition along with its su

essor

into a single atomi
 step.

Lo
k and thread operations must appear in 
ertain patterns (the

Java 
ompiler and BIR 
onstru
tor 
an easily guarantee this, but other

translators generating BIR should observe these 
onstraints). Spe
i�-


ally, lo
k and unlo
k operations must be properly nested and a thread

must never attempt to lo
k a lo
k that it already holds unless the
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lo
k is de
lared reentrant. Ea
h lo
k operation must be guarded by

a lo
kAvailable test, and ea
h syn
hronized transformation must be

guarded by a hasLo
k test. A wait operation must be the last a
tion

of a transformation and must be followed by an unwait operation that

is guarded by both a lo
kAvailable test and a wasNoti�ed test. The

purpose of these last two restri
tions is to leave hooks for translators

so they 
an implement the monitor semanti
s in the most eÆ
ient way.

For example, in SPIN it is better to prevent a thread from exe
uting

lo
k until the lo
k is available, while in NuSMV it is better to allow the

thread to exe
ute lo
k (unsu

essfully), but then wait until the lo
k is

released and given to the thread (by the releaser).

Most other expressions appearing in a
tions and guards are 
onven-

tional. Some ex
eptions in
lude the externChoose and internChoose


onstru
ts, ea
h of whi
h represents non-deterministi
 
hoi
e over the

values in the argument list. The externChoose is used to represent non-

deterministi
 
hoi
e in the environment 
omponent (e.g., a test harness

for the system), whereas internChoose is used for non-deterministi



hoi
e in the system itself (Bandera's abstra
tion fa
ilities use it to

represent data abstra
tions). These 
hoi
e 
onstru
ts are handled dif-

ferently in the 
hoose-bounded sear
h strategy des
ribed Se
tion 5.0.3.

In addition to 
hoosing over a �xed set of values, BIR also in
ludes

expressions for non-deterministi
ally 
hoosing from the allo
ated in-

stan
es of a 
olle
tion and for 
hoosing from the instan
es rea
hable

from a given referen
e in the 
urrent heap state. These expressions have

been used to state program properties related to the heap [12℄ and in

developing abstra
t models of the environment [48℄; their semanti
s is

dis
ussed in detail in Se
tion 5.0.2.

Basi
 Transitions and Visibility: Expressions and statements that

treat JVM base types have a natural mapping to BIR. The BIR frag-

ment in Figure 5 illustrates how the 
ompound test on lines [18-20℄ of

Figure 2 is translated to a series of guarded transitions in BIR and how

a �eld assignment is expressed dire
tly.

We note that transitions involving only lo
als (in this fragment of

MsgQueue.send() variables m, last, 
urr are all lo
als) are marked

as invisible to indi
ate that their e�e
t 
an only be observed by the


ontaining thread. In 
ontrast, the assignment at lo
ation s125 is ob-

servable sin
e it 
orresponds to a write to heap allo
ated data.

Inheritan
e: Inheritan
e is present in our example via subtyping of

Msg by DataMsg and RequestMsg. We illustrate the modeling of sub-

typing relations in BIR in Figure 6. The re
ord types RequestMsg and

DataMsg expli
itly represent the inheritan
e of �elds next and prio
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lo
 s123: live { m, last, 
urr, ... }

when (last == null) do invisible { } goto s124;

when (! (last == null)) do invisible { } goto s143;

lo
 s124: live { ... }

when (
urr == last) do invisible { } goto s125;

when (! (
urr == last)) do invisible { } goto s43;

lo
 s125: live { ... }

when true do { this.tail := m; } goto s126;

Figure 5. Basi
 Transitions

system MessageQueueExample()

Msg_ref = ref Msg { RequestMsg_
ol, DataMsg_
ol };

RequestMsg_ref = ref RequestMsg { RequestMsg_
ol };

DataMsg_ref = ref DataMsg { DataMsg_
ol };

Msg = re
ord { next : Msg_ref; prio : range -1..3; };

RequestMsg = re
ord { next : Msg_ref; prio, req : range -1..3; };

DataMsg = re
ord { next : Msg_ref; prio, data : range -1..3; };

DataMsg extends Msg;

RequestMsg extends Msg;

Msg extends Obje
t;

RequestMsg_
ol : 
olle
tion [3℄ of RequestMsg;

DataMsg_
ol : 
olle
tion [3℄ of DataMsg; ...

lo
 s70: live { m, ... }

when true do invisible

{ tmp_9 := (m instan
eof DataMsg); } goto s71; ...

Figure 6. Inheritan
e

from Msg. The referen
e types indi
ate the 
olle
tions whose elements

may be referen
ed by a value of the type. Msg ref is de�ned to re
e
t

the fa
t that a Java variable de
lared of Msg 
an refer to an instan
e

with dynami
 type DataMsg or RequestMsg. Finally, the subtyping re-

lationships among re
ords is expli
itly de�ned by the extends 
lause,

sin
e subtyping in Java is by name rather than stru
tural. Lo
ation

s70, whi
h models the 
onditional expression on line [84℄ in Figure 4,

illustrates a guarded assignment that uses one of BIR's JVM spe
i�


operators; instan
eof in BIR has the same semanti
s as in the JVM.

Heap Allo
ated Data: Data in Java programs is either sta
k or heap

allo
ated. Inlining e�e
tively 
attens sta
k allo
ated data asso
iated

with 
alled methods and models it as lo
al data in the 
alling BIR

thread. BIR's 
olle
tion fa
ility provides a 
exible me
hanism for mod-

eling heap allo
ated data. A 
olle
tion is, in essen
e, a typed array of

re
ords, and we model the global program heap as a group of 
olle
tions.
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Rather than use a single 
olle
tion for ea
h Java 
lass, we introdu
e a


olle
tion for ea
h allo
ator of a 
lass (i.e., new expressions). Figure 6

illustrates the 
olle
tions generated for the two allo
ation sites (on lines

[67℄ and [70℄) in the Client.run() method of Figure 4.

In the presen
e of multi-threading, this heap modeling provides a

simple form of heap symmetry by allo
ating instan
es in a 
olle
tion

in an order that is determined lo
ally by a thread's behavior. A single


olle
tion per type would introdu
e allo
ation orders that depend on

the interleaving of threads performing the allo
ations.

Resour
e Bounds: To enable eÆ
ient reasoning, Bandera allows users

to de�ne bounds on the range of values that program data 
an take on.

Figure 6 illustrates the modeling of integer �elds prio and data, for the

�elds of DataMsg instan
es, as BIR range types; the default range type

is the interval f�1; : : : ; 3g, but this 
an be set by the user. Bounds on

the number of instan
es 
reated at an allo
ator site 
an also be de�ned

as illustrated in the 
olle
tion sizes in Figure 6; the default allo
ation

bound is 3, but this 
an be set on a per 
lass basis by the user. Resour
e

bounds are exploited in performing 
ustomized state-spa
e sear
hes as

des
ribed in Se
tion 5.0.3

Note that when translating BIR to model-
he
kers that support

garbage 
olle
tion su
h as dSPIN, the bounds on 
olle
tions may be

ignored as explained in Se
tion 4.2.

Thread Primitives: Java threading primitives are supported dire
tly

in BIR. Instan
es of subtypes of java.lang.Thread or 
lasses im-

plementing java.lang.Runnable are modeled with both a data and

a 
ontrol 
omponent. The data 
omponent is a re
ord instan
e that

stores the member data for the 
lass instan
e. Figure 7 illustrates the

BIR fragment that models a Server with a queue 
omponent modeling

the �eld de
lared on line [75℄ in Figure 4 and with a tid �eld that

re
ords the BIR thread identi�er for the thread's 
ontrol 
omponent.

The prede�ned BIR type tid ex
lusively spe
i�es thread identi�er

values.

The 
ontrol 
omponent is derived from the run() method for the

obje
t, in this 
ase from Server.run(). This method is modeled using

a BIR thread parameterized by a referen
e to the data 
omponent

for the obje
t. This allows a

ess to instan
e data through referen
es

to this in the thread body. Thread instan
es are allo
ated as shown

in lo
ation s10 of Figure 7, and their exe
ution starts after the BIR

start() operation is 
alled with the thread's data 
omponent refer-

en
e, as shown in lo
ation s43 of Figure 7. The start method returns

the thread identi�er for the new thread whi
h is stored in the thread
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pro
ess MessageQueueExample()

Server = re
ord { tid : tid; queue : MsgQueue_ref; }; ...

main thread Main()

s : Server_ref := null; ...

lo
 s10: live { q }

when true do invisible { s := new Server_
ol; } goto s11; ...

lo
 s43: live { s }

when true do { s.tid := start Server(s); } goto s44; ...

thread Server(this : Server_ref) ...

Figure 7. Thread Creation

lo
 s51: live { this_MsgQueue, ... }

when lo
kAvailable(this_MsgQueue.BIRLo
k) do {

lo
k(this_MsgQueue.BIRLo
k); } goto s52;

lo
 s52: live { this_MsgQueue, ... }

when hasLo
k(this_MsgQueue.BIRLo
k)

do { tmp_9 := this_MsgQueue.elements; } goto s53;

lo
 s53: live { this_MsgQueue, tmp_9 , ...}

when (tmp_9 == 0) do invisible { } goto s54;

when (! (tmp_9 == 0)) do invisible { } goto s57;

lo
 s54: live { this_MsgQueue, ... }

when true do { wait(this_MsgQueue.BIRLo
k); } goto s55;

lo
 s55: live { this_MsgQueue, ... }

when (lo
kAvailable(this_MsgQueue.BIRLo
k) &&

wasNotified(this_MsgQueue.BIRLo
k))

do { unwait(this_MsgQueue.BIRLo
k); } goto s56;

lo
 s56: live { this_MsgQueue, ... }

when true do { tmp_9 := this_MsgQueue.elements; } goto s53;

lo
 s57: live { this_MsgQueue, ... }

...

lo
 s66: live { this_MsgQueue, ... }

when true do { notifyAll(this_MsgQueue.BIRLo
k); } goto s67;

lo
 s67: live { this_MsgQueue, ... }

when true do invisible { ret := m; } goto s68;

lo
 s68: live { this_MsgQueue, ret, ... }

when true do { unlo
k(this_MsgQueue.BIRLo
k); } goto s69;

Figure 8. Syn
hronization

re
ord's tid �eld to a
hieve 
ross-referen
ing between data and 
ontrol


omponents.

Syn
hronization Primitives: BIR is designed to support syn
hro-

nization primitives that 
losely mat
h those available in Java.

Java syn
hronized statements are represented as a pair of JVM

entermonitor and exitmonitor byte
odes. BIR de
omposes the fun
-
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lo
 s96: live { ... }

when true do invisible { tmp_prio := externChoose(0,1); } goto s97;

lo
 s97: live { tmp_prio, ... }

Figure 9. Non-deterministi
 Choi
e

tionality of those operations still further via its lo
k primitives, as

dis
ussed earlier, and our translation uses these primitives to a
hieve

Java's monitor fun
tionality.

Lo
ations [51-52℄ in Figure 8 implement the entry of syn
hronized

method re
v() on line [26℄ in Figure 2. This is a
hieved in three steps:

(1) waiting until the desired lo
k is available, (2) a
quiring the lo
k via

a 
all to lo
k(), and (3) pro
eeding into the syn
hronized region if

hasLo
k() is true. Exiting a syn
hronized region is a
hieved with a

single BIR unlo
k() operation as shown at lo
ation s68 of Figure 8.

