Peter Habermehl

Radu Iosif
email: iosif@imag.fr

Tomáš Vojnar
email: vojnar@fit.vutbr.cz

This paper describes a verification framework for Hoare-style pre-and post-conditions of programs manipulating balanced tree-like data structures. Since the considered verification problem is undecidable, we appeal to the standard semi-algorithmic approach in which the user has to provide loop invariants, which are then automatically checked, together with the program pre-and post-conditions. We specify sets of program states, representing tree-like memory configurations, using Tree Automata with Size Constraints (TASC). The main advantage of this new class of tree automata is that they recognise tree languages based on arithmetic reasoning about the lengths (depths) of various (possibly all) paths in trees, like, e.g., in AVL trees or red-black trees. TASCs are closed under union, intersection, and complement, and their emptiness problem is decidable. Thus we obtain a class of automata which are an interesting theoretical contribution by itself. Further, we show that, under few restrictions, one can automatically compute the effect of tree-updating program statements on the set of configurations represented by a TASC, which makes TASC a practical verification tool. We tried out our approach on the insertion procedure for red-black trees, for which we verified that the output on an arbitrary balanced red-black tree is also a balanced red-black tree.

Introduction

Verification of programs using dynamic memory primitives, such as allocation, deallocation, and pointer manipulations, is crucial for a feasible method of software verification. In this paper, we address the problem of proving correctness of programs that manipulate balanced tree-like data structures. Such structures are very often applied to implement in an efficient way lookup tables, associative arrays, sets, or similar higher-level structures, especially when they are used in critical applications like real-time systems, kernels of operating systems, etc. Therefore, a number of such search tree structures like the AVL trees, red-black trees, splay trees, and so on [START_REF] Cormen | Introduction to Algorithms[END_REF] have been introduced.

Tree automata [START_REF] Comon-Lundh | Tree Automata Techniques and Applications[END_REF] are a powerful formalism for specifying and reasoning about infinite sets of trees. However, there are two major obstacles against the broad use of tree automata in program verification:

-Imperative programs perform destructive updates of selector fields, changing a tree-shaped data structure by temporarily introducing sharing of branches and/or loops. For instance, this is the case of tree rotations [START_REF] Rugina | Quantitative Shape Analysis[END_REF] which are implemented as a finite sequence of selector updates introducing a loop in the tree in order to re-establish the tree-like shape later on. -Tree automata represent regular sets of trees, which is not sufficient when one needs to reason in terms of balanced trees as in the case of AVL and red-black tree algorithms.

In order to overcome the first problem, we observe that most algorithms working on balanced trees [START_REF] Cormen | Introduction to Algorithms[END_REF] use tree rotations and addition/removal of leaf nodes to/from a tree as the only operations that change the structure of the input tree. In our framework, we consider these updates as single (atomic) steps in the program. The correctness of their implementation, using lower-level pointer operations, can, however, be checked separately in a different formalism such as, for example, 3valued predicate logic with transitive closure [START_REF] Sagiv | Parametric Shape Analysis via 3-Valued Logic[END_REF], or tree automata extended with additional "routing" expressions on the tree backbone as in [START_REF] Moeller | The Pointer Assertion Logic Engine[END_REF] or in [START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF], where the so-called abstract regular tree model checking is used.

The second inconvenience is solved in the present paper by introducing a novel class of tree automata, called Tree Automata with Size Constraints (TASC). TASC are tree automata whose actions are triggered by arithmetic constraints involving the sizes of the subtrees at the current node. The size of a tree is a numerical function defined inductively on the tree structure such as, for instance, the height, the maximum number of black nodes on all paths, etc. The main advantage of using TASC in program verification is that they recognise non-regular sets of tree languages, such as the AVL trees, the red-black trees, and, in general, sets of trees involving arithmetic reasoning about the lengths (depths) of various (possibly all) paths in the trees. We show that the class of TASC is closed under the operations of union, intersection, and complement. Also, the emptiness problem is decidable. We thus obtain a class of automata which are a significant theoretical contribution by itself. Moreover, the semantics of the programs performing tree updates (node recolouring, rotations, leaf nodes appending/removal) can be effectively represented as changes on the structure of the automata.

In our verification approach based on TASC, the user has to provide the precondition and postcondition of the (sequential) imperative program being verified as well as loop invariants for all loops present in the program. The verification problem then consists in checking validity of Hoare triples of the form {P}C{Q}, where P and Q are TASC-encoded sets of configurations corresponding to the precondition or postcondition of the program or to some loop invariant, and C is a loop-free fragment of the program to be verified. Next, we reduce this verification problem to the TASC language emptiness problem. Note that while the pre-and postconditions and loop invariants are to be specified by the user, checking the validity of the verification conditions is fully automated and exact in our framework.

We tested our approach on an example of the insertion algorithm for the redblack trees, for which we verify that for a balanced red-black tree input, the output of the insertion algorithm is also a balanced red-black tree, i.e., the number of black nodes is the same on each path. Related Work. Sound verification of complex properties of programs handling recursive tree-shaped (and other kinds of) data structures-such as verifying that programs implementing advanced search data structures like AVL-trees or redblack trees indeed assure their defining properties, including balancedness-is currently beyond the capabalities of the common program verifiers associated with specification languages like JML [START_REF] Burdy | An overview of JML tools and applications[END_REF] or Spec# [START_REF] Barnett | The Spec# Programming System: An Overview[END_REF]. These systems can verify in a semi-automatic way (as the user has to provide loop invariants) simpler properties like absence of null-pointer exceptions only. There are approaches, such as [START_REF] Khurshid | TestEra: Specification-Based Testing of Java Programs Using SAT[END_REF] or [START_REF] Darga | Efficient Software Model Checking of Data Structure Properties[END_REF], considering verification of even the complex properties of the advanced data structures via testing or model checking, but these approaches are unsound as they work with bounded sets of instances of the data structures only.

Research on possibilities of sound verification of programs that handle complex tree-like structures has attracted researchers with various backgrounds, such as static analysis [START_REF] Parduhn | Algorithm Animation Using Shape Analysis with Special Regard to Binary Trees[END_REF][START_REF] Rugina | Quantitative Shape Analysis[END_REF], proof theory [START_REF] Calcagno | Context Logic and Tree Update[END_REF], and formal language theory [START_REF] Moeller | The Pointer Assertion Logic Engine[END_REF][START_REF] Bouajjani | Abstract regular tree model checking of complex dynamic data structures[END_REF]. The approach that is the closest to ours is probably the one of PALE (Pointer Assertion Logic Engine) [START_REF] Moeller | The Pointer Assertion Logic Engine[END_REF], which consists in translating the verification problem into the logic SkS [START_REF] Rabin | Decidability of Second Order Theories and Automata on Infinite Trees[END_REF] and using tree automata (although the classical ones only) to solve it. Our approach resembles PALE also in that we expect the user to provide the pre-, post-conditions, and the loop invariants, and that we reduce the validity problem for Hoare triples to the language emptiness problem. However, the use of the novel class of tree automata with arithmetic guards allows us to encode quantitative properties such as tree balancing that are not tackled in PALE.

In [START_REF] Rugina | Quantitative Shape Analysis[END_REF], a specialised framework of quantitative shape analysis based on abstract interpretation is introduced in order to verify manipulation of AVL trees. In [START_REF] Baldan | Verifying Red-Black Trees[END_REF], verification of some properties of inserting into red-black trees (including balancedness) is also reported. The work uses graph rewriting systems for describing the insertion procedure-the model is manually constructed. Then, an overapproximation using Petri graphs (Petri Nets with additional hypergraph structure) is used for verifying the fact that two red nodes never appear in succession. Further, graph type systems are used to check the balancedness. Not all desirable safety properties are covered this way, and both of the steps require a significant user involvement.

Recently, [START_REF] Manna | Verifying Balanced Trees[END_REF] has proposed an approach for verifying algorithms on balanced trees (and, in particular, on red-black trees) based on decidable theories of term algebras with Presburger arithmetic. These theories allow one to define functions from terms to integers, e.g., the maximal number of black nodes in paths from the root to a leave in a tree. The framework of [START_REF] Manna | Verifying Balanced Trees[END_REF], however, does not allow one to express local updates at an arbitrary control location, which consequently leads to a necessity of using an informal induction when proving program verification conditions. In other recent work [START_REF] Nguyen | Chin Automated Verification of Shape and Size Properties via Separation Logic[END_REF], a different formal model -in particular, an extension of Separation Logic [?] with user-definable recursive shape predicatesis used to reason about safety of pointer-manipulating programs including insertion for red-black trees. This approach also targets the verification of Hoare triples in presence of user-specified program invariants. However, checking the verification conditions in this setting is done via sound, but incomplete proof rules, since the decidability status of the underlying logic is unknown.

The definition of TASC is a result of searching for a class of counter tree automata that combines interesting closure properties (union, intersection, complementation) with decidability of the emptiness problem. Existing works on extending tree automata with counters (e.g., [START_REF] Zilio | Multitrees Automata, Presburger's Constraints and Tree Logics[END_REF][START_REF] Seidl | Counting in Trees for Free[END_REF]) have mostly concentrated on in-breadth counting of nodes with applications on verifying consistency of XML documents. Our work gives the possibility of in-depth counting in order to express balancing of recursive tree structures. It is worth noticing that similar computation models, such as alternating multi-tape and counter automata, have undecidable emptiness problems in the presence of two or more 1-letter input tapes, or, equivalently, non-increasing counters [START_REF] Petersen | Alternation in Simple Devices[END_REF] 1 . However, restricting the number of counters is problematic for obtaining the closure of automata under intersection. The solution we adopt here is to let the actions of the counters depend exclusively on the input tree alphabet, in other words, to encode them directly in the input as size functions. This solution can be seen as a generalisation of the visibly pushdown languages [START_REF] Alur | Visibly Pushdown Languages[END_REF] to trees, for singleton stack alphabets. A similar approach has been recently taken in [START_REF] Comon-Lundh | Tree Automata with Memory, Visibility and Structural Constraints[END_REF], where visibly tree automata with memory (VTAM) have been introduced. VTAM define a subclass of tree automata with one memory [START_REF] Comon-Lundh | Tree Automata with One Memory, Set Constraints and Cryptographic Protocols[END_REF] enjoying boolean closure properties. Red-black trees and other balanced tree sets can be recognised using this formalism. However, the work in [START_REF] Comon-Lundh | Tree Automata with Memory, Visibility and Structural Constraints[END_REF] does not directly address the verification of tree-manipulating programs, as it does not give a method to represent the effect of program statements on a set of trees represented as a tree automaton.

Roadmap. In Section 2, we summarise our verification methodology and describe our case study of insertion into red-black trees, which we will use in the paper. In Section 3, we introduce the notion of tree automata with size constraints. Section 4 provides results on determinisation of TASC, discusses their closure properties, and shows that their emptiness is decidable. In Section 5, it is shown how the semantics of tree manipulating programs can be encoded using TASC. Section 6 describes the use of TASC within the chosen case study. Finally, Section 7 contains some concluding remarks, including the future work. In this section, we introduce our verification methodology for programs using balanced trees. In practice, several data structures based on balanced trees are commonly used, e.g., AVL trees. Here, we will use red-black trees as our running example. Red-black trees are binary search trees whose nodes are coloured by red or black. They are approximately balanced by constraining the way nodes can be coloured. The constraints insure that no maximal path can be more than twice longer than any other path. More precisely, red-black trees are binary search trees whose nodes contain an element of an ordered data domain, a colour, a left and right pointer, and a pointer to its parent, and that satisfy the following properties:

1. Every node is either red or black. 2. The root is black. 3. Every leaf is black. 4. If a node is red, both its children are black. 5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 1 (a). The main operations on balanced trees (and hence also red-black trees) are searching, insertion, and deletion. When implementing the last two operations, one has to make sure that the trees remain balanced. This is usually done using tree rotations-cf. Figure 1 (b), which, in the case of red-black trees, can change the number of black nodes on a given path.

