N
N

N

HAL

open science

Translating Java for Multiple Model Checkers: The
Bandera Back-End
Radu losif, Matthew B Dwyer, John Hatcliff

» To cite this version:

Radu losif, Matthew B Dwyer, John Hatcliff. Translating Java for Multiple Model Checkers: The
Bandera Back-End. Formal Methods in System Design, 2005, 26 (2), pp.137-180.

005-1491-3 . hal-01418880

HAL Id: hal-01418880
https://hal.science/hal-01418880
Submitted on 30 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Public Domain

10.1007/s10703-

https://hal.science/hal-01418880
https://hal.archives-ouvertes.fr

Translating Java for Multiple Model Checkers: the Bandera
Back-End

Radu losif, Matthew B. Dwyer and John Hatcliff

Department of Computing and Information Sciences
Kansas State University

April 3, 2003

Abstract. One approach to model checking program source code is to view a model
checker as a target machine. In this setting, program source code is translated to a
model checker’s input language using a process that shares much in common with
program compilation. For example, well-defined intermediate program representa-
tions are used to stage the translation through a series of analyses and optimizing
transformations and target-specific details are isolated in code generation modules.

In this paper, we present the Bandera Intermediate Representation (BIR) — a
guarded-assignment transition system language that has been designed to support
the translation of Java programs to a variety of model checkers. BIR includes
constructs, such as inheritance, dynamic creation of data, and locking primitives,
that are designed to model the semantics of Java primitives. BIR also includes
several non-deterministic choice constructs that support abstraction in modeling
and specification of properties of dynamic heap structures.

We have developed a BIR-based tool infrastructure that has been applied to
develop customized analysis frameworks for several different input languages using
different model checking tools. We present BIR’s type system and operational se-
mantics in sufficient detail to support similar applications by other researchers. This
semantics details several state space reductions and state space search variations.
We describe the translation of Java to BIR and how BIR is translated to the input
of several model checkers.

1. Introduction

Several research efforts [4, 10, 14, 30, 34, 50, 51] are demonstrating
that exhaustive state-exploration techniques such as model-checking
can be effective for identifying defects in software that are difficult to
find using conventional testing methods.

Tool development efforts in software model-checking have been based
on two different architectures. Some have taken an interpretation ap-
proach by building a dedicated model checker for a specific program-
ming language. For example, SLAM [4] and BLAST [30] are analysis
tools that work directly on C, while Java Path Finder (JPF) [50] works
directly on Java bytecodes. Others have taken a translation approach

*

http://www.cis.ksu.edu/bandera, {dwyer,hatcliff,iosif}@cis.ksu.edu,
234 Nichols Hall, Manhattan KS, 66506, USA.

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

bir-journal.tex; 3/04/2003; 21:48; p.1

2

by compiling programs directly into a relatively expressive verifier input
language. For example, FeaVer translates C programs into PROMELA,
the input language of the SPIN model checker [33], an earlier version
of Java Path Finder [29] translated Java to PROMELA, and JCAT
translates Java into the input language dSPIN [15] — an extension of
SPIN that provides support for programming language features such
as dynamic object creation, garbage collection, and method calls.

We have taken the translation approach in developing the Bandera
tool set because at present it is unclear what collection of state-space
representation, reduction, abstraction and search methods are best-
suited for model-checking software. In fact, research has shown that
changing the computation style or architecture of a particular con-
current program can dramatically impact the relative performance of
different state-space exploration techniques; different techniques per-
form better on different systems [3]. Moreover, if one is interested in
experimenting with a new technique on a real programming language
like Java, numerous infrastructure components such as parsers, inter-
mediate representations, static analyses, and visualization facilities,
are required before one can build a system upon which an empirical
evaluation can be carried out.

1.1. THE ARCHITECTURE OF BANDERA

The goal of Bandera is to provide an open infrastructure that allows
for easy incorporation and experimentation with multiple analysis and
verification techniques. Bandera translates Java source code to a model
expressed in the input language of one of several verification tools
including SPIN [33], dSPIN [15], HSF-SPIN [20], NuSMV [8], and JPF
[50]. The architecture of Bandera shares much in common with that
of modern optimizing compilers [43], but it differs in several important
respects. Similarities include the staged application of a series of pro-
gram analyses and transformations, the use of well-defined intermediate
program representations to which those transformations are applied,
and the isolation of target specific details in code generation modules.
The main differences are related to the fact that in a compiler the
primary objective is to reduce the run-time of a program, whereas in
Bandera, the primary goal is to reduce the amount of memory required
to represent the state space of the program since state explosion is the
chief barrier to scalability of model checking.

Figure 1 presents the internal architecture of Bandera, and below
we briefly summarize the functionality of the components. Bandera is
built on top of the Soot Java compiler framework [49] developed by
Laurie Hendren’s Sable group at McGill University. Soot includes an

bir-journal.tex; 3/04/2003; 21:48; p.2

Abstraction
Engine

‘ A
Spee " .| Propery N N W [SPIN Trans | |- - Promera
Language Front-end | oservabl e Predicates BIR Bl dSPIN Trans | -|- = dPronel a

Constr- I

Bandera Back—-end

Slicer ‘ ‘

-+ Trans

Y \ uctor R SMV Trans
- Front-En -
Java Java Front: d ol e T
i BIR BIR __|__Counter
Java Jimple-Java ——
CouNt er exanpl @ - N'?a o Simulator | Tracer exanpl e
Trace pp

Figure 1. Internal architecture of the Bandera Tool Set

intermediate language called Jimple that is a language of control-flow
graphs where statements appear in three-address-code form and various
Java constructs, such as synchronized statements, are represented in
terms of their virtual machine counterparts (such as monitorenter,
monitorexit bytecodes). A Java front-end produces a Jimple repre-
sentation of the input program.

Source code properties to be checked are written in the Bandera
Specification Language (BSL) [12]. BSL consists of a collection of pa-
rameterized macros [19] that can be instantiated to different temporal
logics, such as linear temporal logic (LTL) [42]. BSL specifications
are parameterized by observables (predicates on program state) that
are defined in Java source code using Javadoc comment notation. A
property front-end extracts all the observables declared in the given
source program, type checks the declared observables, instantiates the
BSL specification to a particular temporal logic, and generates Jimple
code that encodes the observables used in the input specification.

Bandera’s approach to model construction is to generate one model
for each property to be checked. This approach is based on the in-
sight that, given a specific property ¢, many parts of the software may
not influence ¢ at all. Bandera applies model reductions based on the
semantics of ¢ to the Jimple representation of the program. Bandera
uses both program slicing and data abstraction (abstract interpreta-
tion) to customize models. The Bandera slicer takes as input all the
observables mentioned in the input property ¢ and, using an enriched
set of program dependences [26], eliminates all Jimple statements that
can be shown to not influence the semantics of ¢’s observables [28].
Whereas slicing eliminates both data and control states of a program,
Bandera’s abstraction component automates support for reducing the
number of data states by reducing the size of the data domains over
which program variables range [18, 27]. User’s select or define predi-
cates over program variables, for example, the data expressions in ¢’s
observables, and Bandera automatically synthesizes safely abstracting

bir-journal.tex; 3/04/2003; 21:48; p.3

4

operator definitions and substitutes those operators into the Jimple
program representation.

The Bandera back-end is like a code generator, taking the sliced and
abstracted program and producing verifier-specific models. The back-
end also functions like a debugger by providing a verifier-independent
representation of counter-example information. The back-end compo-
nents communicate through BIR which acts as an intermediary between
the Java-based Jimple representation and verifier-based transition sys-
tem representations (e.g., Promela). As shown in Figure 1, the back-end
has one fixed component called BIRC (Bandera Intermediate Represen-
tation Constructor) that accepts Jimple and produces BIR. For each
supported verifier, there is also a translator component that accepts
the program represented in BIR and generates input for that verifier
and a component that translates verifier counter-examples into a trace
in the BIR transition system. Translators for SPIN, dSPIN, HSF-SPIN
[41], and NuSMV [8] have been built.

1.2. CONTRIBUTIONS OF THIS PAPER

This paper makes two main contributions: (1) we describe several novel
BIR constructs that are useful for modeling a variety of software de-
scriptions and argue that support for those constructs would be useful
additions to model checker input languages; and (2) we describe the
Bandera back-end which is a rich tool infrastructure that applied model
checking researchers can exploit to quickly develop model checking
frameworks for software design and implementation notations.

BIR is a guarded-command language whose design is balanced be-
tween several (sometimes competing) goals. First, BIR is designed to
be similar to the input languages of existing model-checkers so that
translations to existing model-checking tools can be written with min-
imal effort. Second, BIR provides built-in support for Java language
features such as locks and subtyping to facilitate translations from
Java/Jimple into BIR. Rather than present these features at the level of
granularity found in source languages, such as Java, we have developed
finer grain support that is amenable to translation to a broader set of
target model checkers and allows translations to minimize the state-
space based on a program’s usage of language features. Third, BIR
incorporates operators for modeling forms of non-deterministic choice
that are essential for defining a rich class of program properties and ab-
stracted programs. While most model checker input languages support
some form of non-determinism, they do not support non-deterministic
choice over the kinds of complex data structures found in languages
like Java. We believe this kind of support is essential for modeling

bir-journal.tex; 3/04/2003; 21:48; p.4

5

modern object-based software notations and that model checker input
languages should evolve to include them.

To support the effective use of BIR and the Bandera back-end facil-
ities we describe the features and semantics of the BIR language and
discuss the strategies that developers should follow when (a) translating
Java and other design notations into BIR, and (b) translating BIR to
input languages of model-checkers and other verification/analysis tools.
Specifically, we present the BIR intermediate language, describe how
Bandera translates Java into BIR, describe how Bandera translates
BIR into Promela and outline general strategies that developers should
follow when translating BIR to other model-checker input languages.
Finally, we give an overview of the semantics of BIR and address sub-
tle issues regarding the translation of BIR’s virtual coarsening and
non-deterministic-choice constructs. To supplement this presentation,
the Bandera Project web site http://www.cis.ksu.edu/bandera pro-
vides the Bandera open-source distribution, user’s manual, and an
example repository. In particular, a BIR Back-end Developers Kit is
available which provides the BIR parser, source code for BIR back-end
translators to illustrate translation techniques, and documentation.

1.3. ORGANIZATION

The rest of this paper is organized as follows. Section 2 introduces a
Java example that we will use to illustrate the principles for translating
Java to BIR and then translating BIR to model-checker input lan-
guages. Section 3 outlines the Java to BIR translation, while Section 4
outlines the translations from BIR to model-checker input languages
like Promela — the input language of the SPIN model-checker. Section 5
gives a formal presentation of the novel features of BIR. Section 6
presents related work, and Section 7 concludes.

2. Example

This section introduces an example that will be followed throughout the
paper in order to show how Java programs are translated by Bandera
into finite-state models. The program fragment in Figure 2 illustrates
the implementation of a message dispatcher that enables communi-
cation between an arbitrary number of clients and servers. Messages
are instances of a class Msg, containing priority numbers as illustrated
in Figure 3. Messages are produced by client threads and sent to the
message queue using its send method. The implementation of the dis-
patcher ensures that the messages will be received in priority order.

bir-journal.tex; 3/04/2003; 21:48; p.5

class MsgQueue { [18] if (last == null ||
[1] Msg tail; [19] curr == last)
[2] int max, no; [20] tail = m;
[3] MsgQueue (int max) { [21] else
[4] this.tail = null; [22] last.next = m;
[6] this.cap = max; [23] m.next = curr;
[6] this.no = 0; } [24] no ++;
/*% [25] notifyAll(); }
* Qobservable /%%
* INVOKE called(this, Msg msg): * Qobservable
* msg == m; * RETURN returns(this, Msg msg):
*/ * $ret == msg;
[7] synchronized void send(Msg m) { */
[8] while (no == max) { [26] synchronized Msg recv() {
[9] try { wait(); } [27] while (no == 0) {
[10] catch(...) { return; } [28] try { wait(); }
[111 } [29] catch(...) { return null; }
[12] Msg curr = tail; (301 }
[13] Msg last = tail; [31] Msg m = tail;
[14] while (curr !'= null && [32] tail = tail.next;
[15] curr.prio >= m.prio) { [33] no —-;
[16] last = curr; [34] notifyAll();
[17] curr = curr.next; } [35] return m; }

Figure 2. Message Queue Example

The MsgQueue class is designed to be thread-safe, as the send and
recv methods use the common wait-notify synchronization coding
pattern.

To formalize the prioritized receipt of messages, we declare a set of
atomic propositions, encoded as BSL observables called(this, msg)
and returns (this, msg). The BSL predicate called(this, msg) holds
when control is at the first line of the method send and the refer-
ence value bound to the predicate parameter msg equals the reference
value of the method parameter m. The BSL predicate returns(this,
msg) holds when control is immediately after any return statement of
method recv and the reference value bound to the predicate parameter
msg equals the return value of the method. In addition, we consider
the predicate higher(m;, my) which formally encodes the ml.prio >
m2.prio condition. Using these predicate, we can use BSL to state that
for all instances of the Msg and MsgQueue classes, whenever messages
my and mg are to be returned from a given queue, it must be the case
that the higher priority message is returned before the lower priority
message. Without going into all the details (the reader is referred
to [12]), we simply note that the resulting BSL specification can be
mapped down to the following enhanced LTL formula:

bir-journal.tex; 3/04/2003; 21:48; p.6

7

Vg : Q,my,mg : M, my # me [O((Creturns(q,my) A Oreturns(q, ms))
= (higher(mi,mg2) <= lreturns(q,mz2) U returns(q,m1)))]

Here, () and M denote the finite sets of instances of the MsgQueue
and Msg classes, respectively that are used to represent BSL universal
quantification. Universal quantification in a BSL specification binds
each allocated instance of a designated type (e.g., MsgQueue) to a
named variable (e.g., q), and then checks the temporal specification
with those bindings. The predicates returns and higher are evalu-
ated on the instances bound by the quantifications. This requirement
captures an important aspect of correct message queue behavior.