Lo
ations s53-s57 illustrate how we use BIR to model the standard


onditional wait 
oding pattern that is 
ommon in Java (this pattern

is used on lines [27-30℄ of Figure 2). The semanti
s of Java's wait()

operation is a
hieved by a sequen
e of three BIR operations: �rst the

thread indi
ates it wants to wait() on the BIR lo
k, then the thread

waits until the both the lo
k is available and the lo
k has been noti�ed,

it then indi
ates that it is no longer waiting via the unwait() operation.

BIR's primitives for notify() and notifyAll() mat
h the semanti
s

of Java methods exa
tly; the latter is illustrated in lo
ation s66 of

Figure 8.

Non-deterministi
 Choi
e: Bandera may introdu
e non-deterministi



hoi
e operators into the program to en
ode abstra
tions. Users may

also introdu
e 
hoi
e operators into their programs as a modeling prim-

itive. The Client threads that form the environment of the MsgQueue

use the boolean 
hoose() operator on line [66℄ of Figure 4 to model

the la
k of knowledge of the spe
i�
 
onditions under whi
h a DataMsg

or RequestMsg may be sent. As des
ribed earlier, internal 
hoi
e is

used for modeling abstra
tions. The use of the 
hoose() operator,

des
ribed above, is mapped to external 
hoi
e and expressed using the

externChoose(0,1) operator in the BIR fragment from Figure 3.

BSL Predi
ates: The observable predi
ates that are used to express

properties in BSL must also be expressed in terms of the BIR model.

For predi
ates that are parameterized by quanti�ed variables, as in the

properties in Se
tion 2, we translate the predi
ates into a form that

expli
itly refers to BIR variables that hold bound values. In general,

predi
ates, su
h as the one pre
eding line [7℄ in Figure 2, may refer
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to a 
ontrol lo
ation, su
h as the invo
ation of method send(), and a

data 
onstraint, su
h as a test for equality between the se
ond predi
ate

parameter and the Msg parameter of the send() 
all. The BIR predi
ate

is as follows:

pred_
alled = (Client(null)�s125 &&

((quantifi
ation_m1 == Client:send_m) &&

(quantifi
ation_mq == Client:send_this)));

where a lo
ation s125 is the 
all of send() from in a Client thread.

The null parameter in lo
ation predi
ate indi
ates that the tid of

the thread is un
onstrained; it will be true if any instan
e of Client

rea
hes lo
ation s125. Names of the form quantifi
ation_ refer to

BIR globals bound to quanti�ed values, and names of the form Client:

indi
ate method lo
als or parameters.

3.1. Counter-example Interpretation

Just as BIR insulates sour
e-language 
on
erns from veri�er 
on
erns

in the generation of model 
he
ker inputs, it also insulates 
lients

from needing to build 
ounter-example pro
essing 
apabilities for model


he
ker spe
i�
 
ounter-example formats. The BIR ba
k-end supports

this by requiring that BIR-to-veri�er translators in
lude a 
omponent

that maps veri�er-spe
i�
 
ounter-examples ba
k to a BIR tra
e. A

BIR tra
e is a �nite-sequen
e of BIR transitions that 
an be used to

generate the state information on any pre�x of the tra
e. For transi-

tions that 
orrespond to non-deterministi
 
hoi
e expressions additional

information de�ning the 
hosen value is en
oded in the tra
e.

Ba
k-end 
lients intera
t with 
ounter-examples through a BIR sim-

ulator, illustrated in Figure 1. The simulator provides basi
 
apabilities

for stepping forward and ba
kward through a tra
e and for query-

ing the values of state variables at a given point in the tra
e. These


apabilities have been used to build Java-spe
i�
 debugger-like fa
ili-

ties for exploring 
ounter-examples in Bandera [11℄ and for animating


ounter-examples on visual depi
tions of state
harts [38℄.

4. Translating BIR to Model Che
ker Inputs

This se
tion is dedi
ated to the model generation te
hniques used in

Bandera. We fo
us mainly on the des
ription of the translator to the

SPIN model 
he
ker [31℄. Translation to the dSPIN [36℄ model 
he
ker is

dis
ussed brie
y and the translation strategy for nuSMV [7℄ is presented

in Appendix C. Throughout this se
tion we refer to a model as the
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des
ription of the entire program's behavior, rather than the subset of

behaviors satisfying a temporal logi
 spe
i�
ation.

4.1. The SPIN Translator

The following dis
ussion assumes a 
ertain degree of familiarity with

Promela [31℄, the input language of the SPIN model 
he
ker. We present

informally the translation s
heme for the most relevant primitives in

BIR, su
h as dynami
 obje
t 
reation and syn
hronization a
tions. The

translation to SPIN also supports dynami
 thread 
reation, whi
h relies

on the underlying support of SPIN for dynami
 pro
esses.

Obje
t Creation: Obje
t allo
ation is modeled in Promela using 
ol-

le
tion variables, de
lared within the state-ve
tor. For instan
e, the 
ol-

le
tion of three elements of type RequestMsg from Figure 6 is translated

into the following stru
ture:

typedef type_24 { bit inuse[3℄; RequestMsg instan
e[3℄; }

Here the inuse bit-ve
tor marks 
olle
tion slots that have already been

allo
ated, while the instan
e ve
tor stores the instan
e data.

Heap allo
ated data is a

essed in BIR via referen
e values. In the

Promela model we represent a referen
e value by a two-byte integer,

where the most signi�
ant byte uniquely identi�es the 
olle
tion, and

the least signi�
ant byte is the index of the instan
e within the 
olle
-

tion. Referen
es are 
reated by the ref ma
ro, and a

essed by the


olle
t and index ma
ros. Allo
ation itself is performed via the

allo
ate ma
ro whose de�nition is given below:

#define _allo
ate(
ol, refindex, maxsize, lo
Num, transNum, a
tionNum)

do

:: 
ol.inuse[_i_℄ ->

_i_ = _i_ + 1;

if :: _i_ == maxsize -> printf("BIR: ... LimitEx
eption\n");

limit_ex
eption = true; _i_ = 0; goto endtrap;

:: else

fi;

:: else -> 
ol.inuse[_i_℄ = true; _temp_ = _ref(refindex,_i_); _i_ = 0;

break;

od

The �rst available 
olle
tion slot is sear
hed. In 
ase one is found, it

is marked inuse and a new referen
e value is 
reated from the 
ol-

le
tion identi�er and the 
urrent slot index. This value is assigned to

a spe
ial temporary variable temp from whi
h it is subsequently

read by the program. On the other hand, if the 
olle
tion is exhausted,

then a limit ex
eption is raised by setting a 
ag and jumping to the

endtrap lo
ation. Ex
eption handling will be dis
ussed in the following.
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In both 
ases the i 
ounter is dead at the end of the loop,

therefore it is reset. As an example, the allo
ation a
tion o

urring

at lo
ation s10 in Figure 7 is translated in Promela as follows:

lo
_10: atomi
 { _allo
ate(Server_
ol,4,3,26,0,1);

s = _temp_; _temp_ = 0; ... }

To model a

esses and updates of dynami
 allo
ated data, the SPIN

translator uses points-to information to determine the appropriate 
ol-

le
tion, based on all possible types of a referen
e variable. For instan
e,

the assignment o

urring at lo
ation s125 in Figure 5 is translated as

follows:

if

:: (_
olle
t(send_MsgQueue_this) == 1) ->

MsgQueue_
ol.instan
e[_index(send_MsgQueue_this)℄.tail

= send_MsgQueue_m;

:: else -> printf("BIR: NullPointerEx
eption\n"); assert(false);

fi;

In this 
ase there is only one 
olle
tion of type MsgQueue, whose index is

1. An attempt to a

ess a referen
e variable that hasn't been previously

assigned a valid referen
e value is 
aptured by the else bran
h of the


onditional. The e�e
t in this 
ase is to signal a null pointer ex
eption

and stop the model 
he
ker.

Syn
hronization Primitives: A (waiting and reentrant) lo
k obje
t

is modeled in Promela by the following stru
ture:

typedef lo
k_RW {


han lo
k = [1℄ of { bit };

byte owner, 
ount;

int waiting;

};

The �rst �eld is a blo
king 
ommuni
ation 
hannel de�ned to hold one

(bit) token. Intuitively, an empty 
hannel represents a taken lo
k. The

owner and 
ount �elds are introdu
ed to support reentrant lo
king,

while the waiting �eld is used for waiting and noti�
ation primitives.

The reentrant lo
king/unlo
king primitives are implemented by the

following ma
ros. A formal de�nition of these operations is given in

Se
tion 5.

#define LOCK 0

#define _lo
k_R(syn
)

if

:: syn
.owner == _pid -> syn
.
ount ++;

:: else -> syn
.lo
k ? LOCK; syn
.owner = _pid;

fi

#define _unlo
k_R(syn
)

if
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:: syn
.
ount > 0 -> syn
.
ount --;

:: else -> syn
.owner = 0; syn
.lo
k ! LOCK;

fi

#define _lo
kAvailable_R(syn
) (nempty(syn
.lo
k) || syn
.owner == _pid)

The �rst time a lo
k a
tion is performed by a thread on a lo
k obje
t,

the LOCK token is removed from the 
hannel. Subsequent lo
k a
tions

by the same thread are non-blo
king, the only e�e
t being to in
rement

the lo
k 
ounter, while other threads will blo
k attempting to re
eive

the LOCK token from the 
hannel. Dually, an unlo
k a
tion will release

the lo
k, by sending the token to the 
hannel, only at the outermost

level, when the value of the 
ounter is zero. The lo
kAvailable predi-


ate returns true if either the lo
k 
hannel is not empty or the lo
k has

been previously a
quired by the same thread. We remind the reader

that the Promela keyword pid evaluates to the index of the 
urrent

thread.

The waiting primitives are implemented by the following ma
ros:

#define _wait_R(syn
)

if

:: syn
.owner == _pid ->

syn
.waiting = syn
.waiting | (1 << _pid); _temp_ = syn
.
ount;

syn
.
ount = 0; syn
.owner = 0; syn
.lo
k ! LOCK;

:: else -> printf("BIR: IllegalMonitorStateEx
eption\n"); assert(false);

fi

#define _unwait_R(syn
) syn
.lo
k ? LOCK; syn
.owner = _pid;

syn
.
ount = _temp_; _temp_ = 0

#define _wasNotified(syn
) !(syn
.waiting & (1 << _pid))

The waiting �eld of the syn
hronization stru
ture represents the

set of threads that have already performed a wait a
tion on behalf of

the lo
k obje
t and are still dormant. The number of (reentrant) lo
k

a
tions already performed by the waiting thread is re
orded into the

(lo
al) temp variable. Finally, the owner �eld is reset to zero and

the token is sent to the lo
k 
hannel in order to free the lo
k obje
t.

Attempting to perform a wait a
tion on a lo
k not owned by the thread

raises an IllegalMonitorStateEx
eption.

The unwait a
tion is the 
onverse of wait, therefore it performs all

operations needed by the thread to re-aquire the lo
k. The wasNotified

predi
ate is implemented as a membership test on the waiting bitset.

