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Abstract. In this paper we study the reachability problem for parametric flat counter automata, in
relation with the satisfiability problem of three fragments of integer arithmetic. The equivalence
between non-parametric flat counter automata and Presburger arithmetic has been established previ-
ously by Comon and Jurski. We simplify their proof by introducing finite state automata defined over
alphabets of a special kind of graphs (zigzags). This framework allows one to express also the reach-
ability problem for parametric automata with one control loop as the satisfiability of a 1-parametric
linear Diophantine systems. The latter problem is shown to be decidable, using a number-theoretic
argument. In general, the reachability problem for parametric flat counter automata with more than
one loops is shown to be undecidable, by reduction from Hilbert’s Tenth Problem. Finally, we study
the relation between flat counter automata, integer arithmetic, and another important class of com-
putational devices, namely the 2-way reversal bounded counter machines.

Keywords: Counter machines, Reachability problems, Diophantine systems

1. Introduction

Flat counter automata [5], [7], [3] have been extensively studied, as an important class of infinite-state
systems, for which the reachability problem is decidable. The results obtained so far have been used in a
number of successful system verification tools, like FAST [2], LASH [22] or TREX [1].

Comon and Jurski show in [5] that the relation between input and output counter values, for a flat
counter automaton can be expressed in Presburger arithmetic, provided that the automata have transition
relations that are conjunctions of relations of the form x− y ≤ c, where x and y denote either the current
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or the future (primed) values of the counters, and c is an integer constant. To our knowledge, their result
concerns the most general class of flat counter automata, considered so far.

The contributions of the present paper are many fold. First, we give an alternative, easier, proof
of the result of [5], using finite state automata defined over alphabets of graphs (zigzags). Second,
we apply this framework to a more general class of flat counter automata, in which, besides integer
constants, parameters are allowed to occur within transition relations. In general, the reachability of a
designated control state in this case is equivalent to the existence of solutions of a Diophantine system.
Since the latter problem is undecidable [16], this entails the undecidability of the reachability problem
for parametric flat automata. However, when we restrict the control structure of parametric automata
to one loop, the reachability problem can be expressed as existence of solutions of a particular class of
Diophantine systems, called 1-parametric Diophantine systems.

A 1-parametric Diophantine system is a linear system with unknowns x1, . . . ,xk, whose coefficients
are polynomials of any degree with one variable m. The satisfiability problem asks whether there exists
a constant c ∈ N, such that the linear system obtained by substituting m with c has a positive solution ?
In this paper we show that this problem is decidable.

Last, we study the relation between flat counter automata, integer arithmetic, and another impor-
tant class of computational devices, the 2-way reversal bounded counter machines [12]. We establish
a three-level hierarchy relating flat counter automata and 2-way reversal bounded counter machines by
the intermediate of three arithmetic theories : Presburger arithmetic, existential theory of addition and
divisibility, and Diophantine systems.

Related Work

Work on the decidability of reachability problems for counter automata starts with the negative result of
Minsky [18] regarding two counter machines. The two most studied restrictions of this model are the
reversal bounded 2-way counter machines [12] and the flat counter automata [5], [7], [3]. The class
of flat counter automata that is closest to the one considered in this paper is the one studied by Comon
and Jurski [5], where the transition relations are conjunctions of inequalities of the form x− y ≤ c, with
c ∈ Z. Their result is that the set of reachable configurations for such automata is definable in Presburger
arithmetic. Our result considers parametric transition relations of the form x− y ≤ f (z), and defines the
set of reachable configurations as solutions of a linear Diophantine system with one parameter. Decision
procedures for this class of systems have been independently found by O. Ibarra and Z. Dang in [13],
using a result from the theory of reversal-bounded counter automata, and by Y. Matyiasevich [17]. The
latter result uses a similar number theoretic argument, but the proof is based on a more involved case
analysis.

2. Preliminary Definitions

We denote by N the set of natural numbers, and by Z the set of integer numbers. Let x = {x1, . . . ,xk},
k > 1 be a finite set of variables (counters) ranging over Z, and x′ = {x′i | 1 ≤ i ≤ k}. In what follows we
will sometimes abusively use the name of a variable to denote its value also. For an arithmetic formula
ϕ(x1, . . . ,xk) with free variables from x, and a tuple of integer constants u1, . . . ,uk ∈ Z, we denote by
ϕ(u1, . . . ,uk) the closed formula in which all occurrences of xi have been replaced by ui, 1 ≤ i ≤ k. For a
closed formula ϕ, we denote by |= ϕ the fact that it is valid, i.e. logically equivalent to true. The notation
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Z[x] stands for the set of all polynomials with unknowns from x and integer coefficients. Also linZ[x]
denotes the set of linear terms with unknowns x and integer coefficients.

For two formulae ϕ(x,x′) and ψ(x,x′) let ϕ ◦ ψ denote the relational composition ∃y . ϕ(x,y) ∧
ψ(y,x′). The n-th composition ϕn, n > 0 is defined recursively : ϕ1 = ϕ and ϕn+1 = ϕn ◦ ϕ. The
transitive closure ϕ∗ is the infinite disjunction

W
n>0 ϕn. Intuitivelly, this represents the relation between

x and x′ after any number of iterations of ϕ.
A transition table over an alphabet Σ is a pair T = 〈Q,∆〉, where Q is a finite set of states and

∆ ⊆ Q×Σ×Q is a transition relation. We denote (q,σ,q′) ∈ ∆ by q σ−→ q′, whenever T is clear from the

context. We denote by
←−
T = 〈Q,∆′〉 the reversed table, where (q,σ,q′) ∈ ∆′ if and only if (q′,σ,q) ∈ ∆.

A finite automaton is a tuple A = 〈T,Q0,F〉, where T = 〈Q,∆〉 is a transition table, Q0 ⊆ Q is a set
of initial states, and F ⊆ Q is a set of final states. A run of A is a sequence of states and transitions
π : q0

σ1−→ q1
σ2−→ q2 . . .

σn−→ qn. We denote by |π| the length of the run. The run is said to be accepting

if and only if qn ∈ F . The language of A is defined as L(A) = {σ1σ2 . . .σn | q0
σ1−→ q1

σ2−→ q2 . . .
σn−→

qn is an accepting run of A}. The reversed automaton is defined as
←−
A = 〈←−T ,F,Q0〉. It is easy to see that

L(
←−
A ) = {σnσn−1 . . .σ1 | σ1 . . .σn−1σn ∈ L(A)}.

2.1. Counter Machines

Let us fix a set of counters x = {x1,x2, . . . ,xk} with an ordering of its elements. For any x∈ x, let ζ(x) = 1
if y /= 0 and ζ(y) = 0 if y = 0. ζ(x) denotes the tuple 〈ζ(x1), . . . ,ζ(xk)〉, for the chosen ordering of the
elements in x. Let Σ be a finite alphabet, i.e. a set of symbols. By Σ∗ we denote the set of all finite
sequences of symbols from Σ. For a finite sequence σ, we denote by |σ| its length, and by σi, 1 ≤ i ≤ |σ|
the element at position i in σ.

A 2-way counter machine over Σ is a tuple M = 〈x,Q,δ,q0,F〉, where:

• x is the set of working counters,

• Q is the set of control states,

• δ : Q× (Σ∪{#,&})×{0,1}k → P (Q×{−1,0,1}×{−1,0,1}k) is the transition mapping,

• q0 ∈ Q the initial state,

• F ⊆ Q the set of final states.

The input of the machine is a finite tape τ containing a word of the form #w&, where #,& /∈ Σ are the
left and right end of tape markers, and w ∈ Σ∗ is a finite word over Σ. M is said to be deterministic if and
only if ||δ(q,σ,b)||≤ 1, for all q ∈ Q,σ ∈ Σ, and b ∈ {0,1}k .

A configuration 〈q, i,x〉 is an element of the set Q×N×Zk, where q is the current control state, 1 ≤
i ≤ |w|+2 the current position of the input (read only) head, and x the current values of the counters1. A
configuration 〈q′, j,x′〉 is said to be the successor of another configuration 〈q, i,x〉, denoted by 〈q, i,x〉 −→

1In the classical literature [12], the counters are assumed to take only positive values, however this is not a restriction, since a
machine with integer counters can be simulated by a machine working only on positive counters, by encoding the k-tuple of
signs in the control state.
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〈q′, j,x′〉 if and only if there exists 〈q′,d,a〉 ∈ δ(q,τi,ζ(x)) such that j = i+d and x′ = x+a. Intuitivelly,
the ζ(x) component of the transition relation δ denotes the guard, used to test whether a counter is zero
or not, d is the change in the current position of the input head (−1 moves the head left, 0 leaves the head
on the same position, and 1 moves the head right) and the a component is the action, that changes the
values of the counters.

As usual, we require a special behavior in the presence of the end of tape markers # and &, preventing
the input head to fall off the tape. A run of the machine is a sequence of configurations c1,c2, . . . ,cn such
that c0 = 〈q0,1,0〉 and ci −→ ci+1 for 1 ≤ i < n. Notice that we require the machine to start with the input
head positioned on the left-end marker, and all counters set to zero.

The run is said to be accepting if the control state of the last configuration is an element of F . An
input string w, i.e. τ = #w&, is accepted if the machine has at least one accepting run on it. The set of
all accepted strings is the language of M, denoted by L(M). In the following, we work also with the set
V (M) = {u∈Zk | 〈q0,1,0〉, . . . ,〈qf , j,u〉, is an accepting run of M, for some qf ∈F and 1≤ j ≤ |w|+2}
of counter values produced by the accepting runs of M. Notice that L(M) = /0 if and only if V (M) = /0.

Let C be a class of counter machines. The following, referred to as F-problems, are the problems of
deciding for any two machines M1,M2 ∈C, whether:

• emptiness: L(M1) = /0,

• infiniteness: L(M1) is infinite,

• disjointness: L(M1)∩L(M2) = /0,

• inclusion: L(M1) ⊆ L(M2),

• universality: L(M1) = Σ∗,

• equivalence: L(M1) = L(M2).

CM(k,r, l) denotes the class of 2-way counter machines with k counters, and the restriction that, in
every accepting run, each counter alternates from increasing to decreasing mode at most r times, and the
input head changes direction at most l times. These machines are called (r, l)-reversal bounded. Further,
let CM(k,r, l,n) be the class of (r, l)-reversal bounded machines restricted to work only on input tapes
of the form #ui1

1 . . .uin
n &, for some uj ∈ Σ and i j ∈ N, 1 ≤ j ≤ n. Obviously, CM(k,r, l,n) ⊆CM(k,r, l).

By DCM(k,r, l,n) we denote the subclass of deterministic machines from CM(k,r, l,n). It is well-known
that the emptiness, infiniteness and disjointness problems for the class CM(k,r, l,n) are decidable, and
moreover, the universe, containment and equivalence problems for the class of DCM(k,r, l,n) are also
decidable [12].