Because of the last condition on red-black trees mentioned above (i.e., having the same number of black nodes in each path), it is obvious that the set of redblack trees is not regular, i.e., not recognisable by standard tree automata [START_REF] Comon-Lundh | Tree Automata Techniques and Applications[END_REF]. Therefore, we have to introduce a tree automata model able to describe sets of (heap) configurations containing balanced trees. This model has to be powerful enough to describe these trees while still having properties allowing for automatic verification (i.e., decidability of inclusion, closure under some operations, etc.).

Here, we define such a class of extended tree automata-namely, tree automata with size constraints (TASC). We suppose the data content of the nodes to be abstracted away-we do not verify sortedness. Basic program blocks (i.e., individual program statements or groups of statements that we view as atomic like, e.g., rotations) define effective transformations on TASC.

We assume the user to specify the precondition and postcondition of the program to be verified. Further, we suppose the user to supply an invariant for each loop. The preconditions and postconditions as well as loop invariants are specified by TASC. Then, the verification is performed by automatically checking the validity of each triple {P} C {Q}, where:

-P is the program precondition or a loop invariant, -Q is the program postcondition or a loop invariant, and -C is a loop-free fragment of the code between P and Q. This is done by computing the image of the precondition after an application of the code of the program block and by checking that the image implies the postcondition. This check is done using language inclusion for TASC.

In Figure 2, we give the pseudo-code of the inserting operation for red-black trees [START_REF] Cormen | Introduction to Algorithms[END_REF]. For this program, we want to show that after an insertion of a node, a red-black tree remains a red-black tree. In our work, we restrict ourselves to calculating the effects of program blocks which preserve the tree structure of the heap. This is not the case in general since pointer operations can temporarily break the tree structure, e.g., in the code for performing a rotation. The operations that we handle are the following:

1. tests on the tree structure (like x->parent == x->parent->parent->left), 2. changing data of a node (as, e.g., recolouring of a node x->colour = red), 3. left and right rotations (Figure 1 (b)), 4. moving a pointer up or down a tree structure (like x = x->parent->parent), 5. low-level insertion/deletion, i.e., the physical addition/removal of a terminal node, that is then followed by re-balancing operations.

Tree Automata with Size Constraints

In what follows, we work with the set D of all boolean combinations of formulae of the form xy c or x c, for some c ∈ Z and ∈ {≤, ≥}. We introduce equality as xy = c : xy ≤ c ∧ xy ≥ c. Notice that negation can be eliminated from any formula of D since xy ≤ c ⇐⇒ xy ≥ c + 1. Also, any constraint of the form xy ≥ c can be equivalently written as yx ≤ -c. For a closed formula ϕ, we write |= ϕ to denote that ϕ is valid, i.e., equivalent to true.

A ranked alphabet Σ is a set of symbols together with a function # : Σ → N. For f ∈ Σ , the value #(f) is said to be the arity of f . Symbols of zero arity are referred to as constants. We denote by Σ n the set of all symbols of arity n from Σ . Let λ denote the empty sequence. A tree t over an alphabet Σ is a partial mapping t : N * → Σ that satisfies the following conditions:

dom(t) is a finite prefix-closed subset of N * , and

-for each p ∈ dom(t), if #(t(p)) = n > 0, then {i | pi ∈ dom(t)} = {1, . . . ,n}.
A special case of a ranked alphabet is the binary alphabet in which all symbols have arities either zero or two. Trees over binary alphabets are referred to as binary trees.

A subtree of t starting at a position p ∈ dom(t) is a tree t |p defined as t |p (q) = t(pq) if pq ∈ dom(t), and undefined otherwise. Given a set of positions P ⊆ N * , RB-Insert(T,x):

Tree-Insert(T,x); % Inserts a new leaf node x x->colour = red; while (x != root && x->parent->colour == red) { if (x->parent == x->parent->parent->left) { if (x->parent->parent->right->colour == red) { x->parent->colour = black; % Case 1 x->parent->parent->right->colour = black; x->parent->parent->colour = red; x = x->parent->parent; } else { if (x == x->parent->right) { % Case 2 x = x->parent; LeftRotate(T,x); } x->parent->colour = black; % Case 3 x->parent->parent->colour = red; RightRotate(T,x->parent->parent); } } else % the same as above with right and left exchanged } root->colour = black; Fig. 2 A procedure for inserting into red-black trees we define the frontier of P as the set f r(P) = {p ∈ P | ∀i ∈ N pi ∈ P} i.e., the set of tree positions from P whose direct successors are not in P any longer. For a tree t, we use f r(t) as a shortcut for f r(dom(t)). If t is a tree and p = p 1 , . . ., p n is a sequence of positions p i ∈ dom(t), we denote by t • p t 1 , . . .,t n the result of replacing each subtree t |p i by t i for all 1 ≤ i ≤ n. We denote by T (Σ) the set of all trees over the alphabet Σ .

Intuitivelly, a tree mapping is a generalisation of a homomorphism that maps each position from the domain of the source tree into a subtree of the destination tree:

Definition 1 Given two trees t : N * → Σ and t : N * → Σ , a function h : dom(t) → dom(t) is said to be a tree mapping between t and t if the following holds: h(λ) = λ , and for any p ∈ dom(t), if #(t(p)) = n > 0, then there exists a prefix-closed set Q ⊆ N * such that pQ ⊆ dom(t) and h(pi) ∈ f r(pQ) for all 1 ≤ i ≤ n.

A size function (or measure) associates to every tree t ∈ T (Σ) an integer |t| ∈ Z. Size functions are defined inductively on the structure of the tree. For each

f ∈ Σ , if #(f) = 0, then | f | is a constant c f , otherwise, for #(f) = n, we have: | f (t 1 , . . . ,t n)| =    b 1 |t 1 | + c 1 if |= δ 1 (|t 1 |, . . ., |t n |) . . . b n |t n | + c n if |= δ n (|t 1 |, . . ., |t n |)
where b 1 , . . ., b n ∈ {0, 1}, c 1 , . . . ,c n ∈ Z, and δ 1 , . . ., δ n ∈ D, all depending on f . In order to have a consistent definition, it is required that δ 1 , . . ., δ n define a partition of N n , i.e., |= ∀x 1 . . .∀x n 1≤i≤n δ i (x 1 , . . ., x n) ∧ 1≤i< j≤n ¬(δ i (x 1 , . . ., x n) ∧ δ j (x 1 , . . . ,x n)). 2 A sized alphabet (Σ , |.|) is a ranked alphabet with an associated size function.

Example. The height of a binary tree is an example of a tree measure, defined as |c| = 1, if #(c) = 0, and

| f (t 1 ,t 2)| = |t 1 | + 1 if |t 1 | ≥ |t 2 | |t 2 | + 1 if |t 2 | < |t 1 | if #(f) = 2.
A tree automaton with size constraints (TASC) over a sized alphabet (Σ , |.|) is a 3-tuple A = (Q, ∆ , F) where Q is a finite set of states, F ⊆ Q is a designated set of final states, and ∆ is a set of transition rules of the form f (q 1 , . . ., q n) ϕ(|1|,...,|n|) ----------→ q, where f ∈ Σ , #(f) = n, and ϕ ∈ D is a formula with n free variables. For constant symbols a ∈ Σ , #(a) = 0, the automaton has unconstrained rules of the form a -→ q.

A run of A over a tree t : N * → Σ is a mapping π : dom(t) → Q such that, for each position p ∈ dom(t), where q = π(p), we have:

-if #(t(p)) = n > 0 and q i = π(pi), 1 ≤ i ≤ n, then ∆ has a rule t(p)(q 1 , . . ., q n) ϕ(|1|, . . ., |n|) ----------→ q and |= ϕ(|t |p1 |, . . ., |t |pn |), -otherwise, if #(t(p)) = 0, then ∆ has a rule t(p) -→ q.
A run π is said to be accepting if and only if π(λ) ∈ F. As usual, the language of A, denoted as L (A) is the set of all trees over which A has an accepting run.

Example. The following TASC recognises the set of all balanced red-black trees. Let Σ = {red, black, null} with #(red) = #(black) = 2 and #(null) = 0. First, we define the size function to be the maximal number of black nodes from the root to a leaf:

|null| = 1, |red(t 1 ,t 2)| = max(|t 1 |, |t 2 |), and |black(t 1 ,t 2)| = max(|t 1 |, |t 2 |)+1.
The TASC recognising the set of all balanced red-black trees may now be defined as A rb = ({q b , q r }, ∆ , {q b }) with the set of transition rules:

∆ = {null -→ q b , black(q b/r , q b/r) |1| = |2| ------→ q b , red(q b , q b) |1| = |2| ------→ q r }
By using q x/y within the left-hand side of a transition rule, we mean the set of rules in which either q x or q y take the place of q x/y .

Finally, for binary trees only, we define the notion of balance. For a given binary tree t and a position p ∈ dom(t), we define the balance of t at p as the difference |t |p0 | -|t |p1 | between the sizes of the left and right subtrees of p.

Closure Properties and Decidability of TASC

This section is devoted to the closure of the class of TASC under the operations of union, intersection, and complement. The decidability of the emptiness problem is also proved.

Determinisation

A TASC is said to be deterministic if, for every input tree, the automaton has at most one run. For every TASC A, we can effectively construct a deterministic TASC A d such that L (A) = L (A d). We adapt the classical subset construction for determinising bottom-up tree automata. We have to take into account the fact that in a deterministic TASC, two rules which have the same left-hand side should not be applicable simultaneously. This problem is solved below by constructing guards of transition rules of the deterministic TASC as conjunctions of the original transition guards, which could otherwise be in a conflict, and their negations in all possible combinations. This way, we ensure that all transitions with the same lefthand side have guards that can never be satisfied simultaneously.

Concretely, let A = (Q, ∆ , F). We define

A d = (Q d , ∆ d , F d) where Q d = P(Q), F d = {s ∈ Q d | s ∩ F = / 0}, and f (s 1 , . . ., s n) ϕ -→ s ∈ ∆ d if and only if: s ⊆ {q| f (q 1 , . . ., q n) ψ -→ q ∈ ∆ , q i ∈ s i }, and s = / 0 ϕ = {ψ| f (q 1 , . . ., q n) ψ -→ q ∈ ∆ , q i ∈ s i , q ∈ s} ∧ {¬ψ| f (q 1 , . . . ,q n) ψ -→ q ∈ ∆ , q i ∈ s i , q ∈ s}
In the case of transition rules involving constant symbols, we have a -→ s ∈ ∆ d if and only if s = {q |a -→ q ∈ ∆ }. The following theorem proves that non-deterministic and deterministic TASC recognise exactly the same languages.

Theorem 1 A d is deterministic and

L (A d) = L (A). Proof (1) To prove that A d is deterministic, suppose t * --→ A d s and t * --→ A d
s , for some t ∈ T (Σ) and two states s, s ∈ Q d . We prove s = s by induction on the structure of t.

