
HAL Id: hal-01418875
https://hal.science/hal-01418875

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Automata-based Verification of Programs with Tree
Updates

Peter Habermehl, Radu Iosif, Tomas Vojnar

To cite this version:
Peter Habermehl, Radu Iosif, Tomas Vojnar. Automata-based Verification of Programs with Tree
Updates. Acta Informatica, 2010. �hal-01418875�

https://hal.science/hal-01418875
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Peter Habermehl · Radu Iosif · Tomáš Vojnar

Automata-based Verification of Programs
with Tree Updates

the date of receipt and acceptance should be inserted later

Abstract This paper describes a verification framework for Hoare-style pre- and
post-conditions of programs manipulating balanced tree-like data structures. Since
the considered verification problem is undecidable, we appeal to the standard
semi-algorithmic approach in which the user has to provide loop invariants, which
are then automatically checked, together with the program pre- and post-conditions.
We specify sets of program states, representing tree-like memory configurations,
using Tree Automata with Size Constraints (TASC). The main advantage of this
new class of tree automata is that they recognise tree languages based on arith-
metic reasoning about the lengths (depths) of various (possibly all) paths in trees,
like, e.g., in AVL trees or red-black trees. TASCs are closed under union, intersec-
tion, and complement, and their emptiness problem is decidable. Thus we obtain
a class of automata which are an interesting theoretical contribution by itself. Fur-
ther, we show that, under few restrictions, one can automatically compute the ef-
fect of tree-updating program statements on the set of configurations represented
by a TASC, which makes TASC a practical verification tool. We tried out our ap-
proach on the insertion procedure for red-black trees, for which we verified that
the output on an arbitrary balanced red-black tree is also a balanced red-black tree.

A short version of this paper appeared in the Proceedings of TACAS 2006. The work was sup-
ported by the French Ministry of Research (RNTL project AVERILES), the Czech Science
Foundation within the project 102/07/0322, the Czech-French Barrande project MEB 020840,
and the Czech Ministry of Education by the project MSM 0021630528.

P. Habermehl
LIAFA, Université Paris Diderot—Paris 7/CNRS, Case 7014, F-75205 Paris 13, France,
E-mail: haberm@liafa.jussieu.fr

R. Iosif
VERIMAG, Université Joseph Fourier/CNRS/INPG, 2 av. de Vignate, F-38610 Gières, France,
E-mail: iosif@imag.fr

T. Vojnar
FIT, Brno University of Technology, Božetěchova 2, CZ-61266, Brno, Czech Republic,
E-mail: vojnar@fit.vutbr.cz

1 Introduction

Verification of programs using dynamic memory primitives, such as allocation,
deallocation, and pointer manipulations, is crucial for a feasible method of soft-
ware verification. In this paper, we address the problem of proving correctness
of programs that manipulate balanced tree-like data structures. Such structures
are very often applied to implement in an efficient way lookup tables, associa-
tive arrays, sets, or similar higher-level structures, especially when they are used
in critical applications like real-time systems, kernels of operating systems, etc.
Therefore, a number of such search tree structures like the AVL trees, red-black
trees, splay trees, and so on [11] have been introduced.

Tree automata [9] are a powerful formalism for specifying and reasoning about
infinite sets of trees. However, there are two major obstacles against the broad use
of tree automata in program verification:
– Imperative programs perform destructive updates of selector fields, changing

a tree-shaped data structure by temporarily introducing sharing of branches
and/or loops. For instance, this is the case of tree rotations [23] which are
implemented as a finite sequence of selector updates introducing a loop in the
tree in order to re-establish the tree-like shape later on.

– Tree automata represent regular sets of trees, which is not sufficient when one
needs to reason in terms of balanced trees as in the case of AVL and red-black
tree algorithms.
In order to overcome the first problem, we observe that most algorithms work-

ing on balanced trees [11] use tree rotations and addition/removal of leaf nodes
to/from a tree as the only operations that change the structure of the input tree. In
our framework, we consider these updates as single (atomic) steps in the program.
The correctness of their implementation, using lower-level pointer operations, can,
however, be checked separately in a different formalism such as, for example, 3-
valued predicate logic with transitive closure [24], or tree automata extended with
additional “routing” expressions on the tree backbone as in [17] or in [5], where
the so-called abstract regular tree model checking is used.

The second inconvenience is solved in the present paper by introducing a novel
class of tree automata, called Tree Automata with Size Constraints (TASC). TASC
are tree automata whose actions are triggered by arithmetic constraints involving
the sizes of the subtrees at the current node. The size of a tree is a numerical func-
tion defined inductively on the tree structure such as, for instance, the height, the
maximum number of black nodes on all paths, etc. The main advantage of using
TASC in program verification is that they recognise non-regular sets of tree lan-
guages, such as the AVL trees, the red-black trees, and, in general, sets of trees
involving arithmetic reasoning about the lengths (depths) of various (possibly all)
paths in the trees. We show that the class of TASC is closed under the operations
of union, intersection, and complement. Also, the emptiness problem is decidable.
We thus obtain a class of automata which are a significant theoretical contribution
by itself. Moreover, the semantics of the programs performing tree updates (node
recolouring, rotations, leaf nodes appending/removal) can be effectively repre-
sented as changes on the structure of the automata.

In our verification approach based on TASC, the user has to provide the pre-
condition and postcondition of the (sequential) imperative program being verified

2

as well as loop invariants for all loops present in the program. The verification
problem then consists in checking validity of Hoare triples of the form {P}C{Q},
where P and Q are TASC-encoded sets of configurations corresponding to the
precondition or postcondition of the program or to some loop invariant, and C
is a loop-free fragment of the program to be verified. Next, we reduce this ver-
ification problem to the TASC language emptiness problem. Note that while the
pre- and postconditions and loop invariants are to be specified by the user, check-
ing the validity of the verification conditions is fully automated and exact in our
framework.

We tested our approach on an example of the insertion algorithm for the red-
black trees, for which we verify that for a balanced red-black tree input, the output
of the insertion algorithm is also a balanced red-black tree, i.e., the number of
black nodes is the same on each path.

Related Work. Sound verification of complex properties of programs handling re-
cursive tree-shaped (and other kinds of) data structures—such as verifying that
programs implementing advanced search data structures like AVL-trees or red-
black trees indeed assure their defining properties, including balancedness—is
currently beyond the capabalities of the common program verifiers associated
with specification languages like JML [6] or Spec# [3]. These systems can ver-
ify in a semi-automatic way (as the user has to provide loop invariants) simpler
properties like absence of null-pointer exceptions only. There are approaches,
such as [15] or [13], considering verification of even the complex properties of
the advanced data structures via testing or model checking, but these approaches
are unsound as they work with bounded sets of instances of the data structures
only.

Research on possibilities of sound verification of programs that handle com-
plex tree-like structures has attracted researchers with various backgrounds, such
as static analysis [19,23], proof theory [7], and formal language theory [17,5]. The
approach that is the closest to ours is probably the one of PALE (Pointer Asser-
tion Logic Engine) [17], which consists in translating the verification problem into
the logic SkS [22] and using tree automata (although the classical ones only) to
solve it. Our approach resembles PALE also in that we expect the user to provide
the pre-, post-conditions, and the loop invariants, and that we reduce the validity
problem for Hoare triples to the language emptiness problem. However, the use
of the novel class of tree automata with arithmetic guards allows us to encode
quantitative properties such as tree balancing that are not tackled in PALE.

In [23], a specialised framework of quantitative shape analysis based on ab-
stract interpretation is introduced in order to verify manipulation of AVL trees.
In [2], verification of some properties of inserting into red-black trees (including
balancedness) is also reported. The work uses graph rewriting systems for describ-
ing the insertion procedure—the model is manually constructed. Then, an overap-
proximation using Petri graphs (Petri Nets with additional hypergraph structure) is
used for verifying the fact that two red nodes never appear in succession. Further,
graph type systems are used to check the balancedness. Not all desirable safety
properties are covered this way, and both of the steps require a significant user
involvement.

3

Recently, [16] has proposed an approach for verifying algorithms on balanced
trees (and, in particular, on red-black trees) based on decidable theories of term
algebras with Presburger arithmetic. These theories allow one to define functions
from terms to integers, e.g., the maximal number of black nodes in paths from the
root to a leave in a tree. The framework of [16], however, does not allow one to
express local updates at an arbitrary control location, which consequently leads
to a necessity of using an informal induction when proving program verification
conditions. In other recent work [18], a different formal model – in particular, an
extension of Separation Logic [?] with user-definable recursive shape predicates –
is used to reason about safety of pointer-manipulating programs including inser-
tion for red-black trees. This approach also targets the verification of Hoare triples
in presence of user-specified program invariants. However, checking the verifica-
tion conditions in this setting is done via sound, but incomplete proof rules, since
the decidability status of the underlying logic is unknown.

The definition of TASC is a result of searching for a class of counter tree
automata that combines interesting closure properties (union, intersection, com-
plementation) with decidability of the emptiness problem. Existing works on ex-
tending tree automata with counters (e.g., [12,25]) have mostly concentrated on
in-breadth counting of nodes with applications on verifying consistency of XML
documents. Our work gives the possibility of in-depth counting in order to express
balancing of recursive tree structures. It is worth noticing that similar computation
models, such as alternating multi-tape and counter automata, have undecidable
emptiness problems in the presence of two or more 1-letter input tapes, or, equiva-
lently, non-increasing counters [20]1. However, restricting the number of counters
is problematic for obtaining the closure of automata under intersection. The solu-
tion we adopt here is to let the actions of the counters depend exclusively on the
input tree alphabet, in other words, to encode them directly in the input as size
functions. This solution can be seen as a generalisation of the visibly pushdown
languages [1] to trees, for singleton stack alphabets. A similar approach has been
recently taken in [10], where visibly tree automata with memory (VTAM) have
been introduced. VTAM define a subclass of tree automata with one memory [8]
enjoying boolean closure properties. Red-black trees and other balanced tree sets
can be recognised using this formalism. However, the work in [10] does not di-
rectly address the verification of tree-manipulating programs, as it does not give
a method to represent the effect of program statements on a set of trees represented
as a tree automaton.

Roadmap. In Section 2, we summarise our verification methodology and describe
our case study of insertion into red-black trees, which we will use in the paper. In
Section 3, we introduce the notion of tree automata with size constraints. Section 4
provides results on determinisation of TASC, discusses their closure properties,
and shows that their emptiness is decidable. In Section 5, it is shown how the
semantics of tree manipulating programs can be encoded using TASC. Section 6
describes the use of TASC within the chosen case study. Finally, Section 7 contains
some concluding remarks, including the future work.

1 This result improves on the early work on alternating multi-tape automata recognising 1-
letter languages in [14].

4

nil nil nil nil

nil nil

nil nil8

10

18

15 19

27

5
y

x

x

y

! "

!

" #
RightRotate(T,y)

LeftRotate(T’,x)

(a) (b)

T: T’:

Fig. 1 (a) A red-black tree—nodes 10, 15, 19 are red, (b) the left and right tree rotation

2 A TASC-based Verification Methodology and a Running Example

In this section, we introduce our verification methodology for programs using
balanced trees. In practice, several data structures based on balanced trees are
commonly used, e.g., AVL trees. Here, we will use red-black trees as our running
example. Red-black trees are binary search trees whose nodes are coloured by red
or black. They are approximately balanced by constraining the way nodes can be
coloured. The constraints insure that no maximal path can be more than twice
longer than any other path.

More precisely, red-black trees are binary search trees whose nodes contain an
element of an ordered data domain, a colour, a left and right pointer, and a pointer
to its parent, and that satisfy the following properties:

1. Every node is either red or black.
2. The root is black.
3. Every leaf is black.
4. If a node is red, both its children are black.
5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 1 (a). The main operations
on balanced trees (and hence also red-black trees) are searching, insertion, and
deletion. When implementing the last two operations, one has to make sure that the
trees remain balanced. This is usually done using tree rotations—cf. Figure 1 (b),
which, in the case of red-black trees, can change the number of black nodes on
a given path.

Because of the last condition on red-black trees mentioned above (i.e., having
the same number of black nodes in each path), it is obvious that the set of red-
black trees is not regular, i.e., not recognisable by standard tree automata [9].
Therefore, we have to introduce a tree automata model able to describe sets of
(heap) configurations containing balanced trees. This model has to be powerful
enough to describe these trees while still having properties allowing for automatic
verification (i.e., decidability of inclusion, closure under some operations, etc.).