Another correctness issue is related to the fairness of the dispatcher.
In our implementation (see Figure 2) messages with lower priorities can
be forever neglected. This issue can be addressed by using the appro-
priate LTL fairness requirement as an assumption for other correctness
properties!.

In order to verify the MsgQueue class with respect to its specifications
we complete the implementation with the code of client and server
threads and a main method that instantiates several such threads
as shown in Figure 4. Clients internal decisions about sending data
(DataMsg) and request (RequestMsg) messages to servers is abstracted
using non-deterministic choice (choose()). Both DataMsg and RequestMsg
are subclasses of Msg as shown in Figure 3. Upon receiving a mes-
sage, the server will extract the message and process it depending on
the dynamic type of the message; for this example, requests indicate
whether subsequent integer data should be added to or subtracted from
a running total.

The sample Java code from Figures 2, 3, and 4 uses the following
language features: dynamic creation of objects and threads, monitor-
based and condition-based synchronization, and inheritance and dy-
namic type lookup. In the remainder of the paper, we will focus on
these aspects of Java programs, while describing the design of BIR,
and translations to and from BIR.

3. Translating to BIR

The core of BIR is a guarded assignment language and as such it can
model a wide variety of state-based system descriptions. We have de-
veloped translators for several such description languages in addition

! To verify a property P under the fair dispatcher assumption we verify the
property: Vg : @, m : M [O((called(q, m) = Creturns(q, m)) = P)]

bir-journal.tex; 3/04/2003; 21:48; p.7

/**

* Qobservable

* static EXP higher (Msg mi,

* Msg m2):

* ml.prio > m2.prio;

*/

[36] class Msg {

[37] Msg next; int prio;

[38] Msg(int p) { this.prio =
}

P

[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
} [48]
[49]
[50]

class DatalMsg extends Msg {
int data;

DataMsg(int p, int d) {
super (p); data = d;

}

int get() { return data; } }
class RequestMsg extends Msg {
char req;

RequestMsg(int p, char r) {
super(p); req = r;

}

char get() { return req; } }

Figure 3. Data and Requests

[61] public static void main(...) {
[62] MsgQueue q = new MsgQueue(10);
[74]
[63] Server s = new Server(q); [75]
[54] (new Client(q,1)).start(); [76]
[65] (new Client(q,2)).start();
[77]
[56] s.start(); } [78]
[67] class Client extends Thread {
. [79]
[68] MsgQueue q; int p; [80]
[69] Client(MsgQueue q, int p) {
. . [81]
[60] this.q = q; this.p = p;
[82]
[61] } [83]
[62] public void run() {
. . [84]
[63] int i; [85]
[64] while (true) {
[86]
[65] Msg m; [87]
[66] if (choose())
[88]
[67] m = new RequestMsg(p, [89]
[68] choose() 7 "+" : "-"));
[90]
[69] else [91]
[70] m = new DataMsg(p,i++));
[92]
[71] q.send(m); [93]
[72] }
[731 + }

class Server extends Thread {
MsgQueue q;

Server (MsgQueue q) {

this.q = q;

}

public void run() {

int total:

boolean lastAdd = true;

while (true) {

Msg m = queue.recv();

if (m instanceof Datalsg)

if (lastAdd)

total += ((DataMsg)m).get();
else
total -=
else
lastAdd =
((RequestMsg)m) .get)=="+");
}

}?

((DataMsg)m) .get () ;

Figure 4. Sample Client and Server

to Java, including statecharts [38] and synchronization policy speci-
fications [16]. To effectively model Java programs, BIR has been de-
signed to include primitives for modeling object-oriented, dynamism
and concurrency features that are specific to the JVM [40]. In this sec-
tion, we describe how these features are translated from a Java/Jimple
representation of a program to BIR.

bir-journal.tex; 3/04/2003; 21:48; p.8

9

Prior to the Jimple to BIR translation implemented in the BIRC
component, our current tools perform two Jimple transformations: vir-
tual call resolution and method inlining. Virtual call resolution de-
termines the possible receiver types at a method call site via class
hierarchy analysis [13] and introduces explicit type tests to guard calls
to the appropriate method for the tested type. This enables inlining
of methods since the guards ensure that a single receiver type reaches
each call site. Inlining is then performed with appropriate renaming of
local variables and mapping of actual parameters and return values to
formals. Ongoing work on Bandera is adapting BIR for model-checkers
such as dSPIN [36] that can model virtual method invocation; this will
allow treatment of recursive methods.

Much of our Jimple to BIR translation is analogous to well-understood
code-generation techniques from program compilation. Unlike tradi-
tional compilers, however, we exploit the fact that the entire program
is available during translation. This allows us to optimize the generated
BIR transition system so that it only models program components that
are potentially used during some program run. For example, data that
a JVM associates with each Java object in order to implement locking
and the semantics of wait-notify is only generated for types whose
instances are actually locked or on whom wait or notify is called.
Similarly, storage for instances of classes is allocated only for those
classes that appear in new statements. Thus in our example no storage
will be allocated to store instances of class Msg since no new Msg()
expressions appear in the program. This helps to minimize the size of
each program state that is explored during model checking.

Our translation treats basic Java library classes, such as java.lang.0bject,
java.lang.Thread and interface java.lang.Runnable. Reference to
and instantiation of these classes is supported in a limited form. Specifi-
cally, methods start (), exit (), run(), and field target of java.lang.Thread,
and wait (), notify(), and notifyAll() of java.lang.Object are
mapped to appropriate BIR representations. Other library code can be
used, but it must be explicitly included in source code form as part of
the program and any native method calls must be replaced with pure
Java code.

Our current translation approach has several limitations. Floating
point types are maximally abstracted by transforming all test expres-
sions over floating point values to non-deterministic choice over a boolean
domain. Recursion and user thrown and caught exceptions are not
supported in the current version of our tools, but work is ongoing to
support them in BIR in the near future. Some methods of basic library
routines, such as getClass (), hashCode(), clone(), finalize(), and

bir-journal.tex; 3/04/2003; 21:48; p.9

10

timed versions of wait() in java.lang.0bject are not supported,
neither is program input or output.

Our presentation is driven by identifying extracts of the example
from Section 2 and describing the corresponding fragments of BIR.
The BIR fragments have been modified to improve their readability
by shortening variable names and eliding details. Temporary variables
that model JVM stack locations are named with tmp_ prefixes. We
begin with an overview of BIR which at the highest level of structure
has two parts: (1) a passive part that declares the data layout of the
system, and (2) an active part that declares the threads of control and
transitions of the system. The syntax of BIR is given in Appendix A.

Passive BIR Declarations: Typically, the data declaration section
will describe a bounded data space by bounding both basic data types
(e.g., integer values are bounded by subranges) and dynamically al-
located data (e.g., objects are allocated from pools of bounded size).
However, when generating BIR system descriptions for translation to
model-checkers that do not require such bounds (e.g., dSPIN supports
dynamic object creation and garbage collection directly), they can be
omitted as appropriate.

BIR provides four categories of types. Primitive types include boolean,
integer subranges, and enumerated types. Lock types are used to im-
plement thread synchronization. Aggregate types include records and
arrays. Reference types are pointers to aggregate types. BIR’s type-
checking strategy for records and enumerated types is similar to C/C++
in that is it based on name-equivalence instead of structural-equivalence
[22].

A reference type declaration includes the type of objects to which
the reference can refer, and a list of collections that can hold objects to
which the reference can refer. Supplying an object type in a reference
type declaration allows type-checking to easily produce a static type of
an object returned by a dereference expression (d la Java). Supplying
a collection list allows back-end translators to produce more efficient
procedures for object dereferencing and enables optimizations based on
(non)aliasing information.

Variables of lock type are used to represent the implicit lock field
associated with each Java object. In Java, locks can be reentrant (i.e.,
acquired more than once by the same thread) [40], and threads can
also wait (i.e., suspend themselves) on a lock. Extra state data is
required to maintain information about reentrant locks and locks upon
which wait () is invoked. If static analysis determines that a object’s
lock is not reentrant or not involved in a wait (), those qualifiers can
be removed from the lock variable’s type. This mechanism informs

bir-journal.tex; 3/04/2003; 21:48; p.10

11

back-end translators that unnecessary state components in a lock’s
representation can be omitted.

To carry out appropriate type-checking and to implement Java oper-
ations such as instanceof, type casts, and virtual method invocations,
BIR allows declaration of an inheritance hierarchy which gives rise to
a subtyping relation; to accommodate a variety of source languages,
BIR supports any acyclic subtyping relation. Any type identifier that
appears in the inheritance hierarchy declaration must be bound to a
record type specification.

Collections provide a flexible representation of the heap in several
ways. First, they allow alternative heap representations depending on
the target model-checker. For example, when translating to a model-
checker like SPIN which does not provide any built-in symmetry re-
ductions, using a different collection for each allocator site in a Java
program achieves a simple but effective form of symmetry reduction
(explained later in this section). However, when translating to dSPIN
which provides built-in heap symmetry reductions, it is more effective
to use a single collection for each Java class. Second, the collection rep-
resentation allows heap data to be bounded in a flexible way (explained
in Section 4).

Active BIR Declarations: Thread declarations are used to define in-
dependently executing transition systems. In each thread, declarations
of local variables are followed by a sequence of locations. When system
execution begins, control in each thread begins at the start location —
the first location in the thread’s location sequence. At any given time,
a thread is at one of its locations, called the current location of the
thread.

Each location is the source of one or more guarded transitions. Each
transition consists of a boolean guard expression followed by a sequence
of actions ending in the target location indicating the source of next
transition in the thread to be executed. To generate a successor of a
given state, a transition whose guard is true and whose source location
is the current location of its thread is selected. The transition’s actions
are executed sequentially, updating the system state (atomically) to
produce the next state. Transitions may be annotated as invisible in-
dicating that it is safe to collapse the transition along with its successor
into a single atomic step.

Lock and thread operations must appear in certain patterns (the
Java compiler and BIR constructor can easily guarantee this, but other
translators generating BIR should observe these constraints). Specifi-
cally, lock and unlock operations must be properly nested and a thread
must never attempt to lock a lock that it already holds unless the

bir-journal.tex; 3/04/2003; 21:48; p.11

12

lock is declared reentrant. Each lock operation must be guarded by
a lockAvailable test, and each synchronized transformation must be
guarded by a hasLock test. A wait operation must be the last action
of a transformation and must be followed by an unwait operation that
is guarded by both a lockAvailable test and a wasNotified test. The
purpose of these last two restrictions is to leave hooks for translators
80 they can implement the monitor semantics in the most efficient way.
For example, in SPIN it is better to prevent a thread from executing
lock until the lock is available, while in NuSMYV it is better to allow the
thread to execute lock (unsuccessfully), but then wait until the lock is
released and given to the thread (by the releaser).

Most other expressions appearing in actions and guards are conven-
tional. Some exceptions include the externChoose and internChoose
constructs, each of which represents non-deterministic choice over the
values in the argument list. The externChoose is used to represent non-
deterministic choice in the environment component (e.g., a test harness
for the system), whereas internChoose is used for non-deterministic
choice in the system itself (Bandera’s abstraction facilities use it to
represent data abstractions). These choice constructs are handled dif-
ferently in the choose-bounded search strategy described Section 5.0.3.
In addition to choosing over a fixed set of values, BIR also includes
expressions for non-deterministically choosing from the allocated in-
stances of a collection and for choosing from the instances reachable
from a given reference in the current heap state. These expressions have
been used to state program properties related to the heap [12] and in
developing abstract models of the environment [48]; their semantics is
discussed in detail in Section 5.0.2.

Basic Transitions and Visibility: Expressions and statements that
treat JVM base types have a natural mapping to BIR. The BIR frag-
ment in Figure 5 illustrates how the compound test on lines [18-20] of
Figure 2 is translated to a series of guarded transitions in BIR and how
a field assignment is expressed directly.

We note that transitions involving only locals (in this fragment of
MsgQueue.send() variables m, last, curr are all locals) are marked
as invisible to indicate that their effect can only be observed by the
containing thread. In contrast, the assignment at location s125 is ob-
servable since it corresponds to a write to heap allocated data.