In the following, we may lift the restriction on either the number of counter reversals, direction
changes, or on the number of input letters, by writing ∞ instead of r, l, n, respectively. We denote
(D)CM(∗,r, l,n) =

S∞
k=0(D)CM(k,r, l,n), (D)CM(k,∗, l,n) =

S∞
r=0(D)CM(k,r, l,n) (D)CM(k,r,∗,n) =S∞

l=0(D)CM(k,r, l,n) and (D)CM(k,r, l,∗) =
S∞

n=0(D)CM(k,r, l,n). Moreover, we have (D)CM(∗,∗, l,n)
=

S∞
r=0(D)CM(∗,r, l,n), and so on.
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Remark To better understand the difference between e.g., CM(1,∗,1,∞) and CM(1,∞,1,∞), let us
consider M = 〈{x},{q},δ,q,{q}〉 a machine over Σ = {a,b}, where δ(q,a,1) = {〈q,1,1〉} and δ(q,b,1)
= {〈q,1,−1〉}. Obviously M ∈CM(1,∞,1,∞). However the number of counter reversals in a run of M
equals the number of alternations between a and b on the input tape, therefore M /∈ CM(1,r,1,∞), for
any r ∈ N. !

2.2. Counter Automata

In this paper we investigate a subclass of counter machines, defined as follows. Let x = {x1,x2, . . . ,xk}
be a set of working counters, and z = {z1,z2, . . . ,zl} be a set of parameters, intuitivelly a set of counters
whose values never change. We formally require that x∩ z = /0.

A relation R(x,x′,z) is said to be a difference bound constraint if and only if it can be equivalently
written as a finite conjunction of atomic propositions of either one of the forms:

• xi − x j ≤ αi j(z), for some 1 ≤ i, j ≤ k,

• x′i − x j ≤ βi j(z), for some 1 ≤ i, j ≤ k,

• xi − x′j ≤ γi j(z), for some 1 ≤ i, j ≤ k,

• x′i − x′j ≤ δi j(z), for some 1 ≤ i, j ≤ k

where αi j,βi j,γi j,δi j ∈ linZ[z] are linear combinations of parameters from z. The classical definition of
difference bound constraints (see e.g. [5]) considers that αi j,βi j,γi j, and δi j are (integer) constants, rather
than linear combinations of parameters. One can understand the above definition as a generalization
stating the existence of bounds on difference terms, rather than the values of these bounds.

For instance, x− y′ = 5z + 7 is a difference bound constraint, as it is equivalent to the conjunction
x− y′ ≤ 5∧ y′ − x ≤ −5z− 7. It is well-known that the class of difference bound constraints is closed
under composition of relations. In other words, the existential quantifiers can be eliminated2, the result
being written as another difference bound constraint.

A counter automaton (CA) is a counter machine A = 〈x∪ z,Q,δ,q0,F〉 ∈ CM(k,∞,0,1) over a sin-
gleton alphabet Σ (i.e. ||Σ|| = 1), in which the transition relation is described by a set of rules of the form

q
R(x,x′,z)−−−−−→ q′, where:

• q and q′ are control states, and

• R is a difference bound constraint between the values of counters when control is at q, and the
corresponding values when control is at q′.

We assume moreover, that the input head is advanced to the right, with each transition. Formally, a
configuration of a counter automaton is denoted by a pair 〈q,xz〉 ∈ Q×Zk+l (we willingly forget the
position of the input head, as it is implicitly given by the position of the configuration in the run).
A configuration 〈q′,x′z′〉 is the successor of another configuration 〈q,xz〉 if and only if there exists a
transition rule q R−→ q′ such that |= R(x,x′,z).

2By e.g. the Fourrier-Motzkin procedure.
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For example, consider the counter automaton A = 〈{x},{q},{q −1≤x−x′≤1−−−−−−−→ q},q,{q}〉 consisting of
one control state and a self-loop. A possible run of this counter automaton is 〈q,0〉 −→ 〈q,−1〉 −→ 〈q,1〉 −→
〈q,−1〉 . . .. Notice that, even very simple counter automata are not necessarily reversal bounded.

A control state q is said to be the direct successor of a control state p if and only if there exists a
transition rule q R−→ q′. A control path is a sequence of states q1,q2, . . . ,qn such that, for all 0≤ i < n, qi+1

is a direct successor of qi. The path is said to be non-trivial if n > 0. An elementary cycle is a non-trivial
control path starting and ending with the same state, in which no other state, besides the initial state,
occurs more than once.

A counter automaton is said to be flat (FCA) if and only if each control state belongs to at most one
elementary cycle. A control state with two or more direct successors is said to be a branching state. A
branching state with exactly two direct successors is said to be a 2-branching state. A FCA is said to
be linear (LFCA) if and only if the only branching states are 2-branching, and every elementary cycle
contains at most one such state. Notice that every FCA can be effectively turned into a finite union of
LFCA, such that the only branching state that is not 2-branching, is the initial state. The interested reader
can also refer to [15] for an alternative, yet equivalent definition of flatness.

Since difference bound constraints are closed under relational composition, we can assume without
losing generality that, each control path q1

R1−→ q2 . . .qn−1
Rn−1−−→ qn, with no branching and no transitions

incoming along the way, is equivalent to a transition q1
R1◦...◦Rn−1−−−−−−→ qn. Applying this transformation to

the whole counter automaton, we obtain a normalized counter automaton.
We denote by FCA(l,n) the class of flat counter automata with at most l parameters that occur in the

transition relations, and with at most n cycles on each linear component. The class FCA1A(l,n) is the
subclass of FCA(l,n) in which, the transition relation of each loop, in the normal form, is a formula of
the form:

x′i ≤ x j + α ∧ xk ≤ x′i + β ∧
^

j /=i
x′j = x j ∧φ(x)∧ψ(x′)

where φ, ψ are difference bound constraints. In other words, exactly one counter (xi) is modified
at the time. As in the previous, we denote FCA(1)A(∗,n) =

S∞
l=0 FCA(1)A(l,n), FCA(1)A(l,∗) =S∞

n=0 FCA(1)A(l,∗), and FCA(1)A(∗,∗) =
S∞

n=0 FCA(1)A(∗,n).

2.3. Integer Arithmetic

The undecidability of first-order arithmetic of integers 〈Z,+, ·,0,1〉 occurs as a consequence of Gödel’s
Incompleteness Theorem [9]. The basic result has been discovered by A. Church [4], and the essential
undecidability (undecidability of its every consistent extension) by B. Rosser [21]. To complete the
picture, the existential fragment of the full arithmetic, i.e. Hilbert’s Tenth Problem [11] was proved
undecidable by Y. Matiyasevich [16]. On the positive side, the decidability of the arithmetic of natural
numbers with addition 〈Z,≥,+,0,1〉 has been shown by M. Presburger [20].

Let us first introduce the theories of Presburger arithmetic [20] and 1-parametric linear Diophantine
systems. Presburger arithmetic 〈Z,≥,+,0,1〉 is the theory of first-order logic of addition. The inter-
pretation of logical variables is the set of integers Z, and the meaning of the function symbols 0,1,+ is
the natural one. Due to the fact that 〈Z,≥,+,0,1〉 admits quantifier elimination [20], every formula in



M. Bozga, R. Iosif, Y. Lakhnech / Flat Parametric Counter Automata 7

this theory can be shown to be equivalent to a positive boolean combination of relations of one of the
following forms :

n

∑
i=1

aixi + b ≥ 0 (1)

n

∑
i=1

aixi + b = 0 mod d (2)

A Diophantine equation is a formula of the form P(x) = 0, where P ∈ Z[x] is a polynomial of the
form P(x) = ∑m

i=1 aiti(x)+ a0, where ti are multiplicative terms of the form Πk
l=1xil

l , with i1, . . . , il ∈ N.
An equation is said to be linear with parameter xj, for 1 ≤ j ≤ k, if for every multiplicative term of the
form above, we have ∑l /= j

l∈{1...k} il ≤ 1. In other words, the only variable that can occur at a power greater
than one is x j, and moreover, all multiplicative terms contain at most one variable, other than x j. Note
that any Diophantine linear equation with parameter m can be equivalently written as:

n

∑
i=1

pi(m)xi + p0(m) = 0 (3)

where pi ∈ Z[m], 0 ≤ i ≤ n are polynomials of arbitrary degree in m. In the following, we denote
by D[1] the set of positive boolean combinations of linear Diophantine equations with one parameter.
This definition can be easily generalized to n parameters, denoted by D[n] in the following. We denote
D[∗] =

S∞
n=0 D[n].

3. Counter Machines and Integer Arithmetic

This section is dedicated to a survey of the relations between various classes of counter machines and
fragments of integer arithmetic. Intuitively, a class of counter machines is related to a fragment of
arithmetic if and only if, for each machine in the class, the set of final configurations is definable in
the corresponding arithmetic theory. Formally, a class of counter machines C is related to an arithmetic
theory T , denoted as C −→ T if and only if, for every machine M ∈ C with k counters, there exists an
open formula ϕ(x), x = {x1, . . . ,xk} in the language of T , such that V (M) = {u ∈ Zk | |= ϕ(u)}.

Dually, a fragment of integer arithmetic is related to a class of counter machines if and only if, each
set definable in the arithmetic theory can be produced by a counter machine in the corresponding class.
Formally, an arithmetic theory T is related to a class of counter machines C if and only if, for every
open formula ϕ(x), x = {x1, . . . ,xk} in the language of T there exists a counter machine M ∈ C with k
counters such that V (M) = {u ∈ Zk | |= ϕ(u)}. If both C −→ T and T −→C, we say that C and T are
inter-related, denoted as C ←→ T .

With this notation, Figure 1 shows the relations between various subclasses of flat counter automata,
integer arithmetic and 2-way counter machines. Let us start by proving the relations from the right-hand
side of Figure 1. For 〈Z,≥,+,0,1〉 ←→ CM(∗,∗,∗), the right to left direction was proved in [12]. The
other direction is proved by the following Lemma.

