Radu Iosif
email: radu.iosif@imag.fr

Marius Dorel

Swann Bozga

Perarnau

Marius Bozga
email: marius.bozga@imag.fr

Swann Perarnau
email: swann.perarnau@imag.fr

Radu Iosif Verimag

Quantitative Separation Logic and Programs with Lists

Keywords: Quantitative Separation Logic and Programs with Lists Separation Logic, List structures, Program verification

Introduction

Separation Logic [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF][START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] has recently become a widespread formalism for the specification of programs with dynamic data structures. Due to the intrinsic complexity of the heap structures allocated and manipulated by such programs, any attempt to formalize their correctness has to be aware of the inherent bounds of undecidability. Indeed, even programs working on simple acyclic lists have the power of Turing machines, and it is expected that a general logic describing sets of configurations reached in such programs has an undecidable satisfiability (or validity) problem. An interesting problem is to define decidable logics that are either specialized for a certain kind of recursive data structures (e.g. lists, trees), or that are restricted by the quantifier prefix.

This paper presents an extension of a decidable fragment of Separation Logic for singlylinked lists, defined by Berdine, Calcagno and O'Hearn [START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF] and used as an internal representation for sets of states in the Smallfoot tool [START_REF]Smallfoot[END_REF]. Our main extension consists in introducing atomic formulae of the form ls k (x, y) describing a list segment of length k, stretching from x to y, where k is a logical variable interpreted over positive natural numbers, that may occur further inside Presburger constraints. This is motivated by the need to reason about programs that work on both singly-linked list structures and integer variables (counters). We denote the extended logic as Quantitative Separation Logic (QSL).

In reality, many programs would traverse a list structure, while performing some iterative computation on the integer variables. The result of this computation usually depends on the number of steps, which, in turn, depends of the length of the list. A specification of the correct behavior for such a program needs to take into account both the lengths of the lists and the values of the counters.

We study the decidability properties of the full first-order logic combining unrestricted quantification of arithmetic and location variables. Although the full logic is found to be undecidable, validity of entailments between formulae with the quantifier prefix in the language ∃ * {∃ N , ∀ N } * is decidable. We provide here a model theoretic method for decidability, based on a parametric notion of shape graphs. As a byproduct, we obtain a decision procedure for the fragment of Separation Logic considered in [START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF].

The decision procedure for a fragment of QSL is currently implemented in the L2CA tool [3], a tool for translating programs with singly-linked lists into bisimilar counter automata, according to the method of [START_REF] Bouajjani | Programs with lists are counter automata[END_REF], which opens the possibility of using well-known counter automata techniques and tools, e.g. [START_REF] Bardin | Fast: Fast accelereation of symbolic transition systems[END_REF][START_REF] Wolper | Verifying systems with infinite but regular state spaces[END_REF][START_REF] Annichini | Trex: A tool for reachability analysis of complex systems[END_REF], in order to verify pre-and post-conditions expressed in QSL, on programs working on both singly-linked lists and integer variables.

Related Work

The saga of logics for describing heap structures has its roots in the early work of Burstall [START_REF] Burstall | Some techniques for proving correctness of programs which alter data structures[END_REF]. Later on, work by Benedikt, Reps and Sagiv [START_REF] Benedikt | A decidable logic for describing linked data structures[END_REF], Reynolds [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] and Ishtiaq and O'Hearn [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF], has brought the subject into focus, whereas recent advances have been made in tackling the decidability problem [START_REF] Immerman | Verification via Structure Simulation[END_REF][START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF][START_REF] Yorsh | A logic of reachable patterns in linked data-structures[END_REF]. The work that is closest to ours is the one of Berdine, Calcagno and O'Hearn [START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF], which defines a decidable subset of Separation Logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] interpreted over singly-linked heap models. The work in this paper is in fact an extension of the logic in [START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF] with integer variables representing list lengths. One of the main challenges in the present paper was to adapt the model of parametric shape graphs in order to cope with the notion of disjunctive heaps, which is the essence of the semantic model for Separation Logic.

Recently, Magill et al. [START_REF] Magill | Arithmetic Strengthening for Shape Analysis[END_REF] report on a program analysis technique that uses Separation Logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] extended with first-order arithmetic. However, the main emphasis of [START_REF] Magill | Arithmetic Strengthening for Shape Analysis[END_REF] is a program analysis based on counterexample-driven abstraction refinement, whereas our work focuses on distinguishing decidable from undecidable when combining Separation Logic with first-order arithmetic. As a matter of fact, [START_REF] Magill | Arithmetic Strengthening for Shape Analysis[END_REF] claims that validity of entailments in the purely existential fragment of Separation Logic with the ls k (x, y) predicate and linear constraints is decidable, without giving the proof, by analogy to the proof-theoretic method from [START_REF] Berdine | A Decidable Fragment of Separation Logic[END_REF]. We extend their result by showing decidability of the validity of entailments in the ∃ * {∃ N , ∀ N } * fragment, versus undecidability of satisfiability in the

∃ * ∃ * N (∀ | ∀ N)∃ * ∃ * N fragment (or equivalently, validity in the ∀ * ∀ * N (∃ | ∃ N)∀ * ∀ * N fragment).

Definitions

In the rest of the paper, for a set A we denote by A ⊥ the set A∪{⊥}. We denote by N the set of positive integer numbers, including zero. By T (X) we denote the set of all terms build using variables x ∈ X. For a term (formula) τ(X) and a mapping µ : X → T (X), we denote by τ[µ] the term (formula) in which each occurrence of x is replaced with µ(x). For a formula ϕ, we denote as FV (ϕ) the set of its free variables. If we denote a formula by ϕ(x) then we implicitly assume that x ⊆ FV (ϕ). If ϕ is a formula of the firstorder arithmetic of integers, and ν : FV (ϕ) → N is an interpretation of its free variables, we denote by ν |= ϕ the fact that ϕ[ν] is a valid formula.

Presburger arithmetic N, +, 0, 1 is the theory of first-order logic of addition and successor function [START_REF] Presburger | Über die Vollstandigkeit eines gewissen Systems der Arithmetik[END_REF]. The interpretation of logical variables is the set of natural numbers N, and the meaning of the function symbols 0, 1, + is the natural one. It is well-known that the satisfiability problem for Presburger arithmetic is decidable [START_REF] Presburger | Über die Vollstandigkeit eines gewissen Systems der Arithmetik[END_REF]. The syntax of QSL is given in Figure 1. Notice the difference between program variables PVar and location variables LVar, the former being logical constants, whereas the latter may occur within the scope of a quantifier (∃). The logic uses a third kind of variables, namely integer variables, quantified over natural numbers (∃ N). For a formula ϕ of QSL, we denote by LFV (ϕ) = FV (ϕ) ∩ LVar the set of free location variables, and by IFV (ϕ) = FV (ϕ) ∩ IVar the set of free integer variables.

L := nil | u | x location expressions I := n ∈ N | k | I + I integer expressions A := I = I | L = L | emp | L → L | ls I (L, L) atomic propositions F := T | A | ¬F | F ∧ F | F * F | ∃x . F | ∃ N k . F formulae
As usual, we define ϕ ∨ ψ = ls(x, y) * T. The semantics of QSL formulae is given in terms of heaps. A heap is a rooted graph in which each node has at most one successor. Let Loc denote the set of locations. We assume henceforth that Loc is an infinite, countable set, with a designated element nil ∈ Loc.

∆ = ¬(¬ϕ ∧ ¬ψ), ϕ ⇒ ψ ∆ = ¬ϕ ∨ ψ, ∀x . ϕ ∆ = ¬∃x .
Remark We identify heaps that differ only by a renaming of their locations.

⊓ ⊔

Definition 1 A heap is a pair H = s, h , where s : PVar ∪ LVar → Loc ⊥ associates variables with locations, and h : Loc → Loc ⊥ is the partial successor mapping. In particular, we have h(nil) = ⊥. We denote by H the set of all heaps with variables from PVar ∪ LVar and locations from Loc.

If H = s, h is a heap, x ∈ LVar a location variable and l ∈ Loc ⊥ , we denote as H[x ← l] = s[x ← l],
h the heap in which x is assigned l. The interpretation of a formula is given in terms of a forcing relation |= between pairs H, ι , where H ∈ H is a heap and ι : IVar → N is a valuation of integer variables. For a logical term t, we denote by V H,ι (t) the valuation of t in H, ι . The semantics of QSL formulae is given below, for a given heap H = s, h :

V H,ι (u) = s(u), V H,ι (x) = s(x), V H,ι (nil) = nil H, ι |= T always H, ι |= L 1 = L 2 iff V H,ι (L 1) = ⊥, V H,ι (L 2) = ⊥ and V H,ι (L 1) = V H,ι (L 2) H, ι |= emp iff h = / 0 H, ι |= L 1 → L 2 iff V H,ι (L 1) = ⊥, V H,ι (L 2) = ⊥ and h = { V H,ι (L 1), V H,ι (L 2) } H, ι |= ¬ϕ iff H, ι |= ϕ H, ι |= ϕ ∧ ψ iff H, ι |= ϕ and H, ι |= ψ H, ι |= ϕ * ψ iff there exist H 1 , H 2 such that H = H 1 • H 2 and H 1 , ι |= ϕ, H 2 , ι |= ψ H, ι |= ∃x . ϕ iff H[x ← l], ι |= ϕ for some l ∈ Loc Here H 1 • H 2 denotes the disjoint union of H 1 = s, h 1 and H 2 = s, h 2 , i.e, dom(h 1) ∩ dom(h 2) = / 0, h = h 1 ∪ h 2 .
The above definitions are standard in Separation Logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF]. The rules below are specific to our extension: An entailment is a formula of type ϕ ⇒ ψ. Given such an entailment, the validity problem asks if it holds for any pair H, ι , i.e. if any model of ϕ is also a model of ψ. Theorem 2 proves the decidability of entailments between formulae in the ∃ * {∃ N , ∀ N } * fragment of QSL, i.e. formulae of the form ∃x 1 . . .