Inheritance: Inheritance is present in our example via subtyping of
Msg by DataMsg and RequestMsg. We illustrate the modeling of sub-
typing relations in BIR in Figure 6. The record types RequestMsg and
DataMsg explicitly represent the inheritance of fields next and prio

bir-journal.tex; 3/04/2003; 21:48; p.12

13

loc s123: live { m, last, curr, ... }
when (last == null) do invisible { } goto s124;
when (! (last == null)) do invisible { } goto s143;

loc s124: live { ... }
when (curr == last) do invisible { } goto s125;
when (! (curr == last)) do invisible { } goto s43;
loc s125: live { ... }

when true do { this.tail := m; } goto s126;

Figure 5. Basic Transitions

system MessageQueueExample ()
Msg_ref = ref Msg { RequestMsg_col, DataMsg_col };
RequestMsg_ref = ref RequestMsg { RequestMsg_col };
DataMsg_ref = ref DataMsg { DataMsg_col };
Msg = record { next : Msg_ref; prio : range -1..3; };
RequestMsg = record { next : Msg_ref; prio, req : range -1..3; };
DataMsg = record { next : Msg_ref; prio, data : range -1..3; };
DataMsg extends Msg;
RequestlMsg extends Msg;
Msg extends Object;
RequestMsg_col : collection [3] of RequestMsg;
DataMsg_col : collection [3] of DataMsg;
loc s70: live { m, ... }
when true do invisible
{ tmp_9 := (m instanceof DatalMsg); } goto s71;

Figure 6. Inheritance

from Msg. The reference types indicate the collections whose elements
may be referenced by a value of the type. Msg_ ref is defined to reflect
the fact that a Java variable declared of Msg can refer to an instance
with dynamic type DataMsg or RequestMsg. Finally, the subtyping re-
lationships among records is explicitly defined by the extends clause,
since subtyping in Java is by name rather than structural. Location
s70, which models the conditional expression on line [84] in Figure 4,
illustrates a guarded assignment that uses one of BIR’s JVM specific
operators; instanceof in BIR has the same semantics as in the JVM.

Heap Allocated Data: Data in Java programs is either stack or heap
allocated. Inlining effectively flattens stack allocated data associated
with called methods and models it as local data in the calling BIR
thread. BIR’s collection facility provides a flexible mechanism for mod-
eling heap allocated data. A collection is, in essence, a typed array of
records, and we model the global program heap as a group of collections.

bir-journal.tex; 3/04/2003; 21:48; p.13

14

Rather than use a single collection for each Java class, we introduce a
collection for each allocator of a class (i.e., new expressions). Figure 6
illustrates the collections generated for the two allocation sites (on lines
[67] and [70]) in the Client.run() method of Figure 4.

In the presence of multi-threading, this heap modeling provides a
simple form of heap symmetry by allocating instances in a collection
in an order that is determined locally by a thread’s behavior. A single
collection per type would introduce allocation orders that depend on
the interleaving of threads performing the allocations.

Resource Bounds: To enable efficient reasoning, Bandera allows users
to define bounds on the range of values that program data can take on.
Figure 6 illustrates the modeling of integer fields prio and data, for the
fields of DataMsg instances, as BIR range types; the default range type
is the interval {—1,...,3}, but this can be set by the user. Bounds on
the number of instances created at an allocator site can also be defined
as illustrated in the collection sizes in Figure 6; the default allocation
bound is 3, but this can be set on a per class basis by the user. Resource
bounds are exploited in performing customized state-space searches as
described in Section 5.0.3

Note that when translating BIR to model-checkers that support
garbage collection such as dSPIN, the bounds on collections may be
ignored as explained in Section 4.2.

Thread Primitives: Java threading primitives are supported directly
in BIR. Instances of subtypes of java.lang.Thread or classes im-
plementing java.lang.Runnable are modeled with both a data and
a control component. The data component is a record instance that
stores the member data for the class instance. Figure 7 illustrates the
BIR fragment that models a Server with a queue component modeling
the field declared on line [75] in Figure 4 and with a tid field that
records the BIR thread identifier for the thread’s control component.
The predefined BIR type tid exclusively specifies thread identifier
values.

The control component is derived from the run() method for the
object, in this case from Server.run(). This method is modeled using
a BIR thread parameterized by a reference to the data component
for the object. This allows access to instance data through references
to this in the thread body. Thread instances are allocated as shown
in location s10 of Figure 7, and their execution starts after the BIR
start () operation is called with the thread’s data component refer-
ence, as shown in location s43 of Figure 7. The start method returns
the thread identifier for the new thread which is stored in the thread

bir-journal.tex; 3/04/2003; 21:48; p.14

15

process MessageQueueExample ()

Server = record { tid : tid; queue : MsgQueue_ref; };
main thread Main()

s : Server_ref := null;

loc s10: live { q }

when true do invisible { s := new Server_col; } goto sli;
loc s43: live { s }

when true do { s.tid := start Server(s); } goto s44;
thread Server(this : Server_ref)

Figure 7. Thread Creation

loc s51: live { this_MsgQueue, ... }

when lockAvailable (this_MsgQueue.BIRLock) do {
lock(this_MsgQueue .BIRLock); } goto s52;

loc s52: live { this_MsgQueue, ... }

when hasLock (this_MsgQueue.BIRLock)
do { tmp_9 := this_MsgQueue.elements; } goto s53;

loc s53: live { this_MsgQueue, tmp_9 , ...}

when (tmp_9 == 0) do invisible { } goto s54;

when (! (tmp_9 == 0)) do invisible { } goto sb57;

loc sb4: live { this_MsgQueue, ... }
when true do { wait(this_MsgQueue.BIRLock); } goto s55;
loc s55: live { this_MsgQueue, ... }

when (lockAvailable (this_MsgQueue.BIRLock) &&
wasNotified (this_MsgQueue.BIRLock))
do { unwait(this_MsgQueue.BIRLock); } goto s56;

loc s56: live { this_MsgQueue, ... }

when true do { tmp_9 := this_MsgQueue.elements; } goto s53;
loc s57: live { this_MsgQueue, ... }

loc s66: live { this_MsgQueue, ... }

when true do { notifyAll (this_MsgQueue.BIRLock); } goto s67;
loc s67: live { this_MsgQueue, ... }

when true do invisible { ret := m; } goto s68;

loc s68: live { this_MsgQueue, ret, ... }

when true do { unlock(this_MsgQueue.BIRLock); } goto s69;

Figure 8. Synchronization

record’s tid field to achieve cross-referencing between data and control
components.

Synchronization Primitives: BIR is designed to support synchro-
nization primitives that closely match those available in Java.

Java synchronized statements are represented as a pair of JVM
entermonitor and exitmonitor bytecodes. BIR decomposes the func-

bir-journal.tex; 3/04/2003; 21:48; p.15

16

loc s96: live { ... }
when true do invisible { tmp_prio := externChoose(0,1); } goto s97;
loc s97: live { tmp_prio, ... }

Figure 9. Non-deterministic Choice

tionality of those operations still further via its lock primitives, as
discussed earlier, and our translation uses these primitives to achieve
Java’s monitor functionality.

Locations [61-52] in Figure 8 implement the entry of synchronized
method recv () on line [26] in Figure 2. This is achieved in three steps:
(1) waiting until the desired lock is available, (2) acquiring the lock via
a call to Llock(), and (3) proceeding into the synchronized region if
hasLock() is true. Exiting a synchronized region is achieved with a
single BIR unlock() operation as shown at location s68 of Figure 8.

Locations s53-s57 illustrate how we use BIR to model the standard
conditional wait coding pattern that is common in Java (this pattern
is used on lines [27-30] of Figure 2). The semantics of Java’s wait ()
operation is achieved by a sequence of three BIR operations: first the
thread indicates it wants to wait() on the BIR lock, then the thread
waits until the both the lock is available and the lock has been notified,
it then indicates that it is no longer waiting via the unwait () operation.
BIR’s primitives for notify() and notifyAl1() match the semantics
of Java methods exactly; the latter is illustrated in location s66 of
Figure 8.

Non-deterministic Choice: Bandera may introduce non-deterministic
choice operators into the program to encode abstractions. Users may
also introduce choice operators into their programs as a modeling prim-
itive. The Client threads that form the environment of the MsgQueue
use the boolean choose() operator on line [66] of Figure 4 to model
the lack of knowledge of the specific conditions under which a DataMsg
or RequestMsg may be sent. As described earlier, internal choice is
used for modeling abstractions. The use of the choose() operator,
described above, is mapped to external choice and expressed using the
externChoose (0,1) operator in the BIR fragment from Figure 3.

BSL Predicates: The observable predicates that are used to express
properties in BSL must also be expressed in terms of the BIR model.
For predicates that are parameterized by quantified variables, as in the
properties in Section 2, we translate the predicates into a form that
explicitly refers to BIR variables that hold bound values. In general,
predicates, such as the one preceding line [7] in Figure 2, may refer

bir-journal.tex; 3/04/2003; 21:48; p.16

17

to a control location, such as the invocation of method send (), and a
data constraint, such as a test for equality between the second predicate
parameter and the Msg parameter of the send () call. The BIR predicate
is as follows:

pred_called = (Client(null)@s125 &&
((quantification_ml == Client:send_m) &&
(quantification_mg == Client:send_this)));

where a location 125 is the call of send() from in a Client thread.
The null parameter in location predicate indicates that the tid of
the thread is unconstrained; it will be true if any instance of Client
reaches location s125. Names of the form quantification_ refer to
BIR globals bound to quantified values, and names of the form Client:
indicate method locals or parameters.

3.1. COUNTER-EXAMPLE INTERPRETATION

Just as BIR insulates source-language concerns from verifier concerns
in the generation of model checker inputs, it also insulates clients
from needing to build counter-example processing capabilities for model
checker specific counter-example formats. The BIR back-end supports
this by requiring that BIR-to-verifier translators include a component
that maps verifier-specific counter-examples back to a BIR trace. A
BIR trace is a finite-sequence of BIR transitions that can be used to
generate the state information on any prefix of the trace. For transi-
tions that correspond to non-deterministic choice expressions additional
information defining the chosen value is encoded in the trace.
Back-end clients interact with counter-examples through a BIR sim-
ulator, illustrated in Figure 1. The simulator provides basic capabilities
for stepping forward and backward through a trace and for query-
ing the values of state variables at a given point in the trace. These
capabilities have been used to build Java-specific debugger-like facili-
ties for exploring counter-examples in Bandera [11] and for animating
counter-examples on visual depictions of statecharts [38].

4. Translating BIR to Model Checker Inputs

This section is dedicated to the model generation techniques used in
Bandera. We focus mainly on the description of the translator to the
SPIN model checker [31]. Translation to the dSPIN [36] model checker is
discussed briefly and the translation strategy for nuSMYV [7] is presented
in Appendix C. Throughout this section we refer to a model as the

bir-journal.tex; 3/04/2003; 21:48; p.17

18

description of the entire program’s behavior, rather than the subset of
behaviors satisfying a temporal logic specification.

4.1. THE SPIN TRANSLATOR

The following discussion assumes a certain degree of familiarity with
Promela [31], the input language of the SPIN model checker. We present
informally the translation scheme for the most relevant primitives in
BIR, such as dynamic object creation and synchronization actions. The
translation to SPIN also supports dynamic thread creation, which relies
on the underlying support of SPIN for dynamic processes.

Object Creation: Object allocation is modeled in Promela using col-
lection variables, declared within the state-vector. For instance, the col-
lection of three elements of type RequestMsg from Figure 6 is translated
into the following structure:

typedef type_24 { bit inuse[3]; RequestMsg instance[3]; }

Here the inuse bit-vector marks collection slots that have already been
allocated, while the instance vector stores the instance data.

Heap allocated data is accessed in BIR via reference values. In the
Promela model we represent a reference value by a two-byte integer,
where the most significant byte uniquely identifies the collection, and
the least significant byte is the index of the instance within the collec-
tion. References are created by the _ref macro, and accessed by the
_collect and index macros. Allocation itself is performed via the
_allocate macro whose definition is given below:

#define _allocate(col, refindex, maxsize, locNum, transNum, actionNum)

do
:: col.inuse[_i_] —>

Ji= _i_ + 1
if :: _i_ == maxsize -> printf("BIR: ... LimitException\n");
limit_exception = true; _i_ = 0; goto endtrap;
: else
fi;
:: else -> col.inuse[_i_] = true; _temp_ = _ref(refindex,_i_); _i_ = 0;
break;

od

The first available collection slot is searched. In case one is found, it
is marked inuse and a new reference value is created from the col-
lection identifier and the current slot index. This value is assigned to
a special temporary variable _temp from which it is subsequently
read by the program. On the other hand, if the collection is exhausted,
then a 1imit_exception is raised by setting a flag and jumping to the
endtrap location. Exception handling will be discussed in the following.

bir-journal.tex; 3/04/2003; 21:48; p.18

19

In both cases the i counter is dead at the end of the loop,
therefore it is reset. As an example, the allocation action occurring
at location s10 in Figure 7 is translated in Promela as follows:

loc_10: atomic { _allocate(Server_col,4,3,26,0,1);
s = _temp_; _temp_ = 0; ... }

To model accesses and updates of dynamic allocated data, the SPIN
translator uses points-to information to determine the appropriate col-
lection, based on all possible types of a reference variable. For instance,
the assignment occurring at location s125 in Figure 5 is translated as
follows:

if
:: (_collect(send_MsgQueue_this) == 1) ->
MsgQueue_col.instance [_index (send_MsgQueue_this)].tail
= send_MsgQueue_m;
:: else -> printf("BIR: NullPointerException\n"); assert(false);
fi;

In this case there is only one collection of type MsgQueue, whose index is
1. An attempt to access a reference variable that hasn’t been previously
assigned a valid reference value is captured by the else branch of the
conditional. The effect in this case is to signal a null pointer exception
and stop the model checker.

Synchronization Primitives: A (waiting and reentrant) lock object
is modeled in Promela by the following structure:
typedef lock_RW {
chan lock = [1] of { bit };
byte owner, count;
int waiting;
};
The first field is a blocking communication channel defined to hold one
(bit) token. Intuitively, an empty channel represents a taken lock. The
owner and count fields are introduced to support reentrant locking,
while the waiting field is used for waiting and notification primitives.
The reentrant locking/unlocking primitives are implemented by the
following macros. A formal definition of these operations is given in
Section 5.