If t = a ∈ Σ 0 , we have s = s = {q ∈ Q | a -→ A q} by definition of A d . Other- wise, let t = f (t 1 , . . .,t n) for some f ∈ Σ n and t 1 , . . . ,t n ∈ T (Σ)
, and, by induction hypothesis, there exist unique states

s i ∈ Q d such that t i * --→ A d s i , 1 ≤ i ≤ n. Sup-
pose that s = s , that is, there exists a state q ∈ Q which either belongs to s and does not belong to s or vice-versa. Let us consider the first case, the other one being symmetric. By the definition of

A d , ∆ d has two rules f (s 1 , . . . ,s n) ϕ -→ s and f (s 1 , . . ., s n) ϕ -→ s
, and A has a rule f (q 1 , . . ., q n) ψ -→ q, for some q i ∈ s i , 1 ≤ i ≤ n, such that ϕ ⇒ ψ and ϕ ⇒ ¬ψ. But since s and s are reachable from t in A d , it must be the case that |= ϕ(|t 1 |, . . . ,|t n |) and |= ϕ (|t 1 |, . . ., |t n |), which leads to a contradiction. Hence s = s .

(2) "L (A d) ⊆ L (A)". We prove inductively that, for all t ∈ T (Σ) and

s ∈ Q d such that t * --→ A d s, for all q ∈ s, we have t * -→ A q. If t = a ∈ Σ 0 , by definition of A d , we have s = {q | a -→ A q}. Otherwise, t = f (t 1 , . . . ,t n) for some f ∈ Σ n and t 1 , . . . ,t n ∈ T (Σ),
and

t i * --→ A d s i , 1 ≤ i ≤ n.
By induction hypothesis, for all q i ∈ s i , we have

t i * -→ A q i .
By definition of A d , there exists a rule r : f (s 1 , . . . ,s n) ϕ -→ s such that, for each rule f (q 1 , . . . ,q n) ψ -→ q with q i ∈ s i and q ∈ s, we have ϕ ⇒ ψ. Moreover, the rule r is applicable for the subtrees t 1 , . . .,t n , i.e., |= ϕ(|t 1 |, . . ., |t n |). Hence, each rule

f (q 1 , . . . ,q n) ψ -→ q is applicable. Therefore, for all q ∈ s, we have t * -→ A q. If s ∈ F d ,
then, by the definition of A d , there exists q ∈ s ∩ F. Thus t is accepted by

A if it is accepted by A d . "L (A d) ⊇ L (A)". We prove inductively that, for all t ∈ T (Σ) and q ∈ Q, if t * -→ A q, then there exists s ∈ Q d such that t * --→ A d s and q ∈ s. If t = a ∈ Σ 0 , we have s = {q | a -→ q} and ϕ = . Otherwise, t = f (t 1 , . . . ,t n) for some f ∈ Σ n and t 1 , . . .,t n ∈ T (Σ), and t i * -→ A q i , for some q i ∈ Q, 1 ≤ i ≤ n.
By the induction hypothesis, there exist some

s i ∈ Q d such that t i * --→ A d s i and q i ∈ s i . Also, if t * -→ A f (q 1 , . . . ,q n) ψ -→ A q, then |= ψ(|t 1 |, . . . ,|t n |). Consider now the set of guards G = {ψ | ∃q 1 ∈ s 1 , . . . ,∃q n ∈ s n ∃q ∈ Q. f (q 1 , . . . ,q n) ψ --→ A q },
and Γ ψ be the set of all subsets of G that contain ψ. For any set of guards I , we denote by Ψ I the formula ϕ∈I ϕ ∧ ϕ∈G \I ¬ϕ. Obviously,

ψ = I ∈Γ ψ Ψ I . Since |= ψ(|t 1 |, . . ., |t n |), there exists some I ∈ Γ ψ such that |= Ψ I (|t 1 |, . . . ,|t n |). Now, let s = {q |∃q 1 ∈ s 1 , . . . , ∃q n ∈ s n . f (q 1 , . . ., q n) ψ --→ A q , ψ ∈ I }, and ϕ = Ψ I . Notice that q ∈ s. By the definition of A d , there exists a rule f (s 1 , . . . ,s n) ϕ -→ s in ∆ d , and, moreover, it is applicable, hence t * --→ A d s. By the definition of A d , if q ∈ F, then s ∈ F d , hence t is accepted by A d if it is accepted by A.

Union, Intersection, and Complementation

Let us have two arbitrary TASCs

A 1 = (Q 1 , ∆ 1 , F 1) and A 2 = (Q 2 , ∆ 2 , F 2). We can assume w.l.o.g. that Q 1 and Q 2 are disjoint. Let A 1 ∪ A 2 = (Q 1 ∪ Q 2 , ∆ 1 ∪ ∆ 2 , F 1 ∪ F 2).
Lemma 1 Given a sized alphabet Σ and two TASCs A

i = (Q i , ∆ i , F i), i = 1, 2, over Σ , we have L (A 1 ∪ A 2) = L (A 1) ∪ L (A 2).
Proof As in the standard case of tree automata, if

t ∈ L (A 1 ∪ A 2), then A 1 ∪ A 2 has an accepting run π : dom(t) → Q 1 ∪ Q 2 over t. Since Q 1 ∩ Q 2 = / 0,
we can prove by induction on the structure of t that either [START_REF] Alur | Visibly Pushdown Languages[END_REF]

π(dom(t)) ⊆ Q 1 or (2) π(dom(t)) ⊆ Q 2 .
In the first case, we have t ∈ L (A 1), whereas in the second, we have

t ∈ L (A 2), therefore L (A 1 ∪ A 2) ⊆ L (A 1) ∪ L (A 2)
. The other direction is trivial.

A TASC A = (Q, ∆ , F) is said to be complete if, for any tree t ∈ T (Σ), there exists a state q ∈ Q such that t * -→ A q. An arbitrary TASC can be completed by adding a sink state σ ∈ Q and the following rules, for all f ∈ Σ , q 1 , . . ., q n ∈ Q, where n = #(f):

f (q 1 , . . . ,q n) ϕ -→ σ ∈ ∆ c iff ϕ = {¬ψ | f (q 1 , . . . ,q n) ψ -→ q ∈ ∆ } f (q 1 , . . . ,σ , . . .q n) -→ σ ∈ ∆ c
Above, ∆ c denotes the set ∆ to which the new transition rules have been added. The complete TASC is

A c = (Q ∪ {σ }, ∆ c , F).
Notice that if there are no rules

f (q 1 , . . . ,q n) ψ -→ A q, then there is a rule f (q 1 , . . ., q n) --→ A c q. Note that if A is deter- ministic, so is A c .
Lemma 2 Given a sized alphabet Σ and a TASC A = (Q, ∆ , F) over Σ , we have

L (A c) = L (A).
Proof Since the set of transition rules of A c is a superset of ∆ , we have L (A c) ⊇ L (A). By contradiction, suppose that there exists a tree t ∈ L (A c) \ L (A). Then A c has an accepting run π c on t, which uses at least one of the newly added rules. But, since all the rules of A c which are not in ∆ lead to σ , and all rules where σ occurs on the left-hand side must have it on the right-hand side also, then π c (λ) = σ . However, σ is not an accepting state of A c , which contradicts the assumption that π c is an accepting run of A c .

The complement of a deterministic complete TASC

A = (Q, ∆ , F) is defined as A = (Q, ∆ , Q \ F).
Lemma 3 Given a sized alphabet Σ and a complete deterministic TASC A = (Q, ∆ , F) over Σ , we have t ∈ L (A) if and only if t ∈ L (A) for any t ∈ T (Σ).

Proof If A is complete and deterministic, then for each t ∈ T (Σ), A has exactly one run π : dom(t) → Q. If t ∈ L (A), then π is accepting, and π(λ) ∈ F. In this case, π is not accepting for A, hence t ∈ L (A). The other direction is symmetric.

Since we can construct automata for union and complement of TASC, it is possible to define intersection as

A 1 ∩ A 2 = A 1 ∪ A 2 .

Deciding Emptiness

This section is dedicated to the decidability proof for TASC. We show that all runs of a TASC are in direct correspondence to the accepting runs of an effectivelly constructed Alternating Pushdown System (APDS). The existence of accepting runs for APDS is a well-known decidable problem, which occurs as a consequence of the results in [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model-Checking[END_REF]. Namely, it is shown that, given a regular set C of configurations (pairs of the form q, w , where q is a control state, and w is the contents of the stack), the set pre * (C) of all predecessor configurations is also regular and can be effectivelly computed from C. In particular, the set pre * q (C) = {w | q, w ∈ pre * (C)} is also regular, and effectively computable from C. In other words, if the APDS has a run leading from a control state q 0 into a state in C if and only if the set pre * q 0 is not empty. Since the latter is a regular set (recognized by an alternating automaton) its emptiness is decidable. This entails the decidability of the emptiness problem for APDS.

Given an arbitrary TASC, we translate it into an APDS whose stack encodes the value of one integer counter, denoted by y from now on. An APDS is a 4-tuple S = (Q,Γ , δ , F) where:

-Q is a finite set of control locations, -Γ is a finite stack alphabet, -F ⊆ Q is a set of final control locations, -δ is a mapping from Q × Γ into P(P(Q × Γ *)).
Notice that an APDS does not have an input alphabet since we are interested in the behaviours it generates, rather than in the accepted language. A run of an APDS is a tree t : N * → (Q × Γ *) satisfying the following property: for any p ∈ dom(t), if t(p) = q, γw , then {t(pi) | 1 ≤ i ≤ #(t(p))} = { q 1 , w 1 w , . . . , q n , w n w }, where { q 1 , w 1 , . . ., q n , w n } ∈ δ (q, γ). The run is accepting if all control locations occurring on its frontier are final.

For

a TASC A = (Q, ∆ , F) over a sized alphabet (Σ , |.|), let S A = (Q A ,Γ , δ A , F A) be the APDS where Q A = Q × Σ ∪ Π , Γ = {-, 0, 1}, and F A = {q f } ⊂ Π .
Here, Π is an additional set of states that are needed in the construction of S A from A and that are not of the form q, f . We use 0 as the beginning of the stack marker,on top of the stack denotes a negative value, and 1 is used for the unary encoding of the absolute value of the counter. We represent an integer value n ∈ Z using the unary encoding:

(n) 1 = 1 n 0, if n ≥ 0 -1 -n 0 if n < 0
The primitive operations on the counter y, i.e., increment, decrement, and zero test, are encoded by the moves given in Figure 3. For example, if the value of y in a control state q is -2, a transition that increments y and moves into q is simulated by the following sequence of moves: q, -110 q -, 110 q -, 10 q , -10 . Note that (-2) 1 = -110 and (-1) 1 = -10. q y = y + 1 -------→ q q y = y -1 -------→ q q y = 0 ----→ q q, 1 → q , 11 q, 0 → q , 10 q, -→ q -, ε q -, 1 → q -, ε q -, 1 → q , -1 q -, 0 → q , 0 q, 1 → q , ε q, 0 → q , -10 q, -→ q , -1 q, 0 → q , 0 Fig. 3 Encoding a counter by a stack

Let Perm(N) denote the set of all permutations I : {1, . . . ,N} →{ 1, . . . ,N}. For technical reasons, the following lemma is needed in the rest of the section.

Lemma 4 Every formula ϕ(x 1 , . . ., x N) of D can be effectively written as a disjunction of formulae of the following form, for a suitable permutation I ∈ Perm(N) of its free variables :

N-1 k=1 x I(k) -x I(k+1) k c k ∧ m∈M⊆{1,...,N} x m ≤ d m ∧ p∈P⊆{1,...,N} x p ≥ e p
where k ∈ {≤, =} and c k , d m , e p ∈ Z.