V H,ι (I) = I[ι] H, ι |= I 1 = I 2 iff V H,ι (I 1) = V (I 2) H,ι H, ι |= ls 0 (L 1 , L 2) iff H, ι |= L 1 = L 2 ∧ emp H, ι |= ls n+1 (L 1 , L 2) iff H, ι |= ∃x . ls n (L 1 , x) * x → L 2 H, ι |= ls I (L 1 , L 2) iff H, ι |= ls V H,ι (I) (L 1 , L 2) H, ι |= ∃ N k . ϕ iff H, ι[k ← n] |= ϕ,
∃x n Q 1 k 1 . . . Q m k m . θ(x 1 . . . x n , k 1 . . . k m)
, where θ is a quantifier-free formula, and

Q 1 , . . . , Q m ∈ {∃ N , ∀ N }.
Given a heap H = s, h and a set of location variables x ⊆ LVar, a location l ∈ dom(h) is said to be reachable from x in H if and only if there exists a finite sequence of locations l 0 , l 1 , . . . , l n such that l 0 ∈ s(x) for some x ∈ x, l n = l and h(l i) = l i+1 , for all 0 ≤ i < n. Let R x (H) be the set of locations reachable from x in H. We denote by H↓ x the heap s, h↓ Rx(H) .

The following Lemma is needed for technical reasons.

Lemma 1 Let x = {x 1 , . . . , x n } be a set of location variables and k = {k 1 , . . . , k m } be a set of integer variables. Given a heap H ∈ H , and a quantifier-free formula θ(x, k), then for all

Q 1 , . . . , Q m ∈ {∃ N , ∀ N }, H |= Q 1 k 1 . . . Q m k m . θ(x, k) if and only if H↓ x |= Q 1 k 1 . . . Q m k m . θ(x, k).
Proof It is sufficient to prove that, for all valuations ι : k → N:

H, ι |= θ ⇐⇒ H↓ x , ι |= θ
By induction on the structure of θ:

the cases where θ is T or emp are trivial.

the cases where θ is either x = y, x → y or ls t (x, y), for x ∈ x and t being an arithmetic term, are immediate, since V H,ι (x) = ⊥, V H,ι (y) = ⊥, and all locations on the path from V H,ι (x) to V H,ι (y) = ⊥ are reachable from x.

the cases where θ is either x = nil, x → nil or ls t (x, nil) are similar to the above point.

-if θ = ¬φ, H, ι |= ¬φ ⇐⇒ H, ι |= φ ⇐⇒ H↓ x , ι |= φ ⇐⇒ H↓ x , ι |= ¬φ.
We have used the induction hypothesis.

-if θ = φ 1 ∧ φ 2 , let x 1 = LFV (φ 1) and x 2 = LFV (φ 2). By induction hypothesis H, ι |= φ 1 ⇐⇒ H↓ x1 , ι |= φ 1 and H, ι |= φ 2 ⇐⇒ H↓ x2 , ι |= φ 2 .
Since the variables from x 2 \ x 1 do not appear in φ 1 , we also have H, ι |= φ 1 ⇐⇒ H↓ x , ι |= φ 1 , and similar for φ 2 . Hence the conclusion follows.

-if θ = φ 1 * φ 2 ⊓ ⊔
Remark Consequently, a formula ϕ from the ∃ * {∃ N , ∀ N } * fragment of QSL has a model if and only if it has a model in which all locations are reachable from at most n locations (that we will subsequently call roots), where n is the size of the existential prefix of ϕ. ⊓ ⊔ The following notion of dangling location is essential for the semantics of Separation Logic on heaps [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF], [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF]. To understand this point, consider the formula ϕ : u → v * v → nil, describing a heap H = s, h , in which u and v are allocated to two different cells, i.e. s(u) = l 1 , s(v) = l 2 , and nothing else is in the domain of the heap, i.e. h = { l 1 , l 2 , l 2 , nil }. The reason for which H |= ϕ, is that there exists two disjoint heaps, namely

H 1 = s, { l 1 , l 2 } and H 2 = s, { l 2 , nil } , such that H 1 |= u → v and H 2 |= v → nil.
Notice the role of the location l 2 , pointed to by the variable v, which is referenced by the first heap, but allocated in the second one. This location ensures that the disjoint union of H 1 and H 2 is defined, and that

H 1 • H 2 |= u → v * v → nil. Definition 2 A location l ∈ Loc \ {nil} is said to be dangling in a heap H = s, h iff l ∈ (img(s) ∪ img(h)) \ dom(h).
In the following, we denote by dng(H) the set of all dangling nodes of H, and by loc(H) = img(s) ∪ dom(h) ∪ img(h) the set of all locations, either defined or dangling, in H.

Motivating Example

Let us consider the program in Figure 2. The loop on the left hand side inserts elements into the list pointed to by u, while incrementing the c counter, and the loop on the right removes the elements in reversed order, while decrementing c. The pre-and post-condition of the program are inserted as Hoare-style annotations. Both initially and finally, the value of c is zero and the heap is empty. In order to prove that the program terminates without a null pointer dereferencing, and moreover ensuring that the post-condition holds, one needs to relate the value of c to the length of the list pointed to by u, as it is done in the invariants of the left and right hand side : c = k ∧ ls k (u, nil). This example could not be handled using standard Separation Logic, since we explicitly need the ability of reasoning about both list lengths and integer variables.

{c = 0 ∧ emp ∧ u = nilo} 1: while ... do {c ≥ 0 ∧ c = k ∧ ls k (u,

Undecidability of QSL

In this section we prove the undecidability of the QSL logic. Namely the class of formulae with quantifier prefix in the language ∃ * ∃ * N (∀ | ∀ N)∃ * ∃ * N are shown to have an undecidable satisfiability problem. It is to be noticed that undecidability of QSL is not a direct consequence of the undecidability of Separation Logic [START_REF] O'hearn | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF], since the proof in [START_REF] O'hearn | Computability and Complexity Results for a Spatial Assertion Language for Data Structures[END_REF] uses multiple selector heaps, while in this case we consider only heaps composed of singly-linked lists. Our result is non-trivial since it is well-known also that, e.g. FOL, MSOL are decidable when interpreted over singly-linked lists, and become quickly undecidable when interpreted over grid-like, and more general graph structures.

Theorem 1 The set of QSL formulae which, written in prenex normal form, have the quantifier prefix in the language

∃ * ∃ * N (∀ | ∀ N)∃ * ∃ * N , is undecidable.
Proof The proof is by reduction from the halting problem for 2-counter machines. A 2counter machine M [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF] with non-negative counters c 1 , c 2 is a sequential program:

0 : ins 1 ; 1 : ins 2 ; • • • ; n -1 : ins n ;
where ins n is a halt instruction and ins i with i = 1, 2, • • • , n -1 are instructions of the following two types, for 0 ≤ k, k 1 , k 2 < n, and j = 1, 2:

1. c j = c j + 1; goto k; 2. if c j = 0 then goto k 1 else (c j = c j -1; goto k 2);
The machine starts executing at label 0 with values c 1 = c 2 = 0. When it reaches the control location k -1, it executes the instruction ins k i.e, it modifies the values of the counter and jumps to the next label according to the instruction. Formally, we use the relation

q, v 1 , v 2 ⊢ M q ′ , v 1 , v 2 to
describe a one-step transition of M between two configurations, where q, q ′ ∈ {0, . . . , n -1} are the control labels, v 1 , v 2 and v ′ 1 , v ′ 2 are the values of the counters before and after the transition. The machine halts when it reaches the halt instruction at label n. It is undecidable whether a given 2-counter machine halts [START_REF] Minsky | Computation: Finite and Infinite Machines[END_REF].