#define LOCK O
#define _lock_R(sync)

if
: sync.owner == _pid -> sync.count ++;
:: else -> sync.lock 7 LOCK; sync.owner = _pid;
fi
#define _unlock_R(sync)
if

bir-journal.tex; 3/04/2003; 21:48; p.19

20

:: sync.count > O -> sync.count --;
:: else —> sync.owner = 0; sync.lock ! LOCK;
fi
#define _lockAvailable_R(sync) (nempty(sync.lock) || sync.owner == _pid)
The first time a lock action is performed by a thread on a lock object,
the LOCK token is removed from the channel. Subsequent lock actions
by the same thread are non-blocking, the only effect being to increment
the lock counter, while other threads will block attempting to receive
the LOCK token from the channel. Dually, an unlock action will release
the lock, by sending the token to the channel, only at the outermost
level, when the value of the counter is zero. The lockAvailable predi-
cate returns true if either the lock channel is not empty or the lock has
been previously acquired by the same thread. We remind the reader
that the Promela keyword _pid evaluates to the index of the current
thread.
The waiting primitives are implemented by the following macros:
#define _wait_R(sync)

if
:: sync.owner == _pid ->
sync.waiting = sync.waiting | (1 << _pid); _temp_ = sync.count;
sync.count = 0; sync.owner = 0; sync.lock ! LOCK;
: else -> printf("BIR: IllegalMonitorStateException\n"); assert(false);
fi
#define _unwait_R(sync) sync.lock 7 LOCK; sync.owner = _pid;

sync.count = _temp_; _temp_ = 0

#define _wasNotified(sync) !(sync.waiting & (1 << _pid))

The waiting field of the synchronization structure represents the
set of threads that have already performed a wait action on behalf of
the lock object and are still dormant. The number of (reentrant) lock
actions already performed by the waiting thread is recorded into the
(local) _temp variable. Finally, the owner field is reset to zero and
the token is sent to the lock channel in order to free the lock object.
Attempting to perform a wait action on a lock not owned by the thread
raises an I1legalMonitorStateException.

The unwait action is the converse of wait, therefore it performs all
operations needed by the thread to re-aquire the lock. The wasNotified
predicate is implemented as a membership test on the waiting bitset.

Notification is implemented by the notify macro. If there is at
least one thread in the waiting set, one thread is randomly chosen
and eliminated from the set. The non-determinism is captured by the
innermost if-fi construct. Moreover, if there is at least one waiting
thread, it is guaranteed that one will be chosen for notification. If there
are no waiting threads, the notification action has no effect. As with
wait, attempting to notify a lock not owned by the current thread
raises an I1legalMonitorStateException.

bir-journal.tex; 3/04/2003; 21:48; p.20

21

#define _notify(sync)

do
:: (sync.owner == _pid) && (sync.waiting != 0) ->
do
: (_i_ < MAXTHREADS) ->
if
:: (sync.waiting & (1 << _i_)) -> _temp_ = _i_;
if
:: sync.waiting &= “(1 << _i_); _i_ = 0; _temp_ = 0; break;
11 else -> skip;
fi
: else -> skip;
fi;
io= i+ 1,
:: else -> sync.waiting &= “(1 << _temp_); _i_ = O; _temp_ = O; break;
od;
break;
: (sync.owner == _pid) && (sync.waiting == 0) -> break;
: else -> printf("BIR: IllegalMonitorStateException\n"); assert(false);
od

As most of the synchronization models involve more than one tran-
sition, these macros need to be used only inside atomic sequences, in
order to guarantee the correct semantics of their executions.

Atomic Sequences: The granularity of a generated model is an im-
portant factor that controls the complexity of the verification process.
Coarser models are easier to verify, however care must be taken to
preserve the semantics of the original program. In Java bytecode, the
basic measure of granularity is the JVM instruction. We can generalize
this to Java source code, considering in addition that all accesses to the
local stack of a thread are invisible to other threads. Since local actions
are globally independent [32], executing them without interleaving with
other threads is a conservative approach to reducing the size of the state
space.

Visibility information is already available in a BIR specification, as
every invisible transition can be annotated accordingly. A sequence of
successive invisible transitions, with no intermediate branching, end-
ing with a visible transition, is translated into a Promela atomic se-
quence. An atomic sequence is executed by the model checker without
interleaving with other processes.

Another optimization is achieved by resetting the values of dead
variables. A variable is said to be dead at a program point if, on
all control paths starting from that point, any read of the variable
is preceded by an assignment to it. When a variable becomes dead it
can safely be reset, avoiding the exploration of states that differ only by

bir-journal.tex; 3/04/2003; 21:48; p.21

22

values of dead variables. In our translation to SPIN, all dead variables
are reset at the end of an atomic sequence.

Bounded State Exploration: There are several actions that cause a
BIR program to exceed its predefined bounds. For instance, an attempt
to allocate from an exhausted collection, create more threads than
allowed, assign an integer variable a value out of its predefined range,
are cases in which the program goes into a special trap state. This
state is defined to be a self-loop state which causes the model checker
to silently backtrack. The following example models an assignment of
value v to an integer variable x, declared of range MIN ... MAX:

if
:r ! (v > MAX) >
if
: ! (v < MIN) -> x = v;
: else -> printf("BIR: RangelLimitException\n");
limit_exception = true; goto endtrap;
fi;

:: else -> printf("BIR: RangeLimitException\n");
limit_exception = true; goto endtrap;
fi;
The trap state is introduced by a self-loop at the end of the thread
declaration:
endtrap: if
:: limit_exception -> goto endtrap;
:: !'1limit_exception ->
end: false;
fi;
If the trap location is reached as result of exceeding the model bounds,
the 1limit exception flag is set and the program goes into a loop.
This loop introduces a sink state into the state space of the program.
Otherwise, if the trap location is reached by the normal control flow,
without the 1imit_exception flag being set, the program is driven
into a valid end state. The formal semantics of the bounded state-space
search is given in Section 5.

4.2. THE DSPIN TRANSLATION

The dSPIN (Dynamic SPIN) model checker is designed for verification
of software, providing a number of novel features on top of standard
SPIN’s state space reduction algorithms, e.g., partial-order reduction
and state compression. Since dSPIN was originally developed as an
extension of the SPIN model checker, the input language of dSPIN is a
dialect of the PROMELA language [31] offering, in addition to recursive

bir-journal.tex; 3/04/2003; 21:48; p.22

23

and polymorphic functions, primitives for allocating and referencing
dynamic data structures. Other advantages of using dSPIN as a target
model checker include the possibility of creating an unbounded number
of objects and the existence of embedded on-the-fly garbage collection
[37] and heap symmetry reductions [35].

Since the input of language of dSPIN is basically a superset of
Promela, it is easy to modify the translation of the the previous section
to target dSPIN. Currently, our translation to dSPIN takes advantage
of dSPIN’s dynamic object creation, garbage collection, and heap sym-
metry facilities. This is achieved by modifying the Spin translation
of collections and dynamic allocation so that dSPIN primitives for
dynamic allocation are used directly and no size bounds are associated
with collections. Furthermore, when compiling Java to BIR for use with
the dSPIN backend, we simply allocate one collection for each Java
class, since the performance of dSPIN’s native heap symmetry facilities
exceeds the symmetry effect that one obtains by using a collection per
object allocator.

5. Formalizing BIR

In this section we present a more detailed formalization of the se-
mantics of BIR. To avoid excessive detail, we discuss only the formal
semantics of the language constructs dealing with dynamic creation of
objects and monitor-based synchronization. The interleaving semantics
of a multithreaded BIR program, however, are discussed in more de-
tail to clearly explain several variations on model semantics that our
translators support.

The semantics of a BIR program is a finite transition system de-
scribing the concurrent behavior of the program as interleavings of vis-
1ble transitions executed by threads. The operational model is layered:
Section 5.0.1 defines a number of semantic domains used to describe
program configurations (states). Section 5.0.2 defines the meaning of
the guarded transformations that represent atomic computation steps
in a BIR program. Finally, in Section 5.0.3 a transition system is defined
using the semantics rules from the previous sections.

5.0.1. Semantic Domains

This section introduces a number of semantic domains. These domains
constitute the basic layer of the operational semantics definition, cap-
turing most of the functionality of later constructs such as expressions
and actions. Conceptually, this is done by associating with every do-
main a number of operators, i.e., functions that manipulate values

bir-journal.tex; 3/04/2003; 21:48; p.23

24

belonging to that domain. Along the presentation we draw attention
to the boundedness of these domains. Indeed each domain is finite and
operations attempting to exceed the predefined bounds will fail. This
feature is important in the development of a bounded program model.

Let us first introduce some notation. For two sets A and B, (a,b) €
A x B denotes a pair. For a set A, A* denotes the set of all finite
sequences containing elements from A. As usual, for a relation R C
A x B, R* denotes the reflexive and transitive closure. By writing s,
we denote the element found on position n in the sequence s. For a set
A and a discrete element n € {L1,¢€}, let A, denote the set AU {n}.
Throughout this section, the notations A and A, are used intensively.
Intuitively, 1 stands for runtime error, and € for undefinedness. The
choice operator ¢ — a O b reads “if ¢ is true then a else b”. For
a mapping m € A — B and two values a € A and b € B, the
mapping [@ — blm maps a to b and behaves like m for all z # a
in A. We use A-notation for functions, where A denotes strictness in
the 1 argument (passing L as argument will cause the function to
evaluate to L). Also Azy.f stands for Az.\y.f and Azy.f for Az.\y.f.
For two positive integers m < n we denote by m..n the range {m,m +
1,...,n —1}. The bounded addition operator &, is defined as follows:
TOpy=z+y<n—zc+yd.L.

Heap: As BIR is an object-based language that allows for objects
to be dynamically created, there is need for a representation of the
computer’s memory in our model. Nevertheless, the semantics of the
memory should be abstract enough to accommodate all possible situa-
tions that can be found in practice. We represent it by means of a finite
domain Location and an operator neztloc. Both are defined in Figure
10. The neztloc operator is not defined explicitly, we simply require
it to satisfy two conditions: (i) given a location, neztloc will return a
new available location, and (ii) the memory is exhausted after a finite
number of allocations. There is a distinct location which we denote by
null.

Figure 10 presents the definition of the dynamic memory domain,
used to allocate new objects. Formally, a heap is a pair (m,[). The first
(m) component of the heap is a map from memory locations to objects.
An object is a pair (s,t) whose first component is a store and second
component is an AggregateType. Storing the type explicitly within the
objects will allow us to quantify over all existing instances of a given
type (in Section 5.0.2). The role of the second (I) component in the
definition of the Heap is to ensure that each newly allocated object
will be placed at a different location. Formally, this is guaranteed by
the second (ii) property of the nextloc operator in the definition of

bir-journal.tex; 3/04/2003; 21:48; p.24

25

null € Location
nextloc : Location — Location
nextloc™ (1) # 1, V1 € Location, ¥ n € IN \ {0} (%)
nextloc"(I) = L, V1€ Location, 3n € IN\ {0} (i)
Object = Store x AggregateType
Heap = (Location — Object.) X Location
alloc : Heap x Object — Heap x Location
alloc((m,1),0) = ([l = o]m,nextloc(l)),l) when | #L
alloc({m,L),s) = ((m,L), L)heap_access
Heap x Location — Object.
heap_access({m,l), k) = m(k)
reachable : Heap X Location x Location — {true, false}
true ifli=10
Vie Identifier reachable(k,l’) otherwise
h(l) = (s,t)
s(i) = (k,t)

reachable(h,l,1') =

Figure 10. Heap

the Location domain. The alloc operator takes a heap and an object
as arguments. It places the object at the next available location in
the heap and returns a new heap, where the [component is updated,
together with the location of the newly placed object. Attempting to
allocate a new object in an exhausted heap (m, L) will cause the alloc
function to return L in order to signal a runtime “out of memory”
error. The heap access and reachable operators are used to define non-
deterministic choice operators in the next section.

Collections: A BIR program does not refer directly to the heap mem-
ory, rather it uses collections to handle (bounded) dynamic object
creation. Formally, a collection (Figure 11) is a pair (¢,7) whose first
component specifies an aggregate type (either record or array) and
second component indicates the current number of objects allocated
from that collection. After a finite number of allocations, a collection is
exhausted, and an attempt to allocate from an exhausted collection will
result in an error. On the other hand, there is a possibility of exhausting
the heap before the collection bound is exceeded. Both error situations
are captured by the use of strict functions in the definition of the new
operator. The new operator takes as arguments a collection and a heap.
The result is a triple whose first element is an updated collection (i.e.,
the result of incrementing its counter), second element is an updated

bir-journal.tex; 3/04/2003; 21:48; p.25

26

Reference = Location x AggregateType
Collection,, = AggregateType x 0..n1
new : Collection, x Heap — Collection, x Heap x Reference,
new((t, i), h) Aglk.((t, kY, g, N'E' (U,) (1, k) (alloc(h, (zero(t),t)),i ®, 1)

Figure 11. Collection

heap returned by an invocation to the alloc function, and third element
is a Reference value (i.e., a location-type pair). Such a value is the result
of applying a function (strict in both arguments) to the pair composed
of the location returned by alloc and the integer counter obtained from
the bounded increment operation @,. Dynamically allocated objects
are referred to by Reference values that carry the actual type of the
object along with its location in the heap memory.