Here, we define such a class of extended tree automata—namely, tree automata
with size constraints (TASC). We suppose the data content of the nodes to be ab-
stracted away—we do not verify sortedness. Basic program blocks (i.e., individual
program statements or groups of statements that we view as atomic like, e.g., ro-
tations) define effective transformations on TASC.

5

We assume the user to specify the precondition and postcondition of the pro-
gram to be verified. Further, we suppose the user to supply an invariant for each
loop. The preconditions and postconditions as well as loop invariants are speci-
fied by TASC. Then, the verification is performed by automatically checking the
validity of each triple {P} C {Q}, where:

– P is the program precondition or a loop invariant,
– Q is the program postcondition or a loop invariant, and
– C is a loop-free fragment of the code between P and Q.

This is done by computing the image of the precondition after an application of
the code of the program block and by checking that the image implies the post-
condition. This check is done using language inclusion for TASC.

In Figure 2, we give the pseudo-code of the inserting operation for red-black
trees [11]. For this program, we want to show that after an insertion of a node,
a red-black tree remains a red-black tree. In our work, we restrict ourselves to
calculating the effects of program blocks which preserve the tree structure of the
heap. This is not the case in general since pointer operations can temporarily break
the tree structure, e.g., in the code for performing a rotation. The operations that
we handle are the following:

1. tests on the tree structure (like x->parent == x->parent->parent->left),
2. changing data of a node (as, e.g., recolouring of a node x->colour = red),
3. left and right rotations (Figure 1 (b)),
4. moving a pointer up or down a tree structure (like x = x->parent->parent),
5. low-level insertion/deletion, i.e., the physical addition/removal of a terminal

node, that is then followed by re-balancing operations.

3 Tree Automata with Size Constraints

In what follows, we work with the set D of all boolean combinations of formulae
of the form x−y"c or x"c, for some c ∈ Z and " ∈ {≤,≥}. We introduce equality
as x− y = c : x− y ≤ c∧ x− y ≥ c. Notice that negation can be eliminated from
any formula of D since x− y '≤ c ⇐⇒ x− y ≥ c + 1. Also, any constraint of the
form x− y ≥ c can be equivalently written as y− x ≤ −c. For a closed formula ϕ ,
we write |= ϕ to denote that ϕ is valid, i.e., equivalent to true.

A ranked alphabet Σ is a set of symbols together with a function # : Σ → N.
For f ∈ Σ , the value #(f) is said to be the arity of f . Symbols of zero arity are
referred to as constants. We denote by Σn the set of all symbols of arity n from Σ .
Let λ denote the empty sequence. A tree t over an alphabet Σ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

– dom(t) is a finite prefix-closed subset of N∗, and
– for each p ∈ dom(t), if #(t(p)) = n > 0, then {i | pi ∈ dom(t)} = {1, . . . ,n}.

A special case of a ranked alphabet is the binary alphabet in which all symbols
have arities either zero or two. Trees over binary alphabets are referred to as binary
trees.

A subtree of t starting at a position p ∈ dom(t) is a tree t|p defined as t|p(q) =
t(pq) if pq ∈ dom(t), and undefined otherwise. Given a set of positions P ⊆ N∗,

6

RB-Insert(T,x):
Tree-Insert(T,x); % Inserts a new leaf node x
x->colour = red;
while (x != root && x->parent->colour == red) {

if (x->parent == x->parent->parent->left) {
if (x->parent->parent->right->colour == red) {

x->parent->colour = black; % Case 1
x->parent->parent->right->colour = black;
x->parent->parent->colour = red;
x = x->parent->parent;

}
else {

if (x == x->parent->right) { % Case 2
x = x->parent;
LeftRotate(T,x);

}
x->parent->colour = black; % Case 3
x->parent->parent->colour = red;
RightRotate(T,x->parent->parent);

}
}
else % the same as above with right and left exchanged

}
root->colour = black;

Fig. 2 A procedure for inserting into red-black trees

we define the frontier of P as the set f r(P) = {p ∈ P | ∀i ∈ N pi '∈ P} i.e., the
set of tree positions from P whose direct successors are not in P any longer. For a
tree t , we use f r(t) as a shortcut for f r(dom(t)). If t is a tree and p = 〈p1, . . . , pn〉
is a sequence of positions pi ∈ dom(t), we denote by t •p 〈t1, . . . , tn〉 the result of
replacing each subtree t|pi by ti for all 1 ≤ i ≤ n. We denote by T (Σ) the set of all
trees over the alphabet Σ .

Intuitivelly, a tree mapping is a generalisation of a homomorphism that maps
each position from the domain of the source tree into a subtree of the destination
tree:

Definition 1 Given two trees t : N∗ → Σ and t ′ : N∗ → Σ ′, a function h : dom(t) →
dom(t ′) is said to be a tree mapping between t and t ′ if the following holds:
– h(λ) = λ , and
– for any p ∈ dom(t), if #(t(p)) = n > 0, then there exists a prefix-closed set

Q ⊆ N∗ such that pQ ⊆ dom(t ′) and h(pi) ∈ f r(pQ) for all 1 ≤ i ≤ n.

A size function (or measure) associates to every tree t ∈ T (Σ) an integer |t|∈Z.
Size functions are defined inductively on the structure of the tree. For each f ∈ Σ ,
if #(f) = 0, then | f | is a constant c f , otherwise, for #(f) = n, we have:

| f (t1, . . . , tn)| =

b1|t1|+ c1 if |= δ1(|t1|, . . . , |tn|)
. . .

bn|tn|+ cn if |= δn(|t1|, . . . , |tn|)

where b1, . . . ,bn ∈ {0,1}, c1, . . . ,cn ∈ Z, and δ1, . . . ,δn ∈ D, all depending on f .
In order to have a consistent definition, it is required that δ1, . . . ,δn define a parti-
tion of Nn, i.e., |= ∀x1 . . .∀xn

∨
1≤i≤n δi(x1, . . . ,xn) ∧

∧
1≤i< j≤n¬(δi(x1, . . . ,xn)∧

7

δ j(x1, . . . ,xn)).2 A sized alphabet (Σ , |.|) is a ranked alphabet with an associated
size function.

Example. The height of a binary tree is an example of a tree measure, defined as
|c|= 1, if #(c) = 0, and

| f (t1, t2)| =
{
|t1|+1 if |t1|≥ |t2|
|t2|+1 if |t2| < |t1|

if #(f) = 2.
A tree automaton with size constraints (TASC) over a sized alphabet (Σ , |.|) is

a 3-tuple A = (Q,∆ ,F) where Q is a finite set of states, F ⊆ Q is a designated set of

final states, and ∆ is a set of transition rules of the form f (q1, . . . ,qn)
ϕ(|1|, . . . , |n|)
−−−−−−−−−−→

q, where f ∈ Σ , #(f) = n, and ϕ ∈ D is a formula with n free variables. For con-
stant symbols a ∈ Σ , #(a) = 0, the automaton has unconstrained rules of the form
a −→ q.

A run of A over a tree t : N∗ → Σ is a mapping π : dom(t) → Q such that, for
each position p ∈ dom(t), where q = π(p), we have:

– if #(t(p)) = n > 0 and qi = π(pi), 1 ≤ i ≤ n, then ∆ has a rule

t(p)(q1, . . . ,qn)
ϕ(|1|, . . . , |n|)
−−−−−−−−−−→ q and |= ϕ(|t|p1|, . . . , |t|pn|),

– otherwise, if #(t(p)) = 0, then ∆ has a rule t(p) −→ q.

A run π is said to be accepting if and only if π(λ) ∈ F . As usual, the language of
A, denoted as L (A) is the set of all trees over which A has an accepting run.

Example. The following TASC recognises the set of all balanced red-black trees.
Let Σ = {red,black,null} with #(red) = #(black) = 2 and #(null) = 0. First, we
define the size function to be the maximal number of black nodes from the root to a
leaf: |null|= 1, |red(t1, t2)|= max(|t1|, |t2|), and |black(t1, t2)|= max(|t1|, |t2|)+1.
The TASC recognising the set of all balanced red-black trees may now be defined
as Arb = ({qb,qr},∆ ,{qb}) with the set of transition rules:

∆ = {null −→ qb,black(qb/r ,qb/r)
|1| = |2|
−−−−−−→ qb,red(qb,qb)

|1| = |2|
−−−−−−→ qr}

By using qx/y within the left-hand side of a transition rule, we mean the set of
rules in which either qx or qy take the place of qx/y. 12

Finally, for binary trees only, we define the notion of balance. For a given
binary tree t and a position p ∈ dom(t), we define the balance of t at p as the
difference |t|p0|− |t|p1| between the sizes of the left and right subtrees of p.

2 For technical reasons related to the decidability of the emptiness problem for TASC, we do
not allow arbitrary linear combinations of |ti| in the definition of | f (t1, . . . ,tn)|.

8

4 Closure Properties and Decidability of TASC

This section is devoted to the closure of the class of TASC under the operations
of union, intersection, and complement. The decidability of the emptiness problem
is also proved.

4.1 Determinisation

A TASC is said to be deterministic if, for every input tree, the automaton has
at most one run. For every TASC A, we can effectively construct a deterministic
TASC Ad such that L (A) = L (Ad). We adapt the classical subset construction
for determinising bottom-up tree automata. We have to take into account the fact
that in a deterministic TASC, two rules which have the same left-hand side should
not be applicable simultaneously. This problem is solved below by constructing
guards of transition rules of the deterministic TASC as conjunctions of the original
transition guards, which could otherwise be in a conflict, and their negations in all
possible combinations. This way, we ensure that all transitions with the same left-
hand side have guards that can never be satisfied simultaneously.

Concretely, let A = (Q,∆ ,F). We define Ad = (Qd ,∆d ,Fd) where Qd = P(Q),

Fd = {s ∈ Qd | s∩F '= /0}, and f (s1, . . . ,sn)
ϕ
−→ s ∈ ∆d if and only if:

s ⊆ {q| f (q1, . . . ,qn)
ψ
−→ q ∈ ∆ ,qi ∈ si}, and s '= /0

ϕ =
∧

{ψ| f (q1, . . . ,qn)
ψ
−→ q ∈ ∆ ,qi ∈ si, q ∈ s} ∧

∧
{¬ψ| f (q1, . . . ,qn)

ψ
−→ q ∈ ∆ ,qi ∈ si, q '∈ s}

In the case of transition rules involving constant symbols, we have a −→ s ∈ ∆d if
and only if s = {q |a −→ q ∈ ∆}. The following theorem proves that non-deterministic
and deterministic TASC recognise exactly the same languages.

Theorem 1 Ad is deterministic and L (Ad) = L (A).

Proof (1) To prove that Ad is deterministic, suppose t ∗−−→
Ad

s and t ∗−−→
Ad

s′, for some

t ∈ T (Σ) and two states s,s′ ∈ Qd . We prove s = s′ by induction on the structure
of t . If t = a ∈ Σ0, we have s = s′ = {q ∈ Q | a −→

A
q} by definition of Ad . Other-

wise, let t = f (t1, . . . , tn) for some f ∈ Σn and t1, . . . , tn ∈ T (Σ), and, by induction
hypothesis, there exist unique states si ∈ Qd such that ti

∗−−→
Ad

si, 1 ≤ i ≤ n. Sup-

pose that s '= s′, that is, there exists a state q ∈ Q which either belongs to s and
does not belong to s′ or vice-versa. Let us consider the first case, the other one

being symmetric. By the definition of Ad , ∆d has two rules f (s1, . . . ,sn)
ϕ
−→ s and

9

f (s1, . . . ,sn)
ϕ ′
−→ s′, and A has a rule f (q1, . . . ,qn)

ψ
−→ q, for some qi ∈ si, 1 ≤ i ≤ n,

such that ϕ ⇒ ψ and ϕ ′ ⇒ ¬ψ . But since s and s′ are reachable from t in Ad , it
must be the case that |= ϕ(|t1|, . . . , |tn|) and |= ϕ ′(|t1|, . . . , |tn|), which leads to a
contradiction. Hence s = s′.