Given a 2-counter machine M, we build a closed formula Ψ M in the language of QSL, describing any terminating computation of M. It follows that M halts if and only if Ψ M is satisfiable, i.e. there exists s, h

∈ (LVar → Loc ⊥) × (Loc → Loc ⊥) such that s, h |= Ψ M . Let Ψ M be the following formula: ∃x, x ′ ∃ N n . x → x ′ * ls n (x ′ , nil) ∧ ∀ N m < n . ∃y, y ′ , q, q ′ , c 1 , c ′ 1 , c 2 , c ′ 2 ∃ N l, l ′ , v 1 , v ′ 1 , v 2 , v ′ 2 . ls m (x ′ , y) * y → y ′ * ls l (q, y) * ls v1 (c 1 , y) * ls v2 (c 2 , y) * ls l ′ (q ′ , y ′) * ls v ′ 1 (c ′ 1 , y ′) * ls v ′ 2 (c ′ 2 , y ′) ∧ n i τ i (l, v 1 , v 2 , l ′ , v ′ 1 , v ′ 2)
The intuition behind this formula is given in Figure 3. Here x points to a list segment of length n that represents a halting computation of M. Each element y in this list represents a configuration l, v 1 , v 2 of M, where l is encoded by a list segment ls l (q, y), and v 1 , v 2 by the list segments ls v1 (c 1 , y) and ls v2 (c 2 , y), respectivelly. The spatial formula x → x ′ states the initial condition l = v 1 = v 2 = 0, i.e. no other list is pointing to x, while the halting condition is captured by ls n (x ′ , nil), which ensures that the list is of finite length. The transition relation between any two intermediate configurations, represented by the adjacent locations y and y ′ , is captured by the

τ i (l, v 1 , v 2 , l ′ , v ′ 1 , v ′ 2)
formulae, given by the description of M. Namely, if:

-ins i is [c j = c j + 1; goto k], then τ i : l = i ∧ l ′ = k ∧ v ′ j = v j + 1, y y ′ q q ′ c 1 c ′ 2 c ′ 1 c 2 . . . x nil . . . x ′ Fig. 3 -ins i is [if c j = 0 then goto k 1 else (c j = c j -1; goto k 2)], then τ i : l = i ∧ ((v j = 0 ⇒ l ′ = k 1) ∧ (v j = 0 ⇒ (v ′ j + 1 = v j ∧ l ′ = k 2)))
. By taking a closer look at the form of Ψ M , one can notice that the undecidability of the ∃ * ∃ * N ∀ N ∃ * ∃ * N fragment of QSL has been proved. The cause for undecidability is the alternation between (existential) location and (universal) integer quantifiers, which enables arbitrarily large and complex models to be described. Using a similar argument, we can establish undecidability of the ∃ * ∃ * N ∀∃ * ∃ * N fragment of QSL, by changing the above formula into:

∃x, x ′ ∃ N n . x → x ′ * ls n (x ′ , nil) ∧ ∀y . ls(x ′ , y) ⇒ ∃y ′ , q, q ′ , c 1 , c ′ 1 , c 2 , c ′ 2 ∃ N l, l ′ , v 1 , v ′ 1 , v 2 , v ′ 2 . y ֒→ y ′ * ls l (q, y) * ls v1 (c 1 , y) * ls v2 (c 2 , y) * ls l ′ (q ′ , y ′) * ls v ′ 1 (c ′ 1 , y ′) * ls v ′ 2 (c ′ 2 , y ′) ∧ n i τ i (l, v 1 , v 2 , l ′ , v ′ 1 , v ′ 2)
⊓ ⊔ In the following developments, we shall prove that logical entailment in the ∃ * {∃ N , ∀ N } * fragment of QSL is decidable. We have found no argument for (un)decidability concerning the quantifier prefix fragment {∃, ∀} * {∃ N , ∀ N } * . In particular, all attempts to reduce (from) to known fragments of MSO with cardinality constraints [START_REF] Klaedtke | Monadic second-order logics with cardinalities[END_REF] have failed.

Model Theoretic Method

The validity of an entailment ϕ ⇒ ψ is equivalent to the non-satisfiability of the formula ϕ ∧ ¬ψ, i.e. there should be no tuples H, ν, ι such that H, ν, ι |= ϕ and H, ν, ι |= ψ. Our main result, leading immediately to decidability of entailments, is that, if ϕ is of the form ∃x 1 . . .

∃x n Q 1 l 1 . . . Q m l m . θ(x, l), with Q i ∈ {∃ N , ∀ N }
and θ is a boolean combination of predicates with ¬, ∧ and * , all models H, ν, ι of ϕ can be represented using a finite number of (finite) structures called symbolic graph representations (SGR).

The decision procedure for the validity of a QSL entailment ϕ ⇒ ψ is based on the following idea. We first define operators on sets of SGRs that are the counterparts of the logical connectives ∨, ∧, * and the existential quantifiers ∃x, ∃ N x. Second, for each existential QSL formula ϕ, we compute a set [[ϕ]] of SGRs that represent all models of ϕ. The construction of this set is recursive, on the structure of ϕ. The entailment ϕ ⇒ ψ is valid iff the set

[[ϕ]] ⊖ [[ψ]]
is empty, where ⊖ is an operator defined on SGRs, that computes the representation of the difference between the set of concrete models of the ϕ and the one of ψ. Last, the emptiness problem for sets of SGRs is shown to be decidable, by reduction to the satisfiability problem for the Presburger arithmetic.

Symbolic Shape Graphs

In this section we define a finite representation of (possibly infinite) sets of heaps, called symbolic shape graphs (SSG), which is the essence of our decision method. The next section defines the SGR representation for sets of heaps, which is based on SSGs and arithmetic constraints.

Definition 3 Given a heap H = s, h ∈ H , a location l ∈ Loc is said to be a cut point in H if either l ∈ img(s) ∪ dng(H) ∪ {nil}, or there exists two distinct locations l 1 , l 2 ∈ Loc such that h(l 1) = h(l 2) = l.
A location l is a cut point in a heap if either (1) l is pointed to directly by a program variable, i.e. l ∈ img(s), (2) l is dangling or nil, or (3) l has more than one predecessor in the heap. We denote by l 1 ✄ H l 2 the fact that h(l 1) = l 2 and l 2 = ⊥ is not a cut point in H. Let ∼ H denote the reflexive, symmetric and transitive closure of the ✄ H relation, i.e. the smallest equivalence relation that includes ✄ H , and [l] ∼ be the equivalence class of l ∈ Loc w.r.t. ∼ H . We also refer to these equivalence classes as to list segments. By convention, we have

[⊥] ∼ = ⊥. Let H /∼ = s /∼ , h /∼
be the quotient heap, where:

-s /∼ : PVar ∪ LVar → Loc /∼ ⊥ and s /∼ (u) = [s(u)] ∼ , for all u ∈ PVar, -h /∼ : Loc /∼ → Loc /∼ ⊥ and for all l ∈ dom(h), if h(l) = l ′ and l ′ is either ⊥ or a cut point in s, h , then h /∼ ([l]) = [l ′] ∼ . In particular, h /∼ ([l]) = ⊥, for all l ∈ dom(h).
Note that s /∼ and h /∼ are well-defined functions. We extend the rest of notations to quotient heaps, i.e. dng(

H /∼) = {[l] ∼ | l ∈ dng(H)} and loc(H/ ∼) = {[l] ∼ | l ∈ loc(H)}.
For example, in the heap from Figure 4 (a), the cut points are marked by hollow nodes and the ∼-equivalence classes are enclosed in solid boxes. The quotient heap is the heap in which these boxes are taken as nodes, instead of the individual locations. each node in n ∈ N \ {Nil} is reachable either from V (u), for some u ∈ PVar ∪ LVar, or from some symbolic root r ∈ R, and

-either n ∈ img(V) ∪ D ∪ {Nil}, or there exist two distinct nodes n 1 , n 2 ∈ N such that S(n 1) = S(n 2) = n.
S k denotes the set of SSGs in normal form, with |R| ≤ k and img(V) ⊆ PVar ∪ LVar.

Sometimes we denote by S the union k∈N S k . We identify SSGs which are equivalent under renaming of nodes and counters. The following was proved in [START_REF] Bouajjani | Programs with lists are counter automata[END_REF]:

Lemma 2 Let G = N, D, R, Z, S,V ∈ S k be a normal form SSG. Then, |N| ≤ 2(|dom(V)| + |R|).
As a consequence, the number of such SSGs is bounded asymptotically by 2(|PVar| + |LVar| + k) 2(|PVar|+|LVar|+k) , and the bound is tight.

The following definition relates the notions of heap and SSG.

Definition 6 Let G = N, D, R, Z, S,V ∈ S be a SSG, ν : dom(V) ∩ LVar → dom(h) a valuation of the location variables of G, and ι : img(Z) → N + a valuation of the counters in G.