Locks: Let us assume a predefined set of thread identifiers Threadld.
Figure 12 presents the definition of the lock domains. BIR locks support
waiting and notification primitives. In addition, they are reentrant,
meaning that a thread is allowed to acquire a lock multiple times,
without blocking itself. Formally a lock is a 5-tuple (I, ¢, sy, $p, 1) where
[is the status of the lock (free or taken), t is the identifier of the thread
that owns the lock (or € iff the lock is free), s, and s, are sets of
thread identifiers used for waiting and mnotification respectively, and
1 is the number of times a thread has acquired the lock. To ensure
finiteness of BIR models, this number has to be bounded (by a positive
integer n) as part of the definition of the lock domain (Lock,). The
operators associated with the lock domain in Figure 12 describe the
primitive operations that involves lock objects in BIR. The lock and
unlock operations acquire and release a lock object, respectively, on
behalf of a given thread, given as first parameter. The reentrant nature
of BIR locks is illustrated by the definition of the lock operator and the
lockAvailable predicate. More precisely, a busy lock is always considered
to be available to the thread that holds it. Waiting and notification on
a lock object are defined by means of the wait, unwait, notify, and
notifyAll operators and the wasNotified predicate. It is worthwhile
noticing that the wait, notify and notifyAll functions return L in case
when the lock argument is free, signaling an “illegal monitor state”
run-time error.

States: Program configurations (Figure 13) are represented as triplets
(G,H,T) where: G is a store for global variables, H is a heap that

bir-journal.tex; 3/04/2003; 21:48; p.26

27

LockStatus
Lock,,

lock

lock(t, (free,t', sw, 5n,1))
lock(t, (free, €, sw, Sn,0))
lock(t, (taken,t', 5w, sn, 1))

unlock
unlock(t, {I,t', 5w, 5n,1))

unlock(t, (taken, t, sy, Sn, 1))

lock Available

lock Available(t, (I, t', 84, 5n, 1))
hasLock

hasLock(t, (I,t', 5w, 5n,1))
wait

wait(t, (1,1, 5w, 5n,1))

wait(t, (taken,t, sy, Sn, 1))
unwait

wnwait(t, i, {I,t', sw, sn, 1))
unwait(t, i, (free, €, sw, sn,0))
notify

notify(t, (I,t', 5w, 1))

noti fy(t, (taken,t,0, s,.))
notify(t, (taken,t, sw, sn))
notifyAll

notifyAll(t, {I,t', 5w, 5n))
notifyAll(t, (taken,t, 0, s,))
notifyAll(t, (taken,t, sy, sn))
wasNotified

wasNotified(t, (I,t', 5w, sn))

{free,taken}

LockStatus x Threadld. x
P(Thread) x P(Thread) x 0..n
Threadld x Lock,, — Lock,, |

L whent #evVi>0

(taken,t, sy, Sn, 1)

(t=1t") = Am.(taken,t, s, sn, m))(i By 1)
oL

Threadld x Lock, — Locky |

L whenl= freeVt#t Vi=0
(i=1) = (free, ¢, su, $n,0)

O (taken,t, Sw, Sn,i — 1) when i >0
Threadld x Lock, — Boolean

(I= free)V (t=t")

Threadld x Lock, — Boolean

(I =taken) A (t =1

Threadld x Lock, — (0..n X Locky) 1
L whenl= freeVt#t Vi=0

(i, (free, €, sw U{t}, sn,0)) when i >0
Threadld x 0..n x Lock, — Lock, |
1 whenl=takenVt #eVtgs, Vi >0
(taken,t, sw, sn \ {t}, %)

Threadld x Lock, — Lock,, |

1 whenl= freevt#t

(taken,t,0, s,)

(taken,t, s, \ {t'}, sn U {t'}) when 3t' € 5
Threadld x Lock, — Lock,, |

L whenl= freeVt#t

(taken, t,0, sn)

(taken,t,0, sy U sn) when sy, # 0
Threadld x Lock, — Boolean

(t € sn)

Figure 12. Lock Domains

bir-journal.tex; 3/04/2003; 21:48; p.27

28

State = Global x Heap x ThreadPool
State = State U {ErrorState, LimitState}

Figure 13. Program States

stores dynamically allocated objects, and 1" is a mapping that keeps
track of the local state of each thread i.e., its current control location
and the values of its local variables.

In addition, we introduce two error states in order to characterize
erroneous behavior in a BIR program. The first is ErrorState that
deals with generic runtime errors, such as the failure of an expression
to evaluate. The program is driven into the LimitState only when a
bounded resource (such as the heap) has been exhausted.

5.0.2. Transformations

The executable part of a BIR thread is a finite sequence of guarded
transformations. In this section we define the semantics of guarded
transformations. In order to do so, we consider as predefined a number
of semantic judgments. Namely, the (G, H,T) I—fzwpr ast ~ val oper-
ator maps an abstract syntax tree fragment ast to a value wval that
represents its value in the program state (G, H,T). The evaluation of
expression ast is carried out by the thread denoted by t € Threadld.
As usual, the notation (G, H,T) +-,,,, ast ~» L denotes failure of ast to
evaluate in state (G, H,T'). The semantics of actions is captured by the
derivation operator (G;, H;, T;) ., ast ~ (G, H;j, T;) which describes
the transformation of a program state (G;, H;,T;) under the action
represented by the abstract syntax tree fragment ast, the resulting
state being (G, H;,T}). For the assignment actions we consider a new
judgment (G;, H;, T;) g0, 1hs ~ (G, Hj, T;) describing the effect of
assigning an explicit value v to the left-hand side expression 1lhs in
state (G, H,T).

Being a concurrent asynchronous system, a BIR program is inher-
ently non-deterministic. However, in addition to the non-determinism
caused by the parallel composition of threads, the language allows
for non-determinism even in a sequential context, namely inside a
thread. This is a powerful language tool for describing systems allowing
abstraction by conservative over-approximation of concrete behaviors
[17]. The intuition is that a model checking tool will exhaustively ex-
plore all possible states that result from an application of a choice
rule. The rules defining the semantics of non-deterministic choices are
given in Figure 14. Each choice rule defines a judgment of the form
(Gi, H;, T;) + ast ~ (Gj, H;,T;) that describes the effect of

t
choice

bir-journal.tex; 3/04/2003; 21:48; p.28

29

the non-deterministic assignment. These rules can be applied non-
deterministically because of the existential quantifier that appears in
the precondition of each rule.

The first rule in Figure 14 defines the meaning of a choice between
several given values in assignment. One of the offered expressions is
chosen non-deterministically and assigned to the left-hand side of the
choice action, the result of this assignment being the result of the choice
action. This rule handles also the error scenario in which the expression
fails to evaluate, case in which S is either ErrorState or LimitState.

The distinction between the semantics of the internChoose and
externChoose (Rule (2)) actions will become more clear in Section
5.0.3. To give the intuition behind this, let us assume that the BIR
program is obtained from an open module for which an environment
has been previously synthesized. Both the module and the environment
can perform non-deterministic actions, however only the module’s (in-
ternal) non-deterministic actions can be the result of an abstraction of
the original system, and therefore may generate a spurious counterex-
ample when model-checked. To avoid spurious errors, one approach
is to resume the model checker’s search whenever an internChoose
action is encountered. Formally, we distinguish an internChoose which
is defined by a s l—’é,wice ast ~ s’ judgement from an externChoose
which is described by a s ., ast ~» s’ judgement.

In languages with dynamic creation of objects the “static” form of
non-deterministic choice is not sufficient. Indeed, some properties have
to be verified with respect to each instance of a given class. To model
non-deterministic choices among instances of a class, we introduce the
reachable and forall actions. Rule (2) captures the semantics of a
choice over all instances of a given type that are reachable starting
with a given location. The reachability information is captured by the
reachable predicate defined in Figure 10. Rule (3) defines the choice
over all existing instances of a given type. Both rules are applicable if
there exists at least a (reachable) location [in the heap that refers to
an instance of the given type or any of its subtypes. The semantics of a
non-deterministic choice over all (or reachable) instances in case there
are no such instances is given by the rules (4) and (5): in these cases
the choice action does not change the program state.

Formally, we define a transformation relation — € StatexThreadldx

State. We use the notation s r» s’ for (s,t,s") € —. We define two
successor and two predecessor functions as follows:

out(s,t) ={s' | s AN s'} in(s,t) ={s" | & N s}
Out(s) = J, out(s,t) In(s) =J,in(s,t)

bir-journal.tex; 3/04/2003; 21:48; p.29

30

31<i<n[(G H,T) i, lhs :=e; ~» S| .
(G,H, Tt lhs := internChoose(es,...,ey) ~ S (1)

choice

31<i<n[(G, HT)Fy lhs :=e; ~]
(G,H,T) .., 1hs := externChoose(es,...,ey) ~ S

|' (G,H,T)+L,,, 1hss ~ (I',y') reachable(H,1,1")
BN H(l) = (s,y) (y,id) € SubType”
[(G) H)T> l_fzsgn lhsy ~ S | 9
(G,H,T) L, ... lhs; := reachable(lhsz, id) ~ S @
311 HO =(s,9) (y,id) € SubType”]
(G,H,T) F.yyn 1hs ~ S] 3
(G,H,T)Ft, ... 1hs :=forall(id) ~» S 3)
Al (G,H,T) !,y 1hso ~ (I, y') reachable(H,1,1")]
H(l) = (s,9) (y,id) € SubType” | ()
(G,H,T) V., ... lhsy := reachable(lhs;,id) ~ (G, H,T)
AL H()=(s,y) (y,id) € SubType"])
G,H,T)+rt, . 1hs:=forall(id)~ (G,H,T
< ’ ’) choice () ()) >

Figure 14. Choices

We explicitly denote transformations whose results involve non-deterministic
choice. We do so with a separate transformation relation —~¢€ State x
Threadld x State that reflects only the result of executing a choice
action at some point during the transformation. Recall that, in BIR,
transformations are sequences of atomic actions, so performing one
choose action will cause the entire transformation to be non-deterministic.

There are two kinds of transformations in BIR: visible and invisible.
Intuitively, the effect of an invisible transition should not be observed
by threads other than the one containing the transformation. The BIR
generator will have to perform static checks that conservatively identify
invisible transitions. For instance, a transformation that only writes
into local variables can be safely labeled as invisible?. Notice that it is
conservative to label an invisible transformation as visible, whereas the
converse does not hold. Formally, the — relation is partitioned into a
visible relation +>,;s and an invisible one >, .

We now define the visible transformation between states ;s ,
as the least relation that meets rules (6, 8, 9) in Figure 15. The Code
function is used to map a syntactic location into the set of statements it
labels. Rule (6) defines the meaning of a successful transformation. As

% For more detail, we refer the interested reader to [24] for a formal definition of
action independence and to [32] for a definition of action safety.

bir-journal.tex; 3/04/2003; 21:48; p.30

31

usual, the transformation can occur if the control location of the acting
thread matches the source location of the transformation and the guard
evaluates to true. The transformation succeeds if and only if all atomic
actions from the transformation’s body can succeed. On the other hand,
rules (8) and (9) deal with errors. Namely, a transformation fails if
either the guard fails to evaluate or one action fails to complete (drives
the program into an error state). The invisible transformation relation
i 18 the least relation that meets rule (7). We use here the syntax
for the invisible guarded transformations (Appendix A). Notice that
the error states can only be reached by visible transformations.

To ensure the correct partitioning of the transformation relation
—, we must impose two syntactic restrictions on the syntax of a BIR
thread: (1) it is illegal to have a visible and an invisible transformation
originating from and ending at the same location, and, (2) it is illegal
to have an invisible transformation originating from and ending at the
same location. It can be proven that these restrictions are sufficient to
ensure the distinction between the visible and invisible transformation
relations (Proposition 1 in Appendix B), and formally we have ;s N
Hine = 0. The transformation relation — is then defined as: — =
s U Hine

To define the non-deterministic version of the transformation rela-
tion (—~) we use a similar reasoning as in the case of —. The only
difference is that at least one of the actions of the guarded transforma-
tion has to be interpreted (in the preconditions of the defining rules)
using a choice judgement of the form s ., . a~» s'. To enforce the
semantic distinction between deterministic and choice transformations
(= N === (), we impose a sufficient syntactic restriction that is
similar to the one concerning visibility of transformations: it is illegal
for two or more transformations, only one of which containing choose
actions, to begin from and end at the same location.

5.0.3. Transition System

We are now ready to describe the execution of a BIR program by a
labeled transition system M = (X,S5,7) where S is a set of states
and —C S x X x S is a labeled transition relation between states.
There are four labels in the alphabet, each of them being a pair: ¥ =
{vis,inv} x {<,—} where, for any two states s,s’ € S and for some
thread ¢ € T'hreadld:

t
1. (s, (vis, x),8"y €—> (s —* s §'), if s rin,is s or s =Yy 8.

t
2. (s, (inv,%)s"y €— (s —*ipp §'), if s rimw s'or s == S

bir-journal.tex; 3/04/2003; 21:48; p.31

32

(when (e) do {a1,...,as} goto m) € Code(l)
T(t) = (l,n,active,0) (G,H,T)F.,,, e~ true
(G) H)T> l_(tzct aig <Gl)H1)T1>
<Gn71, anl, Tn71> |_th an (Gny Hn: Tn)
To(t) =(l,n,s',0') T'=[t = (m,n',s,0")]Tn (6)
(G H,T) & pis (G, Ha, T")
(when (e) do invisible {aj,...,as} goto m) € Code(l)
T(t) = (l,n,active,o) (G, H,T)F.pp, e ~> true
(G7H7T> |_¢tzct a3 ™ <G17H17T1>
(Gn—h Hn—l; Tn—l) '_fzct anp ™ (Gn: Hn: Tn)
To(t) =(,n',s",0") T'=[t = (m,n,s' 0")]Th (7)
(G) H)T> 'i)i”'U (Gn) HTH T’)
(when (e) do [invisible] {ai,...,a.} goto m) € Code(l)
T(t) = (l,n,active,oy (G, H,T)F p e~L ()
(G,H,T) rih,is ErrorState
(when (e) do [invisible] {ai,...,an} goto m) € Code(l)
T(t) = (I,n,active,a) (G, H,T)F.,,. e~ true
(G,H,T) = (Go, Ho,To) Fact a1~ (G1, H1, T1)
(Gifl,Hifl,Tifﬂ l_fzct ai'\»S 1 SlSn
S € {LimitState, ErrorState})
(G,H,T) 50is S

Figure 15. Guarded Transformations

t t
3. (s, (%,<),8") €= (s—,7¢), if s =7y 8" Oor s =, 8.