Proof First, we eliminate all occurences of negation and ≥. Second, we replace any conjunction of the form c 1 ≤ xy ≤ c 2 for c 1 < c 2 (for c 1 > c 2 , the conjunction is not satisfiable and the original formula can be simplified accordingly), by the disjunction c∈{c 1 ,c 1 +1,...,c 2 } x = y + c. Third, we put the resulting formula in DNF and process each disjunct as follows.

For each permutation I ∈ Perm(N) of the free variables in ϕ, we define the induced ordering θ I : x I(1) ≤ x I(2) ≤ . . . ≤ x I(N) . Let Θ = I∈Perm(N) θ I be the (logically valid) disjunction of all possible orderings of the free variables x 1 , . . ., x N . In the following, we work with the DNF form of ϕ ∧ Θ , in which each disjunct is necessarily associated with some ordering. We transform each clause (disjunct) θ I ∧ ψ of the DNF form of ϕ ∧Θ by applying one of the four cases below for each constraint x i -x j c, ∈ {≤, =}, occurring in ψ:

1. If θ I ⇒ x i ≤ x j and c ≤ 0, then there exist

x i = x I(k) ≤ x I(k+1) ≤ . . . ≤ x I(l) = x j in θ I . Let C = { c k , . . ., c l-1 | c i ≥ 0, k ≤ i < l, ∑ l-1 i=k c i = c}.
Since C is finite, we can replace x i -x j c by the equivalent formula c∈C k≤i<l x I(i) -x I(i+1) c i . 2. The case of θ I ⇒ x i ≥ x j and c ≥ 0 is treated in a symmetric way with the first point.

3. If θ I ⇒ x i ≤ x j and c > 0, the constraint is trivially valid and can be eliminated from the clause. In the case where x i -x j c is the only constraint in the clause, the original formula ϕ is valid. 4. If θ I ⇒ x i ≥ x j and c < 0, we discard the entire clause θ I ∧ψ as unsatisfiable. In the case where this was the only clause, the original formula ϕ is unsatisfiable.

In the resulting formula, we replace:

any conjunction of constraints of the form xy ≤ c ∧ xy ≤ c by xy ≤ min(c , c), any conjunction of constraints of the form xy = c ∧ xy = c by simply

xy = c , any conjunction of constraints of the form xy ≤ c ∧ xy = c by xy = c if c ≤ c , and any conjunction containing a subformula of the form x -

y c ∧ x -y = c by ⊥ if c < c .
We shall encode a move of A as a series of moves of S A . As A moves bottom-up on the tree, S A will perform a series of alternating top-down transitions, simulating the move of A in reverse. The stack (counter) of S A is intended to encode the value of the size function |.| at the current tree node.

Suppose that A has a transition rule f (q 1 , . . ., q n) ϕ -→ q and that the current node is of the form f (t 1 , . . .,t n) with | f (t 1 , . . . ,t n)| = b r |t r | + c r , and δ r is the disjunctive condition such that |= δ r (|t 1 |, . . ., |t n |), according to the definition of the size function (see Section 3). W.l.o.g., we consider from now on that ϕ and δ r have the same set of free variables, denoted x 1 , . . . ,x n . In what follows, we consider the case b r = 1, i.e., | f (t 1 , . . .,t n)| = |t r | + c r . The case b r = 0 can be treated in a similar way, by guessing the value |t r |. The position r is said to be the reference position of the subtree f (t 1 , . . .,t n). The value |t r | is said to be the reference value of f (t 1 , . . .,t n).

Without losing generality, we consider that the difference constraint formula ϕ ∧ δ r ∈ D has already been converted into the normal form of Lemma 4, that is, a disjunction of formulae of the form:

n-1 k=1 x I(k) -x I(k+1) k d k ∧ m∈M⊆{1,...,n} x m ≤ e m ∧ p∈P⊆{1,...,n} x p ≥ l p
where k ∈ {≤, =}, d k , e m , l p ∈ Z, and I ∈ Perm(n). For the rest of this section, let us fix one such disjunct.

After each sequence of universal moves, S A creates n copies of its counter y, let us name them y 1 , . . ., y n . The counter y i is intended to hold the value |t I(i) | for 1 ≤ i ≤ n, and the counter y holds the value | f (t 1 , . . .,t n)|. Let i r = I -1 (r) be the index of the counter y i r that holds the reference value of the given transition, i.e., y = y i r + c r . With this notation, Figure 4 (a) shows the alternating moves of S A that simulate the A-transition considered, for one disjunct of ϕ ∧ δ r . Figure 4 (b) shows the moves for transitions of the form a -→ q. Filled circles in Figure 4 represent states from Q × Σ , and empty circles are additional states from Π . The only accepting state of S A , named q f , is marked by a double circle. The notation sgn(. . .) denotes the sign function, i.e., sgn(n) = 1 if n > 0, sgn(0) = 0, and sgn(n) = -1 if n < 0. Next, ν 1 , ν 2 , . . . are symbolic names for the universal moves performed by S A . Further, in what follows, we will denote a configuration q, f , u of S A by writing q, f , u . In particular, in Figure 4, configurations from Q × Σ × Γ * are labeled by triples of the form q, f , (y) 1 .

Here, (y) 1 denotes the unary encoding of the value of the y counter. Moreover, for simplicity, configurations from Π × Γ * are labeled only with (y) 1 in Figure 4.

When simulating the A-transition f (q 1 , . . ., q n) ϕ -→ q, S A starts with the configuration q, f , (y) 1 (cf. Figure 4 (a)). In order to derive the reference value y i r from y, S A performs |c r | decrement or increment actions, depending on whether the sign of c r is positive or negative. Then S A performs the universal move ν 1 making three copies of itself (unless i r = 1 when the upper branch is omitted and/or i r = n when the lower branch is omitted). The middle branch simply moves to the appropriate control state q r , f r with stack (y i r) 1 . The upper and lower branches are used to produce the values y i r -1 and y i r +1 if needed.

The upper branch of the universal move ν 1 depicted in Figure 4 depends on r ∈ {≤, =}. If r is =, then S A performs a sequence of increment/decrement operations of length d i r -1 in order to obtain the value y i r -1 from y i r (since y i r -1 = y i r + d i r -1). If r is ≤, then there is an additional existential (non-deterministic) transition-depicted using a dotted arrow in Figure 4 (a)-which decrements the counter an arbitrary number of times in order to obtain a smaller value (since

y i r -1 ≤ y i r + d i r -1).
A similar sequence of transitions is performed by the lower branch of ν 1 . Note that the symbols f I(i r -1) , f r , f I(i r +1) are chosen arbitrarily, that is, for each triple (g 1 , g 2 , g 3) ∈ Σ3 n , S A performs three universal moves that are identical to ν 1 , ν 2 , ν 3 , with g 1 , g 2 , and g 3 substituted for f I(i r -1) , f r , and f I(i r +1) , respectively.

Next, if i r -1 > 1, the simulation continues with the binary universal move ν 2 . The lower branch of ν 2 changes the control into q I(i r -1) , f I(i r -1) without changing the stack. The upper branch of ν 2 leads to a control state from Π , from which the remaining values y i r -2 , . . ., y 1 are produced. Symmetrically, the universal move ν 3 leads to configurations producing the values y i r +1 , . . ., y n .

Clearly, the values of the counters y 1 , y 2 , . . . ,y n that are obtained in the way described above will satisfy the constraint ϕ ∧ δ r when used as the sizes of the subtrees t I(1) ,t I(2) , ...,t r , ...,t I(n) . Moreover, at the same time, any assignment satisfying this formula can be obtained in some run of S A by iterating the increment/decrement self-loops a sufficient number of times. 3 In order to simulate moves of the form a -→ q (Figure 4 (b)), S A simply decrements/increments the counter, depending on the sign of |a|, a number of times equal to the absolute value of |a|. The condition y = 0 ensures that S A accepts only with the empty stack. The universal dotted branch in Figure 4 (c) is used to test that y m ≤ e m for some 1 ≤ m ≤ n. A similar test for y p ≥ l p can be issued by replacing y = y + 1 with y = y -1 on the loop. The following lemma is a concretisation of the above considerations:

Lemma 5 Let A = (Q, ∆ , F) be a TASC over a sized alphabet (Σ , |.|) and let S A be its corresponding APDS.

1. For any tree t ∈ T (Σ) and any run π : dom(t) → Q of A on t, there exists an accepting run ρ : N * → (Q × Σ ∪ Π) ×Γ * of S A and an injective tree mapping h : dom(t) → dom(ρ) between π and ρ such that:

∀p ∈ dom(t) . ρ(h(p)) = π(p),t(p), (|t |p |) 1 (1)
2. For any accepting run ρ :

N * → (Q × Σ ∪ Π) × Γ * of S A
, there exists a tree t ∈ T (Σ), a run π : dom(t) → Q of A on t, and an injective tree mapping h : dom(t) → dom(ρ) between π and ρ satisfying (1).

Proof (Part 1.) Let t ∈ T (Σ) be a tree and π : dom(t) → Q be a run of A on t. We prove the existence of ρ and h by induction on the structure of t.

If t = a, the only runs of A on t are generated by applying rules of the form a -→ q. In this case, for any a -→ q, ρ is the accepting run of S A starting in q, a, (|a|) 1 and ending with the empty stack as shown in Figure 4 (b). The tree mapping h is such that h(λ) = λ and h is undefined everywhere else. Clearly, h is an injective tree mapping (cf. Definition 1), and property (1) is satisfied.

If t = f (t 1 , . . . ,t n), a run of A over t has the form t * -→ f (q 1 , . . . ,q n) ϕ -→ q,
for some runs t i * -→ q i , 1 ≤ i ≤ n, and a transition rule f (q 1 , . . ., q n) ϕ -→ q ∈ ∆ . Let 1 ≤ r ≤ n be the unique integer such that |t| = |t r |+c r , and

|= (ϕ ∧δ r)(|t 1 |, . . . ,|t n |).
By Lemma 4, there exists a permutation I ∈ Perm(n), and integers d k , e m , l p ∈ Z such that :

n-1 k=1 |t I(k) | -|t I(k+1) | k d k ∧ m∈M⊆{1,...,n}
x m ≤ e m ∧ p∈P⊆{1,...,n} x p ≥ l p By the induction hypothesis, for each 1 ≤ i ≤ n, S A has an accepting run ρ i starting in a configuration q i ,t i (λ), (|t i |) 1 , and there exist injective tree mappings h i : dom(t i) → dom(ρ i) satisfying property [START_REF] Alur | Visibly Pushdown Languages[END_REF].