(2) “L (Ad) ⊆ L (A)”. We prove inductively that, for all t ∈ T (Σ) and s ∈ Qd such
that t ∗−−→

Ad
s, for all q ∈ s, we have t ∗−→

A
q. If t = a ∈ Σ0, by definition of Ad , we have

s = {q | a −→
A

q}. Otherwise, t = f (t1, . . . , tn) for some f ∈ Σn and t1, . . . , tn ∈ T (Σ),

and ti
∗−−→

Ad
si, 1 ≤ i ≤ n. By induction hypothesis, for all qi ∈ si, we have ti

∗−→
A

qi.

By definition of Ad , there exists a rule r : f (s1, . . . ,sn)
ϕ
−→ s such that, for each

rule f (q1, . . . ,qn)
ψ
−→ q with qi ∈ si and q ∈ s, we have ϕ ⇒ ψ . Moreover, the rule

r is applicable for the subtrees t1, . . . , tn, i.e., |= ϕ(|t1|, . . . , |tn|). Hence, each rule

f (q1, . . . ,qn)
ψ
−→ q is applicable. Therefore, for all q ∈ s, we have t ∗−→

A
q. If s ∈ Fd ,

then, by the definition of Ad , there exists q ∈ s∩F . Thus t is accepted by A if it is
accepted by Ad .

“L (Ad) ⊇ L (A)”. We prove inductively that, for all t ∈ T (Σ) and q ∈ Q, if
t ∗−→

A
q, then there exists s ∈ Qd such that t ∗−−→

Ad
s and q ∈ s. If t = a ∈ Σ0, we

have s = {q | a −→ q} and ϕ = 5. Otherwise, t = f (t1, . . . , tn) for some f ∈ Σn

and t1, . . . , tn ∈ T (Σ), and ti
∗−→
A

qi, for some qi ∈ Q, 1 ≤ i ≤ n. By the induction

hypothesis, there exist some si ∈ Qd such that ti
∗−−→

Ad
si and qi ∈ si. Also, if t ∗−→

A

f (q1, . . . ,qn)
ψ
−→
A

q, then |= ψ(|t1|, . . . , |tn|). Consider now the set of guards G =

{ψ ′ | ∃q1 ∈ s1, . . . ,∃qn ∈ sn∃q′ ∈ Q. f (q1, . . . ,qn)
ψ ′
−−→
A

q′}, and Γψ be the set of all

subsets of G that contain ψ . For any set of guards I , we denote byΨI the formula∧
ϕ∈I ϕ ∧

∧
ϕ∈G \I ¬ϕ . Obviously, ψ =

∨
I ∈Γψ ΨI . Since |= ψ(|t1|, . . . , |tn|), there

exists some I ∈ Γψ such that |=ΨI (|t1|, . . . , |tn|). Now, let s = {q′ |∃q1 ∈ s1, . . . ,

∃qn ∈ sn. f (q1, . . . ,qn)
ψ ′
−−→
A

q′, ψ ′ ∈ I }, and ϕ = ΨI . Notice that q ∈ s. By the

definition of Ad , there exists a rule f (s1, . . . ,sn)
ϕ
−→ s in ∆d , and, moreover, it is

applicable, hence t ∗−−→
Ad

s. By the definition of Ad , if q ∈ F , then s ∈ Fd , hence t is

accepted by Ad if it is accepted by A. 12

10

4.2 Union, Intersection, and Complementation

Let us have two arbitrary TASCs A1 = (Q1,∆1,F1) and A2 = (Q2,∆2,F2). We can
assume w.l.o.g. that Q1 and Q2 are disjoint. Let A1 ∪A2 = (Q1 ∪Q2,∆1 ∪∆2,F1 ∪
F2).

Lemma 1 Given a sized alphabet Σ and two TASCs Ai = (Qi,∆i,Fi), i = 1,2, over
Σ , we have L (A1 ∪A2) = L (A1)∪L (A2).

Proof As in the standard case of tree automata, if t ∈ L (A1 ∪A2), then A1 ∪ A2
has an accepting run π : dom(t) → Q1 ∪ Q2 over t . Since Q1 ∩ Q2 = /0, we can
prove by induction on the structure of t that either (1) π(dom(t)) ⊆ Q1 or (2)
π(dom(t)) ⊆ Q2. In the first case, we have t ∈ L (A1), whereas in the second, we
have t ∈ L (A2), therefore L (A1 ∪A2) ⊆ L (A1)∪L (A2). The other direction is
trivial. 12

A TASC A = (Q,∆ ,F) is said to be complete if, for any tree t ∈ T (Σ), there
exists a state q ∈ Q such that t ∗−→

A
q. An arbitrary TASC can be completed by

adding a sink state σ '∈ Q and the following rules, for all f ∈ Σ , q1, . . . ,qn ∈ Q,
where n = #(f):

f (q1, . . . ,qn)
ϕ
−→ σ ∈ ∆c iff ϕ =

∧
{¬ψ | f (q1, . . . ,qn)

ψ
−→ q ∈ ∆}

f (q1, . . . ,σ , . . .qn)
5−→ σ ∈ ∆c

Above, ∆c denotes the set ∆ to which the new transition rules have been added.
The complete TASC is Ac = (Q ∪ {σ},∆c,F). Notice that if there are no rules

f (q1, . . . ,qn)
ψ
−→
A

q, then there is a rule f (q1, . . . ,qn)
5−−→
Ac

q. Note that if A is deter-

ministic, so is Ac.

Lemma 2 Given a sized alphabet Σ and a TASC A = (Q,∆ ,F) over Σ , we have
L (Ac) = L (A).

Proof Since the set of transition rules of Ac is a superset of ∆ , we have L (Ac) ⊇
L (A). By contradiction, suppose that there exists a tree t ∈ L (Ac)\L (A). Then
Ac has an accepting run πc on t , which uses at least one of the newly added rules.
But, since all the rules of Ac which are not in ∆ lead to σ , and all rules where σ oc-
curs on the left-hand side must have it on the right-hand side also, then πc(λ) = σ .
However, σ is not an accepting state of Ac, which contradicts the assumption that
πc is an accepting run of Ac. 12

The complement of a deterministic complete TASC A = (Q,∆ ,F) is defined
as A = (Q,∆ ,Q\F).

Lemma 3 Given a sized alphabet Σ and a complete deterministic TASC A =
(Q,∆ ,F) over Σ , we have t ∈ L (A) if and only if t '∈ L (A) for any t ∈ T (Σ).

11

Proof If A is complete and deterministic, then for each t ∈ T (Σ), A has exactly
one run π : dom(t) → Q. If t ∈ L (A), then π is accepting, and π(λ) ∈ F . In this
case, π is not accepting for A, hence t '∈ L (A). The other direction is symmetric.
12

Since we can construct automata for union and complement of TASC, it is
possible to define intersection as A1 ∩A2 = A1 ∪A2.

4.3 Deciding Emptiness

This section is dedicated to the decidability proof for TASC. We show that all
runs of a TASC are in direct correspondence to the accepting runs of an effec-
tivelly constructed Alternating Pushdown System (APDS). The existence of ac-
cepting runs for APDS is a well-known decidable problem, which occurs as a
consequence of the results in [4]. Namely, it is shown that, given a regular set
C of configurations (pairs of the form 〈q,w〉, where q is a control state, and w
is the contents of the stack), the set pre∗(C) of all predecessor configurations
is also regular and can be effectivelly computed from C. In particular, the set
pre∗

q(C) = {w | 〈q,w〉 ∈ pre∗(C)} is also regular, and effectively computable from
C. In other words, if the APDS has a run leading from a control state q0 into a
state in C if and only if the set pre∗

q0
is not empty. Since the latter is a regular set

(recognized by an alternating automaton) its emptiness is decidable. This entails
the decidability of the emptiness problem for APDS.

Given an arbitrary TASC, we translate it into an APDS whose stack encodes
the value of one integer counter, denoted by y from now on. An APDS is a 4-tuple
S = (Q,Γ ,δ ,F) where:

– Q is a finite set of control locations,
– Γ is a finite stack alphabet,
– F ⊆ Q is a set of final control locations,
– δ is a mapping from Q×Γ into P(P(Q×Γ ∗)).

Notice that an APDS does not have an input alphabet since we are interested in the
behaviours it generates, rather than in the accepted language. A run of an APDS is
a tree t : N∗ → (Q×Γ ∗) satisfying the following property: for any p ∈ dom(t), if
t(p) = 〈q,γw〉, then {t(pi) | 1 ≤ i ≤ #(t(p))}= {〈q1,w1w〉, . . . ,〈qn,wnw〉}, where
{〈q1,w1〉, . . . ,〈qn,wn〉} ∈ δ (q,γ). The run is accepting if all control locations oc-
curring on its frontier are final.

For a TASC A = (Q,∆ ,F) over a sized alphabet (Σ , |.|), let SA = (QA,Γ ,δA,FA)
be the APDS where QA = Q×Σ ∪Π , Γ = {−,0,1}, and FA = {qf }⊂ Π . Here, Π
is an additional set of states that are needed in the construction of SA from A and
that are not of the form 〈q, f 〉. We use 0 as the beginning of the stack marker, −
on top of the stack denotes a negative value, and 1 is used for the unary encoding
of the absolute value of the counter. We represent an integer value n ∈ Z using the
unary encoding:

(n)1 =
{

1n0, if n ≥ 0
−1−n0 if n < 0

12

The primitive operations on the counter y, i.e., increment, decrement, and zero test,
are encoded by the moves given in Figure 3. For example, if the value of y in a con-
trol state q is −2, a transition that increments y and moves into q′ is simulated by
the following sequence of moves: 〈q,−110〉! 〈q−,110〉! 〈q′−,10〉! 〈q′,−10〉.
Note that (−2)1 = −110 and (−1)1 = −10.

q
y′ = y+1−−−−−−−→ q′ q

y′ = y−1−−−−−−−→ q′ q
y = 0−−−−→ q′

〈q,1〉 ↪→ 〈q′,11〉
〈q,0〉 ↪→ 〈q′,10〉
〈q,−〉 ↪→ 〈q−,ε〉
〈q−,1〉 ↪→ 〈q′−,ε〉
〈q′−,1〉 ↪→ 〈q′,−1〉
〈q′−,0〉 ↪→ 〈q′,0〉

〈q,1〉 ↪→ 〈q′,ε〉
〈q,0〉 ↪→ 〈q′,−10〉
〈q,−〉 ↪→ 〈q′,−1〉

〈q,0〉 ↪→ 〈q′,0〉

Fig. 3 Encoding a counter by a stack

Let Perm(N) denote the set of all permutations I : {1, . . . ,N} →{ 1, . . . ,N}.
For technical reasons, the following lemma is needed in the rest of the section.

Lemma 4 Every formula ϕ(x1, . . . ,xN) of D can be effectively written as a dis-
junction of formulae of the following form, for a suitable permutation I ∈ Perm(N)
of its free variables :

N−1∧

k=1
xI(k) − xI(k+1) "k ck ∧

∧

m∈M⊆{1,...,N}
xm ≤ dm ∧

∧

p∈P⊆{1,...,N}
xp ≥ ep

where "k ∈ {≤,=} and ck,dm,ep ∈ Z.

Proof First, we eliminate all occurences of negation and ≥. Second, we replace
any conjunction of the form c1 ≤ x− y ≤ c2 for c1 < c2 (for c1 > c2, the conjunc-
tion is not satisfiable and the original formula can be simplified accordingly), by
the disjunction

∨
c∈{c1,c1+1,...,c2} x = y + c. Third, we put the resulting formula in

DNF and process each disjunct as follows.
For each permutation I ∈ Perm(N) of the free variables in ϕ , we define the in-

duced ordering θI : xI(1) ≤ xI(2) ≤ . . . ≤ xI(N). Let Θ =
∨

I∈Perm(N) θI be the (log-
ically valid) disjunction of all possible orderings of the free variables x1, . . . ,xN .
In the following, we work with the DNF form of ϕ ∧Θ , in which each disjunct
is necessarily associated with some ordering. We transform each clause (disjunct)
θI ∧ψ of the DNF form of ϕ ∧Θ by applying one of the four cases below for each
constraint xi − x j " c, " ∈ {≤,=}, occurring in ψ:

1. If θI ⇒ xi ≤ x j and c ≤ 0, then there exist xi = xI(k) ≤ xI(k+1) ≤ . . . ≤ xI(l) = x j

in θI . Let C = {〈ck, . . . ,cl−1〉 | ci ≥ 0,k ≤ i < l, ∑l−1
i=k ci = c}. Since C is finite,

we can replace xi −x j "c by the equivalent formula
∨

c∈C
∧

k≤i<l xI(i) −xI(i+1) "
ci.