Noti�
ation is implemented by the notify ma
ro. If there is at

least one thread in the waiting set, one thread is randomly 
hosen

and eliminated from the set. The non-determinism is 
aptured by the

innermost if-fi 
onstru
t. Moreover, if there is at least one waiting

thread, it is guaranteed that one will be 
hosen for noti�
ation. If there

are no waiting threads, the noti�
ation a
tion has no e�e
t. As with

wait, attempting to notify a lo
k not owned by the 
urrent thread

raises an IllegalMonitorStateEx
eption.
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#define _notify(syn
)

do

:: (syn
.owner == _pid) && (syn
.waiting != 0) ->

do

:: (_i_ < MAXTHREADS) ->

if

:: (syn
.waiting & (1 << _i_)) -> _temp_ = _i_;

if

:: syn
.waiting &= ~(1 << _i_); _i_ = 0; _temp_ = 0; break;

:: else -> skip;

fi

:: else -> skip;

fi;

_i_ = _i_ + 1;

:: else -> syn
.waiting &= ~(1 << _temp_); _i_ = 0; _temp_ = 0; break;

od;

break;

:: (syn
.owner == _pid) && (syn
.waiting == 0) -> break;

:: else -> printf("BIR: IllegalMonitorStateEx
eption\n"); assert(false);

od

As most of the syn
hronization models involve more than one tran-

sition, these ma
ros need to be used only inside atomi
 sequen
es, in

order to guarantee the 
orre
t semanti
s of their exe
utions.

Atomi
 Sequen
es: The granularity of a generated model is an im-

portant fa
tor that 
ontrols the 
omplexity of the veri�
ation pro
ess.

Coarser models are easier to verify, however 
are must be taken to

preserve the semanti
s of the original program. In Java byte
ode, the

basi
 measure of granularity is the JVM instru
tion. We 
an generalize

this to Java sour
e 
ode, 
onsidering in addition that all a

esses to the

lo
al sta
k of a thread are invisible to other threads. Sin
e lo
al a
tions

are globally independent [32℄, exe
uting them without interleaving with

other threads is a 
onservative approa
h to redu
ing the size of the state

spa
e.

Visibility information is already available in a BIR spe
i�
ation, as

every invisible transition 
an be annotated a

ordingly. A sequen
e of

su

essive invisible transitions, with no intermediate bran
hing, end-

ing with a visible transition, is translated into a Promela atomi
 se-

quen
e. An atomi
 sequen
e is exe
uted by the model 
he
ker without

interleaving with other pro
esses.

Another optimization is a
hieved by resetting the values of dead

variables. A variable is said to be dead at a program point if, on

all 
ontrol paths starting from that point, any read of the variable

is pre
eded by an assignment to it. When a variable be
omes dead it


an safely be reset, avoiding the exploration of states that di�er only by
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values of dead variables. In our translation to SPIN, all dead variables

are reset at the end of an atomi
 sequen
e.

Bounded State Exploration: There are several a
tions that 
ause a

BIR program to ex
eed its prede�ned bounds. For instan
e, an attempt

to allo
ate from an exhausted 
olle
tion, 
reate more threads than

allowed, assign an integer variable a value out of its prede�ned range,

are 
ases in whi
h the program goes into a spe
ial trap state. This

state is de�ned to be a self-loop state whi
h 
auses the model 
he
ker

to silently ba
ktra
k. The following example models an assignment of

value v to an integer variable x, de
lared of range MIN : : :MAX:

if

:: ! (v > MAX) ->

if

:: ! (v < MIN) -> x = v;

:: else -> printf("BIR: RangeLimitEx
eption\n");

limit_ex
eption = true; goto endtrap;

fi;

:: else -> printf("BIR: RangeLimitEx
eption\n");

limit_ex
eption = true; goto endtrap;

fi;

The trap state is introdu
ed by a self-loop at the end of the thread

de
laration:

endtrap: if

:: limit_ex
eption -> goto endtrap;

:: !limit_ex
eption ->

end: false;

fi;

If the trap lo
ation is rea
hed as result of ex
eeding the model bounds,

the limit ex
eption 
ag is set and the program goes into a loop.

This loop introdu
es a sink state into the state spa
e of the program.

Otherwise, if the trap lo
ation is rea
hed by the normal 
ontrol 
ow,

without the limit ex
eption 
ag being set, the program is driven

into a valid end state. The formal semanti
s of the bounded state-spa
e

sear
h is given in Se
tion 5.

4.2. The dSpin Translation

The dSPIN (Dynami
 SPIN ) model 
he
ker is designed for veri�
ation

of software, providing a number of novel features on top of standard

SPIN's state spa
e redu
tion algorithms, e.g., partial-order redu
tion

and state 
ompression. Sin
e dSPIN was originally developed as an

extension of the SPIN model 
he
ker, the input language of dSPIN is a

diale
t of the PROMELA language [31℄ o�ering, in addition to re
ursive
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and polymorphi
 fun
tions, primitives for allo
ating and referen
ing

dynami
 data stru
tures. Other advantages of using dSPIN as a target

model 
he
ker in
lude the possibility of 
reating an unbounded number

of obje
ts and the existen
e of embedded on-the-
y garbage 
olle
tion

[37℄ and heap symmetry redu
tions [35℄.

Sin
e the input of language of dSPIN is basi
ally a superset of

Promela, it is easy to modify the translation of the the previous se
tion

to target dSPIN. Currently, our translation to dSPIN takes advantage

of dSPIN's dynami
 obje
t 
reation, garbage 
olle
tion, and heap sym-

metry fa
ilities. This is a
hieved by modifying the Spin translation

of 
olle
tions and dynami
 allo
ation so that dSPIN primitives for

dynami
 allo
ation are used dire
tly and no size bounds are asso
iated

with 
olle
tions. Furthermore, when 
ompiling Java to BIR for use with

the dSPIN ba
kend, we simply allo
ate one 
olle
tion for ea
h Java


lass, sin
e the performan
e of dSPIN's native heap symmetry fa
ilities

ex
eeds the symmetry e�e
t that one obtains by using a 
olle
tion per

obje
t allo
ator.

5. Formalizing BIR

In this se
tion we present a more detailed formalization of the se-

manti
s of BIR. To avoid ex
essive detail, we dis
uss only the formal

semanti
s of the language 
onstru
ts dealing with dynami
 
reation of

obje
ts and monitor-based syn
hronization. The interleaving semanti
s

of a multithreaded BIR program, however, are dis
ussed in more de-

tail to 
learly explain several variations on model semanti
s that our

translators support.

The semanti
s of a BIR program is a �nite transition system de-

s
ribing the 
on
urrent behavior of the program as interleavings of vis-

ible transitions exe
uted by threads. The operational model is layered:

Se
tion 5.0.1 de�nes a number of semanti
 domains used to des
ribe

program 
on�gurations (states). Se
tion 5.0.2 de�nes the meaning of

the guarded transformations that represent atomi
 
omputation steps

in a BIR program. Finally, in Se
tion 5.0.3 a transition system is de�ned

using the semanti
s rules from the previous se
tions.

5.0.1. Semanti
 Domains

This se
tion introdu
es a number of semanti
 domains. These domains


onstitute the basi
 layer of the operational semanti
s de�nition, 
ap-

turing most of the fun
tionality of later 
onstru
ts su
h as expressions

and a
tions. Con
eptually, this is done by asso
iating with every do-

main a number of operators, i.e., fun
tions that manipulate values
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belonging to that domain. Along the presentation we draw attention

to the boundedness of these domains. Indeed ea
h domain is �nite and

operations attempting to ex
eed the prede�ned bounds will fail. This

feature is important in the development of a bounded program model.

Let us �rst introdu
e some notation. For two sets A and B, ha; bi 2

A � B denotes a pair. For a set A, A

�

denotes the set of all �nite

sequen
es 
ontaining elements from A. As usual, for a relation R �

A � B, R

�

denotes the re
exive and transitive 
losure. By writing s

n

we denote the element found on position n in the sequen
e s. For a set

A and a dis
rete element n 2 f?; �g, let A

n

denote the set A [ fng.

Throughout this se
tion, the notations A

?

and A

�

are used intensively.

Intuitively, ? stands for runtime error, and � for unde�nedness. The


hoi
e operator 
 ! a 2 b reads \if 
 is true then a else b". For

a mapping m 2 A 7�! B and two values a 2 A and b 2 B, the

mapping [a ! b℄m maps a to b and behaves like m for all x 6= a

in A. We use �-notation for fun
tions, where � denotes stri
tness in

the ? argument (passing ? as argument will 
ause the fun
tion to

evaluate to ?). Also �xy:f stands for �x:�y:f and �xy:f for �x:�y:f .

For two positive integers m < n we denote by m::n the range fm;m+

1; : : : ; n� 1g. The bounded addition operator �

n

is de�ned as follows:

x�

n

y = x+ y � n! x+ y 2 ?.

Heap: As BIR is an obje
t-based language that allows for obje
ts

to be dynami
ally 
reated, there is need for a representation of the


omputer's memory in our model. Nevertheless, the semanti
s of the

memory should be abstra
t enough to a

ommodate all possible situa-

tions that 
an be found in pra
ti
e. We represent it by means of a �nite

domain Lo
ation and an operator nextlo
. Both are de�ned in Figure

10. The nextlo
 operator is not de�ned expli
itly, we simply require

it to satisfy two 
onditions: (i) given a lo
ation, nextlo
 will return a

new available lo
ation, and (ii) the memory is exhausted after a �nite

number of allo
ations. There is a distin
t lo
ation whi
h we denote by

null.

Figure 10 presents the de�nition of the dynami
 memory domain,

used to allo
ate new obje
ts. Formally, a heap is a pair hm; li. The �rst

(m) 
omponent of the heap is a map from memory lo
ations to obje
ts.

An obje
t is a pair hs; ti whose �rst 
omponent is a store and se
ond


omponent is an AggregateType. Storing the type expli
itly within the

obje
ts will allow us to quantify over all existing instan
es of a given

type (in Se
tion 5.0.2). The role of the se
ond (l) 
omponent in the

de�nition of the Heap is to ensure that ea
h newly allo
ated obje
t

will be pla
ed at a di�erent lo
ation. Formally, this is guaranteed by

the se
ond (ii) property of the nextlo
 operator in the de�nition of
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null 2 Lo
ation

nextlo
 : Lo
ation! Lo
ation

?

nextlo


n

(l) 6= l; 8 l 2 Lo
ation; 8 n 2 IN n f0g (i)

nextlo


n

(l) = ?; 8 l 2 Lo
ation; 9 n 2 IN n f0g (ii)

Obje
t = Store�AggregateType

Heap = (Lo
ation 7�! Obje
t

�

)� Lo
ation

?

allo
 : Heap�Obje
t! Heap� Lo
ation

?

allo
(hm; li; o) = (h[l! o℄m;nextlo
(l)i; l) when l 6=?

allo
(hm;?i; s) = (hm;?i;?)heap a

ess :

Heap� Lo
ation! Obje
t

�

heap a

ess(hm; li; k) = m(k)

rea
hable : Heap� Lo
ation � Lo
ation! ftrue; falseg

rea
hable(h; l; l

0

) =

8

>

>

<

>

>

:

true if l = l

0

W

i 2 Identifier

h(l) = hs; ti

s(i) = hk; t

0

i

rea
hable(k; l

0

) otherwise

Figure 10. Heap

the Lo
ation domain. The allo
 operator takes a heap and an obje
t

as arguments. It pla
es the obje
t at the next available lo
ation in

the heap and returns a new heap, where the l 
omponent is updated,

together with the lo
ation of the newly pla
ed obje
t. Attempting to

allo
ate a new obje
t in an exhausted heap hm;?i will 
ause the allo


fun
tion to return ? in order to signal a runtime \out of memory"

error. The heap a

ess and rea
hable operators are used to de�ne non-

deterministi
 
hoi
e operators in the next se
tion.