According to the construction in Figure 4 (a), S A has a run θ starting in q, f , (|t|) 1 whose frontier forms a sequence p = p 1 , . . . , p n such that θ (p k) = q I(k) ,t I(k) (λ), (|t

I(k) |) 1 for all 1 ≤ k ≤ n.
Note that for each subterm t i of the term t = f (t 1 , . . . ,t n), 1 ≤ i ≤ n, we can match the control state q i ,t i (λ) , from which the run ρ i accepting t i starts, with the control state q I(k) ,t I(k) (λ) at the position k = I -1 (i) of the frontier of θ . This is due to the construction in Figure 4 (a), which produces, for each transition rule f (q 1 , . . . ,q n) -→ q of A, a set of runs of S A ending in control states of the form q i , g for all g ∈ Σ . It is sufficient to choose from this set the run(s) for which

g i = t i (λ) for all 1 ≤ i ≤ n.
Also, the construction in Figure 4 (a), when started with the value of the counter y being |t|, produces the values

|t i | in the counters y I -1 (i) , 1 ≤ i ≤ n, such that |t| = |t r | + c r and |= (ϕ ∧ δ r)(|t 1 |, . . . ,|t n |). With the above considerations, this ensures that θ (p k) = ρ I(k) (λ) for all 1 ≤ k ≤ n.
With these definitions, the accepting run ρ of S A can be constructed as ρ = θ • p ρ I(1) (λ), . . . ,ρ I(n) (λ) . One can see that ρ is accepting since each ρ i is accepting for all 1 ≤ i ≤ n.

The mapping h is defined such that h(λ) = λ , and for each 1

≤ i ≤ n, for all p ∈ dom(t i), h(ip) = p I -1 (i) • h i (p).
* | ∀w . p ≺ w ≺ p • u ⇒ ρ(w) ∈ Π × Γ * }. Let P = {p ∈ dom(ρ) | ρ(p) ∈ Q × Σ ×Γ * }
, and notice that ρ can be written as a composition of elementary runs ρ↓ p for p ∈ P. We prove the existence of t, π, and h by induction on the number N of elementary runs in ρ.

For the base case N = 1, since ρ is accepting, the only possibility is that ρ is the result of simulating an existing rule a -→ q ∈ ∆ according to Figure 4 (b).

Then, ρ(λ) = q, a, γ , and by the construction of S A , we have that γ = (|a|) 1 . We then define dom(t) = dom(π) = {λ }, t(λ) = a, and π(λ) = q. Also, let h(λ) = λ , and h be undefined everywhere else. The proof that t, π, and h satisfy property (1) is straightforward.

For the induction step N > 1, let ρ↓ λ be the top-most elementary run of ρ. Let ρ(λ) = q, f , u be the starting configuration of ρ, and p = p 1 , . . . , p n be the sequence of positions on f r(ρ↓ λ), i.e., ρ = (ρ↓ λ)

• p ρ |p 1 , . . . ,ρ |p n . Let ρ(p k) = q k , f k , u k for all 1 ≤ k ≤ n.
By the induction hypothesis, for each ρ |p k , 1 ≤ k ≤ n, there exist trees t k , runs π k : dom(t k) → Q of the form t k * -→ q k , and injective tree mappings h k : dom(t k) → dom(ρ k) satisfying property [START_REF] Alur | Visibly Pushdown Languages[END_REF]. Consequently,

f k = t k (λ) and u k = (|t k |) 1 for all 1 ≤ k ≤ n.
Henceforth, we consider that n > 1, the case n = 1 being left to the reader. By the construction in Figure 4 (a), there exist:

a transition rule f (q 1 , . . ., q n) ϕ(x 1 , . . .,

x n) ---------→ q ∈ ∆ , -a permutation I ∈ Perm(n) such that |= ϕ(|t I -1 (1) |, . . . ,|t I -1 (n) |), -a reference position 1 ≤ r ≤ n such that u = (| f (t I -1 (1) , . . .,t I -1 (n))|) 1 , | f (t I -1 (1) , . . . ,t I -1 (n))| = |t I -1 (r) | + c r , and |= δ r (|t I -1 (1) |, . . ., |t I -1 (n) |).
With these definitions, let t = f (t I -1 (1) , . . . ,t I -1 (n)), and π be the tree defined as π(λ) = q, and, for all 1 ≤ i ≤ n and all p ∈ dom(π

I -1 (i)), π(ip) = π I -1 (i) (p). It is easy to see that π is a run of A over t.
The mapping h is defined such that h(λ) = λ , and for each 1

≤ i ≤ n, for all p ∈ dom(t I -1 (i)), h(ip) = p I -1 (i) • h I -1 (i) (p).
The proof that h is an injective tree mapping satisfying property (1) is straightforward.

We can now formalise the main result of this subsection.

Theorem 2 Let A be a TASC. The problem whether L(A) = / 0 is decidable.

Proof Due to Lemma 5, we know that a tree with a root symbol f ∈ Σ is accepted at a state q of a TASC A = (Q, ∆ , F) over a sized alphabet Σ iff there is an accepting run from the control state q, f in the appropriate APDS

S A = (Q A ,Γ , δ A , F A).
It is thus enough to use the result of [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model-Checking[END_REF] (mentioned at the begining of the section) to check whether for some q, f ∈ Q A where q ∈ F, pre * q, f ({ q f in , ε }) is nonempty. Here, q f in is the unique final state of the APDS S A constructed according to Figure 4.

Remark. The decidability of the emptiness problem for TASC can also be proved via a reduction to the class of tree automata with one memory [START_REF] Comon-Lundh | Tree Automata with One Memory, Set Constraints and Cryptographic Protocols[END_REF] by encoding the size of a tree as a unary term. The inequality constraints from the guards of the TASC can be simulated analogously by adding increment/decrement self loops to the tree automata with one memory.

Semantics of Tree Updates

As explained in Section 2, there are three types of operations that commonly appear in procedures used for balancing binary trees after an insertion or deletion:

(1) navigation in a tree, i.e., testing or changing the position that a pointer variable is pointing to in the tree, (2) testing or changing certain data fields of the encountered tree nodes, such as the colour of a node in a red-black tree, and (3) tree rotations. In addition, one has to consider the physical insertion or deletion to/from a suitable position in the tree as an input for the re-balancing.

It turns out that the TASC defined in Section 3 are not closed with respect to the effect of some of the above operations, in particular the ones that change the balance of subtrees (the difference between the size of the left and right subtree at a given position in the tree). Therefore, we now introduce a subclass of TASC called restricted TASC (rTASC), which we show to be effectively closed with respect to all the needed operations on balanced trees. Moreover, rTASC are closed with respect to intersection and union, amenable to determinisation and minimisation, though not closed with respect to complementation. The idea is to use rTASC to express loop invariants and pre-and post-conditions of programs as well as to perform the necessary reachability computations. TASC are then used in the associated language inclusion checks (where they arise via negation of rTASC).

Remark. To simplify the presentation of the effect of program statements on a set of memory configurations given by an rTASC, we suppose in the following that the statements do not lead to a memory error (like a null pointer dereference or similar). However, it is easy to implement tests for these potential errors over sets of memory configurations described by rTASCs in the same way as regular program conditions (i.e., if statements) are implemented, which we explain in Section 5.4.

Restricted TASC

A restricted alphabet is a sized alphabet consisting only of nullary and binary symbols and a size function of the form | f (t 1 ,t 2)| = max(|t 1 |, |t 2 |) + a with a ∈ Z for binary symbols. A restricted TASC is a TASC with a restricted alphabet and with binary rules of the form f (q 1 , q 2) |1| -|2| = b ---------→ q with b ∈ Z only. Notice that any conjunction of guards of an rTASC and their negations reduces either to false, or to only one formula of the same form, i.e., |1| -| 2| = b. Using this fact, one can show that the intersection of two rTASCs is again an rTASC, and that applying the determinisation of Section 4.1 to an rTASC yields another rTASC. Moreover, due to the fact that the guards of the transition rules of rTASCs contain at most two variables, it is not necessary to apply the potentially expensive step of converting them into the normal form described in Lemma 4, when deciding emptiness of rTASCs. Further, the intersection of an rTASC with a classical tree automaton is again an rTASC. 4 On the other hand, it is clear that rTASCs are not closed under complementation as inequality guards are not allowed.

Minimisation of rTASC. The simple form of the guards allows us to have a practical minimisation procedure based on the minimisation for classical bottom-up tree automata [START_REF] Comon-Lundh | Tree Automata Techniques and Applications[END_REF].

If (Σ , |.|) is a restricted alphabet, let Σ δ be the infinite ranked alphabet { f , d | f ∈ Σ , d ∈ Z} with #(f , d) = #(f).
For any t ∈ T (Σ), let δ (t) ∈ T (Σ δ) be the tree defined as follows:

-dom(t) = dom(δ (t)), -for all p ∈ dom(t), if #(t(p)) = 0, we have δ (t)(p) = t(p), |t(p)| , and -for all p ∈ dom(t), if #(t(p)) = 2, we have δ (t)(p) = t(p), |t |p1 | -|t |p2 | .
In other words, we record the balance of each subtree in the symbol that labels the root of the subtree. For constant symbols, we simply put their measures as labels in the tree. Obviously, δ is a (bijective) function from T (Σ) to T (Σ δ), which we extend pointwise to sets of trees. If A is an rTASC over the restricted alphabet (Σ , |.|), let A δ be the bottom-up tree automaton over Σ δ defined by replacing each transition rule of A of the form:

a -→ q by a, |a| -→ q, and

-f (q 1 , q 2) |1| -|2| = b ---------→ q by f , b (q 1 , q 2) -→ q.
Note that we can always define A δ over a finite subset of Σ δ since the number of rules in A is finite. Moreover, the size of A (number of states) equals the size of A δ . Last, the transformation of A into A δ is always reversible.

Lemma 6 Given an rTASC A over a sized alphabet (Σ , |.|), for all trees t ∈ T (Σ),

we have t ∈ L (A) if and only if δ (t) ∈ L (A δ). Proof We prove that t * -→ A q iff δ (t) * --→ A δ q by induction on the structure of t. If t = a ∈ Σ 0 , a -→ A q if and only if δ (a) = a, |a| --→ A δ q. Otherwise, let t = f (t 1 ,t 2) * -→ A f (q 1 , q 2) |1| -|2| = b ---------→ A q with t i * -→ A q i , 1 ≤ i ≤ 2. Then, |t 1 |-|t 2 | = b, hence δ (t) = f , b (δ (t 1), δ (t 2))
. By the induction hypothesis, we have δ (t i) * --→ A δ q i , and, by the

definition of A δ , f , b (q 1 , q 2) --→ A δ q.
The other direction is symmetrical. Now, given an rTASC A, we compute A δ , determinise and minimise it using the classical construction from [START_REF] Comon-Lundh | Tree Automata Techniques and Applications[END_REF], obtaining A δ min . The minimal rTASC A min is subsequently obtained by performing a reverse of the conversion from rTASC to tree automata on A δ min , i.e., by moving back the integer constants from the symbols to the guards. To convince ourselves that A min is indeed minimal, suppose there exists a smaller rTASC A recognising the same language, i.e.,

L (A) = L (A min) = L (A). Then, δ (L (A)) = δ (L (A)) = L (A δ) = L (A δ min
). Since A and A δ have the same number of states, we contradict the minimality of A δ min .

Representing Sets of Memory Configurations

To be able to describe how tree rotations (and the other considered operations) can be implemented over rTASC, we first have to explain how rTASC can be used for describing sets of memory configurations of programs manipulating balanced tree structures like red-black trees or AVL trees. Intuitively, we map memory configurations (i.e., heap graphs) having the form of trees node-by-node onto the trees accepted by rTASC, with the nodes labelled by (1) the variables pointing to them and by (2) the data elements stored in them. We also use the label null to denote null successors of leaf nodes.