4. (s,(x,—),s"y €e— (s —4 '), if s »i>m~s s'ors rinm, s’

We shall first define a basic transition system M, the result of a
classical state-space exploration algorithm used in explicit-state model
checking [31]. We then formally define the bounded version of M, de-
noted by Mp, which is the result of resuming the state-space search
whenever a resource bound was exceeded. Next, we define the de-
terministic (or choose-free) version of M, denoted by Mp, which is
the result of a state-space exploration aimed at producing guaranteed
feasible counter-examples of safety properties [45]. The explicit labeling
of non-deterministic transitions is needed in order to define the choose-
free version of the transition system. The visible/invisible labeling of
transitions is meaningful in order to define further optimizations of the
state-space, such as virtual coarsening.

bir-journal.tex; 3/04/2003; 21:48; p.32

33

S iny 8 out(s',t) # 0
<S7E> “Finv <S,7t> (S)t> “Finv <S,7t>

(10)

S 'ih”'s S,
(S)t> rois (S’)6> (S)E> “vis (S’)E>

(11)

s Siny 8 out(s',t) =0
(5: E) “vis (51: E) (87 t) “vis (51: E)

Figure 16. Pseudo-transition System

In the basic version of the transition system (M), a sequence of
invisible transformations performed by the same thread cannot be in-
terleaved with transformations of different threads. Notice that this is
a safe assumption, since an action is declared invisible, assuming that
it is globally independent [32] with respect to all other transformations
of other threads. An invisible action is however not independent with
other non-deterministic choices of the same thread, and for this reason
we need to preserve the internal branching structure of a thread when
defining the transition system. It can been shown that treating invis-
ible transformations by disallowing interleavings with other threads
generates a labeled transition system that is branching bisimilar [21]
to the fully interleaved one. Assuming that the invisible labeling of
transformations preserves state stuttering i.e., two states connected
by an invisible transition will satisfy the same set of predicates, this
semantics strongly preserves the truth value of formulas written in the
nezt-free CTL* temporal logic [44].

We describe the interleaving semantics of invisible actions by defin-
ing a system of pseudo-transitions M = (3,8, <), where:

— § = State x Threadld, and,

— — € 8 x ¥ xS is the least relation defined by the rules in Figure
16. Note that we only give rules for the deterministic pseudo-
transitions here; the non-deterministic choice pseudo-transitions
<= can be derived analogously, using the choice transformation

relation —=.

Intuitively, rule (10) defines the beginning and the span of a sequence
of invisible pseudo-transitions. The sequence begins with a pair (s, €)
when an invisible transformation is performed by a thread ¢. As result,
the next pair remembers the acting thread together with the successor
state (s',t). The sequence can be continued as long as there exists an
invisible transformation that can be performed by t, as described by

bir-journal.tex; 3/04/2003; 21:48; p.33

34

the right-hand side of the post-condition. Notice that invisible pseudo-
transitions can occur as long as the acting thread ¢ is not blocked in
the destination state s’ of the transformation, a condition that is ex-
pressed formally by the requirement out(s’,t) # (). In the same style of
reasoning, rule (11) defines visible pseudo-transitions. A visible pseudo-
transition is the result of a visible transformation performed by a thread
t. The left hand side of the post-condition describes the situation when
a visible pseudo-transition ends a sequence of invisible transitions by
resetting the thread identifier to € in the successor state-thread pair.
The right hand side of rule’s (11) post-condition specifies a default
visible pseudo-transition between two pairs. Finally, rule (12) describes
the end of an invisible sequence in the case when the acting thread t is
blocked in the destination state (out(s’,t) = 0). In this case, the invis-

ible transformation s rin-m s’ gives rise to a visible pseudo-transition
that ends the invisible sequence.

We can now define the basic transition system, that will be generated
by a classical state-space search M = (3, S, —):

— S = State and,

{(s,(z,y),s') | Ju,v € Threadld, . (s,u) <% (s',v)}
- —=U {(ErrorState, (vis, —), ErrorState)}
{{LimitState, (vis, —), LimitState)}

The set of states is the set of program configurations, as defined in
Figure 13. There exists a transition between two states whenever there
exists a pseudo-transition between two state-thread pairs (ignoring the
thread component) and the transition labeling (z,y) is the same for
a transition as for a pseudo-transition between same states. It can be
proven that the transition labeling is indeed well-defined (Proposition 2
in Appendix B). Moreover, we add two visible deterministic transitions
to our model, making ErrorState and LimitState become sink states,
as a consequence of the fact that the explicitly added transitions are
the only possible outgoing transitions from an error state.

Bounded Transition System: There are situations in which one
is interested in verifying a property only on sequences of states that
respect all certain constraints. This feature can be obtained in BIR
by setting explicit bounds on each resource of the program, such as
the maximum number of objects that can be allocated by an allocator
or the maximum number of threads the can be dynamically created
by a start action. Exceeding these bounds in a classical search will
drive the system into the LimitState. This is usually an observable
move of the system and, in practice, reaching LimitState will stop the

bir-journal.tex; 3/04/2003; 21:48; p.34

35

classical state-space search, issuing an error message. In the bounded
state-space search, the possibility of exceeding a bound is detected in
advance and the search backtracks from the current state, ignoring
the limit error. Formally, this style of search is defined by a bounded
transition system Mp = (2,5, —p) that is derived from the basic
version M = (%, S, —) as follows:

—p = —> \ {(s,(x,%), LimitState) | s € In(LimitState)}
U {(s, (vis,—),s) | s € In(LimitState)}

That is, we eliminate all transitions that lead to LimitState and add
instead visible self loops to each of the states preceding LimitState in
the original transition system.

Choose-free Transition System: The choose-free search [45] aims
at finding only feasible counterexample of temporal logic properties.
A counterexample w = sy — s; — ... is an infinite sequence of
states and transitions which does not satisfy a given temporal logic
formula. For instance, a counterexample for an LTL formula ¢ or a
ACTL formula A¢ is a path w in the transition system such that w [~
¢,

In practice, a counterexample is said to be feasible if it corresponds
to a realistic computation of the original system i.e., before abstraction
is performed. However deciding whether a counterexample is actually
feasible can be expensive. An alternative is to trade soundness of the
model checking procedure for the guarantee that every counterexample
found is a real one. In this particular setting, a counterexample is said
to be infeasible if it contains at least one transition that occurs as
the result of a non-deterministic choice in the BIR program. Notice
that this is a conservative definition. A state-space search is choose-free
if it avoids taking non-deterministic transitions. We formally specify
such a state-space search by defining a deterministic transition system
Mp = (%,8,—p) derived from the basic one M = (3,5, —) as
follows:

—p = — \ {(s,(x,<),s")}
Since choice transitions s—=s" are labeled according to their non-

deterministic origin (Figure 14), we simply exclude them from the
original transition relation. Any path in the deterministic model will

3 For ECTL formulas, the model checker can only issue paths that testify for the
correctness of formulas.

bir-journal.tex; 3/04/2003; 21:48; p.35

36

loc 11_a: when el do invisible { al; ... an; } goto 12;
loc 12_a: when e2 do { bl; ... bm; } goto 13;
loc 11_b:
when el && e2 do { al; ... an; bl; ... bm; } goto 13;
when el && 'e2 do { al; ... an; } goto 12;
loc 12_b: when e2 do { bl; ... bm; } goto 13;

Figure 17. Virtual Coarsening in BIR

not contain choice transitions, therefore any counterexample found by
model checking on Mp will be feasible.

Virtual Coarsening: The notion of virtual coarsening stems from the
pioneering work of Ashcroft and Manna [2], and later Pnueli [46], in
using automatic deduction to prove correctness properties of concurrent
programs. The idea is to optimize a parallel program for verification,
by lumping together computation steps that are guaranteed to perform
only transformations that are local to a process. Since in a correctly
generated BIR program this condition should be met by any invisible
transformation, coarsening a BIR thread amounts to grouping together
sequences of invisible transformations. Figure 17 shows how a sequence
composed of an invisible and a visible transformation (denoted with _a)
can be coarsened. The resulting transitions (denoted with _b) consist
of a new transformation whose guard is the conjunction of the guards
from the original transformations el and e2 and whose body is the
concatenation of the bodies belonging to the original transformation.
Whenever it is possible (i.e., when el && e2 is true), the newly intro-
duced transformation is executed, and the intermediate state, in which
control is at location 12, is skipped. However if the newly introduced
transformation cannot be executed, the original computation is per-
formed. Notice that the two transformations originating at location
11_b are deterministic, due to the !e2 conjunct inserted in the guard
of the second one.

Since a thread is allowed to non-deterministically choose between in-
visible transformations, the coarse transitions should not “cross” branch-
ing points within a thread declaration. Otherwise, the branching struc-
ture of the state-space will be lost due to virtual coarsening, and
therefore the truth value of formulas of a branching-time temporal logic,
such as the next-free fragment of CTL [9] might not be preserved.

bir-journal.tex; 3/04/2003; 21:48; p.36

37

Before proceeding with the description of virtual coarsening, we
draw attention upon the following issue: since sequences of invisible
transformations will be performed without interleaving, there is a one-
to-one correspondence between a sequence of invisible transformations
performed by a thread and the invisible transitions it generates. It is
therefore correct to work directly with transition systems in defining
the reduction.

We will formalize virtual coarsening directly on the transition system
M = (X, S,—), and prove its correctness using branching bisimulation
equivalence [23] between transition systems. Let R C Sx S be a relation
on states defined as follows:

R = {(s,s) | s€ S}U{(s,5),(s,s) | s = s}

where s = s’ if and only if there exists a finite path s —in0 51 —>ine - - -
Sp—1 —inv Sn, for some n > 1, such that:

i) sp=sands, =3¢
ii) VO <i<n.Out(s;) ={sit1},
i) VO<i<n.In(s;) = {si1}.

The intuition behind the definition of = is the following: we are allowed
to lump together as many invisible actions as possible, given that they
all belong to a sequential path (ii) and there are no other incoming
transitions to the states on the path (iii). Since the goal of the reduc-
tion is to eliminate the intermediate states si,...,$,_1,Sn, the latter
condition is needed to preserve those states that are destinations for
transitions other than the ones belonging to the path.

In fact R is an equivalence relation; by definition it is reflexive and
symmetric, and transitivity follows immediately from the definition of
=. Let [s]g denote the equivalence class of a state s with respect to
R. The coarse transition system is defined as the quotient of M with
respect to R. The states of a quotient system are equivalence classes of
states from the original system, namely M, = (¥, Sg, —> r) where:

— Sr={[s]lr | s € S} and,
- —r={{[slr: [s']r) [s — 5"}

For the purposes of explicit-state model checking we represent the quo-
tient system by a projection h : Sgp — S where h([s]g) = s’ such
that s’ € [s]g and for no s” € [s]g we have s = . Intuitively,
a representative of an equivalence class is the first state that can be
reached by a depth-first search. It follows (Proposition 3 in Appendix

bir-journal.tex; 3/04/2003; 21:48; p.37

38

B) that such a state is unique and therefore h is a well-defined func-
tion. Moreover, it is also injective. Formally, the explicit-state reduced
transition system is My, = (3, h(Sg), —) where s —», s" if and only
if h~1(s) — g h™*(s). Obviously, h is an isomorphism between Mg
and Mj,. The correctness of our construction is ensured by the fact that
M and Mj, are branching bisimilar (Proposition 4 in Appendix B). To-
gether with the assumption that the invisible labeling of transitions and
stuttering with respect to a set of predicates are consistent, is follows
that all temporal logic formulas written in CTL* X are preserved by
virtual coarsening [44].

Since a representative state is the first reachable state in the equiv-
alence class, a transition between two states corresponds to a maximal
deterministic sequence of invisible transitions ending either with a non-
deterministic invisible transition or a visible transition. Simple conser-
vative tests can be done to ensure that an invisible transformation is
deterministic, in order to deal with the first reduction rule. The latter
case is exemplified by the syntactic coarsening in Figure 17. Notice
that the syntactic transformations are only approximative; for instance,
inferring that two transformation guards are actually disjoint can be an
undecidable problem. In such cases, the control flow graph of a thread
can be used as a conservative approximation of its actual behavior.

6. Related Work

There are several noteworthy projects on software model-checking. Since
this paper focuses on using intermediate language to stage translations
to model-checking engines, our discussion of related work will focus on
tool environments with similar goals.