Colle
tions: A BIR program does not refer dire
tly to the heap mem-

ory, rather it uses 
olle
tions to handle (bounded) dynami
 obje
t


reation. Formally, a 
olle
tion (Figure 11) is a pair ht; ii whose �rst


omponent spe
i�es an aggregate type (either re
ord or array) and

se
ond 
omponent indi
ates the 
urrent number of obje
ts allo
ated

from that 
olle
tion. After a �nite number of allo
ations, a 
olle
tion is

exhausted, and an attempt to allo
ate from an exhausted 
olle
tion will

result in an error. On the other hand, there is a possibility of exhausting

the heap before the 
olle
tion bound is ex
eeded. Both error situations

are 
aptured by the use of stri
t fun
tions in the de�nition of the new

operator. The new operator takes as arguments a 
olle
tion and a heap.

The result is a triple whose �rst element is an updated 
olle
tion (i.e.,

the result of in
rementing its 
ounter), se
ond element is an updated
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Referen
e = Lo
ation �AggregateType

Colle
tion

n

= AggregateType� 0::n

?

new : Colle
tion

n

�Heap! Colle
tion

n

�Heap�Referen
e

?

new(ht; ii; h) = (�glk:(ht; ki; g; (�l

0

k

0

:hl

0

; ti)(l; k)))(allo
(h; hzero(t); ti); i�

n

1)

Figure 11. Colle
tion

heap returned by an invo
ation to the allo
 fun
tion, and third element

is a Referen
e value (i.e., a lo
ation-type pair). Su
h a value is the result

of applying a fun
tion (stri
t in both arguments) to the pair 
omposed

of the lo
ation returned by allo
 and the integer 
ounter obtained from

the bounded in
rement operation �

n

. Dynami
ally allo
ated obje
ts

are referred to by Referen
e values that 
arry the a
tual type of the

obje
t along with its lo
ation in the heap memory.

Lo
ks: Let us assume a prede�ned set of thread identi�ers ThreadId.

Figure 12 presents the de�nition of the lo
k domains. BIR lo
ks support

waiting and noti�
ation primitives. In addition, they are reentrant,

meaning that a thread is allowed to a
quire a lo
k multiple times,

without blo
king itself. Formally a lo
k is a 5-tuple hl; t; s

w

; s

n

; ii where

l is the status of the lo
k (free or taken), t is the identi�er of the thread

that owns the lo
k (or � i� the lo
k is free), s

w

and s

n

are sets of

thread identi�ers used for waiting and noti�
ation respe
tively, and

i is the number of times a thread has a
quired the lo
k. To ensure

�niteness of BIR models, this number has to be bounded (by a positive

integer n) as part of the de�nition of the lo
k domain (Lo
k

n

). The

operators asso
iated with the lo
k domain in Figure 12 des
ribe the

primitive operations that involves lo
k obje
ts in BIR. The lo
k and

unlo
k operations a
quire and release a lo
k obje
t, respe
tively, on

behalf of a given thread, given as �rst parameter. The reentrant nature

of BIR lo
ks is illustrated by the de�nition of the lo
k operator and the

lo
kAvailable predi
ate. More pre
isely, a busy lo
k is always 
onsidered

to be available to the thread that holds it. Waiting and noti�
ation on

a lo
k obje
t are de�ned by means of the wait, unwait, notify, and

notifyAll operators and the wasNoti�ed predi
ate. It is worthwhile

noti
ing that the wait, notify and notifyAll fun
tions return ? in 
ase

when the lo
k argument is free, signaling an \illegal monitor state"

run-time error.

States: Program 
on�gurations (Figure 13) are represented as triplets

hG;H; T i where: G is a store for global variables, H is a heap that
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Lo
kStatus = ffree; takeng

Lo
k

n

= Lo
kStatus� ThreadId

�

�

P(Thread)�P(Thread)� 0::n

lo
k : ThreadId� Lo
k

n

! Lo
k

n

?

lo
k(t; hfree; t

0

; s

w

; s

n

; ii) = ? when t

0

6= � _ i > 0

lo
k(t; hfree; �; s

w

; s

n

; 0i) = htaken; t; s

w

; s

n

; 1i

lo
k(t; htaken; t

0

; s

w

; s

n

; ii) = (t = t

0

)! (�m:htaken; t; s

w

; s

n

;mi)(i�

n

1)

2 ?

unlo
k : ThreadId� Lo
k

n

! Lo
k

n

?

unlo
k(t; hl; t

0

; s

w

; s

n

; ii) = ? when l = free _ t 6= t

0

_ i = 0

unlo
k(t; htaken; t; s

w

; s

n

; ii) = (i = 1)! hfree; �; s

w

; s

n

; 0i

2 htaken; t; s

w

; s

n

; i� 1i when i > 0

lo
kAvailable : ThreadId� Lo
k

n

! Boolean

lo
kAvailable(t; hl; t

0

; s

w

; s

n

; ii) = (l = free) _ (t = t

0

)

hasLo
k : ThreadId� Lo
k

n

! Boolean

hasLo
k(t; hl; t

0

; s

w

; s

n

; ii) = (l = taken) ^ (t = t

0

)

wait : ThreadId� Lo
k

n

! (0::n � Lo
k

n

)

?

wait(t; hl; t

0

; s

w

; s

n

; ii) = ? when l = free _ t 6= t

0

_ i = 0

wait(t; htaken; t; s

w

; s

n

; ii) = (i; hfree; �; s

w

[ ftg; s

n

; 0i) when i > 0

unwait : ThreadId� 0::n� Lo
k

n

! Lo
k

n

?

unwait(t; i; hl; t

0

; s

w

; s

n

; i

0

i) = ? when l = taken _ t

0

6= � _ t 62 s

n

_ i

0

> 0

unwait(t; i; hfree; �; s

w

; s

n

; 0i) = htaken; t; s

w

; s

n

n ftg; ii

notify : ThreadId� Lo
k

n

! Lo
k

n

?

notify(t; hl; t

0

; s

w

; s

n

i) = ? when l = free _ t 6= t

0

notify(t; htaken; t; ;; s

n

i) = htaken; t; ;; s

n

i

notify(t; htaken; t; s

w

; s

n

i) = htaken; t; s

w

n ft

0

g; s

n

[ ft

0

gi when 9t

0

2 s

notifyAll : ThreadId� Lo
k

n

! Lo
k

n

?

notifyAll(t; hl; t

0

; s

w

; s

n

i) = ? when l = free _ t 6= t

0

notifyAll(t; htaken; t; ;; s

n

i) = htaken; t; ;; s

n

i

notifyAll(t; htaken; t; s

w

; s

n

i) = htaken; t; ;; s

w

[ s

n

i when s

w

6= ;

wasNotified : ThreadId� Lo
k

n

! Boolean

wasNotified(t; hl; t

0

; s

w

; s

n

i) = (t 2 s

n

)

Figure 12. Lo
k Domains
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\

State = Global�Heap� ThreadPool

State =

\

State [ fErrorState; LimitStateg

Figure 13. Program States

stores dynami
ally allo
ated obje
ts, and T is a mapping that keeps

tra
k of the lo
al state of ea
h thread i.e., its 
urrent 
ontrol lo
ation

and the values of its lo
al variables.

In addition, we introdu
e two error states in order to 
hara
terize

erroneous behavior in a BIR program. The �rst is ErrorState that

deals with generi
 runtime errors, su
h as the failure of an expression

to evaluate. The program is driven into the LimitState only when a

bounded resour
e (su
h as the heap) has been exhausted.

5.0.2. Transformations

The exe
utable part of a BIR thread is a �nite sequen
e of guarded

transformations. In this se
tion we de�ne the semanti
s of guarded

transformations. In order to do so, we 
onsider as prede�ned a number

of semanti
 judgments. Namely, the hG;H; T i `

t

expr

ast ; val oper-

ator maps an abstra
t syntax tree fragment ast to a value val that

represents its value in the program state hG;H; T i. The evaluation of

expression ast is 
arried out by the thread denoted by t 2 ThreadId.

As usual, the notation hG;H; T i `

t

expr

ast;? denotes failure of ast to

evaluate in state hG;H; T i. The semanti
s of a
tions is 
aptured by the

derivation operator hG

i

;H

i

; T

i

i `

t

a
t

ast; hG

j

;H

j

; T

j

i whi
h des
ribes

the transformation of a program state hG

i

;H

i

; T

i

i under the a
tion

represented by the abstra
t syntax tree fragment ast, the resulting

state being hG

j

;H

j

; T

j

i. For the assignment a
tions we 
onsider a new

judgment hG

i

;H

i

; T

i

i `

v

asgn

lhs; hG

j

;H

j

; T

j

i des
ribing the e�e
t of

assigning an expli
it value v to the left-hand side expression lhs in

state hG;H; T i.

Being a 
on
urrent asyn
hronous system, a BIR program is inher-

ently non-deterministi
. However, in addition to the non-determinism


aused by the parallel 
omposition of threads, the language allows

for non-determinism even in a sequential 
ontext, namely inside a

thread. This is a powerful language tool for des
ribing systems allowing

abstra
tion by 
onservative over-approximation of 
on
rete behaviors

[17℄. The intuition is that a model 
he
king tool will exhaustively ex-

plore all possible states that result from an appli
ation of a 
hoi
e

rule. The rules de�ning the semanti
s of non-deterministi
 
hoi
es are

given in Figure 14. Ea
h 
hoi
e rule de�nes a judgment of the form

hG

i

;H

i

; T

i

i `

t


hoi
e

ast ; hG

j

;H

j

; T

j

i that des
ribes the e�e
t of
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the non-deterministi
 assignment. These rules 
an be applied non-

deterministi
ally be
ause of the existential quanti�er that appears in

the pre
ondition of ea
h rule.

The �rst rule in Figure 14 de�nes the meaning of a 
hoi
e between

several given values in assignment. One of the o�ered expressions is


hosen non-deterministi
ally and assigned to the left-hand side of the


hoi
e a
tion, the result of this assignment being the result of the 
hoi
e

a
tion. This rule handles also the error s
enario in whi
h the expression

fails to evaluate, 
ase in whi
h S is either ErrorState or LimitState.

The distin
tion between the semanti
s of the internChoose and

externChoose (Rule (2)) a
tions will be
ome more 
lear in Se
tion

5.0.3. To give the intuition behind this, let us assume that the BIR

program is obtained from an open module for whi
h an environment

has been previously synthesized. Both the module and the environment


an perform non-deterministi
 a
tions, however only the module's (in-

ternal) non-deterministi
 a
tions 
an be the result of an abstra
tion of

the original system, and therefore may generate a spurious 
ounterex-

ample when model-
he
ked. To avoid spurious errors, one approa
h

is to resume the model 
he
ker's sear
h whenever an internChoose

a
tion is en
ountered. Formally, we distinguish an internChoosewhi
h

is de�ned by a s `

t


hoi
e

ast ; s

0

judgement from an externChoose

whi
h is des
ribed by a s `

t

a
t

ast; s

0

judgement.