Lemma 3.1. 〈Z,≥,+,0,1〉 −→ CM(∗,∗,∗).
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〈Z,≥,+, |,0,1〉∃

D[∗]

DCM(1,∗,∞,∗)

⊆

FCA1A(∗,∗)

CM(∗,∗,∞,∗)

DCM(∗,∗,∞,∗)

⊆

⊆ ⊆ ⊆

〈Z,≥,+,0,1〉 CM(∗,∗,∗)FCA(0,∗)

FCA(∗,∗)

⊆ ⊆

Figure 1. A Hierarchy of Flat Counter Automata, Arithmetic and Counter Machines

Proof:
Let ϕ(x), x = {x1, . . . ,xn} be a formula of 〈Z,≥,+,0,1〉, i.e. a positive boolean combination of relations
of either one of the forms (1) or (2). Let Σ = {u1, . . . ,un,v1, . . . ,vn}. We shall build a machine M ∈
CM(∗,∗,∗) that recognizes the following language:

Lϕ = {sx1
1 . . . sxn

n | si ∈ {ui,vi} and |= ϕ(σ(s1)x1, . . . ,σ(sn)xn)}

where σ(s) = 1 if s∈ {u1, . . . ,un} and σ(s) =−1 if s∈ {v1, . . . ,vn}. Since CM(∗,∗,∗) is closed under the
operations of union and intersection [12], it is sufficient to exhibit machines that recognize the languages
corresponding to (1) and (2). Let M ∈ CM(1,n,1) be a machine such that :

• The expected input is an element of (u∗1|v∗1) . . . (u∗n|v∗n). Any input symbol s ∈ {ui,vi} must be
followed by either itself, ui+1 or vi+1, else M rejects.

• While reading a symbol ui (vi) M adds (subtracts) the coefficient ai from the current value of the
counter. At the end of the input, the b value is added to the counter.

• The control of M keeps track of the sign of the counter. There are two disjoint sets of control
states Q+ and Q−. M moves from Q+ to Q− whenever the counter was 0 and a decrement action
is performed, and from Q− back to Q+ whenever the counter becomes 0 again.

• For (1) M accepts if, at the end of the tape, the control is in a state from Q+. For (2), if at the end
of the tape, M is in a state from Q+ (Q−), the value d is repeatedly subtracted (added) from (to) the
counter. If, at any time between two consecutive subtractions (additions) the value of the counter
is 0, M accepts, otherwise M rejects as soon as the control goes from Q+ to Q− (Q− to Q+).

Notice that M will halt on any input. It is straightforward to check that the language of the composition
of such machines is non empty if and only if the original formula is satisfiable. !

The relations 〈Z,≥,+, |,0,1〉∃ ←→ DCM(1,∗,∞,∗) are described in [10]. In the proofs of these
relations, it is essential that the counter machines are deterministic. The relation D[n]−→ CM(∗,∗,∞,∗)
is described in [13], for the case n = 1, the generalization of their proof for n > 1 being straightforward.
The relation DCM(∗,∗,∞,∗) −→ D[∗] is given by Lemma 3.2.

It is important to mention that, in particular, we have D[1] ←→ CM(k,r,∞,1) = DCM(k,r,∞,1).
The proof of the latter equivalence being given in [14]. Since language emptiness for CM(k,r,∞,1) is
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decidable [14], this entails the decidability of the satisfiability problem for the class D[1], which is the
main result of [13]. This problem is tackled also in Section 5, using a number-theoretic argument instead.

Lemma 3.2. DCM(∗,∗,∞,∗) −→ D[∗].

Proof:
We need to introduce a definition from [10], generalized to the case of k ≥ 1. We say that a counter
machine M ∈ DCM(k,r,∞,n) is canonical if and only if the following hold:

1. M halts on all computations.

2. M changes the direction of the input head only at the tape markers (#, &).

3. M reverses its counters only at the left tape marker (#).

One can show that, for every M ∈DCM(k,r,∞,n) it is possible to effectively build a finite set of canonical
machines MI ∈ DCM(k,r,∞,n), 1 ≤ I ≤ N for some N ∈ N depending only on M, such that L(M) = /0
if and only if L(MI) = /0, for all 1 ≤ I ≤ N. The first two conditions can be satisfied by modifying M
to perform only full sweeps of the input, as described in [10]. Next, we simulate M using machines that
work on inputs of the form:

#(u1,〈l1,0〉)∗(u1,〈l1,1〉)(u1,〈l1,2〉)∗(u1,〈l2,0〉)∗(u1,〈l2,1〉)(u1,〈l2,2〉)∗ . . .

(un,〈lk−1,0〉)∗(un,〈lk−1,1〉)(un,〈lk−1,2〉)∗(un,〈lk,0〉)∗(un,〈lk,1〉)(un,〈lk,2〉)∗&

where {l1, . . . , lk} is a permutation of {1, . . . ,k}. We will have a different machine MI for each such
possible indexing. In order to simulate M, MI treats symbols (ui,〈l j, l〉), 1 ≤ i ≤ n, 1 ≤ l ≤ 3 just as
M treats ui. If MI attempts to reverse any counter other than xl j on a segment of the form (ui,〈l j,0〉)∗
(ui,〈l j,1〉) (ui,〈l j,2〉)∗, the input is rejected. Otherwise, if MI attempts to reverse xl j on a symbol that
is not (ui,〈l j,1〉), the input is rejected. In the last case, MI remembers (ui,〈l j,1〉) in its finite control,
moves the head until it encounters the left end marker # (possibly by reversing the direction once at the
right end marker &), reverses xl j and continues until it restores the position of the input head.

Now for any canonical machine MI , we will show the existence of a system SI ∈D[∗] with parameters
z = {z1,z1, . . . ,zm,zm}, for some m, depending on MI . In the following, we ignore the subscript I. Without
loss of generality, assume that each counter reverses mode from non-decreasing to non-increasing at
most once, and that M accepts when all counters have the value zero. Let the input tape be of the form
#uy1

1 . . .uyn
n &. Each time M sweeps across uyi

i , 1 ≤ i ≤ n, the j-th counter increases by fi j = ai jyi + bi j,
1 ≤ j ≤ k, if M is in non-decreasing mode with respect to x j and decreases by gi j = ci jyi +di j, otherwise.
The machine accepts if, for each counter there exists two values z j and z j such that ∑n

i=1 z j fi j + z jgi j = 0.
Intuitively, z j (z j) represents the number of times M sweeps across the entire input being in the non-
decreasing (non-increasing) mode, with respect to x j. Moreover, it is required that zi + zi = z j + z j, for
all 1 ≤ i < j ≤ k. Altogether, these conditions form a system of Diophantine equations of the form (3).
!

Next, we prove the reductions between several classes of FCA and the theories 〈Z,≥,+,0,1〉, 〈Z,≥
,+, |,0,1〉∃ and D[∗]. We distinguish the FCA according to the number of parameters, and the form of
the transition relations. The first class, denoted as FCA(0,∗), consists of flat counter automata with no
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parameters. The direction FCA(0,∗) −→ 〈Z,≥,+,0,1〉 is a direct consequence of the fact that, for any
counter automaton M ∈ FCA(0,∗), the set V (M) is definable in Presburger arithmetic, as will be shown
in Section 4. The other direction is handled by the following lemma :

Lemma 3.3. 〈Z,≥,+,0,1〉 −→ FCA(0,∗).

Proof:
If |= ϕ(x) ↔ ⊥, the machine M corresponding to ϕ has a final state that is unreachable, i.e. V (M) =
/0. Otherwise, ϕ can be effectively written in the equivalent semilinear form, as a finite disjunction of
formulae of the form x = a0 +∑n

i=1 aiλi, where ai ∈Z||x||, 0 ≤ i ≤ n and λ1, . . . ,λn are fresh variables. The
automaton corresponding to ϕ is composed of disjoint linear flat counter automata, one for each disjunct
in the semilinear form of ϕ, and defined as follows. All LFCA have in common only the initial state.
Then, for each term a0, we have a transition from the initial state to the first state of the LFCA, which is
also a 2-branching state, and the transition relation is x′ = x+ a0. Finally, for any term of the form aiλi,
the LFCA has a self-loop with a transition relation x′ = x+ ai. All loops are linked by transitions of the
form x = x′. !

The reductions FCA1A(∗,∗) ←→ 〈Z,≥,+, |,0,1〉∃ are handled by the following Lemma:

Lemma 3.4. 〈Z,≥,+, |,0,1〉∃ ←→ FCA1A(∗,∗).

Proof:
“−→” We show how to translate a relation of the form f (x) | g(x), where f and g are linear functions on
x. First, the values of the functions are computed using two separate counters, i.e. y = f (x) and z = g(x).
Notice that this can be done using a flat control structure, with only one assignment per loop. Then the
automaton guesses the value of y using a parameter p, by testing y = p. In order to ensure that p|z, the
automaton uses another loop with the transition relation whose only assignment is z′ = z− p, and an exit
transition with condition z = 0, that leads to the accepting state.

“←−” The input-output relation of a counter automaton A ∈ FCA1A(∗,∗) can be shown to be of the
form ∃n . x′i ∼ x j +(p+ c)n ∧

V
j /=i x′j = x j ∧φ(x)∧ψ(x′) independently, for each loop of M. Each such

relation can be expressed in the language of 〈Z,≥,+, |,0,1〉∃, e.g. ∃n . x′i ≤ x j +(p+ c)n ⇐⇒ ∃y . y ≥
0∧ p+ c|x′i + y− x j. !

The reduction FCA(∗,∗) −→ D[∗] is a direct consequence of the fact that, for any M ∈ FCA(∗,1)
the set V (M) is defined by a formula of D[1], as it is shown in Section 4. The inverse direction is proved
in the following lemma :

Lemma 3.5. D[∗] −→ FCA(∗,∗).

Proof:
By the definition of D[n], ϕ is a finite disjunction of parametric linear Diophantine systems, consisting
of equations of the form (3). Notice that each such equation can be reduced to a system in which all
polynomials pi, qi are of degree one, by introducing new variables. For instance, if x1,2 are variables and
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z1,2 are parameters, the equation x1 = z2
1z2 · x2 is equivalent to the system:






x1 = z1 · y1

y1 = z1 · y2

y3 = z2 · x2

where y1,y2,y3 are fresh variables. We can assume w.l.o.g. that ϕ(x) is in this form. In order to build
an automaton M ∈ FCA(p,m) such that V (M) = {v ∈ Z||x|| | |= ϕ(v)}, it is sufficient to encode the
relations of the form (1) x1 = z · x2 and (2) x1 = x2 + x3. Each such relation will be encoded by a loop,
using counters x1,2,3 and an extra counter y. For (1) we initialize x′1 = 0 ∧ y′ = x2. The transition relation
of the loop is x′1 = x′1 + z ∧ y′ = y′ − 1 ∧ y > 0, and the exit condition is y = 0. For (2) we initialize
x′1 = x2 ∧ y′ = x3. The transition relation of the loop is x′1 = x1 + 1 ∧ y′ = y− 1 ∧ y > 0 and the exit
condition is y = 0. Notice that the number of loops needed for M is greater or equal than the number of
parameters in ϕ. !