Formally, let us consider a finite set of pointer variables V = {x, y, . . .} and a finite set of data values D, e.g., D = {red, black}. In the following, we let Σ = P(V) × D ∪ {null}. The arity function is defined as follows: #(f) = 2 for all f ∈ P(V) × D, and #(null) = 0. For any non-null symbol f ∈ P(V) × D, let v(f) ⊆ V and d(f) ∈ D denote the variables pointing to the tree node labelled with f and the data value of this node, respectivelly, i.e., f = (v(f), d(f)). For a tree t ∈ T (Σ) and a variable x ∈ V , we say that a node p ∈ dom(t) is pointed to by x if and only if t(p) = null and x ∈ v(t(p)). If there is no node pointed by a variable x ∈ V in a tree t ∈ T (Σ), i.e., ∀p ∈ dom(t). t(p) = null ⇒ x ∈ v(t(p)), we assume x to be null. 5For the rest of the section, let A = (Q, ∆ , F) be an rTASC over Σ . We say that A represents a set of memory configurations if and only if for each t ∈ L(A) and each x ∈ V , there is at most one p ∈ dom(t) that is pointed to by x. This condition can be always enforced by intersecting any given rTASC by the rTASC

A = (Q , ∆ , Q) where Q = P(V), and ∆ = {null -→ / 0} ∪{ f (v 1 , v 2) -→ v | v = v(f)∪v 1 ∪v 2 ∧ v(f)∩v 1 = v(f)∩v 2 = v 1 ∩v 2 = /
0}. Intuitively, A remembers in its control locations all so-far encountered variables and ensures that no variable is encountered twice.

An example of an rTASC representing within the described encoding the set of memory configurations correponding to the invariant in the red-black tree insertion procedure can be found at the beginning of Section 6.

Computing the Effect of Tree Rotations

Let x ∈ V be a fixed variable, and A = (Q, ∆ , F) be an rTASC. We now give a method for deriving an rTASC A = (Q , ∆ , F) describing the set of trees that are the result of a left rotation applied to trees from L(A) at the node pointed to by x. The case of the right tree rotation is very similar and so we skip it here. 6 In the description, we will be referring to Figure 5 illustrating the problem.

Let R x (∆) = {(r 1 , r 2) ∈ ∆ × ∆ | r 1 : f (q 1 , q 2)
ϕ 3 --→ q 3 ∧ r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 ∧ x ∈ v(g)} be the set of all the pairs of automata rules from ∆ that can yield a rotation, and be modified because of it. Other rules may then have to be modified to reflect:

changes of some control states, for instance the change of q 5 to q 3 in rule r 3 from Figure 5, or changes of balance resulting from the rotation, i.e., changes in the difference between the sizes of left and right subtrees, which get propagated from the rotated subtree upwards.

To define the resulting automaton, we use an auxiliary set D ⊆ Z which contains all the changes in balance that may occur in any tree from L(A), due to a rotation at x. The set D is the smallest set such that:

q 1 q 2 q 3 q 4 q 5 s 1 s 2 s 3 = (s 1 >= s 2) ? (s 1 + b 1) : (s 2 + b 1) s 4 f g [$ 3 : s 1 = s 2 + a 1] [$ 5 : s 4 = s 3 + a 2] s 5 = (s 4 >= s 3) ? (s 4 + b 2) : (s 3 + b 2) q 4 q 1 s 4 s 1 g q 2 s' 5 f s 2 s' 3 [$' 3] [$' 5] r 1 : r 2 : h q 7
h (q 7 ,d'')

x: q' 3 = q d r1,r2 q' 5 = q r1,r2 x:

r 3 :
Fig. 5 Left rotation on an rTASC -iniD(r 1 , r 2) ∈ D, for all (r 1 , r 2) ∈ R x , and

-le f tD(a, d) ∈ D, rightD(a, d) ∈ D, for all d ∈ D and f (q 1 , q 2) |1| = |2| + a ---------→ q 3 ∈ ∆ .
The function iniD computes the initial disbalance caused by the rotation, while le f tD and rightD propagate upward the disbalance that happened in the left or right subtree of some node, respectivelly. The definitions of these functions are the subject of Sections 5.3.1 and 5.3.2. Lemma 7 shows that the set D is finite, which guarantees that A can be computed in a finite number of steps.

The set of states of A is defined as

Q = Q ∪ Q x ∪ Q D x ∪ Q D , where Q x , Q D
x and Q D are pairwise disjoint sets, all disjoint from Q, defined as:

-Q x = {q r 1 ,r 2 | (r 1 , r 2) ∈ R x (∆)} contains a new
state for each pair of transition rules involved in the rotation, which accepts the former root of the rotated subtree that went down in the rotation.

-Q D x = {q d x | q x ∈ Q x ∧ d ∈ D}
is the set of states accepting the nodes that went up in the rotation and became the new root of the rotated subtree.

-

Q D = {q d | q ∈ Q ∧ d ∈ D}
is the set of states accepting all contexts of subtrees changed by the rotation (i.e., the tree nodes that appear above the rotated subtree).

The set ∆ of transition rules of A is defined as the limit of the increasing sequence of sets ∆ 0 ⊆ ∆ 1 ⊆ ∆ 2 , . . ., i.e., ∆ = i≥0 ∆ i , where ∆ 0 = ∆ , and ∆ i+1 is obtained from ∆ i by applying one of the rules in Figure 6. Since, by Lemma 7, the set D is finite, it is obvious that the limit is reached in a finite number of steps. The functions lPhi and rPhi that compute the guards of the newly added rules, are given in Section 5.3.1.

The set of final states of A is defined as

F = {q d | q ∈ F} ∪{ q d r 1 ,r 2 | (r 1 , r 2) ∈ R x ∧ d = iniD(r 1 , r 2) ∧ r 1 : f (q 1 , q 2) ϕ 3 --→ q 3 ∧ r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 ∧ q 5 ∈ F}.
Intuitivelly, the states from {q d | q ∈ F} ensure that we accept only the trees in which a rotation actually occurred in some subtree. Additionaly, the states

q d r 1 ,r 2 ∈ (r 1 , r 2) ∈ R x (∆ i) r 1 : f (q 1 , q 2) ϕ 3 --→ q 3 r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 g(q 4 , q 1) lPhi(r 1 , r 2) --------→ q r 1 ,r 2 ∈ ∆ i+1 R 1a (r 1 , r 2) ∈ R x (∆ i) r 1 : f (q 1 , q 2) ϕ 3 --→ q 3 r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 f (q r 1 ,r 2 , q 2) rPhi(r 1 , r 2) --------→ q iniD(r 1 ,r 2) r 1 ,r 2 ∈ ∆ i+1 R 1b (r 1 , r 2) ∈ R x (∆ i) r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 h(q 5 , q 6) |1| = |2| + a ---------→ q 7 ∈ ∆ i h(q iniD(r 1 ,r 2) r 1 ,r 2 , q 6) |1| = |2| + a + iniD(r 1 , r 2) -------------------→ q le f tD(a,iniD(r 1 ,r 2)) 7 ∈ ∆ i+1 R 2a (r 1 , r 2) ∈ R x (∆ i) r 2 : g(q 4 , q 3) ϕ 5 --→ q 5 h(q 6 , q 5) |1| = |2| + a ---------→ q 7 ∈ ∆ i h(q 6 , q iniD(r 1 ,r 2) r 1 ,r 2) |1| = |2| + a -iniD(r 1 , r 2) -------------------→ q rightD(a,iniD(r 1 ,r 2)) 7 ∈ ∆ i+1 R 2b f (q 1 , q 2) |1| = |2| + a ---------→ q 3 ∈ ∆ i d ∈ D f (q d 1 , q 2) |1| = |2| + a + d -----------→ q le f tD(a,d) 3 ∈ ∆ i+1 R 3a f (q 1 , q 2) |1| = |2| + a ---------→ q 3 ∈ ∆ i d ∈ D f (q 1 , q d 2) |1| = |2| + a -d -----------→ q rightD(a,d) 3 ∈ ∆ i+1 R 3b
Fig. 6 Rules for computing the effect of left rotations on rTASCs F , accepting the root of the rotated subtree, become final if the rotation occurs at a state q 5 accepting the root node of the original tree (i.e., if q 5 ∈ F).

5.3.1

The Root of the Rotated Subtree: Computing lPhi, rPhi, and iniD

Let us consider (r 1 , r 2) ∈ R x (∆) where r 1 : f (q 1 , q 2) ϕ 3

-→ q 3 and r 2 : g(q 4 , q 3) ϕ 5

-→ q 5 , as in Figure 5. Suppose that ϕ 3 : |1| = |2| + a 1 and let us denote the sizes of the subtrees read at q 1 and q 2 before the rotation, by s 1 and s 2 , respectively. Let the size function associated with

f be | f (t 1 ,t 2)| = max(|t 1 |, |t 2 |) + b 1 ,
and let s 3 denote the size of the subtree labelled by q 3 before the rotation. Also, suppose that ϕ 5 : |1| = |2| + a 2 and let us denote the size of the sub-tree read at q 4 before the rotation as s 4 . Finally, let the size function associated with g be |g(t 1 ,t 2)| = max(|t 1 |, |t 2 |) + b 2 , and let s 5 denote the size of the subtree labelled by q 5 before the rotation. We denote s 5 and s 3 the sizes obtained at q 5 and q 3 after the rotation.

The key observation that allows us to compute the guards ϕ 5 : lPhi(r 1 , r 2) and ϕ 3 : rPhi(r 1 , r 2) of the rules that accept the root of the rotated subtree, as well as the change in balance d = iniD(r 1 , r 2) caused by the rotation, is that due to the chosen form of guards and sizes, we can always compute any two of the sizes s 1 , s 2 , s 4 from the remaining one. Indeed, for a 1 ≥ 0, we have

s 3 = s 1 + b 1 = s 2 + a 1 + b 1 = s 4 -a 2 , whereas -for a 1 < 0, we have s 3 = s 2 + b 1 = s 1 -a 1 + b 1 = s 4 -a 2 .
Computing ϕ 3 , ϕ 5 , and d is then just a complex exercise in case splitting. Notice that all the cases can be distinguished statically according to the mutual relations of the constants a 1 , b 1 , a 2 , and b 2 . In the case of ϕ 5 , we obtain the following:

1. For a 1 ≥ 0, we have s 4 = s 1 + b 1 + a 2 , and so ϕ 5 :

|1| = |2| + b 1 + a 2 .
2. For a 1 < 0, we have s 4 = s 1 -a 1 + b 1 + a 2 , and so ϕ 5 :

|1| = |2| -a 1 + b 1 + a 2 .
The guard ϕ 3 is a bit more complex. We distinguish two cases: Φ 4≥1 : s 4 ≥ s 1 and Φ 4<1 : s 4 < s 1 . Now we rewrite the conditions s 4 ≥ s 1 and s 4 < s 1 using the relation between s 4 and s 1 described above for a 1 ≥ 0 and a 1 < 0:

1. Φ 4≥1 : s 4 ≥ s 1 ⇐⇒ (a 1 ≥ 0 ∧ b 1 + a 2 ≥ 0) ∨ (a 1 < 0 ∧ -a 1 + b 1 + a 2 ≥ 0). If Φ 4≥1 holds, then s 5 = s 4 + b 2 .
Further, we distinguish between the following cases:

(a) For a 1 ≥ 0 ∧ b 1 + a 2 ≥ 0, we get

s 5 = s 1 + b 1 + a 2 + b 2 (as a 1 ≥ 0), i.e., s 1 = s 5 -b 1 -a 2 -b 2 .
Taking into account that s 1 = s 2 + a 1 , we obtain