Let H = s, h ∈ H be a heap such that dom(s) = dom(V) ∩ PVar, and H /∼ = s /∼ , h /∼ be the quotient of H with respect to ∼ H . We say that H is the ν, ι -concretization of G iff there exists a bijective mapping η : N ⊥ → (loc(h /∼) ∪ {nil, ⊥}) such that:

-η(Nil) = {nil} and η(⊥) = ⊥, -η(V (u)) = s /∼ (u), for all u ∈ PVar, -η(S(n)) = h /∼ (η(n)), for all n ∈ N \ D, -η(n) ∈ dng(H /∼), for all n ∈ D, -η(n) ∈ {nil, ⊥} and ι(Z(n)) = |η(n)|, for all n ∈ N \ D.
We recall upon the fact that heaps are identical, up to isomorphism, which implies that the ν, ι -concretization is uniquely defined. We say that H is a concretization of G if there exist ν, ι such that H is the ν, ι -concretization of G. Roughly speaking, the ν, ι -concretization of a SSG G is the heap obtained by replacing each node n of G with a list segment whose length equals the value of the counter Z(n). Moreover, if G has a ν, ι -concretization, we must have ι(Z(n)) > 0, for all non-dangling symbolic nodes n ∈ N \ D. Notice also that dangling locations are represented by symbolic dangling nodes. We denote by γ ν,ι (G) the ν, ι -concretization of G and by Γ(G) the set of all concretizations of G. ν(x) = l 3 , ν(y) = l 10 , and

-ι(z 1) = 2, ι(z 2) = 1, ι(z 3) = 3, ι(z 4) = 2, ι(z 5) = 1, ι(z 6) = 3.
Notice that the symbolic dangling node pointed to by w corresponds to a dangling location pointed to by w in Figure 4 (a).

The following result expresses the fact that one heap may not be the concretization of two different (non-isomorphic) SSGs:

Lemma 3 For two non-isomorphic SSGs G 1 , G 2 ∈ S, we have Γ(G 1) ∩ Γ(G 2) = / 0.
Proof By contradiction, assume that there exists H ∈ Γ(G 1) ∩ Γ(G 2). By definition 6, H /∼ is isomorphic to both G 1 and G 2 , thus contradicting the hypothesis that G 1 and G 2 are nonisomorphic.

⊓ ⊔

Symbolic Graph Representations

In this section we introduce the notion of symbolic graph representation (SGR) together with a number of operators on these structures. In the next section, we shall provide a stepwise translation of a QSL formula with quantifier prefix ∃ * {∃ N , ∀ N } * into a set of symbolic graph representations.

A symbolic graph representation is a pair G, ϕ , where G = N, D, R, Z, S,V is a SSG in normal form and ϕ an open formula over the counters of G, i.e. FV (ϕ) ⊆ img(Z). By G we denote the set of all SGRs G, ϕ , where G ∈ S and the set of counters in each G is a subset of Z.

A heap H = s, h is the ν, ι -concretization of G, ϕ iff ν : dom(V) ∩ LVar → dom(h) is a valuation of the location variables of G, and ι : img(Z) → N + is a valuation of the counters in G that satisfies ϕ, i.e. ι |= ϕ. This is denoted in the following as H = γ ν,ι (G, ϕ). Γ(G, ϕ) denotes the set of all ν, ι -concretizations of G, ϕ . The notation is lifted to finite sets of SGRs in the obvious way: Γ({R 1 , . . . , R n }) = n i=1 Γ(R i). We introduce now three operators on finite sets of SGRs, that correspond to the boolean operators of union, intersection and set difference. Let S 1 , S 2 ⊆ G be two finite sets of SGRs.

S 1 ⊔ S 2 = { G, ϕ 1 ∨ ϕ 2 | G, ϕ 1 ∈ S 1 and G, ϕ 2 ∈ S 2 } ∪ { G, ϕ ∈ S 1 | G, ∈ S 2 } ∪ { G, ϕ ∈ S 2 | G, ∈ S 1 } S 1 ⊓ S 2 = { G, ϕ 1 ∧ ϕ 2 | G, ϕ 1 ∈ S 1 and G, ϕ 2 ∈ S 2 } S 1 ⊖ S 2 = { G, ϕ 1 ∧ ¬ϕ 2 | G, ϕ 1 ∈ S 1 and G, ϕ 2 ∈ S 2 } ∪ { G, ϕ ∈ S 1 | G, ∈ S 2 }
Here the notation G, stands for any SGR pair having G as its first component. Let G = N, D, R, Z, S,V and notice that, since FV (ϕ 1) ⊆ img(Z) and FV (ϕ 2) ⊆ img(Z), then FV (ϕ 1 ∨ ϕ 2), FV (ϕ 1 ∧ ϕ 2) and FV (ϕ 1 ∧ ¬ϕ 2) are also subsets of img(Z).

Lemma 4 SGRs are effectively closed under union, intersection and difference. In particular, we have

Γ(S 1 ⊔ S 2) = Γ(S 1) ∪ Γ(S 2), Γ(S 1 ⊓ S 2) = Γ(S 1) ∩ Γ(S 2) and Γ(S 1 ⊖ S 2) = Γ(S 1) \ Γ(S 2).
Proof We give the proof only for ⊔, the proofs for ⊓ and ⊖ being similar. "⊆" Let H ∈ Γ(S 1 ⊔ S 2). Then either:

-H ∈ Γ(G, ϕ 1 ∨ ϕ 2) for some SGRs G, ϕ 1 ∈ S 1 and G, ϕ 2 ∈ S 2 . Then either H ∈ Γ(G, ϕ 1) or H ∈ Γ(G, ϕ 2). Hence H ∈ Γ(S 1) ∪ Γ(S 2). -H ∈ Γ(G, ϕ) for some SGR G, ϕ ∈ S 1 . Then obviously H ∈ Γ(S 1) ∪ Γ(S 2). -H ∈ Γ(G, ϕ) for some SGR G, ϕ ∈ S 2 .
This case is symmetric to the above. "⊇" Let H ∈ Γ(S 1) ∪ Γ(S 2). Suppose H ∈ Γ(S 1), the case H ∈ Γ(H 2) being symmetric. Then there exists a SGR G, ϕ ∈ S 1 such that H ∈ Γ(G, ϕ). There are two cases:

1. G, ψ ∈ S 2 for some ψ. Then G, ϕ ∨ ψ ∈ S 1 ⊔ S 2 , and H ∈ Γ(G, ϕ ∨ ψ), which leads to H ∈ Γ(S 1 ⊔ S 2). 2. G, ψ ∈ S 2 , for any ψ. Then G, ψ ∈ S 1 ⊔ S 2 , and H ∈ Γ(G, ψ), which leads to H ∈ Γ(S 1 ⊔ S 2). ⊓ ⊔ The operator is defined on SGRs with the following meaning : for two SGRs R 1 and R 2 , we have

Γ(R 1 R 2) = {H 1 • H 2 | H 1 ∈ Γ(R 1) and H 2 ∈ Γ(R 2)}.
In other words, is the SGR counterpart of the disjoint union operator on heaps. However, is not a total operator, i.e. it is not defined for any pair of SGRs, but only for the ones complying with the following definition :

Definition 7 Two SSGs G i = N i , D i , R i , Z i , S i ,V i , i = 1, 2 are said to match iff there exists a mapping µ : D 1 ∪ D 2 → (N 1 ∪ N 2) ⊥ such that, for all u ∈ dom(V 1) ∩ dom(V 2), either: -V 1 (u) ∈ D 1 and µ(V 1 (u)) = V 2 (u), or -V 2 (u) ∈ D 2 and µ(V 2 (u)) = V 1 (u). and µ(d) = ⊥, for all d ∈ (D 1 ∪ D 2) \ (dom(V 1) ∩ dom(V 2)).
Intuitivelly, two SSGs match if it is possible to relate any dangling node pointed to by a program variable in one SSG to a node pointed to by the same variable in the other SSG. Note that two SSGs do not match if the same variable points to some non-dangling node in both. Figure 5 gives an example of two matching SSGs (a) and (b) together with the mapping µ between their nodes (in dotted lines). According to Definition [START_REF] Benedikt | A decidable logic for describing linked data structures[END_REF], the choice of µ is not unique. Given two SGRs R 1 = G 1 , ϕ 1 and R 2 = G 2 , ϕ 2 , with matching underlying SSGs G i = N i , D i , R i , Z i , S i ,V i , (for the purposes of this definition, we can assume w.l.o.g. that N 1 ∩ N 2 = {Nil} and img(Z 1)∩img(Z 2) = / 0), we define R 1 R 2 = G, ϕ 1 ∧ϕ 2 , G = N, D, R, Z, S,V , where:

-N = (N 1 ∪ N 2) \ dom(µ), -D = (D 1 ∪ D 2) \ dom(µ), -R = (R 1 ∪ R 2) \ dom(µ), -Z = Z 1 ∪ Z 2 , -for all n ∈ N: S(n) = S i (n) if n ∈ N i and S i (n) ∈ dom(µ) µ(S i (n)) if n ∈ N i and S i (n) ∈ dom(µ) i = 1, 2 -for all u ∈ dom(V 1) ∪ dom(V 2): V (u) = V i (u) if V i (u) ∈ dom(µ) µ(V i (u)) if V i (u) ∈ dom(µ) i = 1, 2
For example, the SSG in Figure 5 (c) is the result of the -composition of the SSGs in Figure 5 (a) and (b).