4. Deciding the Reachability Problem for Flat Counter Automata

One of the goals of this paper is to investigate flat counter automata with respect to their emptiness
problem. This problem naturally translates into a reachability problem: is there any final control state
that is reachable? An important role is played by the set of values V (A), since the 1-letter language
of a CA is empty if and only if its set of values is. As we show in the following, the set V (A) can be
defined in various subfragments of the arithmetic of integer numbers. Hence, the reachability problem
is decidable for a class of counter automata (machines) whenever V (A) can be defined in a decidable
fragment of integer arithmetic.

Let x = {x1,x2, . . . ,xk} be a set of working counters, and z = {z1,z2, . . . ,zl} be a set of parameters.
Given a counter automaton A = 〈x∪ z,Q,δ,q0,F〉 and a control state q ∈ Q, the reachability problem3

asks whether there exists tuples of values u ∈ Zk and v ∈ Zl , and a run of A from an initial configuration
〈q0,0v〉 to 〈q,uv〉. One way to prove decidability of the aforementioned reachability problem is to define
the relation between the input and output values of the counters of A using a decidable arithmetic theory.
In other words, we aim at building an arithmetic formula νq

A(x,x′,z) depending on A and q, such that,
for every u,u′ ∈ Zk, v ∈ Zl , there is a run in A from 〈q0,uv〉 to 〈q,u′v〉 if and only if |= νq

A(u,u′,v).
The reachability problem for A and q reduces then to checking the satisfiability of the (open) formula
νq

A(0,x,z).
In order to define νq

A, we first observe that each A ∈ FCA(p,n) can be defined as a union of disjoint
linear flat counter automata, each being composed of a sequence of cycles, connected by non-trivial
control paths (cf. Figure 2). Without loss of generality, we will assume that A is in normal form, i.e. each
control path with no incoming edges and no branching has been reduced to one transition, by composing
the transition relations along the way. It follows that νq

A(x,x′,z) is of the following form (cf. Figure 2):

∃y1...n∃y′1...n

r_

i=1
ηi1(x,y1,z)∧

mî

j=1

[
ξ∗i j(yj,y′j,z)∧ηi j(y′j,yj+1,z)

]
∧x′ = ymi

3A more general way to formulate the reachability problem is: given a set C of configurations, is there a run of A from an initial
configuration 〈q0,0v〉 to a configuration in C, for some valuation of the parameters v ∈ Zl?
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where n = max{mi | 1 ≤ i≤ r} is the maximum number of loops in a linear component, ηi j are the differ-
ence bound constraints corresponding to the transitions between cycles, and ξ∗i j represent the transitive
closures of the cycle relations, for 1 ≤ i ≤ r and 1 ≤ j ≤ mi.

. . .

. . .

η11

. . .

...

η12 η1m1

η21

ηr1

ξ12 ξ1m1

ξ22 ξ23 ξ2m2

ξr2 ξr3 ξrmr

ξ13

η2m2

ηrmr

η13

η23

ηr3

η22

ηr2

n = max{mi | 1 ≤ i ≤ r}

Figure 2. Flat Counter Automaton

Since ηi j are difference bound constraints, it follows that νq
A is a formula in the language of 〈Z,≥

,+,0,1〉, if and only if the transitive closure formulae ξ∗i j belong to the same language. Moreover, if
all mi ≤ 1, νq

A is a formula of D[1] if and only if all transitive closure formulae ξ∗i j are. It is therefore
sufficient to analyze the definability of νq

A when A has only one self-loop (i.e. one transition of the form

q
ϕ(x,x′,z)−−−−−→ q). In the following developments, we will silently assume that this is the case.

The main results of this section are summarized by the following Theorem:

Theorem 4.1. Let x be a set of working counters, z be a set of parameters, such that x∩ z = /0, and
R(x,x′,z) be a difference bound constraint. Then the transitive closure R∗ of R is definable D[1]. More-
over, if z = /0 then R∗ is definable in 〈Z,≥,+,0,1〉.

Notice that, the second part of Theorem 4.1 has been already proved in [5]. Here we give a different
proof, based on the notion of weighted automata, that allows us to prove the first, more general, state-
ment. Since 〈Z,≥,+,0,1〉 is a logic decidable for satisfiability, the reachability problem for flat counter
automata with no parameters is decidable. In case where we allow parameters, decidability of the reach-
ability problem follows from the result of Section 5 on decidability of the satisfiability problem for D[1].
This entails the decidability of the reachability problem for flat counter automata with at most one loop
per linear component i.e., the class FCA(∗,1).

However, for an arbitrary number of loops per linear component, one needs the full expressivity of
Diophantine systems, in order to encode the reachability problem. In the light of Hilbert’s Tenth Problem
[11], the following lemma shows the undecidability of the reachability problem for parametric FCA with
unrestricted number of loops.

Lemma 4.1. Given a Diophantine system S(x), it is possible to build a parametric FCA A = 〈y ∪
z,Q,δ,q0,F〉 with working counters y and parameters z, such that x ⊆ z, and for some control state
q ∈ Q, and for all x ∈ Z, we have |= S(x) if and only if there exists a run of A 〈q0,0z〉 −→ . . . −→ 〈q,yz〉
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Proof:
The system S(x) is a set of equations of the form P(x) = 0, with P ∈ Z[x]. We transform each such
equation in a system T (y), by introducing new variables, as follows. Start with y = x and T = /0. Then
iterate the following steps:

• choose one subterm t of the form yi ◦ y j, ◦ ∈ {+, ·} and two variables z,z′ /∈ y

• S ← S[z/t], T ← T ∪{yi ◦ z = z′, y j = z}, and y ← y∪{z,z′}

until a fixpoint is reached. It is easy to check that, for all x ∈ Z, |= S(x) if and only if there exist integer
values y\x such that |= T (y). For a suitable indexing of the set y = {y1,y2, . . .}, T has only equations of
the form (1) yi · y j = yk, (2) yi + y j = yk where i < j < k, and (3) yi = y j.

Now we build a parametric FCA A = 〈{x1,x2},y,Q,δ,q0〉 with two working counters, and the set of
parameters same as the set of the variables of T (y). Note that we have x ⊆ y, from the construction of T .
For every equation of the form (1) we have a control loop q1

ϕ1−→ q2, q2
ϕ2−→ q2 and q2

ϕ3−→ q3, where:

• the entry relation is ϕ1 : x′1 = yi ∧ x′2 = 0

• the loop relation is ϕ2 : x′1 = x1 −1 ∧ x′2 = x2 + y j ∧ x2 > 0

• the exit relation is ϕ3 : x1 = 0∧ x2 = yk

For equations of type (2) we introduce a similar loop, the only exception being the loop relation, which
is ϕ2 : x′1 = x1 − 1 ∧ x′2 = x2 + 1 ∧ x2 > 0. Equalities of type (3) are assigned a single transition with
guard yi = y j. Notice that A is flat by construction. It is easy to check now that T (y) has a solution if and
only if A has a run ending in 〈q,xy〉. !

4.1. Outline of the Proof

The rest of this section is concerned with the proof of Theorem 4.1. Before giving the actual proof, let
us sketch the main lines of the construction. The first step is to represent the given difference bound
relation ϕ(x,x′,z) as a constraint graph Gϕ, whose nodes are the working counters from x∪ x′, and the
edges represent the constraints between the counters. Namely, there is an edge labeled α between x and
y if and only if the atomic proposition x− y ≤ α occurs in ϕ4. Our goal is to characterize the relation
between the initial values of x and the values after n ≥ 1 iterations, by a formula ψ(n,x,x′), in which n
occurs as a free variable. The transitive closure ϕ∗(x,x′) is then ∃n . ψ(n,x,x′).

For a given n ≥ 1, the relation ϕn can be represented by the graph obtained by producing n copies
of Gϕ, and identifying the primed nodes of the i-th copy with the unprimed nodes of the (i− 1)-th
copy of Gϕ, for 1 < i ≤ n (see Figure 3). This graph, call it Gn

ϕ, represents all constraints between the
intermediate values of the x counters, in n steps. An important property of this construction is that the
strongest constraints between the initial value of a variable x and the final value (after n steps) of a value
y are given by the minimal weight paths between the extremal nodes corresponding to x and y. Since
the edges of Gn

ϕ are labeled with linear combinations of parameters z, the choice of the minimal path
depends on the initial choice of values for the parameters.
4This representation is also used in [5], with the difference that we allow parameters as labels in the constraint graph.
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Let us explain the need for finding minimal weight paths in more detail. By the definition of rela-
tional composition, ϕn(x,x′) = ∃y1∃y2 . . .∃yn−1 . ϕ(x,y1)∧ϕ(y2,y3)∧ . . .∧ϕ(yn−1,x′), for any n > 1.
Since ϕ is a difference bound constraint, so is ϕn, and its equivalent difference bound constraint form
can be effectively computed by eliminating the existential quantifiers. In practice, this is done by first
strengthening5 ϕn, and then dropping all atomic propositions involving y1,y2, . . . ,yn−1. Notice that the
effect of strengthening is equivalent to computing minimal weight paths between the extremal points of
Gn

ϕ. Therefore we need means to define minimal weight paths in Gn
ϕ, as functions of n.

The main idea of the proof is that any path (zigzag) between two extremal nodes of Gn
ϕ can be seen

as a word of length n, over the finite alphabet of subgraphs of Gϕ (see, for instance, Figure 5 (a)).
Noticeably, the set of paths between two given variables can be recognized by a (weighted) finite state
automaton, that can be effectively constructed from Gϕ. The problem of computing the minimal weights
among all paths between two given nodes of Gn

ϕ is reduced to computing the minimal weight among all
runs of length n in a given finite state automaton, with weights on transitions. We show that, if z = /0
the set of weights corresponding to runs of length n (between two given nodes of Gn

ϕ) can be defined
in 〈Z,≥,+,0,1〉, and in general (z /= /0) in D[1]. As a result the formula ψ(n,x,x′) can be defined in
〈Z,≥,+,0,1〉 if z = /0, and in D[1], otherwise. This entails our results concerning the definability of the
transitive closure ϕ∗ in 〈Z,≥,+,0,1〉 and D[1], respectively.

4.2. Constraint Graph Execution Model

In general, a difference bound constraint ϕ(x,x′,z) can be represented as a directed weighted graph
whose set of vertices is the set of variables x∪ x′, and there is an edge with weight α from x to y if and
only if there is an explicit constraint x− y ≤ α in ϕ, where α ∈ linZ[z]. The n-th iteration of ϕ (denoted
ϕn) is represented by a constraint graph Gn

ϕ, defined as the minimal graph whose set of vertices is
Sn

i=0 xi,
where xi = {xi

j | 1 ≤ j ≤ k} and, for all 0 ≤ i < n, there is an edge labeled α from:

• xi to yi, if there is a constraint x− y ≤ α in ϕ.

• xi+1 to yi+1, if there is a constraint x′ − y′ ≤ α in ϕ.