In languages with dynami
 
reation of obje
ts the \stati
" form of

non-deterministi
 
hoi
e is not suÆ
ient. Indeed, some properties have

to be veri�ed with respe
t to ea
h instan
e of a given 
lass. To model

non-deterministi
 
hoi
es among instan
es of a 
lass, we introdu
e the

rea
hable and forall a
tions. Rule (2) 
aptures the semanti
s of a


hoi
e over all instan
es of a given type that are rea
hable starting

with a given lo
ation. The rea
hability information is 
aptured by the

rea
hable predi
ate de�ned in Figure 10. Rule (3) de�nes the 
hoi
e

over all existing instan
es of a given type. Both rules are appli
able if

there exists at least a (rea
hable) lo
ation l in the heap that refers to

an instan
e of the given type or any of its subtypes. The semanti
s of a

non-deterministi
 
hoi
e over all (or rea
hable) instan
es in 
ase there

are no su
h instan
es is given by the rules (4) and (5): in these 
ases

the 
hoi
e a
tion does not 
hange the program state.

Formally, we de�ne a transformation relation 7! 2 State�ThreadId�

State. We use the notation s

t

7! s

0

for hs; t; s

0

i 2 7!. We de�ne two

su

essor and two prede
essor fun
tions as follows:

out(s; t) = fs

0

j s

t

7! s

0

g in(s; t) = fs

0

j s

0

t

7! sg

Out(s) =

S

t

out(s; t) In(s) =

S

t

in(s; t)
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9 1 � i � n [hG;H;T i `

t

a
t

lhs := e

i

; S℄

hG;H; T i `

t


hoi
e

lhs := internChoose(e

1

; : : : ; e

n

); S

(1)

9 1 � i � n [hG;H; T i `

t

a
t

lhs := e

i

; S℄

hG;H;T i `

t

a
t

lhs := externChoose(e

1

; : : : ; e

n

); S

9 l

2

4

hG;H;T i `

t

expr

lhs

2

; hl

0

; y

0

i rea
hable(H; l; l

0

)

H(l) = hs; yi hy; idi 2 SubType

�

hG;H;T i `

l

asgn

lhs

1

; S

3

5

hG;H; T i `

t


hoi
e

lhs

1

:= rea
hable(lhs

2

; id); S

(2)

9 l

�

H(l) = hs; yi hy; idi 2 SubType

�

hG;H; T i `

l

asgn

lhs; S

�

hG;H;T i `

t


hoi
e

lhs := forall(id); S

(3)

6 9 l

�

hG;H;T i `

t

expr

lhs

2

; hl

0

; y

0

i rea
hable(H; l; l

0

)

H(l) = hs; yi hy; idi 2 SubType

�

�

hG;H; T i `

t


hoi
e

lhs

1

:= rea
hable(lhs

2

; id); hG;H;T i

(4)

6 9 l

�

H(l) = hs; yi hy; idi 2 SubType

�

�

hG;H;T i `

t


hoi
e

lhs := forall(id); hG;H;T i

(5)

Figure 14. Choi
es

We expli
itly denote transformations whose results involve non-deterministi



hoi
e. We do so with a separate transformation relation 7!

�

2 State�

ThreadId � State that re
e
ts only the result of exe
uting a 
hoi
e

a
tion at some point during the transformation. Re
all that, in BIR,

transformations are sequen
es of atomi
 a
tions, so performing one


hoose a
tion will 
ause the entire transformation to be non-deterministi
.

There are two kinds of transformations in BIR: visible and invisible.

Intuitively, the e�e
t of an invisible transition should not be observed

by threads other than the one 
ontaining the transformation. The BIR

generator will have to perform stati
 
he
ks that 
onservatively identify

invisible transitions. For instan
e, a transformation that only writes

into lo
al variables 
an be safely labeled as invisible

2

. Noti
e that it is


onservative to label an invisible transformation as visible, whereas the


onverse does not hold. Formally, the 7! relation is partitioned into a

visible relation 7!

vis

and an invisible one 7!

inv

.

We now de�ne the visible transformation between states 7!

vis

,

as the least relation that meets rules (6, 8, 9) in Figure 15. The Code

fun
tion is used to map a synta
ti
 lo
ation into the set of statements it

labels. Rule (6) de�nes the meaning of a su

essful transformation. As

2

For more detail, we refer the interested reader to [24℄ for a formal de�nition of

a
tion independen
e and to [32℄ for a de�nition of a
tion safety.

bir-journal.tex; 3/04/2003; 21:48; p.30



31

usual, the transformation 
an o

ur if the 
ontrol lo
ation of the a
ting

thread mat
hes the sour
e lo
ation of the transformation and the guard

evaluates to true. The transformation su

eeds if and only if all atomi


a
tions from the transformation's body 
an su

eed. On the other hand,

rules (8) and (9) deal with errors. Namely, a transformation fails if

either the guard fails to evaluate or one a
tion fails to 
omplete (drives

the program into an error state). The invisible transformation relation

7!

inv

is the least relation that meets rule (7). We use here the syntax

for the invisible guarded transformations (Appendix A). Noti
e that

the error states 
an only be rea
hed by visible transformations.

To ensure the 
orre
t partitioning of the transformation relation

7!, we must impose two synta
ti
 restri
tions on the syntax of a BIR

thread: (1) it is illegal to have a visible and an invisible transformation

originating from and ending at the same lo
ation, and, (2) it is illegal

to have an invisible transformation originating from and ending at the

same lo
ation. It 
an be proven that these restri
tions are suÆ
ient to

ensure the distin
tion between the visible and invisible transformation

relations (Proposition 1 in Appendix B), and formally we have 7!

vis

\

7!

inv

= ;. The transformation relation 7! is then de�ned as: 7! =

7!

vis

[ 7!

inv

.

To de�ne the non-deterministi
 version of the transformation rela-

tion (7!

�

) we use a similar reasoning as in the 
ase of 7!. The only

di�eren
e is that at least one of the a
tions of the guarded transforma-

tion has to be interpreted (in the pre
onditions of the de�ning rules)

using a 
hoi
e judgement of the form s `

t


hoi
e

a ; s

0

. To enfor
e the

semanti
 distin
tion between deterministi
 and 
hoi
e transformations

(7! \ 7!

�

= ;), we impose a suÆ
ient synta
ti
 restri
tion that is

similar to the one 
on
erning visibility of transformations: it is illegal

for two or more transformations, only one of whi
h 
ontaining 
hoose

a
tions, to begin from and end at the same lo
ation.

5.0.3. Transition System

We are now ready to des
ribe the exe
ution of a BIR program by a

labeled transition system M = (�; S; T ) where S is a set of states

and �!� S � � � S is a labeled transition relation between states.

There are four labels in the alphabet, ea
h of them being a pair: � =

fvis; invg � f�;�g where, for any two states s; s

0

2 S and for some

thread t 2 ThreadId:

1. hs; (vis; �); s

0

i 2�! (s �!

�

vis

s

0

), if s

t

7!

vis

s

0

or s

t

7!

�

vis

s

0

.

2. hs; (inv; �)s

0

i 2�! (s �!

�

inv

s

0

), if s

t

7!

inv

s

0

or s

t

7!

�

inv

s

0

.
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hwhen (e) do fa

1

; :::; a

n

g goto mi 2 Code(l)

T (t) = hl; n; a
tive; �i hG;H;T i `

t

expr

e; true

hG;H;T i `

t

a
t

a

1

; hG

1

; H

1

; T

1

i

: : :

hG

n�1

; H

n�1

; T

n�1

i `

t

a
t

a

n

; hG

n

; H

n

; T

n

i

T

n

(t) = hl; n

0

; s

0

; �

0

i T

0

= [t! hm;n

0

; s

0

; �

0

i℄T

n

hG;H;T i

t

7!

vis

hG

n

; H

n

; T

0

i

(6)

hwhen (e) do invisible fa

1

; :::; a

n

g goto mi 2 Code(l)

T (t) = hl; n; a
tive; �i hG;H; T i `

t

expr

e; true

hG;H; T i `

t

a
t

a

1

; hG

1

; H

1

; T

1

i

: : :

hG

n�1

; H

n�1

; T

n�1

i `

t

a
t

a

n

; hG

n

; H

n

; T

n

i

T

n

(t) = hl; n

0

; s

0

; �

0

i T

0

= [t! hm;n

0

; s

0

; �

0

i℄T

n

hG;H;T i

t

7!

inv

hG

n

; H

n

; T

0

i

(7)

hwhen (e) do [invisible℄ fa

1

; :::; a

n

g goto mi 2 Code(l)

T (t) = hl; n; a
tive; �i hG;H;T i `

t

expr

e;?

hG;H;T i

t

7!

vis

ErrorState

(8)

hwhen (e) do [invisible℄ fa

1

; :::; a

n

g goto mi 2 Code(l)

T (t) = hl; n; a
tive; �i hG;H;T i `

t

expr

e; true

hG;H;T i = hG

0

; H

0

; T

0

i `

t

a
t

a

1

; hG

1

; H

1

; T

1

i

: : :

hG

i�1

; H

i�1

; T

i�1

i `

t

a
t

a

i

; S 1 � i � n

S 2 fLimitState; ErrorStateg

hG;H; T i

t

7!

vis

S

(9)

Figure 15. Guarded Transformations

3. hs; (�;�); s

0

i 2�! (s�!

�

�

s

0

), if s

t

7!

�

vis

s

0

or s

t

7!

�

inv

s

0

.

4. hs; (�;�); s

0

i 2�! (s �!

�

s

0

), if s

t

7!

vis

s

0

or s

t

7!

inv

s

0

.

We shall �rst de�ne a basi
 transition system M , the result of a


lassi
al state-spa
e exploration algorithm used in expli
it-state model


he
king [31℄. We then formally de�ne the bounded version of M , de-

noted by M

B

, whi
h is the result of resuming the state-spa
e sear
h

whenever a resour
e bound was ex
eeded. Next, we de�ne the de-

terministi
 (or 
hoose-free) version of M , denoted by M

D

, whi
h is

the result of a state-spa
e exploration aimed at produ
ing guaranteed

feasible 
ounter-examples of safety properties [45℄. The expli
it labeling

of non-deterministi
 transitions is needed in order to de�ne the 
hoose-

free version of the transition system. The visible/invisible labeling of

transitions is meaningful in order to de�ne further optimizations of the

state-spa
e, su
h as virtual 
oarsening.
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s

t

7!

inv

s

0

out(s

0

; t) 6= ;

hs; �i ,!

inv

hs

0

; ti hs; ti ,!

inv

hs

0

; ti

(10)

s

t

7!

vis

s

0

hs; ti ,!

vis

hs

0

; �i hs; �i ,!

vis

hs

0

; �i

(11)

s

t

0

7!

inv

s

0

out(s

0

; t) = ;

hs; �i ,!

vis

hs

0

; �i hs; ti ,!

vis

hs

0

; �i

(12)

Figure 16. Pseudo-transition System

In the basi
 version of the transition system (M), a sequen
e of

invisible transformations performed by the same thread 
annot be in-

terleaved with transformations of di�erent threads. Noti
e that this is

a safe assumption, sin
e an a
tion is de
lared invisible, assuming that

it is globally independent [32℄ with respe
t to all other transformations

of other threads. An invisible a
tion is however not independent with

other non-deterministi
 
hoi
es of the same thread, and for this reason

we need to preserve the internal bran
hing stru
ture of a thread when

de�ning the transition system. It 
an been shown that treating invis-

ible transformations by disallowing interleavings with other threads

generates a labeled transition system that is bran
hing bisimilar [21℄

to the fully interleaved one. Assuming that the invisible labeling of

transformations preserves state stuttering i.e., two states 
onne
ted

by an invisible transition will satisfy the same set of predi
ates, this

semanti
s strongly preserves the truth value of formulas written in the

next-free CTL* temporal logi
 [44℄.