The design goals of the IF validation environment [6], developed at
Verimag, are similar to those of the Bandera project in that both rely
on intermediate forms to aid in the translation of design notations to
model-checking tools. Specifically, IF relies on a dedicated intermediate
format to translate from high-level specification formalisms such as
SDL or UML state machines into a description of communicating state
machines. The specification language describes a set of dynamically cre-
ated processes connected via asynchronous buffers and shared variables.
Real-time modeling is supported, as each process may use several clocks
to measure time during execution and transitions may be guarded time
constraints. The IF type system provides complex data types, such as
enumeration, range, array and record. The IF language is understood
by a number of validation tools, such as static analyzers (LIVE) and
translators towards labeled transition systems (LTS) and PROMELA

bir-journal.tex; 3/04/2003; 21:48; p.38

39

(IF2PML). The former are used to reduce the size of the models, while
the later open the possibilities for model checking and test generation.

To summarize, some primary differences between IF and BIR are
that IF includes various features omitted from BIR such as a notion
of clocks and event buffers. Both of these could be useful additions to
BIR, for example, clocks might provide the basis for checking timing-
related properties of the Embedded Java and Real-time Java dialects.
On the other hand, BIR provides features omitted from IF to model
Java software including locks and dynamic object creation. There are
currently no translations from Java or other high-level programming
languages to IF.

SAL (Symbolic Analysis Laboratory) is a framework for synergisti-
cally combining model-checking, theorem-proving, and static analysis
tools for verification of concurrent systems. The heart of SAL is the
SAL intermediate language developed in collaboration with groups at
Stanford, Berkeley, and Verimag for specifying concurrent systems in
a compositional way [5]. The datatypes of SAL are very similar to
those of IF. SAL provides both synchronous and asynchronous com-
position of modules. Translations from SAL to PVS and SMV have
been implemented, and other tools for predicate abstraction, invariant
generation, and slicing have been integrated. Currently, no translations
from higher-level languages to SAL have been implemented. Although
it is similar to IF in several respects, the tool infrastructure for SAL is
not as robust and a public release of the tools has not yet been made.

The Java Path Finder model-checker [50] works directly on Java
bytecode. There are several advantages to having a verification tool
work directly on Java bytecode as opposed to working on an alternate
notation such as BIR. The semantics of Java bytecode is already well-
defined. Moreover, Java bytecode is widely used, the Java to bytecode
translation is well-understood and widely implemented, and there are
numerous tools that also work directly on bytecodes. The down side
of having tools work on bytecode directly is that it can be difficult
to customize the model based on how the program uses a particular
feature. For example, if an object’s lock is used but wait and notify are
not, then a direct interpretation approach like JPF will still maintain
a representation of the wait-set which is a waste of space.

Gerard Holzmann’s Feaver tool also translates a general-purpose
programming language (i.e., C) into Promela for checking with SPIN
[34]. Feaver does not use an intermediate language but instead relies
to some degree on the syntactic similarities between C and Promela.
Specifically, it uses a pattern-matching approach where an application-
specific lookup table associates C code patterns or fragments with
corresponding Promela fragments. Translation from a C to Promela

bir-journal.tex; 3/04/2003; 21:48; p.39

40

proceeds by traversing the C program and applying the mappings from
the table to individual C fragments to obtain Promela fragments. While
Holzmann has demonstrated that this approach can be very effective
in checking large telephony applications, it does not seem amenable
to providing a robust interoperability platform between other input
notations or model-checking tools other than SPIN.

Finally, other work on software model-checking make unique and
interesting contributions such as the SLAM tool [4] from Microsoft Re-
search which implements an automated predicate abstraction method-
ology for sequential C programs, Godefroid’s Verisoft tool for stateless
checking of concurrent C systems [25], Stoller’s [47] tool for stateless
checking of multi-threaded distributed Java programs, and Yahav’s
work on checking safety properties of Java programs [51] built on top
of Lev-Ami and Sagiv’s three-valued logic analysis tool (TVLA) [39],
but we do not give a deeper assessment of these here due to our focus
on intermediate representations.

7. Conclusion

The goal of this paper has been to provide a comprehensive account of
the Bandera Intermediate Representation including our design goals,
BIR’s syntax and semantics, and strategies for translating to and from
BIR. The design of BIR has proven effective in supporting model-
checking properties of a variety of real concurrent Java applications
and other software design notations.

We believe that model checker input languages should evolve to
support the needs of emerging applications of model checking as a
software analysis technology. We believe that experience with BIR can
help shape the evolution of model checker input languages. Some model
checkers, for example JPF and dSPIN, have already begun to incorpo-
rate BIR’s non-determinism constructs for dynamic data since they
dramatically increase modeling power without expanding the state-
space.

Tool interoperability is a challenging but often underappreciated
goal that potentially has significant benefits — especially for an emerg-
ing area such as software model-checking. Ideally, researchers should
be able to leverage each other’s tool-building efforts to avoid exces-
sive duplication of effort. While BIR is by no means perfect, we hope
that the effort reported here contributes to a dialogue among like-
minded researchers regarding representations for software systems and
specifications amenable to model-checking.

bir-journal.tex; 3/04/2003; 21:48; p.40

41

Acknowledgements

This work was supported primarily by NASA under grant NAG-02-1209
with additional support from DARPA/ITO’s PCES program through
AFRL Contract F33615-00-C-3044, from NSF under grants CCR-9703094,
CCR-9708184, CCR-9896354 and CCR-9901605, by the U.S. Army
Research Laboratory and the U.S. Army Research Office under agree-
ment number DAAD190110564, and from the Formal Verification of
Integrated Modular Avionics Software cooperative agreement, NCC-1-
399, sponsored by Honeywell Technology Center and NASA Langley
Research Center.

Robby, Corina Pasareanu, and Venkatesh Ranganath contributed to
this work through numerous discussions about the design and formal-
ization of BIR.

Finally, the authors gratefully acknowledge the very significant con-
tributions of Jay Corbett who is responsible for the initial design of
BIR and the initial implementation of BIRC and the SPIN and SMV
translators.

References

1. R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of hi-
erarchical reactive machines. Proceedings 12th International Conference on
Computer Aided Verification, 2000.

2. E. Ashcroft and Z. Manna. Formalization of properties of parallel programs.
Machine Intelligence, pages 17-41, 1972.

3. George S. Avrunin, James C. Corbett, , and Matthew B. Dwyer. Benchmarking
finite-state verifiers. International Journal on Software Tools for Technology
Transfer, 2(4):317-320, April 2000.

4. T. Ball and S. Rajamani. Bebop: a symbolic model-checker for boolean pro-
grams. In K. Havelund, John Penix, and Willem Visser, editors, Proceedings
of Seventh International SPIN Workshop, volume 1885 of Lecture Notes in
Computer Science, pages 113-130. Springer-Verlag, 2000.

5. Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, Cesar Mu noz, Sam Owre,
Harald Ruef}, John Rushby, Vlad Rusu, Hassen Saidi, N. Shankar, Eli Singer-
man, and Ashish Tiwari. An overview of SAL. In Proceedings of the Fifth
Langley Formal Methods Workshop, June 2000.

6. Marius Bozga, Susanne Graf, and Laurent Mounier. Automated validation
of distributed software using the if environment. Proc. Workshop on Soft-
ware Model-Checking, associated with CAV’01, Electronic Notes in Theoretical
Computer Science, 55, 2001.

7. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : a new sym-
bolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410-425, 2000.

8. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic

bir-journal.tex; 3/04/2003; 21:48; p.41

42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

model checking. Proceeding of International Conference on Computer-Aided
Verification (CAV), 2002.

E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. Lecture Notes in Computer Science, 131, 1981.
James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Bandera : Extracting finite-
state models from Java source code. In Proceedings of the 22nd International
Conference on Software Engineering, June 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Bandera : A
source-level interface for model checking Java programs. In Proceedings of the
22nd International Conference on Software E ngineering, June 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Expressing
checkable properties of dynamic systems: The bandera specification language.
International Journal on Software Tools for Technology Transfer, 4(1), 2002.
Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. Lecture Notes in
Computer Science, 952, 1995.

C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent
Java programs. Software - Practice and Ezperience, 29(7):577-603, July 1999.
C. Demartini, R. Iosif, and R. Sisto. dSPIN : A dynamic extension of SPIN.
In Theoretical and Applied Aspects of SPIN Model Checking (LNCS 1680),
September 1999.

Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki Mizuno.
Invariant-based specification, synthesis, and verification of synchronization in
concurrent programs. In Proceedings of the 24nd International Conference on
Software Engineering, May 2002.

Matthew Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina
Pasareanu, Robby, Willem Visser, and Hongjun Zheng. Tool-supported
program abstraction for finite-state verification. Proceedings of the 23rd
International Conference on Software Engineering, pages 177-187, 2001.
Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S.
Pasareanu, Robby, Willem Visser, and Hongjun Zheng. Tool-supported pro-
gram abstraction for finite-state verification. In Proceedings of the 23rd
International Conference on Software Engineering, May 2001.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifi-
cations for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering, May 1999.

Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed model-
checking with HSF-Spin. Proceedings of the 8th International SPIN Workshop
on Software Model Checking, Lecture Notes in Computer Science, 2001.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach
to branching time logic model checking. Proceedings 3rd Israel Symposium on
Theory on Computing and Systems, pages 130-139, 1995.

Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts (3rd
edition). John Wiley and Sons, 1997.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555-600, 1996.

Patrice Godefroid. Partial-order methods for the verification of concurrent
systems. Lecture Notes in Computer Science, 1032, 1996.

bir-journal.tex; 3/04/2003; 21:48; p.42

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

43

Patrice Godefroid. Model-checking for programming languages using VeriSoft.
In Proceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL’97), pages 174-186, January 1997.

John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan Sokolowski, and
Hongjun Zheng. A formal study of slicing for multi-threaded programs with
JVM concurrency primitives. In Proceedings of the 6th International Static
Analysis Symposium (SAS’99), September 1999.

John Hatcliff, Matthew B. Dwyer, Corina S. Pasareanu, and Robby. Founda-
tions of the bandera abstraction tools. In The Essence of Computation, LNCS
1490, 2000.

John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for
model construction. Higher-order and Symbolic Computation, 13(4), 2000.

K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
1999.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In Proceedings of the ACM SIGPLAN-SIGACT Conference
on Principles of Programming Languages, Portland, Oregon, January 2002.
Gerard Holzmann. The spin model checker. IEEE Transactions on Software
Engineering, 23:279-295, 1997.

Gerard Holzmann and Doron Peled. An improvement in formal verification.
Formal Description Techniques, pages 197-211, 1994.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-294, May 1997.

Gerard J. Holzmann and Margaret H. Smith. Software model checking :
Extracting verification models from source code. In Proceedings of FORTE/P-
STV’99, November 1999.

Radu Iosif. Exploiting heap symmetries in explicit-state model checking of
software. Proc 16th IEEE International Conference on Automated Software
Engineering, pages 254-261, 2001.

Radu Iosif and Riccardo Sisto. dspin: A dynamic extension of spin. Proc. 6th
SPIN Workshop, Lecture Notes in Computer Science, 1680:261-276, 1999.
Radu Iosif and Riccardo Sisto. Using garbage collection in model checking.
Proc. 7th SPIN Workshop, Lecture Notes in Computer Science, 1885:20-33,
2000.

Roby Joehanes. Incorporating UML State Charts into Bandera. PhD thesis,
Kansas State University, 2002. (Master of Science thesis).

T. Lev-Amiand M. Sagiv. TVLA: A framework for kleene-based static analysis.
In Proceedings of the 7th International Static Analysis Symposium (SAS’00),
2000.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Sun
Microsystems, Inc., 1997.

Alberto Lluch-Lafuente, Stefan Edelkamp, and Stefan Leue. Partial order re-
duction in directed model checking. Proceedings of the 9th International SPIN
Workshop on Software Model Checking, Lecture Notes in Computer Science,
2318, 2002.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1991.

S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

bir-journal.tex; 3/04/2003; 21:48; p.43

44

44. Rocco De Nicola and Frits Vaandrager. Three logics for branching bisimulation.
Proceedings of 5th Annual IEEE Symposium on Logic in Computer Science,
pages 118-129, 1990.

45. Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser. Finding feasible
counter-examples when model checking java programs. Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems, 7th International
Conference, Lecture Notes in Computer Science, 2031, 2001.

46. Amir Pnueli. Applications of temporal logic to the specification and verification
of reactive systems: A survey of current trends. Current Trends in Concurrency,
Lecture Notes in Computer Science, pages 510-584, 1986.

47. S. Stoller. Model-checking multi-threaded distributed Java programs. In
K. Havelund, John Penix, and Willem Visser, editors, Proceedings of Seventh
International SPIN Workshop, volume 1885 of Lecture Notes in Computer
Science, pages 224-244. Springer-Verlag, 2000.

48. Oksana Tkachuk. Adapting Side-effects Analysis for Java Environment Gen-
eration. PhD thesis, Kansas State University, 2003. (Master of Science
thesis).

49. Raja Valle-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot - a Java optimization framework. In Proceedings
of CASCON’99, November 1999.

50. W. Visser, G. Brat, K. Havelund, and S. Park. Model checking programs. In
Proceedings of the 15th IEEFE International Conference on Automated Software
Engineering, September 2000.

51. Eran Yahav. Verifying safety properties of concurrent Java programs using
3-valued logic. In Proceedings of the ACM SIGPLAN-SIGACT Conference on
Principles of Programming Languages, pages 27-40, jan 2001.

Appendix
A. Grammar

This section presents the syntax of the BIR language.