• xi to yi+1, if there is a constraint x− y′ ≤ α in ϕ.

• xi+1 to yi, if there is a constraint x′ − y ≤ α in ϕ.

For example, Figure 3 shows the constraint graph for the relation ϕ : x1−x′2 ≤ z1∧x′2−x3 ≤ z2∧x3−x′1 ≤
z3 ∧ x1 − x′3 ≤ z4. Intuitively, the nodes xi in the execution graph represent the possible values of the
counters after i steps of execution. Let G∞

ϕ =
S

n>0 Gn
ϕ.

We say that a path in G∞
ϕ stretches between n and m, for some n ≤ m, if the path contains at least one

node from xi, for each n ≤ i ≤ m. If π : xi α1−→ . . .
αm−→ y j, 0 ≤ i, j ≤ n is a path in Gn

ϕ, let ω(π) denote
the sum of all labels along the path, i.e. ω(π) = ∑m

k=1 αk. Notice that ω(π) ∈ linZ[z], for any constant
m ∈ N. Clearly, we have xi − y j ≤ ω(π). We define min{xi −→ y j} = min{ω(π) | π : xi α1−→ . . .

αm−→ y j}.

5The strengthening of a difference bound constraint ϕ consists in adding, between each two variables x and y, a constraint
x−y ≤ α, where α is the minimal bound on x−y that can be inferred from ϕ.
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Figure 3. Iterated Constraint Graph for x1 − x′2 ≤ z1 ∧ x′2 − x3 ≤ z2 ∧ x3 − x′1 ≤ z3 ∧ x1 − x′3 ≤ z4

By convention, if there are no paths in Gn
ϕ, between xi and y j, we take min{xi −→ y j} = ∞. On the other

hand, if the set of paths between xi and x j does not have a minimal element, we take min{xi −→ y j}=−∞.
Notice that this can only be the case if Gn

ϕ has a cycle whose sum is less than zero. Thus, the satisfiability
of ϕn entails the absence of negative cycles from Gn

ϕ.
With this notation, we have xi − y j ≤ min{xi −→ y j}. The minimal weight among all paths between

xi and y j gives the strongest difference constraint between the values of x and y at iteration steps i and j,
respectively. As previously explained, this is a consequence of the fact that the class of difference bound
constraints admits quantifier elimination, and that the quantifier-free form can be computed by first com-
puting the minimal paths between each two nodes (strengthening) and then eliminating the quantified
variables from the strengthened formula. Hence, for any n ≥ 1, ϕn is equivalent to the following differ-
ence bound constraint:

^

x,y∈x
x− y ≤ min{x0 −→ y0}∧ x′ − y′ ≤ min{xn −→ yn}∧ x− y′ ≤ min{x0 −→ yn}∧ x′ − y ≤ min{xn −→ y0}

The next step is to define the functions (in n) min{xi −→ y j}, i, j ∈ {0,n} using the arithmetic of
integers. These functions are definable in 〈Z,≥,+,0,1〉, if ϕ has no parameters, and in D[1], otherwise.
The reduction method, based on weighted finite automata, is the same in both cases, and will be presented
in the rest of this section.

4.3. Even and Odd Automata

In the following, we will work with a more convenient (yet equivalent) form of the transition relation
ϕ(x,x′,z). Namely, all constraints of the form x− y ≤ α are replaced by x− t ′ ≤ α ∧ t ′ − y ≤ 0, and
all constraints of the form x′ − y′ ≤ α are replaced by x′ − t ≤ α ∧ t − y′ ≤ 0, by introducing fresh
variables t /∈ x∪ z. In other words, we can assume without loss of generality that the constraint graph
corresponding to ϕ (Gϕ) is bipartite, i.e. it does only contain edges from x and x′ and viceversa.

As previously mentioned, the presence of any cycle of negative weight within Gn
ϕ indicates that ϕn

is not satisfied. On the other hand, a path that has a cycle of positive weight is not minimal, as one
can obtain a path of smaller weight by eliminating the cycle. So, in principle, we need one tool for
recognizing cycles of negative weight, and another one for recognizing acyclic paths within Gn

ϕ. Both
tools will be finite state automata with weighted transitions, defined on two different alphabets.
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Intuitively, a path π between, say, x0 and xn, with x,y ∈ x is represented by a word w of length n, as
follows: the wi symbol represents simultaneously all edges of π that involve only nodes from xi ∪ xi+1,
0 ≤ i < m. Since we assumed that Gϕ is bipartite, it is easy to see that, for a path from x0 to yn, coded by
a word w, the number of times the wi symbol is traversed by the path is odd, whereas for a path from x0

to y0, or from xn to yn, this number is even. Hence the names of even and odd automata. As an example,
Figure 5 (a) shows the word encoding of the highlighted path between x0

1 and xn
3, from Figure 3.

Given a difference bound constraint ϕ(x,x′,z), the even alphabet of ϕ, denoted as Σe
ϕ, is the set of all

graphs satisfying the following conditions, for each G ∈ Σe
ϕ:

1. the set of nodes of G is x∪x′,

2. for any x,y ∈ x∪x′, there is an edge labeled α from x to y, only if x− y ≤ α occurs in ϕ.

3. the in-degree and out-degree of each node are at most one.

4. the number of edges from x to x′ equals the number of edges from x′ to x.

The odd alphabet of ϕ, denoted by Σo
ϕ, is defined in the same way, with the exception of the last condition:

4. the difference between the number of edges from x to x′ and the number of edges from x′ to x is
either 1 or −1.

Let Σϕ = Σe
ϕ ∪Σo

ϕ. Notice that, the number of edges in all symbols of Σe
ϕ is even, while the number

of edges in all symbols of Σo
ϕ is odd. The label of G is the sum of the weights that occur on its edges.

Clearly, the weight of a path through Gn
ϕ is the weight of the word it is represented by. We denote by

ω(w) the weight of a word w ∈ Σϕ
∗. Notice that ω(w) ∈ linZ[z], for any given w ∈ Σϕ

∗, where z is the
set of parameters of ϕ.

We are now ready for the definition of automata recongizing words that represent encodings of paths
from Gn

ϕ. The even and odd automata share the same transition table, whereas the input alphabet is Σe
ϕ for

the former, and Σo
ϕ for the latter. More precisely, we define the common transition table as Tϕ = 〈Q,∆〉,

where Q = {l,r, lr,rl,⊥}k , and there is a transition 〈q1 . . .qk〉
G−→ 〈q′1, . . . ,q′k〉 if and only if the following

conditions hold, for all 1 ≤ i ≤ k:

• qi = l iff G has one edge whose destination is xi, and no other edge involving xi.

• q′i = l iff G has one edge whose source is x′i, and no other edge involving xi.

• qi = r iff G has one edge whose source is xi, and no other edge involving xi.

• q′i = r iff G has one edge whose destination is x′i, and no other edge involving xi.

• qi = lr iff G has exactly two edges involving xi, one having xi as source, and another as destination.

• q′i = rl iff G has exactly two edges involving x′i, one having x′i as source, and another as destination.

• q′i ∈ {lr,⊥} iff G has no edge involving x′i.

• qi ∈ {rl,⊥} iff G has no edge involving xi.
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Figure 4. The even (a) and odd (b) transition tables for x1 − x′2 ≤ z1 ∧ x′2 − x3 ≤ z2 ∧ x3 − x′1 ≤ z3 ∧ x1 − x′3 ≤ z4

As an example, the odd transition table for ϕ = x1 − x′2 ≤ z1 ∧ x′2 − x3 ≤ z2 ∧ x3 − x′1 ≤ z3 ∧ x1 − x′3 ≤
z4 is depicted in Figure 4 (b). If we consider the automaton obtained from this table, by setting the
initial state to 〈r,⊥, lr〉 and the final state to 〈⊥,⊥,r〉, a run of this automaton is shown in Figure 5 (b).
Intuitively, qi j = l means that the node xi

j of Gn
ϕ is traversed from right to left by a path, and no other

path comes across this node. Also, qi j = lr means that there is a path coming into xi
j from xi+1 (left), and

leaving also towards xi+1 (right), while no other path comes across this node.
Let π : q0

G1−→ q1
G2−→ . . .qn−1

Gn−→ qn be a run pf Aϕ. Each node in G(π) is labeled by a symbol from
the set {l,r, lr,rl,⊥}, and we write, e.g. qi j = l, meaning that qi j is labeled with l. We denote by G(π)
the graph G1G2 . . .Gn labeling this run, and by ω(π) the weight of this graph i.e., the sum of the labels of
all edges in G(π). Notice that ω(π) is again a linear combination of parameters i.e., ω(G(π)) ∈ linZ[z].

The following Lemma is needed for technical reasons.

Lemma 4.2. Let π : q0
G1−→ q1

G2−→ . . .qn−1
Gn−→ qn be a run of Aϕ. Then each node qi j, 0≤ i≤ n, 1≤ j ≤ k,

from G(π), has at most one predecessor and at most one successor.
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z1 + z2 + z4 z1 + z2 + z4 z1 + z2 + z4 z3

Figure 5. Sample run of the automaton in Fig. 4 (b)

Proof:
Suppose that qi j is a node in G(π), and that qi j has two or more predecessors. We distinguish three cases:
i = 0, 1 ≤ i < n, and i = n. For the case i = 0, q1 j must have two or more incoming edges from q2, which
is in contradiction with the third point in the definition of Σe

ϕ. The case i = n is symmetrical.

In the case 1 ≤ i < n we have qi−1
Gi−→ qi

Gi+1−−→ qi+1. If qi j has two incoming edges, it can only have
one edge from qi−1, and another from qi+1. Now if Gi has one edge incoming to qi j, 1 ≤ j ≤ k it must
be that qi j ∈ {r,rl}. On the other hand, if Gi+1 has one edge incoming to qi j, it must be that qi j ∈ {l, lr},
and we obtain a contradiction. The proof for qi j having at most one outgoing edge is symmetrical. !

The even automaton recognizes paths that start and end on the same side of Gn
ϕ i.e., either paths from

x0
i to x0

j , or from xn
i to xn

j , for some 1 ≤ i, j ≤ n, respectively. We call the first type of automata forward
even automata, and the second one backward even automata. The distinction between the two is in the
sets of initial and final states.