2. The case of θI ⇒ xi ≥ x j and c ≥ 0 is treated in a symmetric way with the first
point.

13

3. If θI ⇒ xi ≤ x j and c > 0, the constraint is trivially valid and can be eliminated
from the clause. In the case where xi −x j "c is the only constraint in the clause,
the original formula ϕ is valid.

4. If θI ⇒ xi ≥ x j and c < 0, we discard the entire clause θI ∧ψ as unsatisfiable. In
the case where this was the only clause, the original formula ϕ is unsatisfiable.

In the resulting formula, we replace:

– any conjunction of constraints of the form x− y ≤ c′ ∧ x− y ≤ c′′ by x− y ≤
min(c′,c′′),

– any conjunction of constraints of the form x − y = c′ ∧ x − y = c′ by simply
x− y = c′,

– any conjunction of constraints of the form x−y ≤ c′ ∧x−y = c′′ by x−y = c′′

if c′′ ≤ c′, and
– any conjunction containing a subformula of the form x− y" c′ ∧ x− y = c′′ by

⊥ if c′ < c′′.

12

We shall encode a move of A as a series of moves of SA. As A moves bottom-up
on the tree, SA will perform a series of alternating top-down transitions, simulating
the move of A in reverse. The stack (counter) of SA is intended to encode the value
of the size function |.| at the current tree node.

Suppose that A has a transition rule f (q1, . . . ,qn)
ϕ
−→ q and that the current

node is of the form f (t1, . . . , tn) with | f (t1, . . . , tn)| = br|tr|+ cr, and δr is the dis-
junctive condition such that |= δr(|t1|, . . . , |tn|), according to the definition of the
size function (see Section 3). W.l.o.g., we consider from now on that ϕ and δr
have the same set of free variables, denoted x1, . . . ,xn. In what follows, we con-
sider the case br = 1, i.e., | f (t1, . . . , tn)| = |tr|+ cr. The case br = 0 can be treated
in a similar way, by guessing the value |tr|. The position r is said to be the refer-
ence position of the subtree f (t1, . . . , tn). The value |tr| is said to be the reference
value of f (t1, . . . , tn).

Without losing generality, we consider that the difference constraint formula
ϕ ∧δr ∈ D has already been converted into the normal form of Lemma 4, that is,
a disjunction of formulae of the form:

n−1∧

k=1
xI(k) − xI(k+1) "k dk ∧

∧

m∈M⊆{1,...,n}
xm ≤ em ∧

∧

p∈P⊆{1,...,n}
xp ≥ lp

where "k ∈ {≤,=}, dk,em, lp ∈ Z, and I ∈ Perm(n). For the rest of this section, let
us fix one such disjunct.

After each sequence of universal moves, SA creates n copies of its counter y,
let us name them y1, . . . ,yn. The counter yi is intended to hold the value |tI(i)| for
1 ≤ i ≤ n, and the counter y holds the value | f (t1, . . . , tn)|. Let ir = I−1(r) be the
index of the counter yir that holds the reference value of the given transition, i.e.,
y = yir + cr. With this notation, Figure 4 (a) shows the alternating moves of SA
that simulate the A-transition considered, for one disjunct of ϕ ∧δr. Figure 4 (b)
shows the moves for transitions of the form a −→ q.

14

(c)

y = 0

. . .
yir

y′ = y−1

. . .

. . .

〈qI(ir+1) , fI(ir+1) , (yir+1)1〉

ν1

(a)

. . .

. . .

ν2

ν3

y′ = y−1

y′ = y+ 1

. . .

y′ = y− sgn(|a|)

(b)

〈q,a, (y)1〉

〈q, f , (ym)1〉

y′ = y+ 1

〈qI(ir−1) , fI(ir−1) , (yir−1)1〉

y′ = y− sgn(cr)

yir+1
〈q, f , (y)1〉

y′ = y− sgn(em)

. . .

. . .
y = 0

y′ = y+ 1

y′ = y+ sgn(dir−1)

y′ = y− sgn(dir+1)

〈qr , fr , (yir)1〉

yir−1

Fig. 4 Simulation of a TASC by an APDS

Filled circles in Figure 4 represent states from Q × Σ , and empty circles are
additional states from Π . The only accepting state of SA, named qf , is marked by
a double circle. The notation sgn(. . .) denotes the sign function, i.e., sgn(n) = 1 if
n > 0, sgn(0) = 0, and sgn(n) = −1 if n < 0. Next, ν1,ν2, . . . are symbolic names
for the universal moves performed by SA. Further, in what follows, we will denote
a configuration 〈〈q, f 〉,u〉 of SA by writing 〈q, f ,u〉. In particular, in Figure 4,
configurations from Q × Σ ×Γ ∗ are labeled by triples of the form 〈q, f ,(y)1〉.
Here, (y)1 denotes the unary encoding of the value of the y counter. Moreover, for
simplicity, configurations from Π ×Γ ∗ are labeled only with (y)1 in Figure 4.

When simulating the A-transition f (q1, . . . ,qn)
ϕ
−→ q, SA starts with the config-

uration 〈q, f ,(y)1〉 (cf. Figure 4 (a)). In order to derive the reference value yir from
y, SA performs |cr| decrement or increment actions, depending on whether the sign
of cr is positive or negative. Then SA performs the universal move ν1 making three
copies of itself (unless ir = 1 when the upper branch is omitted and/or ir = n when
the lower branch is omitted). The middle branch simply moves to the appropriate
control state 〈qr, fr〉 with stack (yir)1. The upper and lower branches are used to
produce the values yir−1 and yir+1 if needed.

The upper branch of the universal move ν1 depicted in Figure 4 depends on
"r ∈ {≤,=}. If "r is =, then SA performs a sequence of increment/decrement
operations of length dir−1 in order to obtain the value yir−1 from yir (since yir−1 =
yir + dir−1). If "r is ≤, then there is an additional existential (non-deterministic)
transition—depicted using a dotted arrow in Figure 4 (a)—which decrements the
counter an arbitrary number of times in order to obtain a smaller value (since
yir−1 ≤ yir +dir−1).

15

A similar sequence of transitions is performed by the lower branch of ν1. Note
that the symbols fI(ir−1), fr, fI(ir+1) are chosen arbitrarily, that is, for each triple
(g1,g2,g3) ∈ Σ3

n , SA performs three universal moves that are identical to ν1,ν2,ν3,
with g1, g2, and g3 substituted for fI(ir−1), fr, and fI(ir+1), respectively.

Next, if ir − 1 > 1, the simulation continues with the binary universal move
ν2. The lower branch of ν2 changes the control into 〈qI(ir−1), fI(ir−1)〉 without
changing the stack. The upper branch of ν2 leads to a control state from Π , from
which the remaining values yir−2, . . . ,y1 are produced. Symmetrically, the univer-
sal move ν3 leads to configurations producing the values yir+1, . . . ,yn.

Clearly, the values of the counters y1,y2, . . . ,yn that are obtained in the way
described above will satisfy the constraint ϕ ∧ δr when used as the sizes of the
subtrees tI(1), tI(2), ..., tr, ..., tI(n). Moreover, at the same time, any assignment sat-
isfying this formula can be obtained in some run of SA by iterating the incre-
ment/decrement self-loops a sufficient number of times.3

In order to simulate moves of the form a −→ q (Figure 4 (b)), SA simply decre-
ments/increments the counter, depending on the sign of |a|, a number of times
equal to the absolute value of |a|. The condition y = 0 ensures that SA accepts only
with the empty stack. The universal dotted branch in Figure 4 (c) is used to test that
ym ≤ em for some 1 ≤ m ≤ n. A similar test for yp ≥ lp can be issued by replacing
y′ = y +1 with y′ = y−1 on the loop. The following lemma is a concretisation of
the above considerations:

Lemma 5 Let A = (Q,∆ ,F) be a TASC over a sized alphabet (Σ , |.|) and let SA
be its corresponding APDS.

1. For any tree t ∈ T (Σ) and any run π : dom(t) → Q of A on t, there exists an
accepting run ρ : N∗ → (Q×Σ ∪Π)×Γ ∗ of SA and an injective tree mapping
h : dom(t) → dom(ρ) between π and ρ such that:

∀p ∈ dom(t) . ρ(h(p)) = 〈π(p), t(p),(|t|p|)1〉 (1)

2. For any accepting run ρ : N∗ → (Q × Σ ∪ Π)×Γ ∗ of SA, there exists a tree
t ∈ T (Σ), a run π : dom(t) → Q of A on t, and an injective tree mapping
h : dom(t) → dom(ρ) between π and ρ satisfying (1).

Proof (Part 1.) Let t ∈ T (Σ) be a tree and π : dom(t) → Q be a run of A on t . We
prove the existence of ρ and h by induction on the structure of t .

If t = a, the only runs of A on t are generated by applying rules of the form a −→
q. In this case, for any a −→ q, ρ is the accepting run of SA starting in 〈q,a,(|a|)1〉
and ending with the empty stack as shown in Figure 4 (b). The tree mapping h is
such that h(λ) = λ and h is undefined everywhere else. Clearly, h is an injective
tree mapping (cf. Definition 1), and property (1) is satisfied.

If t = f (t1, . . . , tn), a run of A over t has the form t ∗−→ f (q1, . . . ,qn)
ϕ
−→ q,

for some runs ti
∗−→ qi, 1 ≤ i ≤ n, and a transition rule f (q1, . . . ,qn)

ϕ
−→ q ∈ ∆ . Let

1 ≤ r ≤ n be the unique integer such that |t|= |tr|+cr, and |=(ϕ ∧δr)(|t1|, . . . , |tn|).
3 Notice that since APDS do not have input, the universal branches are not synchronised,

hence the iterations can be performed separately.

16

By Lemma 4, there exists a permutation I ∈ Perm(n), and integers dk,em, lp ∈ Z
such that :

n−1∧

k=1
|tI(k)|− |tI(k+1)|"k dk ∧

∧

m∈M⊆{1,...,n}
xm ≤ em ∧

∧

p∈P⊆{1,...,n}
xp ≥ lp

By the induction hypothesis, for each 1 ≤ i ≤ n, SA has an accepting run ρi
starting in a configuration 〈qi, ti(λ),(|ti|)1〉, and there exist injective tree mappings
hi : dom(ti) → dom(ρi) satisfying property (1).

According to the construction in Figure 4 (a), SA has a run θ starting in
〈q, f ,(|t|)1〉 whose frontier forms a sequence p = 〈p1, . . . , pn〉 such that θ (pk) =
〈qI(k), tI(k)(λ),(|tI(k)|)1〉 for all 1 ≤ k ≤ n.

Note that for each subterm ti of the term t = f (t1, . . . , tn), 1 ≤ i ≤ n, we can
match the control state 〈qi, ti(λ)〉, from which the run ρi accepting ti starts, with
the control state 〈qI(k), tI(k)(λ)〉 at the position k = I−1(i) of the frontier of θ . This
is due to the construction in Figure 4 (a), which produces, for each transition rule
f (q1, . . . ,qn) −→ q of A, a set of runs of SA ending in control states of the form
〈qi,g〉 for all g ∈ Σ . It is sufficient to choose from this set the run(s) for which
gi = ti(λ) for all 1 ≤ i ≤ n.

Also, the construction in Figure 4 (a), when started with the value of the
counter y being |t|, produces the values |ti| in the counters yI−1(i), 1 ≤ i ≤ n, such
that |t|= |tr|+cr and |= (ϕ ∧δr)(|t1|, . . . , |tn|). With the above considerations, this
ensures that θ(pk) = ρI(k)(λ) for all 1 ≤ k ≤ n.

With these definitions, the accepting run ρ of SA can be constructed as ρ = θ •p
〈ρI(1)(λ), . . . ,ρI(n)(λ)〉. One can see that ρ is accepting since each ρi is accepting
for all 1 ≤ i ≤ n.

The mapping h is defined such that h(λ) = λ , and for each 1 ≤ i ≤ n, for all
p ∈ dom(ti), h(ip) = pI−1(i) · hi(p). The proof that h is an injective tree mapping
(cf. Definition 1) satisfying property (1) is straightforward.