(system) = ‘system’ ID ‘C’ ‘)’ { (definition) }
{ (thread) } [(predicates) | ‘end’ ID *;’

(definition) := (constantdef) | (typedef) | (subtypedef) | (collectdef)
| (globaldef)

(constantdef) ::= ‘const’ CONSTANTID INT ‘;’ | ‘const’ CONSTANTID
(boolean) *;’

(subtypedef) ::= TYPEID ‘extends’ TYPEID ‘;’

(collectdef) = COLLECTID ‘:’ ‘collection’ [‘[’ (constant)

‘1] ‘of’ TYPEID *;’

bir-journal.tex; 3/04/2003; 21:48; p.44

(globaldef)
(constant)
(type)
(typedef)

(typespec)

(namedtypespec)

(enumconst)

(expr)

(lhs)

(value)

(boolean)

(unop)

45
ID ‘2’ (type) [“:=" (value) | *;’
CONSTANTID | INT
(typespec) | TYPEID
TYPEID ‘=’ (namedtypespec) | TYPEID ‘=’ (typespec)

‘boolean’

‘range’ (constant) ‘..” (constant)
‘lock’ [‘wait’ | [‘reentrant’]
‘ref’ TYPEID ‘{’ ID { *,” ID } ‘}’
‘array’ ‘[’ (constant) ‘1’ ‘of’ (type)

‘enum’ ‘{’ (enumconst) { ¢,” (enumconst) } ‘}’
‘record’ ‘{” { ID ‘:’ (type) ;' } ‘}

ID | ID ‘=’ INT

(value)
(locktest)
(threadtest)
C(’ <e$p,,,,> C)’
(unop) (expr)

(expr) (binop) (expr)
(expr) *.” ID

(expr) ‘[(expr) ‘1’
(expr)

(expr)

‘.7 ‘length’

‘instanceof’ ID
ID

(lhs) ©.” ID

(lhsy ‘[’ (expr) ‘1’

(lhs) *." ‘length’

INT

ID
(boolean)
‘null’

‘true’ | ‘false’

) | o | (po

bir-journal.tex; 3/04/2003; 21:48; p.45

46

(binop)

(locktest)
(locktestop)
(threadtest)

(thread)

(param)
(local)
(location)

(liveset)

(transformation)

(action)

(assignaction)

(choiceaction)

(lockaction)

C+7 | (3] | (*? | C/? | (%? | C&&? | Cll? | [Ju—— | (!=?|
C<7 | C>7 | C<=7 | C>=7

(locktestop) < (lhs))’
‘lockAvailable’ | ‘hasLock’ | ‘wasNotified’
‘threadTerminated’ “(’ ID)’

[‘main’ | ‘thread’ ID ‘(" { (param) } ‘)’
{ (local) } (location) { (location) } ‘end’ ID

ID ‘2’ (type) ‘5’
ID ‘i (type) [“:=" (value) | 5’
‘loc’ ID ‘:’ [(liveset) | { (transformation) }

Glive’ C{’ 6}7
clive’ c{a ID { 4,7 ID } c}a

‘when’ (expr) ‘do’ [‘invisible’ |
4’ { (action) } ‘} ‘goto’ ID *;’

assignaction)
choiceaction)
lockaction)
threadaction)
printaction)
assertaction)

N N~~~

(lhs) “:=" (expr)

s) ":=" ‘new LLECTID *;
lh ‘ P ? CO C [
(lhs) ‘:=" ‘new’ COLLECTID ‘[’ (expr) ‘1’ ‘;’
s) ‘=" ‘internChoose value) { *,” (value
lh ‘ PN C ? ((’ l [T l
} ()’ C;7
(lhs) ‘:=" ‘externChoose’ ‘(" (value) { *,” (value)
} ()’ C;7
(lhs) ‘=" ‘forall’ ‘(" ID *)’ *;’
(lhs) ‘:=" ‘reachable’ ‘(" ID) (expr) ‘)’ 3’

= (lockop) “C (lhs) *) 3’

bir-journal.tex; 3/04/2003; 21:48; p.46

47

(lockop) = ‘lock’ | ‘unlock’ | ‘wait’ | ‘unwait’ | ‘notify’
| ‘notifyAll’
(threadaction) = [(lhs) ‘:="] ‘start’ ‘C’ ID [*,’ (args) |) *;’
| ‘exit’‘;’
args n= (expr ,) (expr
[
(printaction) i= ‘println’ ‘(" [(printargs) | *)’ <3’
(printargs) = (printarg)
| (printarg) *,’ (printargs)
(printarg) ::= STRING | ID
(assertaction) = ‘assert’ ‘C (expr))’ ;'
predicates = ‘predicates’ { (predicate
dicat ‘predi ’ dicat
(predicate) = ID ‘=’ (predexpr) *;’
(predexpr) i:= (threadLocationTest) | (remoteReference)

(threadLocationTest) ::= ID ‘[’ (lhs) ‘1’ ‘@’ ID

(remoteReference) = ID ‘[’ (lhs) ‘1’ *:* (lhs)

B. Proofs

We need the following lemma for the rest of the proofs. The proof uses
the fact that we cannot have an invisible transformation originating
from and ending at the same location in a thread declaration.

LEMMA 1. Let s,s' € State and t,t' € Threadld. If s inm, s' and
v _

s—s thent=1.

Proof: Let s = (G,H,T), s’ = (G', H',T") and let (when (e) do [invisible]

{ai1,...,an} gotom) € Code(l) be the transformation from the precon-

dition of rule (6) that makes s s true. By rule (6) T'(t') = (I, n, active, o),
T'(t;) = (m,n',s',0") and V" # ' T(t") = T'(t"). Assuming t # t' we
have T'(t) = T'(t). Let (when (e) do invisible {ay,...,an}

goto m) € Code(l) be the transformation that triggers s Y ino . Then,

bir-journal.tex; 3/04/2003; 21:48; p.47

48

according to rule (6), we have T'(t) = (I, @, active,), T'(t) = (m,n’,s',0"),
and since T(t) = T'(t) we have [= 7. This contradicts the syntactic
restriction that no invisible transformation originates and ends in the
same control location. O

The following proof uses the syntactic restriction that it is illegal
to have a visible and an invisible transformation originating from and
ending at the same location.

PROPOSITION 1. For any s,s’ € State and ty,ty € Threadld, it is
not the case that both s »t#im, s and s 'gm's s' hold.

Proof: There are two cases:

i) Ifs, s € %, then let s = (G, H,T) and s’ = (G',H',T"). We
prove by contradiction, assuming that s »téi,w s, s 31”-5 s" and
letting (when (e) do invisible{ay,...,a,} gotom) € Code(l) be
the transformation from the precondition of rule (6) that makes
s »téi,w s' true. If s rgm-s s, by Lemma 1 we obtain t5 = t;. Now
let (when (e’) do {a},...,a,} goto m) € Code(l) be the transforma-

tion that makes s 'gvis s’ true, according to rule (6). Clearly, the
existence of both transformations between control locations [and
m is a violation of the syntactic restriction regarding the presence
of both visible and invisible transformations between two control
locations.

i) If s € State and ' € {ErrorState, LimitState} it cannot be the
case that s Qim s', since 3y, is defined as the least relation
satisfying rule (7).

O
The soundness proof for transition labeling will be carried out using
the rules in Figure 16.

PROPOSITION 2. For any s,s’ € State and u,u’,v,v" € Threadld,,
it is not the case that both (s,u) ~ryis (8, u") and (s,v) ~ripy (8',0)
hold.

Proof: As — is the least relation meeting the rules (10, 11, 12),
(8,u) ~yis (8, u') holds because either i) s +i>m-s s orii) s rimw s" and
out(s',t) = (). The (i) case is ruled out by the fact that (s, v) <, (s, 0")
which can only be true due to s »t—>im, s' for some t' € Threadld,.

. . . t % .
According to Proposition 1, having both s ;s s’ and s =, s’ is a
contradiction. For the (ii) case, as we can only have (s,v) iy (s, 0")

bir-journal.tex; 3/04/2003; 21:48; p.48

49

due to an application of rule (10), it is the case that out(s’,t) # () and

s »t—,>im, s’ for some t' € Threadld.. Then by Lemma 1 we have ¢t = .
But this is clearly in contradiction with the fact that out(s’,t) = 0. O

The following proposition shows that the representative function
h: Srp — S is indeed well defined.

PROPOSITION 3. Let [s]g C S be an equivalence class w.r.t. R. If
$1,82 € [s]r such that for no s| € [s]g we have s§ = s; and for no
sh € [s|r we have sy = so, then s1 = ss.

Proof: By contradiction, assume that s; # sa. Since s1,s2 € [s]g and
$1 # so then either s; = so or s9 = s1, by the definition of R. But
either case contradicts the hypothesis. O

The following proposition shows that M and M) are branching
bisimilar. This is done by showing first that R is a branching bisimu-
lation. Since R is total on both S and h(Sg), the result follows imme-
diately.

PROPOSITION 4. For any s,s’,t € S, if sRs' and s — t then either:
a) 8 —riny t and tRs', or

b) there exist s1,t' € S such that s' = s1 —> t' and sRsy and tRt'.

Proof: By definition, sRs’ is because either (1) s = §', (2) s = s’ or (3)
s’ = s. The first case meets trivially condition (b). Assume now that
s = §'. Then, for some s” € S we have Out(s) = {s"}, s —iny §” and
s" = s'. The only possibility is to have ¢t = s” and therefore s —;,, ¢
and ¢t = §'. This leads to tRs’ which satisfies condition (a). In the third
case we have s’ = s and since s — t, condition (b) is immediately
satisfied. O

C. NuSMYV Translation

NuSMV [7] is a symbolic model checker that uses BDDs to encode
the set of reached states and the transition relation is represented as a
predicate transformer. In this section we briefly sketch the translation
of BIR to NuSMV.

A first difference with respect to the SPIN translation is that dy-
namic threads are not considered. Instead, we assume a set Thread-
Name of thread names that are either idle or active. In the begin-
ning, all threads are idle except for a designated main thread. An
idle thread can be activated, but there are no means of generating

bir-journal.tex; 3/04/2003; 21:48; p.49

50

fresh names for threads. To some extent, this limitation can be over-
come by over-approximating the maximum number of threads that the
program will create and declaring enough names. Note that such an
over-approximation is not always possible.

Variables: For each thread name 7" € ThreadName we declare two
global variables, 7' loc recording its current location, and 7' active
indicating whether the thread is active. Local variables of each thread
are translated in NuSMV by prefixing their names with the name of
their enclosing thread.

Among the global variables, BIR collections request special atten-
tion. A collection X having size k is translated into 2k distinct variables
i.e., for each i € {0,...,k — 1}: X _inusei of type boolean, indicating
whether the ¢-th collection slot is in use, and, X inst: represents a
particular instance, according to its type. A similar scheme is used for
the translation of array types. Records are flattened by prefixing each
field with the name of the record type.

A BIR variable X having a reference type is translated into a pair of
variables: X refIndex identifies the collection pointed to, and X instNum
indicates the index of the specific instance inside the collection.

The order of variables plays an important role in NuSMV, since the
sizes of the BDDs used to represent the set of reachable states greatly
depend on this ordering. Even though there is no efficient way to de-
termine an optimal variable order, heuristics proposed in the literature
[1] suggest using the hierarchy in the system to order variables. Our
translation defines a partial order in which all global variables, record
fields, array elements and thread local variables are at the top of the
order.

Transitions: The global transition relation is given by a boolean for-
mula of the form:

TRANS = /\ Trans(T) A /\ Trans(v)
T e ThreadNames ve VarNames

where Trans(T) defines the local behavior of a thread and Trans(v)
defines the behavior of a global variable. Thus to define the transition
relation, it is sufficient to define the transitions of each thread and each
variable.

The interleaving semantics of a multithreaded program is captured
in the synchronous execution mode of NuSMV by introducing a des-
ignated variable running whose value is unconstrained, and therefore
updated non-deterministically. Only running may take a transition,

bir-journal.tex; 3/04/2003; 21:48; p.50

51
while all other threads idle. This is captured in the following relation:

Trans(T) = | T _loc=T _locA /\ v'=wv]|V
veLoc(T)

\/ taken(t) A /\ update(v,t)
teTr(T) veLoc(T)

where taken(t) is a shorthand for:

running =T A guard(t) A'T_loc = source(t) AT _loc' = target(t)

and
v/ = e if t assigns e to v

update(v,t) = ¢ v/ = v if t does not assign v, but v is live at target(t)
1 otherwise

For a thread T', Tr(T) denotes the set of transformations, whereas for
a transformation t, source(t) denotes its source location and target(t)
stands for its target location.

Note that dead variables are left unconstrained by the update for-
mula. In practice this has shown important reductions in the size of
the transition relation BDD.

Expressions: Most BIR arithmetic operators have an NuSMV coun-
terpart, but dereferencing requires special treatment. We have used the
NuSMYV case selection which, for the purposes of this presentation is
abbreviated as: | | ;(z : y) = case 1 : y1; T2 : Y25 ...; Ty : Yn; €sac.
The result of the expression is the y; value for the first x; expression
that evaluates to true, or 0 if all z; are false.

When a reference variable R is dereferenced, we generate nested case
expressions to select the correct collection and instance.

Size(r)—1
|_| R_reflndex =1 : |_| (R_instNum = 7 : Name(r)_instq)
r& Targets(R) 1=0

where Targets(R) is the set of target collections to which R could refer
(determined by its declared type), Size(r) is the size of the collection r,
and Name(r) is the name of collection r. If the target r is a singleton,
we can omit the inner case expression i.e., there is no instance to select.

bir-journal.tex; 3/04/2003; 21:48; p.51

bir-journal.tex; 3/04/2003; 21:48; p.52