Formally, let Ae
i j = 〈Tϕ,Q0,F〉 be the forward even automaton, over the alphabet Σe

ϕ, where:

Q0 =

{
{q | qi = r, qj = l and qh ∈ {lr,⊥}, 1 ≤ h ≤ k, h /∈ {i, j}} if i /= j

{q | qi = qj = lr and qh ∈ {lr,⊥}, 1 ≤ h ≤ k, h /= i} otherwise

is the set of initial states, and F = {rl,⊥}k is the set of final states. In the case when i = j, we denote
Ae

i j by Ae
i . The next Lemma relates the runs of Ae

i j, for i /= j, to the paths between x0
i and x0

j , 1 ≤ i, j ≤ k.
The reader may refer to Figure 6 (a) for a depiction of the case covered by the following:

Lemma 4.3. For any 1 ≤ i, j ≤ k, i /= j, (1) Ae
i j has an accepting run of length at most n if and only if

there exists a path in Gn
ϕ, from x0

i to x0
j , that stretches between 0 and some m ≤ n. Moreover, (2) if Gn

ϕ
does not have cycles of negative weight, the minimal weight among all paths from x0

i to x0
j , stretching

from 0 to some m ≤ n, equals the minimal weight among all accepting runs of Ae
i j of length at most n.

Proof:
(1) ”⇒” Assume that Ae

i j has an accepting run π : q0
G1−→ q1

G2−→ . . .qm−1
Gm−→ qm, with q0 ∈Q0 and qm ∈F ,
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m ≤ n. We need to build a path in Gn
ϕ, from x0

i to x0
j , stretching between 0 and at most m. Note first that

G(π) is isomorphic with a subset of G∞
ϕ . Our argument is the following: suppose that we have already

built a path from q0i to qht , for some 0 ≤ h ≤ m, 1 ≤ t ≤ k, then either h = 0 and t = j, case in which
we are done, or else we can extend this path further. Since G(π) is finite, we will eventually find either
a path from q0i to q0 j, or a cycle. But, in the last case, G(π) must have a node with two incoming edges
and at least one outgoing edge. For, otherwise q0i would belong to a cycle, having an incoming edge
from q1. But this contradicts with the fact that q0i = r and the only edge involving q0i is an outgoing
edge. According to Lemma 4.2, no node in G(π) can have two incoming edges, thus we have reached a
contradiction.

We are now left with proving that every node, other than q0 j, that is reachable from q0i, has at least
one successor. Obviously, this is the case for q0i, since q0i = r. For other nodes q0 j /= ⊥, j /= i, we have
q0 j = lr, and we are done. Any other node qht , 1 ≤ h ≤ m, 1 ≤ t ≤ k that is reachable from q0i has at least
one incoming edge. Hence it must be that qht /= ⊥. If qht ∈ {lr,rl}, we are done. Otherwise, if qht = l,
and since qh−1

Gh−→ qh, then Gh has an edge x′t
c−→ xu, for some 1 ≤ u ≤ k, which becomes an outgoing

edge of qht . For the case qht = r, we must distinguish between h < m and h = m. In case h < m, we

have qh
Gh+1−−−→ qh+1 and we do a similar reasoning, as in the case qht = l. Else, if h = m, we cannot have

qmt = r, because that would contradict with the fact that qm ∈ F = {rl,⊥}k.
”⇐” We show the existence of the run by induction on m. Note that one only needs to consider states

and transitions that occur within the path, and verify that the transitions are valid. This check is trivial.
(2) Let Ae

i j have an accepting run ρ : q0
G1−→ q1

G2−→ . . .qm−1
Gm−→ qm, with q0 ∈ Q0 and qm ∈ F . By

the first point, there exists path π from q0i to q0 j in G(ρ). Moreover, this path should be unique, since no
node in the graph can have two different successors. We prove first that each node qht /= ⊥, 1 ≤ h ≤ m,
1 ≤ t ≤ k, that is not on π, must belong to a cycle, which does not intersect with π. This is done along the
same lines as the proof for existence of the path, at the previous point. First, each node qht /= ⊥, qht /∈ π,
must have a successor. Moreover, the successor must not be on π, or else one node from π would have
two different predecessors. Hence, qht belongs to an infinite path π′, and π∩ π′ /= /0. Now we need to
show that π′ is a cycle. But if this would not be the case, since π′ is infinite, then at least one node on π′

must have two different predecessors, which results in a contradiction with Lemma 4.2.
Since for every accepting run ρ of Ae

i j of length m, there exists a path π from q0i to q0 j, stretching
from 0 to at most m, and moreover, every edge not on π belongs to a cycle, we have that ω(ρ) = ω(π)+
∑γ is a cycle in G(ρ) ω(γ). Since there are no cycles γ such that ω(γ) < 0, we have that ω(ρ) ≥ ω(π).
Dually, for each path π from q0i to q0 j, one can build an accepting run ρ such that ω(π) = ω(ρ). Suppose
now that, for instance we had:

min{ω(π) | π is a path from q0i to q0 j stretching from 0 to m ≤ n}
/= min{ω(ρ) | ρ is an accepting run of Ae

i j of length m ≤ n}

Suppose that the left hand side is strictly greater than the right hand side. Then there exists an accepting
run of Ae

i j of length m ≤ n which has smaller weight than any path from q0i to q0 j stretching from 0 to
some m′ ≤ m. But this is in contradiction with the fact that for each run of length m, there exists a path
stretching from 0 to m′ ≤ n of smaller weight. Else, if the right hand side is strictly greater than the left
hand side, then there exists a path from q0i to q0 j, stretching from 0 to some m ≤ n of weight smaller
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Figure 6. Runs of Even and Odd Automata

than that of any accepting run of Ae
i j of length m′ ≤ m. But this is in contradiction with the existence of

a run of length exactly m, and of weight equal to the weight of the path. !

The backward even automaton is defined as
←−
Ae

i j = 〈←−Tϕ,F,Q0〉, where Q0 and F are the ones defined
for the forward even automaton. The next Lemma relates the runs of

←−
Ae

i j, for i /= j, to the paths between
xn

i and xn
j , 1 ≤ i, j ≤ k. The reader may refer to Figure 6 (a) for a depiction of the case covered by the

following:

Lemma 4.4. For any 1 ≤ i, j ≤ k, i /= j, (1)
←−
Ae

i j has an accepting run of length at most n if and only
if there exists a path in Gn

ϕ, from xn
i to xn

j , that stretches between n−m and n, for some 1 ≤ m < n.
Moreover, (2) if Gn

ϕ does not have cycles of negative weight, the minimal weight among all paths from
xn

i to xn
j , stretching from n−m to n, equals the minimal weight among all accepting runs of

←−
Ae

i j, of length
at most n.

Proof:
Similar to the proof of Lemma 4.3.!

The next Lemma relates the cycles in G∞
ϕ to the runs of Ae

i . In the proof, it is essential that G∞
ϕ is
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composed of copies of the same graph Gϕ. As a consequence, if there is a cycle in G∞
ϕ , there is also a

cycle starting and ending with xi
0, for some 1 ≤ i ≤ k. The reader may refer to Figure 6 (b) for a depiction

of the case covered by the following:

Lemma 4.5. For any 1 ≤ i ≤ k, Ae
i has an accepting run of negative weight if and only if there exists a

cycle of negative weight in G∞
ϕ .

Proof:
”⇒” Suppose that Ae

i has an accepting run ρ : q0
G1−→ q1

G2−→ . . .qn−1
Gn−→ qn, with q0 ∈ Q0 and qn ∈ F ,

such that ω(ρ) < 0. Then, by the first point of Lemma 4.3, there exists a cycle π in G(ρ), such that q0i
is on that cycle. Also, by the proof of the second point of Lemma 4.3, we have that ω(ρ) = ω(π) +
∑γ is a cycle in G(ρ) ω(γ) < 0. Then either ω(π) < 0 or G(ρ) has another cycle γ /= π whose weight is
negative. Since G(ρ) is isomorphic with a subset of G∞

ϕ , we are done.
”⇐” Suppose that G∞

ϕ has a cycle of negative weight, stretching between n and m, for some n < m.
Note that all subgraphs of G∞

ϕ , that consist only of nodes xi and xi+1 (together with the edges between
them), are isomorphic. Hence there exists a cycle of negative weight, stretching between n and m if and
only if there exists a cycle of negative weight stretching between 0 and m−n. Now one can build a run
of Ae

i that has exactly the same weight as the latter cycle. !

We define now the odd automata, that recognize paths from one side of Gn
ϕ to another. The automata

recognizing paths from xi
0 to x j

n are called forward odd automata, whereas the ones recognizing paths
from xi

n to x j
0 are called backward odd automata. The reader may refer to Figure 6 (c) for a depiction of

these cases.
Formally, Ao

i j = 〈Tϕ,Q0,F〉 be the forward odd automaton, over Σo
ϕ, where:

Q0 = {q | qi = r and qh ∈ {lr,⊥}, 1 ≤ h ≤ k, h /= i}
F = {q | qj = r and qh ∈ {rl,⊥}, 1 ≤ h ≤ k, h /= j}

An example of an odd automaton is given in Figure 4. For i = 1 the initial states are 〈r,⊥, lr〉 and
〈r,⊥,⊥〉. For j = 3 the final state is 〈⊥,⊥,r〉. An accepting run of Ao

13 is shown in Figure 5 (b). The
next Lemma relates the runs of Ao

i j to the paths between x0
i and xn

j , 1 ≤ i, j ≤ k.

Lemma 4.6. For any 1 ≤ i, j ≤ k, Ao
i j has an accepting run of length n if and only if there exists a path

in Gn
ϕ, from x0

i to xn
j . Moreover, if Gn

ϕ does not have cycles of negative weight, then the minimal weight
among all paths from x0

i to xn
j equals the minimal weight among all accepting runs of length n.

Proof:
This proof is done along the same lines as the proof of Lemma 4.3. ”⇒ If ρ is an accepting run of Ao

i j
of length n, then there exists a path π from q0i to q0 j in G(ρ), and moreover, since G(ρ) does not have
cycles of negative weight, ω(ρ) ≥ ω(π). ”⇐” If Gn

ϕ has a path between x0
i and xn

j , then there exists an
accepting run ρ of Ao

i j, of length m, such that G(ρ) has a path π from q0i to qn j, and no other edges,
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except for the ones in π. Hence ω(ρ) = ω(π). The equality of minimal weights follows in the same way
as in the proof of Lemma 4.3. !

The definition of backward odd automata is symmetrical. Let
←−
Ao

i j = 〈←−Tϕ,F,Q0〉 be the backward odd
automaton over the alphabet Σo

ϕ, where F and Q0 are the ones defined for the forward odd automaton.
The next Lemma relates the runs of Ao

i j to the paths between xn
i and x0

j , 1 ≤ i, j ≤ k.

Lemma 4.7. For any 1 ≤ i, j ≤ k,
←−
Ao

i j has an accepting run of length n if and only if there exists a path
in Gn

ϕ, from xn
i to x0

j . Moreover, if Gn
ϕ does not have cycles of negative weight, then the minimal weight

among all paths from xn
i to x0

j equals the minimal weight among all accepting runs of length n.