(Part 2.) Let ρ : N∗ → (Q × Σ ∪ Π)×Γ ∗ be an accepting run of SA. For an
arbitrary position p ∈ dom(ρ), let us denote by ρ↓p the restriction of ρ to the set
{u ∈ N∗ | ∀w . p ≺ w ≺ p ·u ⇒ ρ(w) ∈ Π ×Γ ∗}. Let P = {p ∈ dom(ρ) | ρ(p) ∈
Q×Σ ×Γ ∗}, and notice that ρ can be written as a composition of elementary runs
ρ↓p for p ∈ P. We prove the existence of t , π , and h by induction on the number
N of elementary runs in ρ .

For the base case N = 1, since ρ is accepting, the only possibility is that ρ
is the result of simulating an existing rule a −→ q ∈ ∆ according to Figure 4 (b).
Then, ρ(λ) = 〈q,a,γ〉, and by the construction of SA, we have that γ = (|a|)1. We
then define dom(t) = dom(π) = {λ}, t(λ) = a, and π(λ) = q. Also, let h(λ) = λ ,
and h be undefined everywhere else. The proof that t , π , and h satisfy property (1)
is straightforward.

For the induction step N > 1, let ρ↓λ be the top-most elementary run of ρ .
Let ρ(λ) = 〈q, f ,u〉 be the starting configuration of ρ , and p = 〈p1, . . . , pn〉 be the
sequence of positions on f r(ρ↓λ), i.e., ρ = (ρ↓λ)•p 〈ρ|p1 , . . . ,ρ|pn〉. Let ρ(pk) =
〈qk, fk,uk〉 for all 1 ≤ k ≤ n.

17

By the induction hypothesis, for each ρ|pk , 1 ≤ k ≤ n, there exist trees tk, runs

πk : dom(tk) → Q of the form tk
∗−→ qk, and injective tree mappings hk : dom(tk) →

dom(ρk) satisfying property (1). Consequently, fk = tk(λ) and uk = (|tk|)1 for all
1 ≤ k ≤ n.

Henceforth, we consider that n > 1, the case n = 1 being left to the reader. By
the construction in Figure 4 (a), there exist:

– a transition rule f (q1, . . . ,qn)
ϕ(x1, . . . ,xn)−−−−−−−−−→ q ∈ ∆ ,

– a permutation I ∈ Perm(n) such that |= ϕ(|tI−1(1)|, . . . , |tI−1(n)|),
– a reference position 1 ≤ r ≤ n such that u = (| f (tI−1(1), . . . , tI−1(n))|)1,
| f (tI−1(1), . . . , tI−1(n))| = |tI−1(r)|+ cr, and |= δr(|tI−1(1)|, . . . , |tI−1(n)|).

With these definitions, let t = f (tI−1(1), . . . , tI−1(n)), and π be the tree defined as
π(λ) = q, and, for all 1 ≤ i ≤ n and all p ∈ dom(πI−1(i)), π(ip) = πI−1(i)(p). It is
easy to see that π is a run of A over t .

The mapping h is defined such that h(λ) = λ , and for each 1 ≤ i ≤ n, for all
p ∈ dom(tI−1(i)), h(ip) = pI−1(i) · hI−1(i)(p). The proof that h is an injective tree
mapping satisfying property (1) is straightforward. 12

We can now formalise the main result of this subsection.

Theorem 2 Let A be a TASC. The problem whether L(A) = /0 is decidable.

Proof Due to Lemma 5, we know that a tree with a root symbol f ∈ Σ is accepted
at a state q of a TASC A = (Q,∆ ,F) over a sized alphabet Σ iff there is an accept-
ing run from the control state 〈q, f 〉 in the appropriate APDS SA = (QA,Γ ,δA,FA).
It is thus enough to use the result of [4] (mentioned at the begining of the section)
to check whether for some 〈q, f 〉 ∈ QA where q ∈ F , pre∗

〈q, f 〉({〈qf in,ε〉}) is non-
empty. Here, qf in is the unique final state of the APDS SA constructed according
to Figure 4. 12

Remark. The decidability of the emptiness problem for TASC can also be proved
via a reduction to the class of tree automata with one memory [8] by encoding the
size of a tree as a unary term. The inequality constraints from the guards of the
TASC can be simulated analogously by adding increment/decrement self loops to
the tree automata with one memory.

5 Semantics of Tree Updates

As explained in Section 2, there are three types of operations that commonly ap-
pear in procedures used for balancing binary trees after an insertion or deletion:
(1) navigation in a tree, i.e., testing or changing the position that a pointer vari-
able is pointing to in the tree, (2) testing or changing certain data fields of the
encountered tree nodes, such as the colour of a node in a red-black tree, and (3)
tree rotations. In addition, one has to consider the physical insertion or deletion
to/from a suitable position in the tree as an input for the re-balancing.

18

It turns out that the TASC defined in Section 3 are not closed with respect to
the effect of some of the above operations, in particular the ones that change the
balance of subtrees (the difference between the size of the left and right subtree
at a given position in the tree). Therefore, we now introduce a subclass of TASC
called restricted TASC (rTASC), which we show to be effectively closed with re-
spect to all the needed operations on balanced trees. Moreover, rTASC are closed
with respect to intersection and union, amenable to determinisation and minimisa-
tion, though not closed with respect to complementation. The idea is to use rTASC
to express loop invariants and pre- and post-conditions of programs as well as to
perform the necessary reachability computations. TASC are then used in the asso-
ciated language inclusion checks (where they arise via negation of rTASC).

Remark. To simplify the presentation of the effect of program statements on a set
of memory configurations given by an rTASC, we suppose in the following that the
statements do not lead to a memory error (like a null pointer dereference or sim-
ilar). However, it is easy to implement tests for these potential errors over sets of
memory configurations described by rTASCs in the same way as regular program
conditions (i.e., if statements) are implemented, which we explain in Section 5.4.

5.1 Restricted TASC

A restricted alphabet is a sized alphabet consisting only of nullary and binary
symbols and a size function of the form | f (t1, t2)| = max(|t1|, |t2|)+a with a ∈ Z
for binary symbols. A restricted TASC is a TASC with a restricted alphabet and

with binary rules of the form f (q1,q2)
|1|− |2| = b
−−−−−−−−−→ q with b ∈ Z only.

Notice that any conjunction of guards of an rTASC and their negations reduces
either to false, or to only one formula of the same form, i.e., |1|−| 2| = b. Using
this fact, one can show that the intersection of two rTASCs is again an rTASC,
and that applying the determinisation of Section 4.1 to an rTASC yields another
rTASC. Moreover, due to the fact that the guards of the transition rules of rTASCs
contain at most two variables, it is not necessary to apply the potentially expensive
step of converting them into the normal form described in Lemma 4, when decid-
ing emptiness of rTASCs. Further, the intersection of an rTASC with a classical
tree automaton is again an rTASC.4 On the other hand, it is clear that rTASCs are
not closed under complementation as inequality guards are not allowed.

Minimisation of rTASC. The simple form of the guards allows us to have a prac-
tical minimisation procedure based on the minimisation for classical bottom-up
tree automata [9]. If (Σ , |.|) is a restricted alphabet, let Σδ be the infinite ranked
alphabet {〈 f ,d〉 | f ∈ Σ ,d ∈ Z} with #(〈 f ,d〉) = #(f). For any t ∈ T (Σ), let
δ (t) ∈ T (Σδ) be the tree defined as follows:

– dom(t) = dom(δ (t)),
– for all p ∈ dom(t), if #(t(p)) = 0, we have δ (t)(p) = 〈t(p), |t(p)|〉, and
– for all p ∈ dom(t), if #(t(p)) = 2, we have δ (t)(p) = 〈t(p), |t|p1|− |t|p2|〉.

4 A bottom-up tree automaton can be seen as a TASC in which all guards are true.

19

In other words, we record the balance of each subtree in the symbol that labels the
root of the subtree. For constant symbols, we simply put their measures as labels
in the tree. Obviously, δ is a (bijective) function from T (Σ) to T (Σδ), which we
extend pointwise to sets of trees. If A is an rTASC over the restricted alphabet
(Σ , |.|), let Aδ be the bottom-up tree automaton over Σδ defined by replacing each
transition rule of A of the form:
– a −→ q by 〈a, |a|〉 −→ q, and

– f (q1,q2)
|1|− |2| = b
−−−−−−−−−→ q by 〈 f ,b〉(q1,q2) −→ q.

Note that we can always define Aδ over a finite subset of Σδ since the number of
rules in A is finite. Moreover, the size of A (number of states) equals the size of
Aδ . Last, the transformation of A into Aδ is always reversible.

Lemma 6 Given an rTASC A over a sized alphabet (Σ , |.|), for all trees t ∈ T (Σ),
we have t ∈ L (A) if and only if δ (t) ∈ L (Aδ).

Proof We prove that t ∗−→
A

q iff δ (t) ∗−−→
Aδ

q by induction on the structure of t . If t =

a ∈ Σ0, a −→
A

q if and only if δ (a) = 〈a, |a|〉 −−→
Aδ

q. Otherwise, let t = f (t1, t2)
∗−→
A

f (q1,q2)
|1|− |2| = b
−−−−−−−−−→

A
q with ti

∗−→
A

qi, 1 ≤ i ≤ 2. Then, |t1|− |t2|= b, hence δ (t) =

〈 f ,b〉(δ (t1),δ (t2)). By the induction hypothesis, we have δ (ti)
∗−−→

Aδ
qi, and, by the

definition of Aδ , 〈 f ,b〉(q1,q2) −−→
Aδ

q. The other direction is symmetrical. 12

Now, given an rTASC A, we compute Aδ , determinise and minimise it us-
ing the classical construction from [9], obtaining Aδ

min. The minimal rTASC
Amin is subsequently obtained by performing a reverse of the conversion from
rTASC to tree automata on Aδ

min, i.e., by moving back the integer constants
from the symbols to the guards. To convince ourselves that Amin is indeed min-
imal, suppose there exists a smaller rTASC A′ recognising the same language, i.e.,
L (A)= L (Amin) = L (A′). Then, δ (L (A))= δ (L (A′))= L (A′

δ)= L (Aδ
min).

Since A′ and A′
δ have the same number of states, we contradict the minimality of

Aδ
min.

5.2 Representing Sets of Memory Configurations

To be able to describe how tree rotations (and the other considered operations) can
be implemented over rTASC, we first have to explain how rTASC can be used for
describing sets of memory configurations of programs manipulating balanced tree
structures like red-black trees or AVL trees. Intuitively, we map memory config-
urations (i.e., heap graphs) having the form of trees node-by-node onto the trees
accepted by rTASC, with the nodes labelled by (1) the variables pointing to them
and by (2) the data elements stored in them. We also use the label null to denote
null successors of leaf nodes.

20

Formally, let us consider a finite set of pointer variables V = {x,y, . . .} and
a finite set of data values D , e.g., D = {red,black}. In the following, we let Σ =
P(V)×D ∪ {null}. The arity function is defined as follows: #(f) = 2 for all
f ∈ P(V)×D , and #(null) = 0. For any non-null symbol f ∈ P(V)×D , let
v(f) ⊆ V and d(f) ∈ D denote the variables pointing to the tree node labelled
with f and the data value of this node, respectivelly, i.e., f = (v(f),d(f)). For
a tree t ∈ T (Σ) and a variable x ∈ V , we say that a node p ∈ dom(t) is pointed
to by x if and only if t(p) '= null and x ∈ v(t(p)). If there is no node pointed by
a variable x ∈ V in a tree t ∈ T (Σ), i.e., ∀p ∈ dom(t). t(p) '= null ⇒ x '∈ v(t(p)),
we assume x to be null.5

For the rest of the section, let A = (Q,∆ ,F) be an rTASC over Σ . We say
that A represents a set of memory configurations if and only if for each t ∈ L(A)
and each x ∈ V , there is at most one p ∈ dom(t) that is pointed to by x. This
condition can be always enforced by intersecting any given rTASC by the rTASC
A′ = (Q′,∆ ′,Q′) where Q′ = P(V), and ∆ ′ = {null −→ /0}∪{ f (v1,v2)

5−→ v |
v = v(f)∪v1∪v2 ∧ v(f)∩v1 = v(f)∩v2 = v1∩v2 = /0}. Intuitively, A′ remembers
in its control locations all so-far encountered variables and ensures that no variable
is encountered twice.

An example of an rTASC representing within the described encoding the set
of memory configurations correponding to the invariant in the red-black tree in-
sertion procedure can be found at the beginning of Section 6.