We des
ribe the interleaving semanti
s of invisible a
tions by de�n-

ing a system of pseudo-transitions M = (�;S; ,!), where:

� S = State� ThreadId

�

and,

� ,! 2 S ���S is the least relation de�ned by the rules in Figure

16. Note that we only give rules for the deterministi
 pseudo-

transitions here; the non-deterministi
 
hoi
e pseudo-transitions

,!

�


an be derived analogously, using the 
hoi
e transformation

relation 7!

�

.

Intuitively, rule (10) de�nes the beginning and the span of a sequen
e

of invisible pseudo-transitions. The sequen
e begins with a pair hs; �i

when an invisible transformation is performed by a thread t. As result,

the next pair remembers the a
ting thread together with the su

essor

state hs

0

; ti. The sequen
e 
an be 
ontinued as long as there exists an

invisible transformation that 
an be performed by t, as des
ribed by
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the right-hand side of the post-
ondition. Noti
e that invisible pseudo-

transitions 
an o

ur as long as the a
ting thread t is not blo
ked in

the destination state s

0

of the transformation, a 
ondition that is ex-

pressed formally by the requirement out(s

0

; t) 6= ;. In the same style of

reasoning, rule (11) de�nes visible pseudo-transitions. A visible pseudo-

transition is the result of a visible transformation performed by a thread

t. The left hand side of the post-
ondition des
ribes the situation when

a visible pseudo-transition ends a sequen
e of invisible transitions by

resetting the thread identi�er to � in the su

essor state-thread pair.

The right hand side of rule's (11) post-
ondition spe
i�es a default

visible pseudo-transition between two pairs. Finally, rule (12) des
ribes

the end of an invisible sequen
e in the 
ase when the a
ting thread t is

blo
ked in the destination state (out(s

0

; t) = ;). In this 
ase, the invis-

ible transformation s

t

7!

inv

s

0

gives rise to a visible pseudo-transition

that ends the invisible sequen
e.

We 
an now de�ne the basi
 transition system, that will be generated

by a 
lassi
al state-spa
e sear
h M = (�; S;�!):

� S = State and,

� �!=

S

fhs; (x; y); s

0

i j 9u; v 2 ThreadId

�

: hs; ui ,!

y

x

hs

0

; vig

fhErrorState; (vis;�); ErrorStateig

fhLimitState; (vis;�); LimitStateig

The set of states is the set of program 
on�gurations, as de�ned in

Figure 13. There exists a transition between two states whenever there

exists a pseudo-transition between two state-thread pairs (ignoring the

thread 
omponent) and the transition labeling (x; y) is the same for

a transition as for a pseudo-transition between same states. It 
an be

proven that the transition labeling is indeed well-de�ned (Proposition 2

in Appendix B). Moreover, we add two visible deterministi
 transitions

to our model, making ErrorState and LimitState be
ome sink states,

as a 
onsequen
e of the fa
t that the expli
itly added transitions are

the only possible outgoing transitions from an error state.

Bounded Transition System: There are situations in whi
h one

is interested in verifying a property only on sequen
es of states that

respe
t all 
ertain 
onstraints. This feature 
an be obtained in BIR

by setting expli
it bounds on ea
h resour
e of the program, su
h as

the maximum number of obje
ts that 
an be allo
ated by an allo
ator

or the maximum number of threads the 
an be dynami
ally 
reated

by a start a
tion. Ex
eeding these bounds in a 
lassi
al sear
h will

drive the system into the LimitState. This is usually an observable

move of the system and, in pra
ti
e, rea
hing LimitState will stop the
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lassi
al state-spa
e sear
h, issuing an error message. In the bounded

state-spa
e sear
h, the possibility of ex
eeding a bound is dete
ted in

advan
e and the sear
h ba
ktra
ks from the 
urrent state, ignoring

the limit error. Formally, this style of sear
h is de�ned by a bounded

transition system M

B

= (�; S;�!

B

) that is derived from the basi


version M = (�; S;�!) as follows:

�!

B

= �! n fhs; (�; �); LimitStatei j s 2 In(LimitState)g

[ fhs; (vis;�); si j s 2 In(LimitState)g

That is, we eliminate all transitions that lead to LimitState and add

instead visible self loops to ea
h of the states pre
eding LimitState in

the original transition system.

Choose-free Transition System: The 
hoose-free sear
h [45℄ aims

at �nding only feasible 
ounterexample of temporal logi
 properties.

A 
ounterexample w = s

0

�! s

1

�! : : : is an in�nite sequen
e of

states and transitions whi
h does not satisfy a given temporal logi


formula. For instan
e, a 
ounterexample for an LTL formula � or a

ACTL formula A� is a path w in the transition system su
h that w 6j=

�

3

.

In pra
ti
e, a 
ounterexample is said to be feasible if it 
orresponds

to a realisti
 
omputation of the original system i.e., before abstra
tion

is performed. However de
iding whether a 
ounterexample is a
tually

feasible 
an be expensive. An alternative is to trade soundness of the

model 
he
king pro
edure for the guarantee that every 
ounterexample

found is a real one. In this parti
ular setting, a 
ounterexample is said

to be infeasible if it 
ontains at least one transition that o

urs as

the result of a non-deterministi
 
hoi
e in the BIR program. Noti
e

that this is a 
onservative de�nition. A state-spa
e sear
h is 
hoose-free

if it avoids taking non-deterministi
 transitions. We formally spe
ify

su
h a state-spa
e sear
h by de�ning a deterministi
 transition system

M

D

= (�; S;�!

D

) derived from the basi
 one M = (�; S;�!) as

follows:

�!

D

= �! n fhs; (�;�); s

0

ig

Sin
e 
hoi
e transitions s�!

�

s

0

are labeled a

ording to their non-

deterministi
 origin (Figure 14), we simply ex
lude them from the

original transition relation. Any path in the deterministi
 model will

3

For ECTL formulas, the model 
he
ker 
an only issue paths that testify for the


orre
tness of formulas.
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lo
 l1_a: when e1 do invisible { a1; ... an; } goto l2;

lo
 l2_a: when e2 do { b1; ... bm; } goto l3;

lo
 l1_b:

when e1 && e2 do { a1; ... an; b1; ... bm; } goto l3;

when e1 && !e2 do { a1; ... an; } goto l2;

lo
 l2_b: when e2 do { b1; ... bm; } goto l3;

Figure 17. Virtual Coarsening in BIR

not 
ontain 
hoi
e transitions, therefore any 
ounterexample found by

model 
he
king on M

D

will be feasible.

Virtual Coarsening: The notion of virtual 
oarsening stems from the

pioneering work of Ash
roft and Manna [2℄, and later Pnueli [46℄, in

using automati
 dedu
tion to prove 
orre
tness properties of 
on
urrent

programs. The idea is to optimize a parallel program for veri�
ation,

by lumping together 
omputation steps that are guaranteed to perform

only transformations that are lo
al to a pro
ess. Sin
e in a 
orre
tly

generated BIR program this 
ondition should be met by any invisible

transformation, 
oarsening a BIR thread amounts to grouping together

sequen
es of invisible transformations. Figure 17 shows how a sequen
e


omposed of an invisible and a visible transformation (denoted with _a)


an be 
oarsened. The resulting transitions (denoted with _b) 
onsist

of a new transformation whose guard is the 
onjun
tion of the guards

from the original transformations e1 and e2 and whose body is the


on
atenation of the bodies belonging to the original transformation.

Whenever it is possible (i.e., when e1 && e2 is true), the newly intro-

du
ed transformation is exe
uted, and the intermediate state, in whi
h


ontrol is at lo
ation l2, is skipped. However if the newly introdu
ed

transformation 
annot be exe
uted, the original 
omputation is per-

formed. Noti
e that the two transformations originating at lo
ation

l1_b are deterministi
, due to the !e2 
onjun
t inserted in the guard

of the se
ond one.

Sin
e a thread is allowed to non-deterministi
ally 
hoose between in-

visible transformations, the 
oarse transitions should not \
ross" bran
h-

ing points within a thread de
laration. Otherwise, the bran
hing stru
-

ture of the state-spa
e will be lost due to virtual 
oarsening, and

therefore the truth value of formulas of a bran
hing-time temporal logi
,

su
h as the next-free fragment of CTL [9℄ might not be preserved.
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Before pro
eeding with the des
ription of virtual 
oarsening, we

draw attention upon the following issue: sin
e sequen
es of invisible

transformations will be performed without interleaving, there is a one-

to-one 
orresponden
e between a sequen
e of invisible transformations

performed by a thread and the invisible transitions it generates. It is

therefore 
orre
t to work dire
tly with transition systems in de�ning

the redu
tion.

We will formalize virtual 
oarsening dire
tly on the transition system

M = (�; S;�!), and prove its 
orre
tness using bran
hing bisimulation

equivalen
e [23℄ between transition systems. Let R � S�S be a relation

on states de�ned as follows:

R = fhs; si j s 2 Sg [ fhs; s

0

i; hs

0

; si j s) s

0

g

where s) s

0

if and only if there exists a �nite path s

0

�!

inv

s

1

�!

inv

: : :

s

n�1

�!

inv

s

n

, for some n � 1, su
h that:

i) s

0

= s and s

n

= s

0

,

ii) 8 0 � i < n : Out(s

i

) = fs

i+1

g,

iii) 8 0 < i � n : In(s

i

) = fs

i�1

g.

The intuition behind the de�nition of) is the following: we are allowed

to lump together as many invisible a
tions as possible, given that they

all belong to a sequential path (ii) and there are no other in
oming

transitions to the states on the path (iii). Sin
e the goal of the redu
-

tion is to eliminate the intermediate states s

1

; : : : ; s

n�1

; s

n

, the latter


ondition is needed to preserve those states that are destinations for

transitions other than the ones belonging to the path.

In fa
t R is an equivalen
e relation; by de�nition it is re
exive and

symmetri
, and transitivity follows immediately from the de�nition of

). Let [s℄

R

denote the equivalen
e 
lass of a state s with respe
t to

R. The 
oarse transition system is de�ned as the quotient of M with

respe
t to R. The states of a quotient system are equivalen
e 
lasses of

states from the original system, namely M

=R

= (�; S

R

;�!

R

) where:

� S

R

= f[s℄

R

j s 2 Sg and,

� �!

R

= fh[s℄

R

; [s

0

℄

R

i j s �! s

0

g.

For the purposes of expli
it-state model 
he
king we represent the quo-

tient system by a proje
tion h : S

R

! S where h([s℄

R

) = s

0

su
h

that s

0

2 [s℄

R

and for no s

00

2 [s℄

R

we have s

00

) s

0

. Intuitively,

a representative of an equivalen
e 
lass is the �rst state that 
an be

rea
hed by a depth-�rst sear
h. It follows (Proposition 3 in Appendix
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B) that su
h a state is unique and therefore h is a well-de�ned fun
-

tion. Moreover, it is also inje
tive. Formally, the expli
it-state redu
ed

transition system is M

h

= (�; h(S

R

);�!

h

) where s �!

h

s

0

if and only

if h

�1

(s) �!

R

h

�1

(s

0

). Obviously, h is an isomorphism between M

=R

andM

h

. The 
orre
tness of our 
onstru
tion is ensured by the fa
t that

M and M

h

are bran
hing bisimilar (Proposition 4 in Appendix B). To-

gether with the assumption that the invisible labeling of transitions and

stuttering with respe
t to a set of predi
ates are 
onsistent, is follows

that all temporal logi
 formulas written in CTL* X are preserved by

virtual 
oarsening [44℄.