ϕ 3 : |1| = |2| + a 1 + b 1 + a 2 + b 2 . (b) For a 1 < 0 ∧ -a 1 + b 1 + a 2 ≥ 0, we have s 5 = s 1 -a 1 + b 1 + a 2 + b 2 (as a 1 < 0), i.e., s 1 = s 5 + a 1 -b 1 -a 2 -b 2 . Using that s 1 = s 2 + a 1 , we obtain ϕ 3 : |1| = |2| + b 1 + a 2 + b 2 . 2. Φ 4<1 : s 4 < s 1 ⇐⇒ (a 1 ≥ 0 ∧ b 1 + a 2 < 0) ∨ (a 1 < 0 ∧ -a 1 + b 1 + a 2 < 0). If
Φ 4<1 holds, we have s 5 = s 1 + b 2 , and so ϕ 3 :

|1| = |2| + a 1 + b 2 .
The computation of the change in the balance d is similar to the above. The first case to be considered is Φ 4≥3 : s 4 ≥ s 3 ⇐⇒ a 2 ≥ 0. Here, s 5 = s 4 +b 2 . To compute the change in the sizes reached at q 5 and q 3 , which is to be compensated in the transitions to come after q 3 instead of q 5 , we need to compute s 3 as a function of s 4 (then, in the difference, s 4 will be eliminated). We can write the following:

s 3 =              if Φ 4≥1 : if s 4 + b 2 ≥ s 2 : s 4 + b 2 + b 1 if s 4 + b 2 < s 2 : s 2 + b 1 if Φ 4<1 : if s 1 + b 2 ≥ s 2 : s 1 + b 2 + b 1 if s 1 + b 2 < s2 : s 2 + b 1
Let us first consider the subcase when Φ 4≥1 . It has two further subcases s 4 + b 2 ≥ s 2 and s 4 + b 2 < s 2 , which we can again rewrite by using the known relations between s 4 and s 2 for a 1 ≥ 0 (s 2 +a 1 +b 1 = s 4 -a 2) and a 1 < 0 (s 2 +b 1 = s 4 -a 2). We get:

1. s 4 +b 2 ≥ s 2 ⇐⇒ (a 1 ≥ 0 ∧ a 1 +b 1 +a 2 +b 2 ≥ 0) ∨ (a 1 < 0 ∧ b 1 +a 2 +b 2 ≥ 0). In
s 4 +b 2 < s 2 ⇐⇒ (a 1 ≥ 0 ∧ a 1 +b 1 +a 2 +b 2 < 0) ∨ (a 1 < 0 ∧ b 1 +a 2 +b 2 < 0).
Here, s 3 = s 2 + b 1 , and we distinguish the following subcases: (a) for

a 1 ≥ 0 ∧ a 1 + b 1 + a 2 + b 2 < 0, s 3 = s 2 + b 1 = s 4 -a 1 -b 1 -a 2 + b 1 = s 4 -a 1 -a 2 , and so d = -a 1 -a 2 -b 2 . (b) for a 1 < 0 ∧ b 1 + a 2 + b 2 < 0, s 3 = s 2 + b 1 = s 4 -b 1 -a 2 + b 1 = s 4 -a 2 ,
and so

d = -a 2 -b 2 .
The remaining cases of the computation of d are similar to the above.

Propagating Changes in Balance through rTASC: Computing le f tD, rightD

We now study the way how a change in balance caused by a rotation is propagated from the subtree where the rotation took place to the root of the entire tree in which the rotation happened. The propagation is a part of the rules (R2a)-(R3b)

from Figure 6, and it is illustrated in Figure 7 on a rule f (q 1 , q 2) ϕ -→ q 3 whose left or right child size changes by a value d ∈ D. Consequently, rules of the form

f (q d 1 , q 2) ϕ -→ q d 3 or f (q 1 , q d 2)
ϕ --→ q d 3 are generated by the rules (R2a)-(R3b), depending on whether the change in balance originates from the left or the right. Since we consider just one rotation in every tree (at a given node pointed to by the pointer variable x), the change can never come from both sides. The guards of the new rules, compensating the change in balance that happens between the child nodes, are ϕ : Suppose the change in balance is coming from the left as in Figure 7 (a). We distinguish the cases of a ≥ 0 and a < 0. (1) For a ≥ 0, the original size at q 3 is s 3 = s 1 + b where s 1 is the original size at q 1 . After the change d happens at q 1 , i.e., s 1 -s 1 = d, we have the following subcases: (1.1) For a + d ≥ 0, we have s 3 = s 1 + b, i.e., d = d, and so we have the same change in the size at q 3 as at q 1 . (1.2) For a + d < 0, we have s

|1| = |2| + a + d or ϕ : |1| = |2| + a -d,
rightD(a, d) =      0 if a ≥ 0 and a -d ≥ 0, -a + d if a ≥ 0 and a -d < 0, a if a < 0 and a -d ≥ 0, d if a < 0 and a -d < 0
We can now close our construction by showing that the set D of possible changes in the sizes of the trees being handled is finite, which guarantees termination of the algorithm for computing the rTASC describing the effect of a tree rotation on trees from an rTASC-described set.

Lemma 7 For an rTASC A = (Q, ∆ , F) over a set of variables V and a variable x ∈ V , the set D of the possible changes in balance of subtrees of the trees generated by a left tree rotation at a node pointed by x in the trees from L(A) is finite.

Proof Let M = max {|iniD(r 1 , r 2)| | (r 1 , r 2) ∈ R x (∆)}∪{a | (f (q 1 , q 2) |1| = |2| + a ---------→
q) ∈ ∆ } . Notice that D is the limit of an increasing sequence D 0 ⊆ D 1 ⊆ D 2 . . ., where D 0 = {iniD(r 1 , r 2) | (r 1 , r 2) ∈ R x (∆)}, and for each i ≥ 0 there exists some rule f (q 1 , q 2) |1| = |2| + a ---------→ q and some d ∈ D i such that either

D i+1 = D i ∪ {le f tD(a, d)}, or D i+1 = D i ∪ {rightD(a, d)}. By fixpoint induction, we show that D ⊆ [-M, M], which implies that D is finite. D 0 ⊆ [-M, M] by the choice of M. If D i+1 = D i ∪{le f tD(a, d)}, it is enough to show that -M ≤ le f tD(a, d) ≤ M, if -M ≤ a, d ≤ M. The most interesting case is when le f tD(a, d) = a + d, for a < 0 and a + d ≥ 0. In this case a ≤ a + d ≤ d, therefore -M ≤ a + d ≤ M. The proof that -M ≤ rightD(a, d) ≤ M, for -M ≤ a, d ≤ M, is similar.
Notice that it can be shown that Lemma 7 does not hold for general TASCs, due to the fact that the computation of the set D might diverge, in the general case.

q 1 q 1 f g f x:
q 1 q 1 q 2 q 3 q 1 nil: nil: nil: nil:

Fig. 8 Testing pointers

Other Operations on Sets of Trees Described by rTASC

Let us now briefly show that, in addition to the tree rotations, rTASC are also closed with respect to all other operations that we commonly need when dealing with balanced binary trees. We have listed these operations in Section 2. We are only giving an informal description of the algorithms for performing these operations over rTASC here-their formalisation is, however, straightforward. Suppose we are given an rTASC A recognising a set S of trees and a pointer equality test c. The rTASC describing the subset S of S of the trees that meet c is the intersection of A and a TASC A c encoding c. Since c describes a regular set of trees, this TASC can be easily derived in an algorithmic way.

To illustrate the construction, let us present an example of A c for the condition x->parent->right == x. Recall that Σ = P(V) × D ∪ {null}. Then, A c = (Q, ∆ , F) is defined by Q = {q 1 , q 2 , q 3 }, F = {q 3 }, and ∆ = {null → q 1 } ∪ { f (q 1 , q 1) → q 1 , g(q 1 , q 1) → q 2 , f (q 1 , q 2) → q 3 , f (q 3 , q 1) → q 3 , f (q 1 , q

3) → q 3 | f , g ∈ P(V) × D, x ∈ v(f), x ∈ v(g)}.
Here, the pointer referencing pattern gets simply captured in the rule f (q 1 , q 2) → q 3 . An example run of the automaton is illustrated in Figure 8.

Second, pointer assignments of the form v = v->n 1 -> n 2 ->...n m can be implemented in our framework as a simple transformation of the input rTASC that removes v from the node where it is in the input tree and adds it to the node referenced by v->n 1 ->n 2 ->...n m . Note that we do not treat assignments of the form v->n 1 ->n 2 ->...n m = v ->n 1 ->n 2 ->...n m , i.e., destructive updates. We hide these assignments by encoding the effect of the entire procedures in which they appear, i.e., rotations and physical insertion or deletion of nodes. These operations temporarily break the tree shape of the structures being handled by introducing pointer sharing and even cycles. We suppose the correctness of these operations to be checked independently. A generalisation of our method to be able to handle Fig. 10 Inserting a node in an rTASC even the internal implementation of these procedures is an interesting subject for further research.

Testing and changing the data contents of the nodes pointed to by some pointer expression of the form v->n 1 ->n 2 ->...n m is an analogy of the pointer reference checking and pointer assignments. However, changing the data contents of some node (e.g., recolouring of some node in a red-black tree), can change the size of the appropriate subtree. In this case, the guards of all the transition rules that can be fired above the node that is recoloured (see Figure 9 for an example assignement x->colour = black) are to be changed in the same way as in Section 5.3.2 in order to reflect the change d in the balance that happens at the recoloured node.

Inserting New Nodes. Next, concerning the physical insertion of a new leaf node, recall that we suppose the null successors of such memory nodes to be explicitly represented by null-labelled nodes in our model. Compared to the real content of the memory, we thus add one layer of nodes (as null nodes are not allocated in the real memory). Inserting a new leaf memory node pointed to by a pointer variable x (which is undefined or null before) and having a data value c then amounts to replacing one of the null sons of some node by a new, non-null node with two null sons. We abstract here the sortedness property and we just pick randomly the place to insert the new leaf. The operation can be implemented as a simple transformation that modifies the input rTASC by non-deterministically choosing some null node, recolouring it to ({x}, c), and adding two null sons to it. Then, the changes in the number of nodes marked by c have to be propagated using the same technique as explained in Section 5.3.2 (see Figure 10 for an illustration). Deleting Nodes. Finally, the deletion of a frontier node pointed to by some pointer variable y is modelled by removing the rules ({y}, c)(q, q null) ϕ -→ q y , where null → q null (note that a frontier node has at least one null son). In the remaining rules, we simply replace all the appearances of q y by all the q states that appeared in the deleted rules. Subsequently, we use again the same technique as in Section 5.3.2 to handle the changes in the balance resulting from a deletion of a node. See Figure 11 for an illustration of deleting a frontier node with a null left successor.

A Case Study: The Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main loop in the procedure RB-Insert. (Note that all the steps can be done fully automatically.) This invariant is needed to prove the correctness of the insertion procedure given in Section 2, that is, given a valid red-black tree as input to the procedure, the output is also a valid red-black tree. The invariant is the conjunction of the following facts:

1. x is pointing to a non-null node in the tree. 2. If a node is red, then (i) its left son is either black or pointed to by x, and (ii) its right son is either black or pointed to by x. This condition is needed as during the re-balancing of the tree, a red node can temporarily become a son of another red node. 3. The root is either black or x is pointing to the root. 4. If x is not pointing to the the root and points to a node whose father is red, then

x points to a red node. 5. Each maximal path from the root to a leaf contains the same number of black nodes. This is the last condition from the definition of red-black trees from Section 2.