5.3 Computing the Effect of Tree Rotations

Let x ∈ V be a fixed variable, and A = (Q,∆ ,F) be an rTASC. We now give
a method for deriving an rTASC A′ = (Q′,∆ ′,F ′) describing the set of trees that
are the result of a left rotation applied to trees from L(A) at the node pointed to by
x. The case of the right tree rotation is very similar and so we skip it here.6 In the
description, we will be referring to Figure 5 illustrating the problem.

Let Rx(∆) = {(r1,r2) ∈ ∆ ×∆ | r1 : f (q1,q2)
ϕ3−−→ q3 ∧ r2 : g(q4,q3)

ϕ5−−→ q5 ∧
x ∈ v(g)} be the set of all the pairs of automata rules from ∆ that can yield a ro-
tation, and be modified because of it. Other rules may then have to be modified to
reflect:

– changes of some control states, for instance the change of q5 to q′
3 in rule r3

from Figure 5, or
– changes of balance resulting from the rotation, i.e., changes in the difference

between the sizes of left and right subtrees, which get propagated from the
rotated subtree upwards.

To define the resulting automaton, we use an auxiliary set D ⊆ Z which con-
tains all the changes in balance that may occur in any tree from L(A), due to
a rotation at x. The set D is the smallest set such that:

5 For simplicity, we do not explicitly distinguish null and undefined pointer values. Such a
distinction could, however, be easily introduced.

6 In fact, it can be implemented by temporarily swapping the child nodes in the involved rules,
doing a left rotation, and then swapping the child nodes again.

21

q1 q2

q3q4

q5

s1 s2

s3 = (s1 >= s2) ? (s1 + b1) : (s2 + b1)s4

f

g
[$3: s1 = s2 + a1]

[$5: s4 = s3 + a2]

s5 = (s4 >= s3) ? (s4 + b2) : (s3 + b2)

q4 q1

s4 s1
g

q2

s’5
f

s2

s’3

[$’3]

[$’5]

r1:

r2:

h

q7

h

(q7,d’’)

x: q’3 = qd
r1,r2

q’5 = qr1,r2
x:

r3:

Fig. 5 Left rotation on an rTASC

– iniD(r1,r2) ∈ D, for all (r1,r2) ∈ Rx, and

– le f tD(a,d) ∈ D, rightD(a,d) ∈ D, for all d ∈ D and f (q1,q2)
|1| = |2|+a
−−−−−−−−−→

q3 ∈ ∆ .

The function iniD computes the initial disbalance caused by the rotation, while
le f tD and rightD propagate upward the disbalance that happened in the left or
right subtree of some node, respectivelly. The definitions of these functions are
the subject of Sections 5.3.1 and 5.3.2. Lemma 7 shows that the set D is finite,
which guarantees that A′ can be computed in a finite number of steps.

The set of states of A′ is defined as Q′ = Q∪Qx ∪QD
x ∪QD, where Qx,QD

x and
QD are pairwise disjoint sets, all disjoint from Q, defined as:

– Qx = {qr1,r2 | (r1,r2) ∈ Rx(∆)} contains a new state for each pair of transition
rules involved in the rotation, which accepts the former root of the rotated
subtree that went down in the rotation.

– QD
x = {qd

x | qx ∈ Qx ∧ d ∈ D} is the set of states accepting the nodes that went
up in the rotation and became the new root of the rotated subtree.

– QD = {qd | q ∈ Q ∧ d ∈ D} is the set of states accepting all contexts of
subtrees changed by the rotation (i.e., the tree nodes that appear above the
rotated subtree).

The set ∆ ′ of transition rules of A′ is defined as the limit of the increasing
sequence of sets ∆ ′

0 ⊆ ∆ ′
1 ⊆ ∆ ′

2, . . ., i.e., ∆ ′ =
⋃

i≥0 ∆ ′
i , where ∆ ′

0 = ∆ , and ∆ ′
i+1 is

obtained from ∆ ′
i by applying one of the rules in Figure 6. Since, by Lemma 7,

the set D is finite, it is obvious that the limit is reached in a finite number of steps.
The functions lPhi and rPhi that compute the guards of the newly added rules, are
given in Section 5.3.1.

The set of final states of A′ is defined as F ′ = {qd | q ∈ F}∪{qd
r1 ,r2

| (r1,r2) ∈

Rx ∧ d = iniD(r1,r2) ∧ r1 : f (q1,q2)
ϕ3−−→ q3 ∧ r2 : g(q4,q3)

ϕ5−−→ q5 ∧ q5 ∈ F}.

Intuitivelly, the states from {qd | q ∈ F} ensure that we accept only the trees in
which a rotation actually occurred in some subtree. Additionaly, the states qd

r1,r2
∈

22

(r1,r2) ∈ Rx(∆ ′
i) r1 : f (q1,q2)

ϕ3−−→ q3 r2 : g(q4,q3)
ϕ5−−→ q5

g(q4,q1)
lPhi(r1,r2)−−−−−−−−→ qr1,r2 ∈ ∆ ′

i+1

R1a

(r1,r2) ∈ Rx(∆ ′
i) r1 : f (q1,q2)

ϕ3−−→ q3 r2 : g(q4,q3)
ϕ5−−→ q5

f (qr1,r2 ,q2)
rPhi(r1,r2)−−−−−−−−→ qiniD(r1,r2)

r1,r2 ∈ ∆ ′
i+1

R1b

(r1,r2) ∈ Rx(∆ ′
i) r2 : g(q4,q3)

ϕ5−−→ q5 h(q5,q6)
|1| = |2|+a
−−−−−−−−−→ q7 ∈ ∆ ′

i

h(qiniD(r1,r2)
r1,r2 ,q6)

|1| = |2|+a+ iniD(r1,r2)−−−−−−−−−−−−−−−−−−−→ qle f tD(a,iniD(r1,r2))
7 ∈ ∆ ′

i+1

R2a

(r1,r2) ∈ Rx(∆ ′
i) r2 : g(q4,q3)

ϕ5−−→ q5 h(q6,q5)
|1| = |2|+a
−−−−−−−−−→ q7 ∈ ∆ ′

i

h(q6,q
iniD(r1,r2)
r1,r2)

|1| = |2|+a− iniD(r1,r2)−−−−−−−−−−−−−−−−−−−→ qrightD(a,iniD(r1,r2))
7 ∈ ∆ ′

i+1

R2b

f (q1,q2)
|1| = |2|+a
−−−−−−−−−→ q3 ∈ ∆ ′

i d ∈ D

f (qd
1 ,q2)

|1| = |2|+a+d
−−−−−−−−−−−→ qle f tD(a,d)

3 ∈ ∆ ′
i+1

R3a

f (q1,q2)
|1| = |2|+a
−−−−−−−−−→ q3 ∈ ∆ ′

i d ∈ D

f (q1,qd
2)

|1| = |2|+a−d
−−−−−−−−−−−→ qrightD(a,d)

3 ∈ ∆ ′
i+1

R3b

Fig. 6 Rules for computing the effect of left rotations on rTASCs

F ′, accepting the root of the rotated subtree, become final if the rotation occurs at
a state q5 accepting the root node of the original tree (i.e., if q5 ∈ F).

5.3.1 The Root of the Rotated Subtree: Computing lPhi, rPhi, and iniD

Let us consider (r1,r2) ∈ Rx(∆) where r1 : f (q1,q2)
ϕ3−→ q3 and r2 : g(q4,q3)

ϕ5−→
q5, as in Figure 5. Suppose that ϕ3 : |1| = |2|+ a1 and let us denote the sizes of
the subtrees read at q1 and q2 before the rotation, by s1 and s2, respectively. Let
the size function associated with f be | f (t1, t2)| = max(|t1|, |t2|)+ b1, and let s3
denote the size of the subtree labelled by q3 before the rotation. Also, suppose
that ϕ5 : |1| = |2|+ a2 and let us denote the size of the sub-tree read at q4 before
the rotation as s4. Finally, let the size function associated with g be |g(t1, t2)| =
max(|t1|, |t2|)+ b2, and let s5 denote the size of the subtree labelled by q5 before
the rotation. We denote s′5 and s′3 the sizes obtained at q′

5 and q′
3 after the rotation.

23

The key observation that allows us to compute the guards ϕ ′
5 : lPhi(r1,r2) and

ϕ ′
3 : rPhi(r1,r2) of the rules that accept the root of the rotated subtree, as well as

the change in balance d = iniD(r1,r2) caused by the rotation, is that due to the
chosen form of guards and sizes, we can always compute any two of the sizes s1,
s2, s4 from the remaining one. Indeed,

– for a1 ≥ 0, we have s3 = s1 +b1 = s2 +a1 +b1 = s4 −a2, whereas
– for a1 < 0, we have s3 = s2 +b1 = s1 −a1 +b1 = s4 −a2.

Computing ϕ ′
3, ϕ ′

5, and d is then just a complex exercise in case splitting. Notice
that all the cases can be distinguished statically according to the mutual relations
of the constants a1, b1, a2, and b2. In the case of ϕ ′

5, we obtain the following:

1. For a1 ≥ 0, we have s4 = s1 +b1 +a2, and so ϕ ′
5 : |1| = |2|+b1 +a2.

2. For a1 < 0, we have s4 = s1 −a1 +b1 +a2, and so ϕ ′
5 : |1|= |2|−a1 +b1 +a2.

The guard ϕ ′
3 is a bit more complex. We distinguish two cases: Φ4≥1 : s4 ≥ s1

and Φ4<1 : s4 < s1. Now we rewrite the conditions s4 ≥ s1 and s4 < s1 using the
relation between s4 and s1 described above for a1 ≥ 0 and a1 < 0:

1. Φ4≥1 : s4 ≥ s1 ⇐⇒ (a1 ≥ 0∧b1 +a2 ≥ 0)∨ (a1 < 0∧−a1 +b1 +a2 ≥ 0). If
Φ4≥1 holds, then s′5 = s4 + b2. Further, we distinguish between the following
cases:
(a) For a1 ≥ 0 ∧ b1 + a2 ≥ 0, we get s′5 = s1 + b1 + a2 + b2 (as a1 ≥ 0), i.e.,

s1 = s′5 − b1 − a2 − b2. Taking into account that s1 = s2 + a1, we obtain
ϕ ′

3 : |1| = |2|+a1 +b1 +a2 +b2.
(b) For a1 < 0 ∧−a1 + b1 + a2 ≥ 0, we have s′5 = s1 − a1 + b1 + a2 + b2 (as

a1 < 0), i.e., s1 = s′5 +a1 −b1 −a2 −b2. Using that s1 = s2 +a1, we obtain
ϕ ′

3 : |1| = |2|+b1 +a2 +b2.
2. Φ4<1 : s4 < s1 ⇐⇒ (a1 ≥ 0∧b1 +a2 < 0)∨ (a1 < 0∧−a1 +b1 +a2 < 0). If

Φ4<1 holds, we have s′5 = s1 +b2, and so ϕ ′
3 : |1| = |2|+a1 +b2.

The computation of the change in the balance d is similar to the above. The first
case to be considered is Φ4≥3 : s4 ≥ s3 ⇐⇒ a2 ≥ 0. Here, s5 = s4 +b2. To compute
the change in the sizes reached at q5 and q′

3, which is to be compensated in the
transitions to come after q′

3 instead of q5, we need to compute s′3 as a function of
s4 (then, in the difference, s4 will be eliminated). We can write the following:

s′3 =

if Φ4≥1 :{
if s4 +b2 ≥ s2 : s4 +b2 +b1
if s4 +b2 < s2 : s2 +b1

if Φ4<1 :{
if s1 +b2 ≥ s2 : s1 +b2 +b1
if s1 +b2 < s2 : s2 +b1

Let us first consider the subcase when Φ4≥1. It has two further subcases s4 +
b2 ≥ s2 and s4 +b2 < s2, which we can again rewrite by using the known relations
between s4 and s2 for a1 ≥ 0 (s2 +a1 +b1 = s4 −a2) and a1 < 0 (s2 +b1 = s4 −a2).
We get:

1. s4 +b2 ≥ s2 ⇐⇒ (a1 ≥ 0 ∧ a1 +b1 +a2 +b2 ≥ 0) ∨ (a1 < 0 ∧ b1 +a2 +b2 ≥
0). In this case, we have s′3 = s4 +b2 +b1, and so d = b1.