Sin
e a representative state is the �rst rea
hable state in the equiv-

alen
e 
lass, a transition between two states 
orresponds to a maximal

deterministi
 sequen
e of invisible transitions ending either with a non-

deterministi
 invisible transition or a visible transition. Simple 
onser-

vative tests 
an be done to ensure that an invisible transformation is

deterministi
, in order to deal with the �rst redu
tion rule. The latter


ase is exempli�ed by the synta
ti
 
oarsening in Figure 17. Noti
e

that the synta
ti
 transformations are only approximative; for instan
e,

inferring that two transformation guards are a
tually disjoint 
an be an

unde
idable problem. In su
h 
ases, the 
ontrol 
ow graph of a thread


an be used as a 
onservative approximation of its a
tual behavior.

6. Related Work

There are several noteworthy proje
ts on software model-
he
king. Sin
e

this paper fo
uses on using intermediate language to stage translations

to model-
he
king engines, our dis
ussion of related work will fo
us on

tool environments with similar goals.

The design goals of the IF validation environment [6℄, developed at

Verimag, are similar to those of the Bandera proje
t in that both rely

on intermediate forms to aid in the translation of design notations to

model-
he
king tools. Spe
i�
ally, IF relies on a dedi
ated intermediate

format to translate from high-level spe
i�
ation formalisms su
h as

SDL or UML state ma
hines into a des
ription of 
ommuni
ating state

ma
hines. The spe
i�
ation language des
ribes a set of dynami
ally 
re-

ated pro
esses 
onne
ted via asyn
hronous bu�ers and shared variables.

Real-time modeling is supported, as ea
h pro
ess may use several 
lo
ks

to measure time during exe
ution and transitions may be guarded time


onstraints. The IF type system provides 
omplex data types, su
h as

enumeration, range, array and re
ord. The IF language is understood

by a number of validation tools, su
h as stati
 analyzers (LIVE) and

translators towards labeled transition systems (LTS) and PROMELA
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(IF2PML). The former are used to redu
e the size of the models, while

the later open the possibilities for model 
he
king and test generation.

To summarize, some primary di�eren
es between IF and BIR are

that IF in
ludes various features omitted from BIR su
h as a notion

of 
lo
ks and event bu�ers. Both of these 
ould be useful additions to

BIR, for example, 
lo
ks might provide the basis for 
he
king timing-

related properties of the Embedded Java and Real-time Java diale
ts.

On the other hand, BIR provides features omitted from IF to model

Java software in
luding lo
ks and dynami
 obje
t 
reation. There are


urrently no translations from Java or other high-level programming

languages to IF.

SAL (Symboli
 Analysis Laboratory) is a framework for synergisti-


ally 
ombining model-
he
king, theorem-proving, and stati
 analysis

tools for veri�
ation of 
on
urrent systems. The heart of SAL is the

SAL intermediate language developed in 
ollaboration with groups at

Stanford, Berkeley, and Verimag for spe
ifying 
on
urrent systems in

a 
ompositional way [5℄. The datatypes of SAL are very similar to

those of IF. SAL provides both syn
hronous and asyn
hronous 
om-

position of modules. Translations from SAL to PVS and SMV have

been implemented, and other tools for predi
ate abstra
tion, invariant

generation, and sli
ing have been integrated. Currently, no translations

from higher-level languages to SAL have been implemented. Although

it is similar to IF in several respe
ts, the tool infrastru
ture for SAL is

not as robust and a publi
 release of the tools has not yet been made.

The Java Path Finder model-
he
ker [50℄ works dire
tly on Java

byte
ode. There are several advantages to having a veri�
ation tool

work dire
tly on Java byte
ode as opposed to working on an alternate

notation su
h as BIR. The semanti
s of Java byte
ode is already well-

de�ned. Moreover, Java byte
ode is widely used, the Java to byte
ode

translation is well-understood and widely implemented, and there are

numerous tools that also work dire
tly on byte
odes. The down side

of having tools work on byte
ode dire
tly is that it 
an be diÆ
ult

to 
ustomize the model based on how the program uses a parti
ular

feature. For example, if an obje
t's lo
k is used but wait and notify are

not, then a dire
t interpretation approa
h like JPF will still maintain

a representation of the wait-set whi
h is a waste of spa
e.

Gerard Holzmann's Feaver tool also translates a general-purpose

programming language (i.e., C) into Promela for 
he
king with SPIN

[34℄. Feaver does not use an intermediate language but instead relies

to some degree on the synta
ti
 similarities between C and Promela.

Spe
i�
ally, it uses a pattern-mat
hing approa
h where an appli
ation-

spe
i�
 lookup table asso
iates C 
ode patterns or fragments with


orresponding Promela fragments. Translation from a C to Promela
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pro
eeds by traversing the C program and applying the mappings from

the table to individual C fragments to obtain Promela fragments. While

Holzmann has demonstrated that this approa
h 
an be very e�e
tive

in 
he
king large telephony appli
ations, it does not seem amenable

to providing a robust interoperability platform between other input

notations or model-
he
king tools other than SPIN.

Finally, other work on software model-
he
king make unique and

interesting 
ontributions su
h as the SLAM tool [4℄ from Mi
rosoft Re-

sear
h whi
h implements an automated predi
ate abstra
tion method-

ology for sequential C programs, Godefroid's Verisoft tool for stateless


he
king of 
on
urrent C systems [25℄, Stoller's [47℄ tool for stateless


he
king of multi-threaded distributed Java programs, and Yahav's

work on 
he
king safety properties of Java programs [51℄ built on top

of Lev-Ami and Sagiv's three-valued logi
 analysis tool (TVLA) [39℄,

but we do not give a deeper assessment of these here due to our fo
us

on intermediate representations.

7. Con
lusion

The goal of this paper has been to provide a 
omprehensive a

ount of

the Bandera Intermediate Representation in
luding our design goals,

BIR's syntax and semanti
s, and strategies for translating to and from

BIR. The design of BIR has proven e�e
tive in supporting model-


he
king properties of a variety of real 
on
urrent Java appli
ations

and other software design notations.

We believe that model 
he
ker input languages should evolve to

support the needs of emerging appli
ations of model 
he
king as a

software analysis te
hnology. We believe that experien
e with BIR 
an

help shape the evolution of model 
he
ker input languages. Some model


he
kers, for example JPF and dSPIN, have already begun to in
orpo-

rate BIR's non-determinism 
onstru
ts for dynami
 data sin
e they

dramati
ally in
rease modeling power without expanding the state-

spa
e.

Tool interoperability is a 
hallenging but often underappre
iated

goal that potentially has signi�
ant bene�ts { espe
ially for an emerg-

ing area su
h as software model-
he
king. Ideally, resear
hers should

be able to leverage ea
h other's tool-building e�orts to avoid ex
es-

sive dupli
ation of e�ort. While BIR is by no means perfe
t, we hope

that the e�ort reported here 
ontributes to a dialogue among like-

minded resear
hers regarding representations for software systems and

spe
i�
ations amenable to model-
he
king.
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Appendix

A. Grammar

This se
tion presents the syntax of the BIR language.

hsystemi ::= `system' ID `(' `)' f hde�nitioni g

f hthreadi g [ hpredi
atesi ℄ `end' ID `;'

hde�nitioni ::= h
onstantdef i j htypedef i j hsubtypedef i j h
olle
tdef i

j hglobaldef i

h
onstantdef i ::= `
onst' CONSTANTID INT `;' j `
onst' CONSTANTID

hbooleani `;'

hsubtypedef i ::= TYPEID `extends' TYPEID `;'

h
olle
tdef i ::= COLLECTID `:' `
olle
tion' [ `[' h
onstanti

`℄' ℄ `of' TYPEID `;'
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hglobaldef i ::= ID `:' htypei [ `:=' hvaluei ℄ `;'

h
onstanti ::= CONSTANTID j INT

htypei ::= htypespe
i j TYPEID

htypedef i ::= TYPEID `=' hnamedtypespe
i j TYPEID `=' htypespe
i

htypespe
i ::= `boolean'

j `range' h
onstanti `..' h
onstanti

j `lo
k' [ `wait' ℄ [ `reentrant' ℄

j `ref' TYPEID `f' ID f `,' ID g `g'

j `array' `[' h
onstanti `℄' `of' htypei

hnamedtypespe
i ::= `enum' `{' henum
onsti f `,' henum
onsti g `}'

j `re
ord' `f' f ID `:' htypei `;' g `g'

henum
onsti ::= ID j ID `=' INT

hexpri ::= hvaluei

j hlo
ktesti

j hthreadtesti

j `(' hexpri `)'

j hunopi hexpri

j hexpri hbinopi hexpri

j hexpri `.' ID

j hexpri `[' hexpri `℄'

j hexpri `.' `length'

j hexpri `instan
eof' ID

hlhsi ::= ID

j hlhsi `.' ID

j hlhsi `[' hexpri `℄'

j hlhsi `.' `length'

hvaluei ::= INT

j ID

j hbooleani

j `null'

hbooleani ::= `true' j `false'

hunopi ::= `+' j `-' j `!'
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hbinopi ::= `+' j `-' j `*' j `/' j `%' j `&&' j `||' j `==' j `!=' j

`<' j `>' j `<=' j `>='

hlo
ktesti ::= hlo
ktestopi `(' hlhsi `)'

hlo
ktestopi ::= `lo
kAvailable' j `hasLo
k' j `wasNotified'

hthreadtesti ::= `threadTerminated' `(' ID `)'

hthreadi ::= [ `main' ℄ `thread' ID `(' f hparami g `)'

f hlo
ali g hlo
ationi f hlo
ationi g `end' ID

`;'

hparami ::= ID `:' htypei `;'

hlo
ali ::= ID `:' htypei [ `:=' hvaluei ℄ `;'

hlo
ationi ::= `lo
' ID `:' [ hliveseti ℄ f htransformationi g

hliveseti ::= `live' `f' `g'

j `live' `f' ID f `,' ID g `g'

htransformationi ::= `when' hexpri `do' [ `invisible' ℄

`f' f ha
tioni g `g' `goto' ID `;'

ha
tioni ::= hassigna
tioni

j h
hoi
ea
tioni

j hlo
ka
tioni

j hthreada
tioni

j hprinta
tioni

j hasserta
tioni

hassigna
tioni ::= hlhsi `:=' hexpri

j hlhsi `:=' `new' COLLECTID `;'

j hlhsi `:=' `new' COLLECTID `[' hexpri `℄' `;'

h
hoi
ea
tioni ::= hlhsi `:=' `internChoose' `(' hvaluei f `,' hvaluei

g `)' `;'

j hlhsi `:=' `externChoose' `(' hvaluei f `,' hvaluei

g `)' `;'

j hlhsi `:=' `forall' `(' ID `)' `;'

j hlhsi `:=' `rea
hable' `(' ID ',' hexpri `)' `;'

hlo
ka
tioni ::= hlo
kopi `(' hlhsi `)' `;'
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hlo
kopi ::= `lo
k' j `unlo
k' j `wait' j `unwait' j `notify'

j `notifyAll'

hthreada
tioni ::= [ hlhsi `:=' ℄ `start' `(' ID [ `,' hargsi ℄ `)' `;'

j `exit' `;'

hargsi ::= hexpri f `,' hexpri g

hprinta
tioni ::= `println' `(' [ hprintargsi ℄ `)' `;'

hprintargsi ::= hprintargi

j hprintargi `,' hprintargsi

hprintargi ::= STRING j ID

hasserta
tioni ::= `assert' `(' hexpri `)' `;'

hpredi
atesi ::= `predi
ates' f hpredi
atei g

hpredi
atei ::= ID `=' hpredexpri `;'

hpredexpri ::= hthreadLo
ationTesti j hremoteReferen
ei

hthreadLo
ationTesti ::= ID `[' hlhsi `℄' `�' ID

hremoteReferen
ei ::= ID `[' hlhsi `℄' `:' hlhsi

B. Proofs

We need the following lemma for the rest of the proofs. The proof uses

the fa
t that we 
annot have an invisible transformation originating

from and ending at the same lo
ation in a thread de
laration.