The operator is undefined, if G 1 and G 2 do not match. Notice that if

G 1 ∈ S k1 , G 2 ∈ S k2 and G, ϕ = G 1 , ϕ 1 G 2 , ϕ 2 , then G ∈ S k1+k2
. The correctness of the definition is captured by the following Lemma:

Lemma 5 Given two SGRs R 1 = G 1 , ϕ 1 and R 2 = G 2 , ϕ 2 , such that G 1 and G 2 match, we have Γ(R 1 R 2) = {H 1 • H 2 | H 1 ∈ Γ(R 1), H 2 ∈ Γ(R 2)}. Proof Let G i = N i , D i , R i , Z i , S i ,V i , i = 1, 2 and R 1 R 2 = G, ϕ 1 ∧ϕ 2 , where G = N, D, R, Z, S,V . W.l.o.g. we assume that N 1 ∩ N 2 = {Nil} and img(Z 1) ∩ img(Z 2) = / 0. Since R 1 R 2 is de- fined, there exists a mapping µ : D 1 ∪ D 2 → (N 1 ∪ N 2) ⊥ ,
satisfying the conditions of Definition [START_REF] Benedikt | A decidable logic for describing linked data structures[END_REF].

"⊆" Assume H = s, h ∈ Γ(G, ϕ 1 ∧ ϕ 2). Then there exists ν : dom(V) ∩ LVar → dom(h) and ι : dom(Z) → N + , meeting the conditions of Definition [START_REF] Bardin | Fast: Fast accelereation of symbolic transition systems[END_REF]. In particular, we have that ι |= ϕ 1 ∧ ϕ 2 . Let H /∼ = s /∼ , h /∼ be the quotient of H w.r.t. ∼ H . There exists a bijective mapping η : N ⊥ → (loc(h /∼) ∪ {nil, ⊥}) meeting the conditions of Definition [START_REF] Bardin | Fast: Fast accelereation of symbolic transition systems[END_REF]. Let H i = s i , h i , i = 1, 2 be the heaps defined as follows :

-dom(h i) = n∈Ni\dom(µ) η(n), h i (l) = h(l), if l ∈ dom(h i), and h i (l) = ⊥ otherwise, -s i (u) = s(u), for all u ∈ PVar.
We show that H i is the ν, ι -concretization of G i , by considering the bijective mappings η i , defined as the restriction of η to N i , i = 1, 2. Since ι |= ϕ i , we obtain that H i ∈ Γ(G i , ϕ i). The fact that H = H 1 • H 2 is an easy check, based on the facts that (1) dom(h 1) ∩ dom(h 2) = / 0, and (2) that all dangling locations of H 1 are defined in H 2 , and viceversa.

"

⊇" let H = H 1 •H 2 , with H i = s i , h i ∈ Γ(G i , ϕ i), i = 1, 2
where dom(h 1)∩dom(h 2) = / 0. By Definition (6) there exist ν i : dom(V i) ∪ LVar → dom(h i) and ι i : img(Z i) → N + such that ι i |= ϕ i , i = 1, 2. Since we assumed img(Z 1) ∩ img(Z 2) = / 0, we have

ι 1 ∪ ι 2 |= ϕ 1 ∧ ϕ 2 . Let H ′ i = Reach νi (H)
and H ′ i /∼ be as before. There exist two bijective mappings η i : N i⊥ → (loc(h ′ i/∼)∪{nil, ⊥}) meeting the conditions of Definition [START_REF] Bardin | Fast: Fast accelereation of symbolic transition systems[END_REF]. Let η be the following mapping :

η(n) =    η 1 (n) if n ∈ N 1 \ dom(µ) η 2 (n) if n ∈ N 2 \ dom(µ) ⊥ otherwise
It is easily checked that η is bijective. Now it is left to be checked that η satisfies the conditions of Definition (6) in order to conclude that

H ∈ Γ(G, ϕ 1 ∧ ϕ 2) : -η(Nil) = η 1 (Nil) = η 2 (Nil) = {nil} and η(⊥) = η 1 (⊥) = η 2 (⊥) = ⊥. -for all u ∈ dom(V) = dom(V 1) ∪ dom(V 2), for i = 1, 2 either : 1. u ∈ dom(V i) and V i (u) ∈ dom(µ), then η(V (u)) = η i (V i (u)) = s i/∼ (u). Since dom(h 1)∩ dom(h 2) = / 0, we have s i/∼ (u) = s /∼ (u). 2. u ∈ dom(V i) and V i (u) ∈ dom(µ), then η(V (u)) = η(µ(V i (u))) = η (i mod 2)+1 (V (i mod 2)+1 (u)) = s (i mod 2)+1 /∼ (u)
. By the same argument as above, we obtain

η(V (u)) = s /∼ (u). -for all n ∈ N = (N 1 ∪ N 2) \ dom(µ), for i = 1, 2 either : 1. n ∈ N i and S i (n) ∈ N i \dom(µ) then η(S(n)) = η i (S i (n)) = h i/∼ (η i (n)). Since dom(h 1)∩ dom(h 2) = / 0, we have h i/∼ (η i (n)) = h /∼ (η(n)). 2. n ∈ N i and S i (n) ∈ N i ∩ dom(µ). Then there exists u ∈ dom(V 1) ∩ dom(V 2) such that S i (n) = V i (u) ∈ D i and µ(V i (u)) = V (i mod 2)+1 (u). In this case we have S(n) = µ(S i (n)) = V (i mod 2)+1 (u). Since S i (n) = V i (u) ∈ D i , by Definition (6) we have h i/∼ (η(n)) = s i/∼(u) = s i mod 2+1/∼ (u) = η(S(n)). Since dom(h 1)∩dom(h 2) = / 0, we have h i/∼ (η i (n)) = h /∼ (η(n)). -if n ∈ D then n ∈ D i for some i = 1, 2. In either case we have η(n) ∈ dng(H i/∼) ⊆ H /∼ . -if n ∈ N \ D then n ∈ N i \ D i , for some i = 1, 2. In either case we have ι(Z(n)) = ι i (Z i (n)) = |η i (n)| = |η(n)|. ⊓ ⊔
The following projection operator captures the effect of dropping one location variable out of the heap. Let R = G, ϕ be an SGR, where G = N, D, R, Z, S,V is the underlying SSG, and x ∈ img(V) ∩ LVar be a location variable occurring in G. For an arbitrary symbolic

node n ∈ N, let prec G (n) = {m ∈ N | m = n, S(m) = n} be the set of predecessors of n, different from itself, in G.
We define R↓ x to be the SGR, having a normal-form underlying SSG (cf. Definition 4), from which x is missing. Formally, let R↓ x = G ′ , ϕ ′ , where:

1. if x ∈ dom(V) then G ′ = G and ϕ ′ = ϕ. 2. else, if x ∈ dom(V) and either: (a) there exists u ∈ dom(V) \ {x} such that V (u) = V (x), or (b) there exist m 1 , m 2 ∈ dom(S) s.t. m 1 = m 2 and S(m 1) = S(m 2) = V (x) then G ′ = N, D, R, Z, S,V [x ← ⊥] and ϕ ′ = ϕ. 3. else, if x ∈ dom(V), V (x) = n,
and for all u ∈ dom(V) \ {x}, we have V (u) = n, and either:

(a) prec G (n) = / 0, then G ′ = N, D, R ∪ {n}, Z, S,V [x ← ⊥] and ϕ ′ = ϕ, or (b) n ∈ D and prec G (n) = / 0, then G ′ = N, D, R, Z, S,V [x ← ⊥] and ϕ ′ = ϕ, (c) n ∈ D and m ∈ prec G (n), where Z(m) = k 1 and Z(n) = k 2 , then G ′ = N \ {n}, D, R, Z[m ← k 3][n ← ⊥], S[m ← S(n)][n ← ⊥],V [x ← ⊥] and ϕ ′ = ∃k 1 ∃k 2 . ϕ ∧ k 3 = k 1 + k 2 ,
where k 3 ∈ img(Z) is a fresh counter name.

Notice the effect of the case (3.a) which increases the number of roots in G by one. The correctness of this definition is captured in the following Lemma: Lemma 6 Let R = G, ϕ be a SGR, G = N, D, R, Z, S,V be its underlying SSG, and x ∈ LVar be a location variable. Then Γ(R↓

x) = { s[x ← ⊥], h | s, h ∈ Γ(R)}.
Proof By case splitting, following the cases in the definition. ⊓ ⊔ Given a set S of SGRs, the emptiness problem Γ(S) = / 0 is effectivelly decidable if all constraints ϕ occurring within elements G, ϕ ∈ G are written in a logic decidable for satisfiability. In our case, this logic is the Presburger arithmetic, for which the satisfiability problem is known to be decidable [START_REF] Presburger | Über die Vollstandigkeit eines gewissen Systems der Arithmetik[END_REF].