4.4. Defining Optimal Paths in Weighted Finite Automata

Given a finite automaton with linear weights on transitions, we consider the problem of defining the set
of accepting runs of a given length and of minimal weight. This solves the previous problem of defining
the functions min{xi −→ y j}, which is needed for computing the transitive closure of a difference bound
relation.

Let T = 〈Q,∆〉 be a transition table, and A = 〈T,q0,F〉 be a finite automaton. A weight func-
tion ω : Q ×Q → linZ[z] associates each transition q −→ r a linear expression ω(q,r) ∈ linZ[z]. For
a run π of A, ω(π) denotes the sum of all weights on the transitions. We aim at defining the set
{(|π|,ω(π)) | π is a run of A} using integer arithmetic.

Theorem 4.2. Let z = {z1, . . . ,zl} be a set of parameters. Given a finite automaton A = 〈T,q0,F〉 where
T = 〈Q,∆〉, and a weight function ω : Q×Q −→ linZ[z] associating each transition a linear expression,
one can effectivelly construct a formula ψA(x,y,z) ∈ D[1] such that, for any n ∈ N, w ∈ Z, m ∈ Zl we
have |= ψA(n,w,m) if and only if w is the minimal weight among all accepting runs of length n of A,
under the valuation m of the parameters. Moreover, if z = /0, ψA is equivalent to a finite disjunction of
linear inequality systems.

On one hand, this gives an alternative proof for the result of Comon and Jurski [5], namely that the
transitive closure of a parameter-free difference bound relation is Presburger-definable. In practice, our
proof gives also a direct method of expressing the n-th step iteration as a difference bound constraint,
in which n occurs free. The advantage is that, in this way, we can express the reachability problem for
a flat counter automaton as a finite disjunction of linear inequality systems, and apply state-of-the-art
satisfiability solvers to it.

On the other hand, the reachability problem for single loop automata with parametric transition
relations is definable in D[1]. As we show in Section 5, the problem concerning the existence of solutions
for such systems is decidable, which entails the decidability of the reachability problem for the class of
FCA(l,1).

Let us proceed now with the proof of Theorem 4.2. We associate with any transition q −→ r ∈ ∆ a
variable xqr and take x to be the set {xqr | q −→ r ∈ ∆}. Intuitively, xqr is the number of times the transition
q −→ r occurs within a run. Hence we take as an implicit condition the fact that all such xqr range over
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positive integers, i.e.
V

q−→r∈∆ xqr ≥ 0. The formula characterizing an accepting run of A of length l and
weight w is :

φA(l,w) ∆= ∃x .
_

qf ∈F
ϕqf (x) ∧ ∑

q−→r∈∆
xqr = l ∧ ∑

q−→r∈∆
xqrω(q,r) = w (4)

where ϕqf (x) expresses the necessary and sufficient conditions in order for x to define a path of A leading
from q0 to qf . The definition of ϕqf in Presburger arithmetic follows a method described in [5], which is
based on the fact that the set of states Q of A is finite. For self-containment reasons, we give the definition
of ϕqf below.

ϕqf (x) ∆=






ϕ1
q0

(x)∧ϕ2
qf

(x)∧ϕ3
q0qf

(x)∧ψ(x) if qf /= q0

ϕ4(x)∧ψ(x) otherwise

where

ϕ1
q(x) ∆= 1+ ∑

p−→q∈∆
xpq = ∑

q−→r∈∆
xqr (5)

ϕ2
q(x) ∆= ∑

p−→q∈∆
xpq = ∑

q−→r∈∆
xqr + 1 (6)

ϕ3
qq′(x) ∆=

^

s∈Q\{q,q′}
∑

p−→s∈∆
xps = ∑

s−→r∈∆
xsr (7)

ϕ4(x) ∆=
^

s∈Q
∑

p−→s∈∆
xps = ∑

s−→r∈∆
xsr (8)

and ψ(x) is detailed next. Intuitively, the first three formulae above are the flow equations for the initial
state (5), the final state of the run (6), and any state, other than the initial and the final, that may occur
on the run (7). The case of (possibly empty) circular runs (i.e., q0 = qf ) needs only one flow equation
(8). Notice that the above flow equations can be also satisfied by two strongly connected components of
A with no transition relating them. In order to define the set of paths in A, we need one extra condition.
The final condition ψ(x) is that a path must be connected.

Let PA(q) be the set of all paths leading from q0 to q, with no repeated transitions. Since Q is finite,
this set is also finite. With these considerations, the connectivity condition can be given as follows, where
α ·β denotes the concatenation of paths α and β :

ψ(x) ∆=
^

q∈Q

_

q−→r∈∆
xqr > 0 −→

_

ρ·p−→q∈PA (q)

xpq > 0

If m ∈ Nk is an interpretation of x, we refer as a m-path to a path s0,s1, . . . ,sn, where si ∈ Q, such that
each transition si −→ si+1 is taken exactly msisi+1 times.

The following lemma proves that the formula defined in the previous correctly characterizes all ac-
cepting runs of A:
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Lemma 4.8. For all n ∈ N, w ∈ Z, A has an accepting run of length n and weight w if and only if
|= φA(n,w).

Proof:
We need to prove that, for all n ∈ N and w ∈ Z, |= φA(n,w) if and only if A has a run ρ of length n and
weight w, from q0 to some qf ∈ F .

“⇒” If ρ is an accepting run of length n and weight w, let m be the vector of occurrences of each
transition within ρ and check |= ϕ(m), which is trivial.

“⇐” Let m be the witness for ϕ(x) i.e., |= ϕ(m). We shall build an accepting m-run of A, by
induction on M = ∑q,r∈Q mqr. The base case is M = 0, which implies n = 0, hence the only run to be
considered is the empty run. Let us prove that this is also an accepting run i.e. q0 ∈ F . Assuming the
contrary, we have q0 /= qf for all qf ∈ F . But |= ϕqf (m), for some qf ∈ F must be the case, hence, also
|= ϕ1

q0
(m), which is a contradiction, since we have assumed that M = 0.

For the inductive step M > 1, assume that for all M′ < M, where M′ = ∑q−→r∈∆ m′
qr, if |= ϕqf (m′) for

some qf ∈ F , then A has an m′-run from q0 to some qf ∈F . If M > 0 then there exists q−→ r ∈∆ such that
mqr > 0. Since m |= ψ, there exists an m-path from q0 to q. Assume r /∈ F , for else we were done. We
show the existence of an m-path from r to some qf ∈ F . Since r /∈ F , either m |= ϕ3

q0qf
, for some qf ∈ F ,

or m |= ϕ4. In both cases, ∑r′∈Q mrr′ > 0, hence there exists r′ ∈ Q such that mrr′ > 0. By repeating this
argument, we discover an m-path starting in r and ending either in a state p from the path, or in a final
state qf ∈ F . We consider the first case, the second leading immediately to the conclusion. In this case
there exists a cyclic m-path γ from p to itself. Let m′ be the vector defined as m′

qq′ = mqq′ −1, if q −→ q′

is on γ, and m′
qq′ = mqq′ otherwise. Obviously, ∑q−→r∈∆ m′

qr < ∑q−→r∈∆ mqr, and the induction hypothesis

applies, i.e. A has an accepting m′-run. But in this case A has also an accepting m-run, obtained by
appending the γ cycle back to the m′-run. !

Notice that, if A does not have parameters, φA is a formula in the language of 〈Z,≥,+,0,1〉, hence
we can already define the minimal weight w among all runs of length n by the following formula :
φA(n,w) ∧ ∀z [z ≤ w → ¬φA(n,z)]. However, this is not the case when A has parameters, due to the
multiplicative terms of the form xqrω(q,r) that occur within φA. Nevertheless, it is possible to build from
φA, a formula of D[1] defining optimal runs.

The main idea is to find the elementary cycles of optimal weight/length ratio w
n within the weighted

even/odd automata. In the parameter-free case (the weighted automata are labeled by integer constants),
finding optimal cycles can be implemented using efficient algorithms [6], known to perform in almost
linear average time. In the case of parameters, one has to consider a case split of size linear in the
number of cycles. In the following, we present the technical details of the construction leading to a
quantifier-free formula defining the minimal weight path function, for a given weighted automaton. In
the parameter-free case, the function giving the value of w is a finite union of linear functions in n.

We apply the following transformation to each disjunct from the definition (4), i.e. for each qf ∈ F .
Let x = {x1, . . . ,xm} be a renaming of the existentially quantified variables, and if xi, 1 ≤ i ≤ m is the
renaming of xqr, then let ωi, denote the term ω(q,r). Since the subformula ϕqf (x)∧∑q−→r∈∆ xqr = y is an
open Presburger formula, it is either false or it defines a non-empty semilinear set, equivalent to a finite
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disjunction of formulae of the following form [8] :




x1
...

xm

y




=





a01
...

a0m

b0




+





a11
...

a1m

b1




λ1 + . . .+





ak1
...

akm

bk




λk

for some new existentially quantified variables λ1, . . . ,λk, with ai j,bi ∈ Z, 1 ≤ i ≤ k, 1 ≤ j ≤ m. Since
z = ∑q−→r∈∆ xqrω(q,r), we obtain, for each disjunct of the original formula:

(
y
z

)

=

(
b0

∑m
j=1 a0 jω j

)

+

(
b1

∑m
j=1 a1 jω j

)

λ1 + . . .+

(
bk

∑m
j=1 ak jω j

)

λk

Since y > 0, it must be that bi > 0, for all 0 ≤ i ≤ n. Otherwise, if some bi < 0 we can obtain a negative
value for y by increasing λi sufficiently. On the other hand, if some bi = 0, there would be an infinite
number of weights z corresponding to the same path length y, resulting in a contradiction.

Let κi be the following formula :

k̂

p=1

∑m
j=1 ai jω j

bi
≤

∑m
j=1 ap jω j

bp

with free variables from the set {z1, . . . ,zl} of parameters of ϕ. Intuitively, κi is true if the i-th cycle in
the weighted automaton is optimal. Note that, if ϕ is parameter-free, κi reduces to either true or false.
Also, it is easy to see that |=

Wk
i=1 κi, i.e. the union of all κi covers the space Zl .