LEMMA 1. Let s; s

0

2

\

State and t; t

0

2 ThreadId. If s

t

7!

inv

s

0

and

s

t

0

7! s

0

then t = t

0

.

Proof: Let s = hG;H; T i, s

0

= hG

0

;H

0

; T

0

i and let hwhen (e) do [invisible℄

fa

1

; : : : ; a

n

g goto mi 2 Code(l) be the transformation from the pre
on-

dition of rule (6) that makes s

t

0

7!s

0

true. By rule (6) T (t

0

) = hl; n; a
tive; �i,

T

0

(t; ) = hm;n

0

; s

0

; �

0

i and 8t

00

6= t

0

T (t

00

) = T

0

(t

00

). Assuming t 6= t

0

we

have T (t) = T

0

(t). Let hwhen (e) do invisible fa

1

; :::; a

n

g

goto mi 2 Code(l) be the transformation that triggers s

t

7!

inv

s

0

. Then,
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a

ording to rule (6), we have T (t) = hl; n; a
tive; �i, T

0

(t) = hm;n

0

; s

0

; �

0

i,

and sin
e T (t) = T

0

(t) we have l = m. This 
ontradi
ts the synta
ti


restri
tion that no invisible transformation originates and ends in the

same 
ontrol lo
ation. 2

The following proof uses the synta
ti
 restri
tion that it is illegal

to have a visible and an invisible transformation originating from and

ending at the same lo
ation.

PROPOSITION 1. For any s; s

0

2 State and t

1

; t

2

2 ThreadId, it is

not the 
ase that both s

t

1

7!

inv

s

0

and s

t

2

7!

vis

s

0

hold.

Proof: There are two 
ases:

i) If s; s

0

2

\

State, then let s = hG;H; T i and s

0

= hG

0

;H

0

; T

0

i. We

prove by 
ontradi
tion, assuming that s

t

1

7!

inv

s

0

, s

t

2

7!

vis

s

0

and

letting hwhen (e) do invisiblefa

1

; :::; a

n

g goto mi 2 Code(l) be

the transformation from the pre
ondition of rule (6) that makes

s

t

1

7!

inv

s

0

true. If s

t

2

7!

vis

s

0

, by Lemma 1 we obtain t

2

= t

1

. Now

let hwhen (e

0

) do fa

0

1

; :::; a

0

n

g goto mi 2 Code(l) be the transforma-

tion that makes s

t

2

7!

vis

s

0

true, a

ording to rule (6). Clearly, the

existen
e of both transformations between 
ontrol lo
ations l and

m is a violation of the synta
ti
 restri
tion regarding the presen
e

of both visible and invisible transformations between two 
ontrol

lo
ations.

ii) If s 2

\

State and s

0

2 fErrorState; LimitStateg it 
annot be the


ase that s

t

1

7!

inv

s

0

, sin
e 7!

inv

is de�ned as the least relation

satisfying rule (7).

2

The soundness proof for transition labeling will be 
arried out using

the rules in Figure 16.

PROPOSITION 2. For any s; s

0

2 State and u; u

0

; v; v

0

2 ThreadId

�

,

it is not the 
ase that both hs; ui ;

vis

hs

0

; u

0

i and hs; vi ;

inv

hs

0

; v

0

i

hold.

Proof: As ,! is the least relation meeting the rules (10, 11, 12),

hs; ui ;

vis

hs

0

; u

0

i holds be
ause either i) s

t

7!

vis

s

0

or ii) s

t

7!

inv

s

0

and

out(s

0

; t) = ;. The (i) 
ase is ruled out by the fa
t that hs; vi ,!

inv

hs

0

; v

0

i

whi
h 
an only be true due to s

t

0

7!

inv

s

0

for some t

0

2 ThreadId

�

.

A

ording to Proposition 1, having both s

t

7!

vis

s

0

and s

t

0

7!

inv

s

0

is a


ontradi
tion. For the (ii) 
ase, as we 
an only have hs; vi ,!

inv

hs

0

; v

0

i
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due to an appli
ation of rule (10), it is the 
ase that out(s

0

; t) 6= ; and

s

t

0

7!

inv

s

0

for some t

0

2 ThreadId

�

. Then by Lemma 1 we have t = t

0

.

But this is 
learly in 
ontradi
tion with the fa
t that out(s

0

; t) = ;. 2

The following proposition shows that the representative fun
tion

h : S

R

! S is indeed well de�ned.

PROPOSITION 3. Let [s℄

R

� S be an equivalen
e 
lass w.r.t. R. If

s

1

; s

2

2 [s℄

R

su
h that for no s

0

1

2 [s℄

R

we have s

0

1

) s

1

and for no

s

0

2

2 [s℄

R

we have s

0

2

) s

2

, then s

1

= s

2

.

Proof: By 
ontradi
tion, assume that s

1

6= s

2

. Sin
e s

1

; s

2

2 [s℄

R

and

s

1

6= s

2

then either s

1

) s

2

or s

2

) s

1

, by the de�nition of R. But

either 
ase 
ontradi
ts the hypothesis. 2

The following proposition shows that M and M

h

are bran
hing

bisimilar. This is done by showing �rst that R is a bran
hing bisimu-

lation. Sin
e R is total on both S and h(S

R

), the result follows imme-

diately.

PROPOSITION 4. For any s; s

0

; t 2 S, if sRs

0

and s �! t then either:

a) s �!

inv

t and tRs

0

, or

b) there exist s

1

; t

0

2 S su
h that s

0

) s

1

�! t

0

and sRs

1

and tRt

0

.

Proof: By de�nition, sRs

0

is be
ause either (1) s = s

0

, (2) s) s

0

or (3)

s

0

) s. The �rst 
ase meets trivially 
ondition (b). Assume now that

s) s

0

. Then, for some s

00

2 S we have Out(s) = fs

00

g, s �!

inv

s

00

and

s

00

) s

0

. The only possibility is to have t = s

00

and therefore s �!

inv

t

and t) s

0

. This leads to tRs

0

whi
h satis�es 
ondition (a). In the third


ase we have s

0

) s and sin
e s �! t, 
ondition (b) is immediately

satis�ed. 2

C. NuSMV Translation

NuSMV [7℄ is a symboli
 model 
he
ker that uses BDDs to en
ode

the set of rea
hed states and the transition relation is represented as a

predi
ate transformer. In this se
tion we brie
y sket
h the translation

of BIR to NuSMV.

A �rst di�eren
e with respe
t to the SPIN translation is that dy-

nami
 threads are not 
onsidered. Instead, we assume a set Thread-

Name of thread names that are either idle or a
tive. In the begin-

ning, all threads are idle ex
ept for a designated main thread. An

idle thread 
an be a
tivated, but there are no means of generating
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fresh names for threads. To some extent, this limitation 
an be over-


ome by over-approximating the maximum number of threads that the

program will 
reate and de
laring enough names. Note that su
h an

over-approximation is not always possible.

Variables: For ea
h thread name T 2 ThreadName we de
lare two

global variables, T lo
 re
ording its 
urrent lo
ation, and T a
tive

indi
ating whether the thread is a
tive. Lo
al variables of ea
h thread

are translated in NuSMV by pre�xing their names with the name of

their en
losing thread.

Among the global variables, BIR 
olle
tions request spe
ial atten-

tion. A 
olle
tion X having size k is translated into 2k distin
t variables

i.e., for ea
h i 2 f0; : : : ; k � 1g: X inusei of type boolean, indi
ating

whether the i-th 
olle
tion slot is in use, and, X insti represents a

parti
ular instan
e, a

ording to its type. A similar s
heme is used for

the translation of array types. Re
ords are 
attened by pre�xing ea
h

�eld with the name of the re
ord type.

A BIR variable X having a referen
e type is translated into a pair of

variables:X refIndex identi�es the 
olle
tion pointed to, andX instNum

indi
ates the index of the spe
i�
 instan
e inside the 
olle
tion.

The order of variables plays an important role in NuSMV, sin
e the

sizes of the BDDs used to represent the set of rea
hable states greatly

depend on this ordering. Even though there is no eÆ
ient way to de-

termine an optimal variable order, heuristi
s proposed in the literature

[1℄ suggest using the hierar
hy in the system to order variables. Our

translation de�nes a partial order in whi
h all global variables, re
ord

�elds, array elements and thread lo
al variables are at the top of the

order.

Transitions: The global transition relation is given by a boolean for-

mula of the form:

TRANS =

^

T2ThreadNames

Trans(T ) ^

^

v2VarNames

Trans(v)

where Trans(T ) de�nes the lo
al behavior of a thread and Trans(v)

de�nes the behavior of a global variable. Thus to de�ne the transition

relation, it is suÆ
ient to de�ne the transitions of ea
h thread and ea
h

variable.

The interleaving semanti
s of a multithreaded program is 
aptured

in the syn
hronous exe
ution mode of NuSMV by introdu
ing a des-

ignated variable running whose value is un
onstrained, and therefore

updated non-deterministi
ally. Only running may take a transition,
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while all other threads idle. This is 
aptured in the following relation:

Trans(T ) =

0

�

T lo
 = T

0

lo
 ^

^

v2Lo
(T)

v

0

= v

1

A

_

_

t2Tr(T)

0

�

taken(t) ^

^

v2Lo
(T)

update(v; t)

1

A

where taken(t) is a shorthand for:

running = T ^ guard(t) ^ T lo
 = sour
e(t) ^ T lo


0

= target(t)

and

update(v; t) =

8

<

:

v

0

= e if t assigns e to v

v

0

= v if t does not assign v, but v is live at target(t)

1 otherwise

For a thread T , Tr(T) denotes the set of transformations, whereas for

a transformation t, sour
e(t) denotes its sour
e lo
ation and target(t)

stands for its target lo
ation.

Note that dead variables are left un
onstrained by the update for-

mula. In pra
ti
e this has shown important redu
tions in the size of

the transition relation BDD.

Expressions: Most BIR arithmeti
 operators have an NuSMV 
oun-

terpart, but dereferen
ing requires spe
ial treatment. We have used the

NuSMV 
ase sele
tion whi
h, for the purposes of this presentation is

abbreviated as:

F

n

i=1

(x : y) = 
ase x

1

: y

1

; x

2

: y

2

; : : : ; x

n

: y

n

; esa
.

The result of the expression is the y

i

value for the �rst x

i

expression

that evaluates to true, or 0 if all x

i

are false.

When a referen
e variable R is dereferen
ed, we generate nested 
ase

expressions to sele
t the 
orre
t 
olle
tion and instan
e.

G

r2Targets(R)

0

�

R refIndex = r :

Size(r)�1

G

i=0

(R instNum = i : Name(r) insti)

1

A

where Targets(R) is the set of target 
olle
tions to whi
h R 
ould refer

(determined by its de
lared type), Size(r) is the size of the 
olle
tion r,

and Name(r) is the name of 
olle
tion r. If the target r is a singleton,

we 
an omit the inner 
ase expression i.e., there is no instan
e to sele
t.
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