From Formulae to Sets of SGR

We are now ready to describe the construction of a set of SGRs for a given formula :

ϕ : ∃x 1 . . . ∃x n Q 1 l 1 . . . Q m l m . θ(x, l)
where Q i ∈ {∃ N , ∀ N } and θ is a quantifier-free QSL formula. The construction is performed incrementally, following the structure of the abstract syntax tree of θ. The set x = {x 1 , . . . , x n } is called the support set of θ. Without losing generality, we consider that the leaves of this tree are atomic propositions of one of the forms : T, emp, x = y, x → y and ls l (x, y), where x ∈ x ∪ PVar and y ∈ x ∪ PVar ∪ {nil}.

From now on, let S k (x) be the set of all SSGs with at most k root nodes, support variables from PVar ∪ x, and counters from a fixed given set Z. Given a formula ϕ, we denote by

[[ϕ]]
x (k) the set of SGRs with at most k root nodes, over the support set x, defining the models of ϕ.

For atomic spatial propositions, [[ϕ]] x (k) is computed according to the definitions from Table 1. In the definition of Yp , where [[emp]] Y1,...,Yp is defined in Table 1. Intuitivelly, Y i , 1 ≤ i ≤ p is the set of variables that are aliased, pointing to the same dangling node d i , in the empty heap. In Table 1

[[emp]] x (k) we consider as parameter the partition Y 1 , . . . ,Y p ∈ Part(x). That is [[emp]] x (k) = Y1,...,Yp ∈Part(x) [[emp]] Y1,...,
, let D = {d 1 , . . . , d p-1 }, R = / 0 and ∆ = p-1 i=1 λx : Y i .d i ∪ λx : Y p .Nil.

In the definition of [[ϕ]]

x (k) for x → nil and x → y, we consider two parameters: (1) a set Z ⊆ x ∪ {x}, such that x ∈ Z, and (2) a partition Y 1 , . . . ,Y p ∈ Part(x \ Z). In other words, we have

[[ϕ]] x (k) = {[[ϕ]] Y1,...,Yp Z | Z ⊆ x ∪ {x}, x ∈ Z, Y 1 , . . . ,Y p ∈ Part(x \ Z)}, where [[ϕ]] Y1,...,Yp Z
is defined in Table 1. Intuitivelly, Z corresponds to the set of support variables that are aliased with x in some concrete model.

In the definition of [[ls l (x, nil)]] x (k) we consider an ordered sequence of disjoints subsets of x, namely Z 1 , . . . , Z k , where

X i ⊆ x ∪ {x}, 1 ≤ k ≤ n, such that x ∈ Z 1 , and X i ∩ X j = / 0, for all 1 ≤ i < j ≤ k. Similarly, in the definition of [[ls l (x, y)]] x (k) we consider sets Z 1 , . . . , Z k where X i ⊆ x∪{x, y}, 1 ≤ k ≤ n, such that x ∈ Z 1 , y ∈ Z k , and X i ∩X j = / 0, for all 1 ≤ i < j ≤ k. In both cases we consider also a partition Y 1 , . . . ,Y p ∈ Part(x \ (k i=1 Z i)). [[emp]] Y 1 ,...,Yp [[x → nil]] Y 1 ,...,Yp Z [[x → y]] Y 1 ,...,Yp Z [[ls l (x, nil)]] Y 1 ,...,Yp Z 1 ,...,Z k [[ls l (x, y)]] Y 1 ,...,Yp Z 1 ,...,Z k N D ∪ {Nil} D ∪ {n, Nil} D ∪ {n, Nil} D ∪ {n 1 , . . . , n k , Nil} D ∪ {n 1 , . . . , n k , Nil} Z / 0 { n, z 1 } { n, z 1 } { n i , z i } k i=1 { n i , z i } k i=1 S / 0 { n, Nil } { n, d k }, if y ∈ Y k { n i , n i+1 } k-1 i=1 ∪ { n k , Nil } { n i , n i+1 } k-1 i=1 V ∆ λx : Z.n ∪ ∆ λx : Z.n ∪ ∆ k i=1 λx : Z i .n i ∪ ∆ k i=1 λx : Z i .n i ∪ ∆ ϕ ⊤ z 1 = 1 z 1 = 1 ∑ k i=1 z k = l ∧ ∑ k i=1 z k = l ∧ (x ∈ Z k → l = 0) (x, y ∈ Z k → l = 0)
Table 1 SGR for atomic spatial propositions

As an example, in Figure 6 in Appendix A we show the result of computing [[ls(u, x 1)]] Z1,...,Zk , 1 and(f)

≤ k ≤ 3, for Z i ⊆ {u, x 1 , x 2 }, in the following cases: (a) Z 1 = {u, x 1 }, (b) Z 1 = {u, x 1 , x 2 }, (c) Z 1 = {u}, Z 2 = {x 1 }, (d) Z 1 = {u, x 2 }, Z 2 = {x 1 }, (e) Z 1 = {u}, Z 2 = {x 1 , x 2 },
Z 1 = {u}, Z 2 = {x 2 }, Z 3 = {x 1 }.
The dangling nodes are labeled with D. For simplicity here we avoided showing all combinations resulting from the different partitionings of dangling variables.

The pure formulae x = nil (x = y) correspond to sets of SGRs are the ones in which x points to nil (y), and the counters occur unconstrained. Their SGR semantics is defined as Y ν 1 , . . . ,Y ν p be the partition of L induced by the following equivalence relation :

x i ≃ ν x j iff ν(x i) = ν(x j).
For the basic cases we will prove the following statement, equivalent to (1) : for all H ∈ H , ν : L → Loc and ι : I → N + : emp : "⇒" Let H = s, h be a heap such that dom(h

H, ν, ι |= ϕ ⇐⇒ exists G, ψ ∈ [[ϕ]] L (
) = / 0 (H |= emp). Let { G, ⊤ } = [[emp]] Y ν 1 ,...,Y ν p (note that [[emp]] Y ν 1 ,...,Y ν p is a singleton set). Clearly ι |= ⊤ and H ∈ Γ ν,ι (G). "⇐" Let H = s, h ∈ Γ ν,ι (G), for some SSG G such that G, ⊤ ∈ [[emp]] L (0). By def- inition of [[emp]] L (0), dom(h) = / 0,
= { l, nil }. Let { G, z 1 = 1 } = [[x → nil]] Y ν 1 ,...,Y ν
p and κ = { z 1 , 1 }. Clearly κ |= z 1 = 1, and H ∈ Γ ν,κ (G). "⇐" Let κ be a valuation such that κ(z 1) = 1, and H = s, h ∈ Γ ν,ι∪κ (G), for some SSG G such that G, z 1 = 1 ∈ [[x → nil]] L (0). The fact that s(x) = l and h = { l, nil } for some l ∈ Loc is now a trivial check.

x → y : Similar to the case x → nil.

ls m (x, nil) : "⇒" Let H = s, h be a heap over PVar such that s(x) = l 1 and h = { l i , l i+1 | 1 ≤ i < M} ∪ { l M , nil }, and ι be a valuation such that ι(m) = M. We consider the case M > 0, the other case M = 0 being left to the reader. Let H ′ = s ∪ ν, h , and H ′ /∼ be the quotient heap w.r.t. ∼ H ′ . Let [l i1] ∼ , . . . , [l ik] ∼ , l ik = nil, be the equivalence classes of ∼ H ′ , ordered such that i 1 < . . . < i k , and let Z 1 , . . . , Z k be subsets of {x 1 , . . . , x n } ∪ {x} such that forall y ∈ Z j we have s For the induction steps, we consider the following cases for ϕ : Proof This proof is a direct consequence of Lemma 7. ⊓ ⊔ As an example, in Figure 6 and 7 in Appendix A we detail the SGR construction used to show the validity of the following entailment:

′ /∼ (y) = [l i j] ∼ , for all 1 ≤ j ≤ k. Let { G, ψ } = [[ls m (x, nil)]]
-ϕ 1 ∧ ϕ 2 : Γ ν,ι ([[ϕ 1 ∧ ϕ 2]] L (0)) = Γ ν,ι ([[ϕ 1]] L (0) ⊓ [[ϕ 2]] L (0)) = Γ ν,ι ([[ϕ 1]] L (0)) ∩ Γ ν,ι ([[ϕ 2]] L (0)) by Lemma 4 = {H | H, ν, ι |= ϕ 1 } ∩ {H | H, ν, ι |= ϕ 2 } by induction hypothesis = {H | H, ν, ι |= ϕ 1 ∧ ϕ 2 } -¬φ : Γ ν,ι ([[¬φ]] L) = Γ ν,ι ({ G, ⊤ | G ∈ S 0 (L)} ⊖ [[φ]] L (0)) = Γ ν,ι ({ G, ⊤ | G ∈ S 0 (L)}) \ Γ ν,ι ([[φ]] L (0)) by Lemma 4 = H \ {H | H, ν, ι |= φ} by induction hypothesis = {H | H, ν, ι |= ¬φ} -ϕ 1 * ϕ 2 : Γ ν,ι ([[ϕ 1 * ϕ 2]] L (0)) = Γ ν,ι ([[ϕ 1]] L (0) [[ϕ 2]] L (0)) = {H 1 • H 2 | H 1 ∈ Γ ν,ι ([[ϕ 1]] L (0)), H 2 ∈ Γ ν,ι ([[ϕ 2]] L (0))} by Lemma 5 = {H 1 • H 2 | H 1 , ν, ι |= ϕ 1 , H 2 , ν, ι |= ϕ 2 } by induction hypothesis = {H | H, ν, ι |= ϕ 1 * ϕ 2 } -φ ∧ π, where π is a purely arithmetic formula : Let S ν,ι = {H | H, ν, ι |= φ ∧ π}. We distinguish two cases: 1. If ι |= π then S ν,ι = / 0. In this case Γ ν,ι ([[φ ∧ π]] L) = Γ ν,ι ({ G, φ ∧ π | G, ψ ∈ [[φ]] L (0)} = G,ψ ∈[[φ]] L (0) Γ ν,ι (G, ψ ∧ π) = / 0 2. If ι |= π then S ν,ι = {H | H, ν, ι |= φ} = Γ ν,ι ([[φ]] L (0)) by induction hypothesis = Γ ν,ι ([[φ ∧ π]] L (0)) -∃ N l . φ : Γ ν,ι ([[∃ N l . φ]] L (0)) = Γ ν,ι ({ G, ∃l . ψ | G, ψ ∈ [[φ]] L (0)}) = G,ψ ∈[[φ]] L (0) Γ ν,ι (G, ∃l . ψ) = G,ψ ∈[[φ]] L (0) Γ ν,ι[l←n] (G, ψ), for some n ∈ N + = Γ ν,ι[l←n] ([[φ]] L (0)) = {H | H, ν, ι[l ← n] |= φ} = {H | H, ν, ι |= ∃l . φ} ⊓ ⊔ As a result,
[∃x 1,2 ∃ N l 1,2,3 . ls l1 (u, x 1) * ls l2 (x 1 , x 2) * ls l3 (x 2 , nil) ∧ ls l1 (u, x 2) * ls l2 (x 2 , x 1) * ls l3 (x 1 , nil)] → [∃ N l . ls l (u, nil)]
The validity of the entailment is equivalent to the validity of the following Presburger formula:

∀k 3 [∃l 1,2,3 . (l 1 = k 3 ∧ l 2 = 0 ∧ l 3 = 0) ∨ (l 1 = 0 ∧ l 2 = 0 ∧ l 3 = k 3) ∨ (∃k 1,2 . k 1 + k 2 = k 3 ∧ l 1 = k 1 ∧ l 2 = 0 ∧ l 3 = k 2)] → [∃l . l = k 3]
The various combinations resulting from the different partitionings of dangling variables have been skipped for obvious simplicity reasons.

Application of the Model Theoretic Method for QSL

The translation between QSL formulae with quantifier prefix of the form ∃ * {∃ N , ∀ N } * and sets of SGRs gives a method for deciding the validity of entailments in this logic. Moreover, there is another, more practical advantage to this approach, that gives us a effective method for the verification of both shape and numeric properties of programs with lists.

The L2CA tool [3] is a tool for verifying safety and termination properties of programs with singly-linked lists, based on the translation of programs into counter automata [START_REF] Bouajjani | Programs with lists are counter automata[END_REF]. A counter automaton generated by L2CA has control states of the form l, G , where l is a control label of the original program, and G is a SSG over the set PVar of pointer variables of the input program. By Lemma 2, the set of control states of a counter automaton generated by L2CA is finite, which guarantees that each program with lists will be translated into a finitecontrol counter automaton. The semantics (set of runs) of the counter automaton generated by L2CA is in a bisimulation relation with the semantics of the original program, therefore all results of the analysis of the counter automaton (e.g. safety properties, termination) carry over to the original program.

The fact that any ∃ * {∃ N , ∀ N } * QSL formula ϕ corresponds to a set [[ϕ]] of pairs G, ψ , where G is an SSG and ψ is a Presburger constraint, allows us to extend the L2CA tool to check total correctness of Hoare triples in which the pre-and post-conditions are expressed as ∃ * {∃ N , ∀ N } * QSL formulae. Suppose that {ϕ} P {ψ} is such a triple. Then for each SGR G k , φ k ∈ [[ϕ]] the L2CA tool will generate a counter automaton A k with initial state l 0 , G k , where l 0 is the initial control label of the program P. This automaton corresponds to the semantics of P when started in an initial control state l 0 , H 0 , where

H 0 ∈ Γ(G k , φ k).
Let A be the union of all such A k . By using a combination of existing tools for the analysis of counter automata, e.g. [6, 2,1] we can verify whether A, started in each control state l 0 , G k with values of counters satisfying the Presburger constraint φ k , reaches a final control state l f , G f with the counters satisfying some Presburger constraint φ

1 such that |= φ → φ ′ , for some G f , φ ′ ∈ [[ψ]].
This suffices for checking partial correctness. On what concerns total correctness, we use a termination analysis tool for counter automata, e.g. [1], to check whether P, started with any heap H 0 such that H 0 |= ϕ, terminates.

Experimental Results

Table 2 presents some experimental results of verifying Hoare triples of the form {ϕ} P {ψ}, where ϕ and ψ are QSL formulae, and P is a program handling lists. The ListReversal example receives in input a non-circular list pointed to by u of length l and returns a non-circular list pointed to by v containing the cells of the first list in reversed order. The BubbleSort and InsertSort programs are classical sorting algorithms for which we verified that the length of the input list stays the same. The ListCounter example is a simple loop traversing a list pointed to by u, while incrementing an integer counter c. InsertDelete is the example from Figure 2 For all examples, the size (number of control locations) of the automata generated by L2CA is given in the second (Size) column, the time needed for generation in the third (Gen) column, and the time needed to verify partial correctness of the model is given in the fourth (Verif) column. Finally the tool used (either Aspic [START_REF]ASPIC[END_REF] or Fast [START_REF] Bardin | Fast: Fast accelereation of symbolic transition systems[END_REF]) is given in the fifth column.

Conclusions

We have developed an extension of Separation Logic interpreted over singly-linked heaps, that allows to specify properties related to the sizes of the lists. This logic is especially useful for reasoning about programs that combine dynamically allocated data with variables ranging over integer domains.

The decidability of the extended logic is studied, the full quantifier fragment being shown to be undecidable, by a reduction from the halting problem for 2 counter machines. However the validity of entailments in the ∃ * {∃ N , ∀ N } * fragment of the logic is decidable, which allows the use this fragment to specify Hoare triples for programs with lists. The verification of total correctness properties specified in this way was made possible by an extension of the L2CA tool.

D u, x 1 , x 2 u x 1 , x 2 D k 1 u, x 2 x 1 D k 1 D u, x 1 , x 2 u, x 1 x 2 D k 1 x 1 D u x 2 k 1 k 2 u, x 2 x 1 k 2 k 1 u k 1 x 1 k 2 l 1 = k 1 ∧ l 2 = k 2 x 2 D k 1 = l 1 Nil x 1 , x 2 x 1 , x 2 Nil k 1 x 2 x 1 k 1 k 2 x 2 k 1 Nil x 2 Nil Nil [[ls l 2 (x 1 , x 2)]] {x 1 ,x 2 } x 1 k 1 D x 1 , x 2 x 2 D k 1 = l 2 k 1 + k 2 = l 1 k 1 + k 2 = l 3 l 1 = 0 l 2 = 0 [[ls l 3 (x 2 , nil)]] {x 1 ,x 2 }
[[ls l 1 (u, x 1) * ls l 2 (x 1 , x 2)]] {x 1 ,x 2 } l 3 = 0

k 1 = l 3 u, x 1 , x 2 k 1 l 1 = 0 ∧ l 2 = 0 l 1 = k 1 ∧ l 2 = 0 l 1 = 0 ∧ l 2 = k 1 l 1 = 0 ∧ k 1 = l 2 u x 1 , x 2 D k 1 l 1 = k 1 ∧ l 2 = k 2 u x 1 , x 2 k 1 k 2 l 1 = k 1 ∧ l 2 = k 2 x 2 x 1 k 3 k 2 u k 1 l 1 = k 1 + k 2 ∧ l 2 = k 3
[[ls l 1 (u, x 1)]] {x 1 ,x 2 } Fig. 6 Solving entailment validity with SGRs (1/2)

[[ls l 1 (u, x 1) * ls l 2 (x 1 , x 2) * ls l 3 (x 2 , nil)]] {x 1 ,x 2 } [[ls l 1 (u, x 1) * ls l 2 (x 1 , x 2) * ls l 3 (x 2 , nil) ∧ ls l 1 (u, x 2) * ls l 2 (x 2 , x 1) * ls l 3 (x 1 , nil)]] {x 1 ,x 2 }

l 1 = 0 ∧ l 2 = 0 ∧ l 3 = 0 Nil u, x 1 , x 2 u Nil k 1 x 1 , x 2 l 1 = k 1 ∧ l 2 = 0 ∧ l 3 = 0 l 1 = 0 ∧ l 2 = 0 ∧ l 3 = 0 Nil u, x 1 , x 2 u k 1 l 1 = 0 ∧ l 2 = 0 ∧ l 3 = k 1 l 1 = k 1 ∧ l 2 = 0 ∧ l 3 = 0 x 1 , x 2 k 2 Nil u k 1 x 1 , x 2 k 2 Nil u k 1
[[∃x 1 , x 2 . ls l 1 (u, x 1) * ls l 2 (x 1 , x 2) * ls l 3 (x 2 , nil) ∧ ls l 1 (u, x 2) * ls l 2 (x 2 , x 1) * ls l 3 (x