We perform a case split, in which the i-th case corresponds to a choice of parameter values that satisfy
κi. Notice that |=

W
1≤i≤k κi. If |= κi, the minimal value z can take, in the above formula, for a given y, is

encoded by the following:
(

y
z

)

=

(
b0

∑m
j=1 a0 jω j

)

+
l /=i

∑
1≤l≤k

(
bl

∑m
j=1 al jω j

)

rl +

(
bi

∑m
j=1 ai jω j

)
(
λi +

l /=i

∑
1≤l≤k

qlbl
)

where ql and rl are the quotient and the remainder of λl divided by bi, for all l ∈ {1, . . . , i−1, i+1, . . . ,k}.
This is because bi can be subtracted from any λl , l /= i, at most ql times, by adding at the same time
qlbl to λi, and without modifying the value of y. Since 0 ≤ rl < bi, we perform another case split
and replace rl by constants in the formula above. Moreover, we introduce a fresh variable m, define
m = λi + ∑l /=i

1≤l≤k qlbl , and make the substitution accordingly, in the formula above.
Notice however that the above expresses the minimum for only one disjunct of the semilinear trans-

form of ϕqf (x)∧∑q−→r∈∆ xqr = y considered for only one disjunct from the definition (4). We have to
extend the construction to the case of more than one disjuncts. Let us consider the case of two disjuncts,
call them D1 and D2, the generalization to more than two being rather straightforward. For each Di,
i = 1,2 we have a formula of the above form, defining the minimal z :

Di :

(
y
zi

)
=

(
bi

βi

)
+

(
ci

γi

)
m, i = 1,2
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Our goal is to define the following set:

D = {min(z1,z2) | ∃y (y,z1) ∈ D1 ∧ (y,z2) ∈ D2}
= {z | ∃y (y,z) ∈ D1 ∧ ∀z′ (y,z′) /∈ D2} ∪{ z | ∃y (y,z) ∈ D2 ∧ ∀z′ (y,z′) /∈ D1}

∪ {z | ∃y (y,z) ∈ D1 ∩D2 ∧ z = min{z′ | (y,z′) ∈ D1 ∩D2}}

The first two sets can be defined directly by adjoining Presburger conditions on m. Let us take for
example {z | (y,z) ∈ D1 ∧ ∀z (y,z) /∈ D2}, which can be defined by :

∃m . z = β1 + γ1m∧∀m′ b1 + c1m /= b2 + c2m′ ⇐⇒
∃m . z = β1 + γ1m∧ / ∃m′ . b1 + c1m = b2 + c2m′ ⇐⇒

∃m . z = β1 + γ1m∧ c2 / |c1m + b1 −b2 ⇐⇒

∃m∃q .
c2−1_

r=1
z = β1 + γ1m∧ c1m + b1 −b2 = c2q+ r

where q is a fresh variable.
To represent the latter set from the definition of D, we have two symmetrical cases, as follows:

b1 + c1m1 = b2 + c2m2 ∧β1 + γ1m1 ∼i β2 + γ2m2 ∧ z = βi + γimi

where ∼1 is ≤, and ∼2 is ≥. Now we can set m = m1 (m2), by writing m2 (m1) as a linear function of m1
(m2).

In conclusion, for the parameter-free case, the function relating the length n of a path in the weighted
automaton to its weight w is a finite union of linear functions, while in the case with parameters, it is a
finite union of 1-parametric Diophantine systems.

5. Solving Parametric Linear Diophantine Systems

In this section we give a proof for the decidability of the class of formulae D[1]. The problem consid-
ered here has been independently solved by O. Ibarra and Z. Dang in [13], using a property of reversal
bounded counter machines. Another proof has been suggested to us by Y. Matiyasevich [17], using a
more involved case analysis. Our proof is based on a result of L. Pottier [19], quoted by Theorem 5.1.

Let us fix a linear Diophantine system with parameter m, i.e. a system of the form {∑n
j=1 pi j(m)x j +

qi(m) = 0}r
i=1, with pi j,qi ∈ Z[m]. We are interested in the existence of a solution m,x1, . . . ,xn in natural

numbers, although this is not a restriction.6 We denote by A(m) the matrix [pi j(m)].
Let us consider first that the system is homogeneous, i.e. qi(m) is the zero polynomial, for all

1 ≤ i ≤ n. The general case will be dealt with in the following, by adding a new variable xn+1, replacing
each occurrence of qi(m) by qi(m)xn+1, and looking only after solutions in which xn+1 = 1. Let P(m) be
the greatest common divisor of all pi j(m) with respect to (symbolic) polynomial division, i.e. obtained
by applying Euclid’s algorithm in Z[m]. Since P(m) is a polynomial in one variable, its set of roots is
finite and effectively computable. If P(m0) = 0 for some m0 ∈ Z, then 〈m0,x1, . . . ,xn〉 is a solution of the

6The satisfiability problem for integers can be reduced to 2n+1 instances of the same problem on natural numbers, by performing
a case split on the signs of m,x1, . . . ,xn.
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system A(m)x = 0, for any choice of x1, . . . ,xn ∈ Z. Thus, we assume in the following that P(m) /= 0, for
all m ∈ N, in other words that, for no value of m, pi j(m) will all become zero at the same time.

Next, we are interested in the minimal solutions of the system. For a given m ∈ N, a solution
(x1, . . . ,xn) is said to be minimal if it is a least solution with respect to the pointwise ordering on Nn:
(u1, . . . ,un) 9 (v1, . . . ,vn) ⇐⇒ ui ≤ vi, 1 ≤ i ≤ n. The following Theorem has been proved in [19]:

Theorem 5.1. For a fixed m0 ∈ N, let x1, . . . ,xn be any minimal solution of A(m0)x = 0. Then, for all
1 ≤ i ≤ n, we have: xi ≤ (n− r0)

(
∑i, j ai j(m0)

r0

)r0
, where r0 is the rank of A(m0).

Let C > 0 be the maximal absolute value of all coefficients of ai j(m), 1 ≤ i ≤ r, 1 ≤ j ≤ n, and K ≥ 0 be
the maximum degree of these polynomials. The following is a direct consequence of Theorem 5.1:

Corollary 5.1. For a fixed m0 ≥ max(C,n,r), let x1, . . . ,xn be any minimal solution of A(m0)x = 0.
Then, for all 1 ≤ i ≤ n, we have xi ≤ m(K+3)r+1

0 .

Proof:
We have ai j(m0) ≤ CmK

0 +CmK−1
0 + . . . +C = C mK+1

0 −1
m0−1 ≤ mK+1

0 , and therefore ∑i, j ai j ≤ nr ·mK+1
0 ≤

mK+3
0 . Since 0 < r0 ≤ r, we have (n− r0)

(
∑i, j ai j

r0

)r0
≤ n

(
∑i, j ai j

r0

)r
≤ n

(
mK+3

0
r0

)r
≤ n(mK+3

0 )r ≤ m(k+3)r+1
0 .

By Theorem 5.1, we obtain the result. !

Hence, one can enumerate all 0 ≤ m < max(C,n,r), and stop as soon as a solution of the linear Dio-
phantine system A(m)x = 0 has been found. Otherwise, for any m ≥ max(C,n,r) the solution x1, . . . ,xn
can be represented in base m using at most M = (K + 3)r + 1 digits. Let (xi)m = ∑M

j=0 χi jm j, with
0 ≤ χi j < m be the polynomial representing xi in base m. The entire system A(m)x = 0 can be now
represented in base m, as it will be explained in the following.

First, we write the system as a set of equations of the form P(m,x1, . . . ,xn) = Q(m,x1, . . . ,xn), with all
coefficients of P and Q being positive. Since m is assumed to be greater than C, the maximal value of all
coefficients c of the system, we have (c)m = c. The operations of addition, multiplication by a constant
0 < c < m, and multiplication by m, respectively, can be defined now using Presburger arithmetic. Let
(d)m = ∑M

i=0 δimi, (e)m = ∑M
i=0 εimi and ( f )m = ∑M

i=0 φimi, with 0 ≤ δi,εi,φi < m. We have:

( f )m = (d)m +(e)m ⇐⇒
_

r∈{0}×{0,1}k−1×{0}

M̂

i=0
δi + εi + ri = φi + mri+1

(e)m = c(d)m ⇐⇒
_

r∈{0}×{0,...,c−1}k−1×{0}

M̂

i=0
cδi + ri = εi + mri+1

(e)m = m(d)m ⇐⇒ δM = φ0 = 0∧
M−1̂

i=0
δi = φi+1

The result of applying this transformation to the system A(m)x = 0 is a formula ΨA(m,χ) in Presburger
arithmetic, defining all minimal solutions of the original system (xi)m = ∑M

j=0 χi jm j, for m≥max(C,n,r),
with χ = {χi j | 1 ≤ i ≤ n, 1 ≤ j ≤ r}. The original system has a solution (m,x1, . . . ,xn) if and only if, for
some m ∈ N, it has a minimal solution (xm

1 , . . . ,xm
n ). Hence ΨA(m,χ) is satisfiable. Dually, if ΨA(m,χ) is

satisfiable, we can construct a solution (not necessarily minimal) of A(m)x = 0.
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Example Consider the equation: 1 · x1 + m · x2 = m2 + 2. By Corollary 5.1 we should have considered
the case m ≥ 6, however the following is true even for m ≥ 3: (1)m · x1 +(10)m · x2 = (102)m. We look
for solutions of the form x1 = (a2a1a0)m and x2 = (b1b0)m, and therefore, our equation is equivalent to:
(a2a1a0)m +(b1b00)m = (102)m. This is reduced to the following two systems:






a0 = 2
a1 + b0 = 0
a2 + b1 = 1






a0 = 2
a1 + b0 = m

a2 + b1 + 1 = 1

from which we get the set of all solutions (x1,x2): {((102)m,(0)m),((2)m,(10)m)}∪{ ((c 2)m,(m −
c 0)m) | 1 < c < m} !

The non-homogeneous case is handled in the proof of the following:

Theorem 5.2. The satisfiability problem for linear parametric Diophantine systems D[1] is decidable.

Proof:
Let A(m)x = B(m) (1) be the original (non-homogeneous) system, where x = 〈x1, . . . ,xn〉 and x′ =
〈x1, . . . ,xn,xn+1〉, and A′(m)x′ = 0 (2) be the homogeneous system A(m)x = B(m)xn+1. Also let S and S′

be the sets of non-trivial solutions of the systems (1) and (2). It is sufficient to show the following: S /= /0
iff S′ has a minimal element with xn+1. Since the latter is decidable (by adding the condition xn+1 = 1 to
the Presburger systems derived using the m base representation), we obtain the result. !

Theorem 5.2, together with Theorem 4.2 entail the main novel result of this paper:

Corollary 5.2. The reachability problem for single loop parametric flat counter automata FCA(p,1) is
decidable.

6. Conclusions

We have studied a generalization of the flat counter automata considered by Comon and Jurski in [5],
obtained by adding parameters to the transition relations. We reduce the reachability problem for these
automata to either Presburger arithmetic, in the non-parametric case, and to linear Diophantine systems
with one parameter, for single-loop automata with multiple parameters. The existence of solutions for the
latter class of systems is shown to be decidable. This entails the decidability of the reachability problem
for counter automata with parameters and one control loop, while in general, this problem is undecidable
for flat automata with more than one control loop.
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