In this example, we have V = {x}, D = {red, black}, and thus Σ = ({ / 0, {x}} × {red, black})∪{null}. For presentation purposes, we denote the symbol (/ 0, c) ∈ Σ by c, and c x stands for ({x}, c) ∈ Σ , where c ∈ {red, black}. Also, if no guard is specified on a binary rule, we assume it to be |1| = |2|. Let R = {null -→ After x->parent->parent->color = red, we obtain: A 14 : F = {q bx }, ∆ = R ∪ {black(q bx/rx , q b/r) -→ q bx , red x (q b , q b) -→ q rot1 , black(q b/r , q bx/rx) -→ q bx , red(q bx , q b) -→ q rx , red(q rot2 , q b) |1| = |2| + 1 ---------→ q bx , red(q b , q bx) -→ q rx , black(q rot1 , q b) -→ q rot2 } Finally, after Right-Rotate(T,x->parent->parent), we get:

A 15 : F = {q bx }, ∆ = R ∪ {black(q bx/rx , q b/r) -→ q bx , black(q b/r , q bx/rx) -→ q bx black(q b/r , q rot4) -→ q bx , black(q rot4 , q b/r) -→ q bx , black(q rot1 , q rot3) -→ q rot4 , red x (q b , q b) -→ q rot1 , red(q bx , q b) -→ q rx , red(q b , q bx) -→ q rx , red(q rot4 , q b) -→ q rx , red(q b , q b) -→ q rot3 , red(q b , q rot4) -→ q rx } Then, it can be checked that L (A 15) ⊆ L (A 1). Case 3 of the insertion procedure is very similar to Case 2 and is omitted.

Conclusions

We have presented a method for semi-algorithmic verification of programs that manipulate balanced trees. The approach is based on specifying program preconditions, post-conditions, and loop invariants as sets of trees recognised by a novel class of extended tree automata called TASC. TASC come with interesting closure properties and a decidable emptiness problem, and hence are themselves a significant theoretical contribution. Moreover, the semantics of tree-updating programs can be effectively represented as modifications on the internal structures of TASC. The framework has been validated on a case study consisting of the node insertion procedure in a red-black tree. Precisely, we verified that given a balanced red-black tree on the input to the insertion procedure, the output is again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more case studies. An interesting subject for further research is then extending the method to a fully automatic one. For this, a suitable acceleration method for the reachability computation on TASC is needed. Also, it is interesting to try to generalise the method to handle even the internals of low-level manipulations that temporarily break the tree shape of the considered structures (e.g., by lifting the technique to work over tree automata extended with routing expressions describing additional pointers over the tree backbone).

Fig. 1

 1 Fig. 1 (a) A red-black tree-nodes 10, 15, 19 are red, (b) the left and right tree rotation

3 y = y - 1 yy = y + 1 y 1 y ir - 1 Fig. 4

 311114 Fig. 4 Simulation of a TASC by an APDS

 The proof that h is an injective tree mapping (cf. Definition 1) satisfying property (1) is straightforward. (Part 2.) Let ρ : N * → (Q × Σ ∪ Π) × Γ * be an accepting run of S A . For an arbitrary position p ∈ dom(ρ), let us denote by ρ↓ p the restriction of ρ to the set {u ∈ N

 this case, we have s 3 = s 4 + b 2 + b 1 , and so d = b 1 .

3 Fig. 7

 37 Fig. 7 Propagation of changes in balance in an rTASC

 respectivelly. It remains to analyse the changes in the balance that are propagated upwards after d comes from the bottom, i.e., the way the values d = le f tD(a, d) or d = rightD(a, d) are computed.

d

 3 = s 2 + b = s 1 -a + b, and hence d = -a. (2) For a < 0, s 3 = s 2 + b. In this case, (2.1) for a + d ≥ 0, s 3 = s 1 + b = s 1 + d + b = s 2 + a + d + b, and so d = a + d, and (2.2) for a + d < 0, s 3 = s 2 + b, and thus d = 0. To summarize:le f tD(a, d) if a ≥ 0 and a + d ≥ 0, -a if a ≥ 0 and a + d < 0, a + d if a < 0 and a + d ≥ 0, 0 if a < 0 and a + d < 0Similarly, when the change is coming from the right as in Figure7(b), we have the following cases: (1) For a ≥ 0, the original size at q 3 is s 3 = s 1 + b, and we have the following subcases for the new size: (1.1) For ad ≥ 0, s 3 = s 1 + b, and sod = 0. (1.2) For ad < 0, s 3 = s 2 + b = s 2 + d + b = s 1 -a + d+ b, and thus d = -a + d. (2) For a < 0, s 3 = s 2 + b. Further, (2.1) for ad ≥ 0, s 3 = s 1 + b = s 2 + a + b, i.e., d = a, and (2.2) for ad < 0, s 3 = s 2 + b = s 2 + d + b, and hence d = d. To summarize:

Fig. 9

 9 Fig. 9 Changing data contents in an rTASC

Fig. 11

 11 Fig. 11 Deleting a node in an rTASC

 Testing and Changing Pointers and Data. We first consider the operation of testing whether two pointer expressions refer to the same node of a tree. Examples of such tests are expressions x == root or x->parent->right == x. In general, we consider any test of the form e 1 ==e 2 where e 1 , e 2 are of the form v->n 1 ->n 2 ->...n

m with v ∈ V , m ∈ N, and n 1 , ..., n m ∈ {left, right, parent}.

This result improves on the early work on alternating multi-tape automata recognising 1letter languages in[START_REF] Geidmanis | Unsolvability of the Emptiness Problem for Alternating 1-way Multi-head and Multi-tape Finite Automata over Single-letter Alphabet[END_REF].

For technical reasons related to the decidability of the emptiness problem for TASC, we do not allow arbitrary linear combinations of |t i | in the definition of | f (t 1 ,...,t n)|.

Notice that since APDS do not have input, the universal branches are not synchronised, hence the iterations can be performed separately.

A bottom-up tree automaton can be seen as a TASC in which all guards are true.

For simplicity, we do not explicitly distinguish null and undefined pointer values. Such a distinction could, however, be easily introduced.

In fact, it can be implemented by temporarily swapping the child nodes in the involved rules, doing a left rotation, and then swapping the child nodes again.

Acknowledgements We would like to thank Eugene Asarin, Ahmed Bouajjani, Yassine Lakhnech, and Tayssir Touili for their valuable comments.

work was supported by the French Ministry of Research (RNTL project AVERILES), the Czech Science Foundation within the project 102/07/0322, the Czech-French Barrande project MEB 020840, and the Czech Ministry of Education by the project MSM 0021630528.

q b , red(q b , q b) -→ q r , black(q b/r , q b/r) -→ q b }. The loop invariant is given by the following rTASC A 1 .

A 1 : F = {q rx , q bx , q bx }, ∆ = R ∪ {black x (q b/r , q b/r) -→ q bx (1), black(q bx/rx , q b/r) -→ q bx (2) black(q bx/rx , q b/r) -→ q bx , black(q b/r , q bx/rx) -→ q bx (3), black(q b/r , q bx/rx) -→ q bx , red x (q b , q b) -→ q rx , red(q bx , q b) -→ q rx , red(q b , q bx) -→ q rx , red(q rx , q b) -→ q rx (4), red(q b , q rx) -→ q rx (5)}

Intuitively, q b labels black nodes and q r red nodes which do not have a node pointed to by x below them. q bx and q rx mean the same except that they label a node which is pointed to by x. Primed versions of q bx and q rx are used for nodes which have a subnode pointed to by x. In the following, this intuitive meaning of states will be changed by the program steps. We refer to the pseudo-code of Section 2.

If the loop entrance condition x!= root && x->parent->color == red is true, we obtain a new automaton A 2 . It is given by modifying A 1 as follows: F = {q bx } and the rules (1), (2), and (3) are removed.

If the condition x->parent == x->parent->parent->left is true, we take A 2 , change rule (4) to red(q rx , q b) -→ q rx , rule (5) to red(q b , q rx) -→ q rx and add a rule black(q rx , q b/r) -→ q bx (6) to obtain A 3 . Now, q rx accepts the father of the node pointed by x and q rx its grandfather.

If the condition x->parent->parent->right->color == red holds, we obtain the automaton A 4 that is like A 3 except for rule (6) changed into black(q rx , q r) -→ q bx . The recolouring step x->parent->color = black changes some guards on rules and leads to a propagation of the change through the automaton. The result is A 5 :

After the recolouring step x->parent->parent->right->color = black, we get A 6 which is A 5 where we change rule [START_REF] Calcagno | Context Logic and Tree Update[END_REF] to black(q rx , q b) -→ q bx . Note that no propagation is needed in this case.

After the recolouring step x->parent->parent->color = red, which introduces changes on guards, and the propagation of these changes, we obtain:

rx , q b/r) -→ q bx , black(q b/r , q bx/rx) -→ q bx , black(q rx , q b) -→ q rx , black(q b , q rx) -→ q rx , red x (q b , q b) -→ q rx (8), red(q bx , q b) -→ q rx , red(q rx , q r) -→ q bx (9), red(q b , q bx) -→ q rx } After x = x->parent->parent, we get A 8 derived from A 7 by changing rule (8) to red(q b , q b) -→ q rx and rule (9) to red x (q rx , q b) -→ q bx . This takes care of case 1 and one can then check that L (A 8) ⊆ L (A 1).

For case 2, we have to go back to automaton A 3 and apply the fact that the conditional x->parent->parent->right->color == red is false, i.e., x->parent->parent->right->color == black must be true. The result is:

rx , q b/r) -→ q bx , black(q b/r , q bx/rx) -→ q bx , black(q rx , q b) -→ q bx , red x (q b , q b) -→ q rx (11), red(q bx , q b) -→ q rx , red(q b , q bx) -→ q rx , red(q b , q rx) -→ q rx [START_REF] Zilio | Multitrees Automata, Presburger's Constraints and Tree Logics[END_REF], red(q rx , q b) -→ q rx (10)}

After the condition x == x->parent->right, A 9 is changed into A 10 by removing rule [START_REF] Comon-Lundh | Tree Automata with Memory, Visibility and Structural Constraints[END_REF]. After x = x->parent, A 10 is changed into A 11 by changing rule [START_REF] Cormen | Introduction to Algorithms[END_REF] to red(q b , q b) -→ q rx and rule [START_REF] Zilio | Multitrees Automata, Presburger's Constraints and Tree Logics[END_REF] to red x (q b , q rx) -→ q rx . Now the operation Left-Rotate(T,x) introduces new states and transitions and we get the TASC A 12 . Notice that no rebalancing is necessary.

A 12 : F = {q bx }, ∆ = R ∪ {black(q bx/rx , q b/r) -→ q bx , black(q b/r , q bx/rx) -→ q bx , black(q rot2 , q b) -→ q bx , red x (q b , q b) -→ q rot1 , red(q bx , q b) -→ q rx , red(q b , q bx) -→ q rx , red(q rot1 , q b) -→ q rot2 } After x->parent->color = black and a propagation of the changes in the balance, we obtain: A 13 : F = {q bx }, ∆ = R ∪ {black(q bx/rx , q b/r) |1| = |2| + 1 ---------→ q bx , red x (q b , q b) -→ q rot1 , black(q b/r , q bx/rx) |1| + 1 = |2| ---------→ q bx , red(q bx , q b) |1| = |2| + 1 ---------→ q rx , black(q rot2 , q b) |1| = |2| + 1 ---------→ q bx , red(q b , q bx) |1| + 1 = |2| ---------→ q rx , black(q rot1 , q b) -→ q rot2 }