1 , nil)]] {x 1 ,x 2 } u Nil k 1 x 1 , x 2 l 1 = 0 ∧ l 2 = 0 ∧ l 3 = k 1 l 1 = k 3 ∧ l 2 = 0 ∧ l 3 = 0∨ l 1 = 0 ∧ l 2 = 0 ∧ l 3 = k 3 ∨ u, x 1 x 2 Nil k 1 l 1 = k 1 ∧ l 2 = 0 ∧ l 3 = k 2 x 2 k 2 l 1 = 0 ∧ l 2 = k 1 ∧ l 3 = k 2 Nil u, x 1 k 1 x 1 k 2 l 1 = k 1 ∧ l 2 = k 2 ∧ l 3 = 0 x 2 Nil l 1 = 0 ∧ l 2 = k 1 ∧ l 3 = 0 u, x 1 , x 2 Nil k 1 l 1 = k 1 ∧ l 2 = 0 ∧ l 3 = k 2 u, x 1 , x 2

 For a function f : A → B, we denote by dom(f) = {x ∈ A | f (x) = ⊥} its domain and by img(f) = {y ∈ B | ∃x ∈ A . f (x) = y} we denote its image. The element ⊥ is used to denote that a (partial) function is undefined at a given point, e.g. f (x) = ⊥. For a function f : A → B and a set S ⊆ A, we denote by f↓ S the restriction of f to S. Sometimes we shall use the graph notation for functions, i.e. f = { a, b , . . .} if f (a) = b, . . ., etc. The notation λx : A.y stands for the function { x, y | x ∈ A}, and λx : A.⊥ is the empty function / 0, by convention. Let Part(S) denote the set of all partitions of the set S.

Fig. 1

 1 Fig. 1 Separation Logic with Presburger Arithmetic

 ¬ϕ and ∀ N k . ϕ ∆ = ¬∃ N k . ¬ϕ. Moreover, we write k ≤ l and ls(x, y) as shorthands for ∃ N k ′ . k + k ′ = l and ∃ N k . ls k (x, y), respectivelly. F is a shorthand for ¬T. The bounded quantifiers ∃ N m ≤ n . ϕ(m) and ∀ N m ≤ n . ϕ(m) are used instead of ∃ N m . m ≤ n ∧ ϕ(m) and ∀ N m . m ≤ n ⇒ ϕ(m), respectivelly. We shall also deploy some of the classical shorthands in Separation Logic: x → ∆ = ∃y . x → y, and x ֒→ y ∆ = x → y * T, where y is either a location variable or nil. For list segment formulae we define ls k (x, y) ∆ = ls k (x, y) * T and ls(x, y) ∆

Fig. 2

 2 Fig. 2 Program verification using QSL

Definition 4 Definition 5

 45 Given a set PVar of program variables, a set LVar of location variables, and a set of counters Z = {z 1 , . . . , z n }, a symbolic shape graph (SSG) is a tuple G = N, D, R, Z, S,V , where: -N is a finite set of symbolic nodes, with a designated node Nil ∈ N, -D ⊆ N is a set of symbolic dangling nodes, -R ⊆ N is a set of symbolic root nodes, -Z : N \ D → Z is an injective function assigning each node to a counter, -S : N → N ⊥ is the successor function, where: -S(Nil) = ⊥ and S(d) = ⊥, for all d ∈ D, -S(n) ∈ R, for all n ∈ N, -S(n) ∈ N, for all n ∈ N \ (D ∪ {Nil}). -V : PVar ∪ LVar → N assigns program and location variables with nodes.Intuitively, each node of a SSG represents a list segment of a concrete heap. The node Nil stands for the concrete nil location, and each symbolic dangling node represents one dangling location. An SSG G = N, D, R, Z, S,V is said to be in normal form if:

l 3 l 7 l 8 l 9 l 10 l 11 l 12 l 4 l 5 l 6 Fig. 4

 1264 Fig. 4 SSG and Concretization

Fig. 5

 5 Fig. 5 Matching SSGs

 0), where G = N, D, R, Z, S,V and (2) κ : img(Z) → N + such that ι ∪ κ |= ψ and H ∈ Γ ν,ι∪κ (G) -T : "⇒" Let H = s, h be a heap over PVar and H ′ = s∪ν, h . By definition, [[T]] L (0) = { G, ⊤ | G ∈ S 0 (L)}. Choose G to be the SSG isomorphic to the quotient heap H ′ /∼ w.r.t ∼ H ′ . "⇐" Trivial, since always H, ν, ι |= T.

 ..,Zk , where ψ : ∑ k i=1 z i = m. Notice that x ∈ Z k , since M > 0. Let κ be a valuation of z 1 , . . . , z k such that κ(z j) = |[l i j]|, 1 ≤ j ≤ k. We have ι∪κ |= ψ and H ∈ Γ ν,ι∪κ (G). "⇐" Assume that ι(m) > 0, the case ι(m) = 0 being left to the reader. Let κ be a positive valuation of z 1 , . . . , z k such that ∑ k i=1 κ(z i) = ι(m) and H ∈ Γ ν,ι∪κ (G), for some G, ψ ∈ [[ls m (x, nil)]] L (0). The fact that H, ν, ι |= ls m (x, nil) is a simple check.ls m (x, y) : Similar to the case ls m (x, nil).x = nil : Let H = s, h be a heap such that s(x) = nil, and H ′ = s ∪ ν, h . By definition,[[x = nil]] L (0) = { G, ⊤ | G = N, D, R, Z, S,V ∈ S 0 (L), V (x) = Nil}.Choose G to be the SSG isomorphic to the quotient heap H ′ /∼ w.r.t ∼ H ′ . "⇐" Let G = N, D, R, Z, S,V where V (x) = Nil. For any ν and ι, if H = s, h ∈ Γ ν,ι (G), we have s(x) = nil, hence H, ν, ι |= x = nil. x = y : Similar to the case x = nil.

Theorem 2

 2 we obtain the decidability of the entailment problem in the ∃ * {∃ N , ∀ N } * fragment of QSL. The validity of entailments between formulae in the ∃ * {∃ N , ∀ N } * fragment of QSL is a decidable problem.

3 l 1 2 uk 3 Fig. 7

 31237 Fig. 7 Solving entailment validity with SGRs (2/2)

 for some n ∈ N There are two types of quantifiers, ∃ ranges over locations Loc, and ∃ N over natural numbers N. A pair H, ι is said to be a model of ϕ iff H, ι |= ϕ. If IFV (ϕ) = / 0, we denote the fact that H is a model of ϕ simply as H |= ϕ.

 since G has only dangling nodes and the Nil node. Hence H, ν, ι |= emp. x → nil : "⇒" Let H = s, h be a heap over PVar such that s(x) = l and h

Table 2

 2 . Experimental Results using the L2CA and ASPIC tools

	{ϕ}	P	{ψ}	Size	Gen (s) Verif (s)	Tool	Result
	{ls l (u, nil)}	ListReversal	{ls l (v, nil)}	25	0.4	0.1	Aspic	ok
	{ls l (u, nil)}	BubbleSort	{ls l (u, nil)}	500	0.4	0.9	Aspic	ok
	{ls l (u, nil)}	InsertSort	{ls l (u, nil)}	880	0.6	2	Aspic	?
	{ls l (u, nil) ∧ c = 0}	ListCounter	{ls l (u, nil) ∧ c = l}	16	0.2	0.1	Aspic	ok
	{c = 0 ∧ emp ∧ u = nil}	InsertDelete	{c = 0 ∧ emp}	6	1.5	0.5	Fast	ok

In general this is an over-approximation of the set of reachable configurations, obtained using a combination of precise (acceleration) and abstract (widening) methods.

follows:

The SGR semantics for the QSL connectives is defined as follows:

If π is a purely arithmetic formula, then we have:

The semantics for the existential quantifiers is as follows:

Let FV L (ϕ) = FV (ϕ) ∩ LVar and FV I (ϕ) = FV (ϕ) ∩ IVar denote the sets of location and integer free variables of ϕ, respectivelly. The following lemma formalizes the correctness of our construction.

Lemma 7 Given ϕ a QSL formula containing only numeric quantifiers (∃ N , ∀ N), and x = {x 1 , . . . , x n } ⊆ FV L (ϕ), we have:

It is enough to prove that, for all ν : F → Loc and ι : I → N + , we have:

For, assuming that (1) is true, we have:

For the rest of this proof, let us fix ν : L → Loc and ι : I → N + . We prove (1) by induction on the structure of ϕ. Before we proceed, for a given valuation ν of location variables, let