24

q1 q2

q3

s1 s2

s3 = (s1 >= s2) ? (s1 + b) : (s2 + b)

f

[$: s1 = s2 + a]

d

d’

q2

s’1 s2

s’3 = (s’1 >= s2) ? (s’1 + b) : (s2 + b)

f

[$’: s’1 = s2 + a + d]

q1 q2

q3

s1 s2

s3 = (s1 >= s2) ? (s1 + b) : (s2 + b)

f

[$: s1 = s2 + a]

d

d’’

q1

s1 s’2

s’’3 = (s1 >= s’2) ? (s1 + b) : (s’2 + b)

f

[$’’: s1 = s’2 + a - d]

qd
2

qd ’’
3

(a)

(b)

qd
1

qd ’
3

Fig. 7 Propagation of changes in balance in an rTASC

2. s4 +b2 < s2 ⇐⇒ (a1 ≥ 0 ∧ a1 +b1 +a2 +b2 < 0) ∨ (a1 < 0 ∧ b1 +a2 +b2 <
0). Here, s′3 = s2 +b1, and we distinguish the following subcases:
(a) for a1 ≥ 0 ∧ a1 +b1 +a2 +b2 < 0, s′3 = s2 +b1 = s4 −a1 −b1 −a2 +b1 =

s4 −a1 −a2, and so d = −a1 −a2 −b2.
(b) for a1 < 0 ∧ b1 +a2 +b2 < 0, s′3 = s2 +b1 = s4 −b1 −a2 +b1 = s4 −a2,

and so d = −a2 −b2.

The remaining cases of the computation of d are similar to the above.

5.3.2 Propagating Changes in Balance through rTASC: Computing le f tD, rightD

We now study the way how a change in balance caused by a rotation is propagated
from the subtree where the rotation took place to the root of the entire tree in
which the rotation happened. The propagation is a part of the rules (R2a)–(R3b)

from Figure 6, and it is illustrated in Figure 7 on a rule f (q1,q2)
ϕ
−→ q3 whose

left or right child size changes by a value d ∈ D. Consequently, rules of the form

f (qd
1 ,q2)

ϕ ′
−→ qd′

3 or f (q1,qd
2)

ϕ ′′
−−→ qd′′

3 are generated by the rules (R2a)–(R3b),
depending on whether the change in balance originates from the left or the right.
Since we consider just one rotation in every tree (at a given node pointed to by
the pointer variable x), the change can never come from both sides. The guards of
the new rules, compensating the change in balance that happens between the child
nodes, are ϕ ′ : |1| = |2|+ a + d or ϕ ′′ : |1| = |2|+ a− d, respectivelly. It remains
to analyse the changes in the balance that are propagated upwards after d comes
from the bottom, i.e., the way the values d′ = le f tD(a,d) or d′′ = rightD(a,d) are
computed.

Suppose the change in balance is coming from the left as in Figure 7 (a). We
distinguish the cases of a ≥ 0 and a < 0. (1) For a ≥ 0, the original size at q3 is

25

s3 = s1 + b where s1 is the original size at q1. After the change d happens at q1,
i.e., s′1 − s1 = d, we have the following subcases: (1.1) For a + d ≥ 0, we have
s′3 = s′1 + b, i.e., d′ = d, and so we have the same change in the size at q3 as at
q1. (1.2) For a+d < 0, we have s′3 = s2 +b = s1 −a+b, and hence d′ = −a. (2)
For a < 0, s3 = s2 +b. In this case, (2.1) for a+d ≥ 0, s′3 = s′1 +b = s1 +d +b =
s2 + a + d + b, and so d′ = a + d, and (2.2) for a + d < 0, s′3 = s2 + b, and thus
d′ = 0. To summarize:

le f tD(a,d) =

d if a ≥ 0 and a+d ≥ 0,
−a if a ≥ 0 and a+d < 0,

a+d if a < 0 and a+d ≥ 0,
0 if a < 0 and a+d < 0

Similarly, when the change is coming from the right as in Figure 7 (b), we
have the following cases: (1) For a ≥ 0, the original size at q3 is s3 = s1 + b, and
we have the following subcases for the new size: (1.1) For a−d ≥ 0, s′′3 = s1 +b,
and so d′′ = 0. (1.2) For a−d < 0, s′′3 = s′2 +b = s2 +d +b = s1 −a+d +b, and
thus d′′ = −a + d. (2) For a < 0, s3 = s2 + b. Further, (2.1) for a − d ≥ 0, s′′3 =
s1 +b = s2 +a+b, i.e., d′′ = a, and (2.2) for a−d < 0, s′′3 = s′2 +b = s2 +d +b,
and hence d′′ = d. To summarize:

rightD(a,d) =

0 if a ≥ 0 and a−d ≥ 0,
−a+d if a ≥ 0 and a−d < 0,

a if a < 0 and a−d ≥ 0,
d if a < 0 and a−d < 0

We can now close our construction by showing that the set D of possible
changes in the sizes of the trees being handled is finite, which guarantees ter-
mination of the algorithm for computing the rTASC describing the effect of a tree
rotation on trees from an rTASC-described set.

Lemma 7 For an rTASC A = (Q,∆ ,F) over a set of variables V and a variable
x ∈ V , the set D of the possible changes in balance of subtrees of the trees gener-
ated by a left tree rotation at a node pointed by x in the trees from L(A) is finite.

Proof Let M = max
(
{|iniD(r1,r2)| | (r1,r2)∈ Rx(∆)}∪{a | (f (q1,q2)

|1| = |2|+a
−−−−−−−−−→

q) ∈ ∆}
)
. Notice that D is the limit of an increasing sequence D0 ⊆ D1 ⊆ D2 . . .,

where D0 = {iniD(r1,r2) | (r1,r2) ∈ Rx(∆)}, and for each i ≥ 0 there exists

some rule f (q1,q2)
|1| = |2|+a
−−−−−−−−−→ q and some d ∈ Di such that either Di+1 =

Di ∪{le f tD(a,d)}, or Di+1 = Di ∪{rightD(a,d)}.
By fixpoint induction, we show that D ⊆ [−M,M], which implies that D is

finite. D0 ⊆ [−M,M] by the choice of M. If Di+1 = Di∪{le f tD(a,d)}, it is enough
to show that −M ≤ le f tD(a,d)≤ M, if −M ≤ a,d ≤ M. The most interesting case
is when le f tD(a,d) = a+d, for a < 0 and a+d ≥ 0. In this case a ≤ a+d ≤ d,
therefore −M ≤ a + d ≤ M. The proof that −M ≤ rightD(a,d) ≤ M, for −M ≤
a,d ≤ M, is similar. 12

Notice that it can be shown that Lemma 7 does not hold for general TASCs,
due to the fact that the computation of the set D might diverge, in the general case.

26

q1 q1

f

g

f
x:

q1q1

q2

q3

q1nil:

nil:

nil: nil:

Fig. 8 Testing pointers

5.4 Other Operations on Sets of Trees Described by rTASC

Let us now briefly show that, in addition to the tree rotations, rTASC are also
closed with respect to all other operations that we commonly need when dealing
with balanced binary trees. We have listed these operations in Section 2. We are
only giving an informal description of the algorithms for performing these opera-
tions over rTASC here—their formalisation is, however, straightforward.

Testing and Changing Pointers and Data. We first consider the operation of test-
ing whether two pointer expressions refer to the same node of a tree. Exam-
ples of such tests are expressions x == root or x->parent->right == x. In
general, we consider any test of the form e1==e2 where e1, e2 are of the form
v->n1->n2->...nm with v ∈ V , m ∈ N, and n1, ...,nm ∈ {left,right,parent}.
Suppose we are given an rTASC A recognising a set S of trees and a pointer equal-
ity test c. The rTASC describing the subset S′ of S of the trees that meet c is the
intersection of A and a TASC Ac encoding c. Since c describes a regular set of
trees, this TASC can be easily derived in an algorithmic way.

To illustrate the construction, let us present an example of Ac for the con-
dition x->parent->right == x. Recall that Σ = P(V) × D ∪ {null}. Then,
Ac = (Q,∆ ,F) is defined by Q = {q1,q2,q3}, F = {q3}, and ∆ = {null → q1}∪
{ f (q1,q1) → q1,g(q1,q1) → q2, f (q1,q2) → q3, f (q3,q1) → q3, f (q1,q3) → q3 |
f ,g ∈ P(V)×D ,x '∈ v(f),x ∈ v(g)}. Here, the pointer referencing pattern gets
simply captured in the rule f (q1,q2) → q3. An example run of the automaton is
illustrated in Figure 8.

Second, pointer assignments of the form v′ = v->n1-> n2->...nm can be im-
plemented in our framework as a simple transformation of the input rTASC that
removes v′ from the node where it is in the input tree and adds it to the node ref-
erenced by v->n1->n2->...nm. Note that we do not treat assignments of the form
v->n1->n2->...nm = v′->n′

1->n′
2->...n′

m′ , i.e., destructive updates. We hide these
assignments by encoding the effect of the entire procedures in which they ap-
pear, i.e., rotations and physical insertion or deletion of nodes. These operations
temporarily break the tree shape of the structures being handled by introducing
pointer sharing and even cycles. We suppose the correctness of these operations
to be checked independently. A generalisation of our method to be able to handle

27

x: x:

d

Fig. 9 Changing data contents in an rTASC

null: x:

d

null: null:

Fig. 10 Inserting a node in an rTASC

even the internal implementation of these procedures is an interesting subject for
further research.

Testing and changing the data contents of the nodes pointed to by some pointer
expression of the form v->n1->n2->...nm is an analogy of the pointer reference
checking and pointer assignments. However, changing the data contents of some
node (e.g., recolouring of some node in a red-black tree), can change the size of the
appropriate subtree. In this case, the guards of all the transition rules that can be
fired above the node that is recoloured (see Figure 9 for an example assignement
x->colour = black) are to be changed in the same way as in Section 5.3.2 in order
to reflect the change d in the balance that happens at the recoloured node.

Inserting New Nodes. Next, concerning the physical insertion of a new leaf node,
recall that we suppose the null successors of such memory nodes to be explicitly
represented by null-labelled nodes in our model. Compared to the real content of
the memory, we thus add one layer of nodes (as null nodes are not allocated in the
real memory). Inserting a new leaf memory node pointed to by a pointer variable
x (which is undefined or null before) and having a data value c then amounts to
replacing one of the null sons of some node by a new, non-null node with two
null sons. We abstract here the sortedness property and we just pick randomly
the place to insert the new leaf. The operation can be implemented as a simple
transformation that modifies the input rTASC by non-deterministically choosing
some null node, recolouring it to ({x},c), and adding two null sons to it. Then,
the changes in the number of nodes marked by c have to be propagated using the
same technique as explained in Section 5.3.2 (see Figure 10 for an illustration).

28

y:

d

null:

Fig. 11 Deleting a node in an rTASC

Deleting Nodes. Finally, the deletion of a frontier node pointed to by some pointer

variable y is modelled by removing the rules ({y},c)(q,qnull)
ϕ
−→ qy, where null →

qnull (note that a frontier node has at least one null son). In the remaining rules,
we simply replace all the appearances of qy by all the q states that appeared in the
deleted rules. Subsequently, we use again the same technique as in Section 5.3.2
to handle the changes in the balance resulting from a deletion of a node. See Fig-
ure 11 for an illustration of deleting a frontier node with a null left successor.

6 A Case Study: The Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main
loop in the procedure RB-Insert. (Note that all the steps can be done fully automat-
ically.) This invariant is needed to prove the correctness of the insertion procedure
given in Section 2, that is, given a valid red-black tree as input to the procedure,
the output is also a valid red-black tree. The invariant is the conjunction of the
following facts:

1. x is pointing to a non-null node in the tree.
2. If a node is red, then (i) its left son is either black or pointed to by x, and

(ii) its right son is either black or pointed to by x. This condition is needed as
during the re-balancing of the tree, a red node can temporarily become a son
of another red node.

3. The root is either black or x is pointing to the root.
4. If x is not pointing to the the root and points to a node whose father is red, then

x points to a red node.
5. Each maximal path from the root to a leaf contains the same number of black

nodes. This is the last condition from the definition of red-black trees from
Section 2.

In this example, we have V = {x}, D = {red,black}, and thus Σ = ({ /0,{x}}×
{red,black})∪{null}. For presentation purposes, we denote the symbol (/0,c)∈ Σ
by c, and cx stands for ({x},c) ∈ Σ , where c ∈ {red,black}. Also, if no guard
is specified on a binary rule, we assume it to be |1| = |2|. Let R = {null −→

29

qb,red(qb,qb) −→ qr,black(qb/r ,qb/r) −→ qb}. The loop invariant is given by the
following rTASC A1.

A1 : F = {qrx,qbx,q′
bx}, ∆ = R ∪

{blackx(qb/r,qb/r) −→ qbx (1), black(qbx/rx ,qb/r) −→ q′
bx(2)

black(q′
bx/rx,qb/r) −→ q′

bx, black(qb/r,q′
bx/rx) −→ q′

bx (3),
black(qb/r,q′

bx/rx) −→ q′
bx, redx(qb,qb) −→ qrx,

red(q′
bx,qb) −→ q′

rx, red(qb,q′
bx) −→ q′

rx,

red(qrx,qb) −→ q′
rx (4), red(qb,qrx) −→ q′

rx (5)}

Intuitively, qb labels black nodes and qr red nodes which do not have a node
pointed to by x below them. qbx and qrx mean the same except that they label
a node which is pointed to by x. Primed versions of qbx and qrx are used for nodes
which have a subnode pointed to by x. In the following, this intuitive meaning
of states will be changed by the program steps. We refer to the pseudo-code of
Section 2.

If the loop entrance condition x!= root && x->parent->color == red is
true, we obtain a new automaton A2. It is given by modifying A1 as follows: F =
{q′

bx} and the rules (1), (2), and (3) are removed.

If the condition x->parent == x->parent->parent->left is true, we take
A2, change rule (4) to red(qrx,qb) −→ q′′

rx, rule (5) to red(qb,qrx) −→ q′′
rx and add

a rule black(q′′
rx,qb/r) −→ q′

bx (6) to obtain A3. Now, q′′
rx accepts the father of the

node pointed by x and q′
rx its grandfather.

If the condition x->parent->parent->right->color == red holds, we ob-
tain the automaton A4 that is like A3 except for rule (6) changed into black(q′′

rx,qr)−→
q′

bx.

The recolouring step x->parent->color = black changes some guards on
rules and leads to a propagation of the change through the automaton. The result
is A5:

A5 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r)

|1| = |2|+1
−−−−−−−−−→ q′

bx, redx(qb,qb) −→ qrx,

black(qb/r,q′
bx/rx)

|1|+1 = |2|
−−−−−−−−−→ q′

bx, red(q′
bx,qb)

|1| = |2|+1
−−−−−−−−−→ q′

rx,

black(q′′
rx,qr)

|1| = |2|+1
−−−−−−−−−→ q′

bx (7), red(qb,q′
bx)

|1|+1 = |2|
−−−−−−−−−→ q′

rx,

black(qrx,qb) −→ q′′
rx, black(qb,qrx) −→ q′′

rx}

After the recolouring step x->parent->parent->right->color = black,
we get A6 which is A5 where we change rule (7) to black(q′′

rx,qb) −→ q′
bx. Note that

no propagation is needed in this case.

30

After the recolouring step x->parent->parent->color = red, which in-
troduces changes on guards, and the propagation of these changes, we obtain:

A7 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r) −→ q′

bx, black(qb/r,q′
bx/rx) −→ q′

bx,

black(qrx,qb) −→ q′′
rx, black(qb,qrx) −→ q′′

rx,

redx(qb,qb) −→ qrx (8), red(q′
bx,qb) −→ q′

rx,

red(q′′
rx,qr) −→ q′

bx (9), red(qb,q′
bx) −→ q′

rx}

After x = x->parent->parent, we get A8 derived from A7 by changing rule
(8) to red(qb,qb) −→ qrx and rule (9) to redx(q′′

rx,qb) −→ q′
bx.

This takes care of case 1 and one can then check that L (A8) ⊆ L (A1).

For case 2, we have to go back to automaton A3 and apply the fact that the
conditional x->parent->parent->right->color == red is false, i.e.,
x->parent->parent->right->color == black must be true. The result is:

A9 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r) −→ q′

bx, black(qb/r,q′
bx/rx) −→ q′

bx,

black(q′′
rx,qb) −→ q′

bx, redx(qb,qb) −→ qrx (11),
red(q′

bx,qb) −→ q′
rx, red(qb,q′

bx) −→ q′
rx,

red(qb,qrx) −→ q′′
rx (12), red(qrx,qb) −→ q′′

rx (10)}

After the condition x == x->parent->right, A9 is changed into A10 by re-
moving rule (10). After x = x->parent, A10 is changed into A11 by changing
rule (11) to red(qb,qb) −→ qrx and rule (12) to redx(qb,qrx) −→ q′′

rx.

Now the operation Left-Rotate(T,x) introduces new states and transitions
and we get the TASC A12. Notice that no rebalancing is necessary.

A12 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r) −→ q′

bx, black(qb/r,q′
bx/rx) −→ q′

bx,

black(qrot2,qb) −→ q′
bx, redx(qb,qb) −→ qrot1,

red(q′
bx,qb) −→ q′

rx, red(qb,q′
bx) −→ q′

rx,

red(qrot1,qb) −→ qrot2}

After x->parent->color = black and a propagation of the changes in the
balance, we obtain:

A13 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r)

|1| = |2|+1
−−−−−−−−−→ q′

bx, redx(qb,qb) −→ qrot1,

black(qb/r,q′
bx/rx)

|1|+1 = |2|
−−−−−−−−−→ q′

bx, red(q′
bx,qb)

|1| = |2|+1
−−−−−−−−−→ q′

rx,

black(qrot2,qb)
|1| = |2|+1
−−−−−−−−−→ q′

bx, red(qb,q′
bx)

|1|+1 = |2|
−−−−−−−−−→ q′

rx,

black(qrot1,qb) −→ qrot2}

31

After x->parent->parent->color = red, we obtain:

A14 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r) −→ q′

bx, redx(qb,qb) −→ qrot1,

black(qb/r,q′
bx/rx) −→ q′

bx, red(q′
bx,qb) −→ q′

rx,

red(qrot2,qb)
|1| = |2|+1
−−−−−−−−−→ q′

bx, red(qb,q′
bx) −→ q′

rx,

black(qrot1,qb) −→ qrot2}
Finally, after Right-Rotate(T,x->parent->parent), we get:

A15 : F = {q′
bx},∆ = R ∪

{black(q′
bx/rx ,qb/r) −→ q′

bx, black(qb/r,q′
bx/rx) −→ q′

bx

black(qb/r,qrot4) −→ q′
bx, black(qrot4,qb/r) −→ q′

bx,

black(qrot1,qrot3) −→ qrot4, redx(qb,qb) −→ qrot1,

red(q′
bx,qb) −→ q′

rx, red(qb,q′
bx) −→ q′

rx,

red(qrot4,qb) −→ q′
rx, red(qb,qb) −→ qrot3,

red(qb,qrot4) −→ q′
rx}

Then, it can be checked that L (A15) ⊆ L (A1). Case 3 of the insertion proce-
dure is very similar to Case 2 and is omitted.

7 Conclusions

We have presented a method for semi-algorithmic verification of programs that
manipulate balanced trees. The approach is based on specifying program pre-
conditions, post-conditions, and loop invariants as sets of trees recognised by
a novel class of extended tree automata called TASC. TASC come with interesting
closure properties and a decidable emptiness problem, and hence are themselves
a significant theoretical contribution. Moreover, the semantics of tree-updating
programs can be effectively represented as modifications on the internal struc-
tures of TASC. The framework has been validated on a case study consisting of
the node insertion procedure in a red-black tree. Precisely, we verified that given
a balanced red-black tree on the input to the insertion procedure, the output is
again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more case
studies. An interesting subject for further research is then extending the method to
a fully automatic one. For this, a suitable acceleration method for the reachability
computation on TASC is needed. Also, it is interesting to try to generalise the
method to handle even the internals of low-level manipulations that temporarily
break the tree shape of the considered structures (e.g., by lifting the technique to
work over tree automata extended with routing expressions describing additional
pointers over the tree backbone).

Acknowledgements We would like to thank Eugene Asarin, Ahmed Bouajjani, Yassine Lakhnech,
and Tayssir Touili for their valuable comments.

32

References

1. R. Alur and P. Madhusudan. Visibly Pushdown Languages. In Proceedings of STOC’04.
ACM Press, 2004.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Verifying Red-
Black Trees. In Proceedings of COSMICAH’05, 2005.

3. M. Barnett, K. Rustan, M. Leino, and W. Schulte. The Spec# Programming System: An
Overview. In Proceedings of CASSIS’04, volume 3362 of Lectures Notes in Computer
Science. Springer, 2004.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata:
Application to Model-Checking. In Proceedings of CONCUR’97, volume 1243 of Lectures
Notes in Computer Science. Springer, 1997.

5. Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar. Abstract reg-
ular tree model checking of complex dynamic data structures. In Proceedings of the 13th
International Symposium Static Analysis (SAS’06), volume 4134 of Lecture Notes in Com-
puter Science, pages 52–70, 2006. Springer.

6. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K. Rustan, M. Leino, and
E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, 2005.

7. C. Calcagno, P. Gardner, and U. Zarfaty. Context Logic and Tree Update. In Proceedings
of POPL’05. ACM Press, 2005.

8. H. Comon-Lundh and V. Cortier. Tree Automata with One Memory, Set Constraints and
Cryptographic Protocols. Theoretical Computer Science, 331, 2005.

9. H. Comon-Lundh, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Available at:
http://www.grappa.univ-lille3.fr/tata, 1997. Release October 1, 2002.

10. H. Comon-Lundh, F. Jaquemard and N. Perrin. Tree Automata with Memory, Visibility
and Structural Constraints. In Proceedings of FoSSaCS, volume 4423 of Lecture Notes in
Computer Science, Springer-Verlag, 2007.

11. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

12. S. Dal Zilio and D. Lugiez. Multitrees Automata, Presburger’s Constraints and Tree Logics.
Technical Report 08-2002, LIF, 2002.

13. P.T. Darga and C. Boyapati. Efficient Software Model Checking of Data Structure Proper-
ties. In Proceedings of OOPSLA’06. ACM Press, 2006.

14. D. Geidmanis. Unsolvability of the Emptiness Problem for Alternating 1-way Multi-head
and Multi-tape Finite Automata over Single-letter Alphabet. In Computers and Artificial
Intelligence, volume 10, 1991.

15. S. Khurshid and D. Marinov. TestEra: Specification-Based Testing of Java Programs Using
SAT. Automated Software Engineering, 11(4):403–434, 2004.

16. Z. Manna, H. B. Sipma and T. Zhang. Verifying Balanced Trees. In Proceedings of the
Symposium on Logical Foundations of Computer Science (LFCS 2007), volume 4514 of
Lecture Notes in Computer Science, Springer-Verlag, 2007.

17. A. Moeller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Proceeedings of
PLDI’01. ACM Press, 2001.

18. H. H. Nguyen, C. David, S. Qin and W. N. Chin Automated Verification of Shape and Size
Properties via Separation Logic. In Proceedings of VMCAI’07, volume 4349 of Lecture
Notes in Computer Science, Springer-Verlag, 2007.

19. S. Parduhn. Algorithm Animation Using Shape Analysis with Special Regard to Binary
Trees. Technical report, Universität des Saarlandes, 2005.

20. H. Petersen. Alternation in Simple Devices. In Proceedings of ICALP’95, volume 944 of
Lecture Notes in Computer Science, Springer-Verlag, 1995.

21. M. Presburger. Über die Vollstandigkeit eines Gewissen Systems der Arithmetik. Comptes
Rendus du I Congrés des Pays Slaves, Warsaw, 1929.

22. M.O. Rabin. Decidability of Second Order Theories and Automata on Infinite Trees. Trans-
actions of American Mathematical Society, 141, 1969.

23. R. Rugina. Quantitative Shape Analysis. In Proceedings of SAS’04, volume 3148 of Lecture
Notes in Computer Sciences. Springer-Verlag, 2004.

24. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
TOPLAS, 24(3), 2002.

33

25. H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in Trees for Free. In
Proceedings of ICALP’04, volume 3142 of Lecture Notes in Computer Sciences. Springer-
Verlag, 2004.

34

