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Tomáš Vojnar

the date of receipt and acceptance should be inserted later

Abstract We address the problem of verifying programs manipulating one-selector linked

data structures. We propose and study in detail an application of counter automata as an

accurate abstract model for this problem. We let control states of the counter automata cor-

respond to abstract heap graphs where list segments without sharing are collapsed, and use

counters to keep track of the number of elements in these segments. As a significant theoreti-

cal result, we show that the obtained counter automata are bisimilar to the original programs.

Moreover, from a practical point of view, our translation allows one to apply efficient auto-

matic analysis techniques and tools developed for counter automata (integer programs) in

order to verify both safety as well as termination of list-manipulating programs. As another

theoretical contribution, we prove that if the control of the generated counter automata does

not contain nested loops (i.e., these automata are flat), both safety and termination are de-

cidable for the original programs. Subsequently, we generalise our counter-automata-based

model to keep track of ordering properties over lists storing ordered data. Finally, we show

effectiveness of our approach by verifying automatically safety as well as termination of

several sorting programs.
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1 Introduction

The design of automatic verification methods for programs manipulating dynamic linked

data structures is a challenging problem. Indeed, analysing the behaviour of such programs

requires reasoning about complex transformations of data structures involving both creation

and deletion of objects as well as modifications of the links between them (due to pointer

manipulations). The heap of such programs may have in fact an arbitrary size and shape—it

can be a general graph structure of an in advance unrestricted size. For tackling this prob-

lem, various approaches (surveyed below) addressing different subclasses of programs and

using different kinds of formalisms for representing and reasoning about infinite sets of heap

structures have been proposed.

We consider in this paper the class of programs manipulating linked data structures with

a single data-field selector. This class corresponds to programs manipulating linked lists with

the possibility of sharing and circularities. We propose and study in detail an approach for

automatic verification of such programs which is mainly based on using counter automata as

accurate abstract (infinite-state) models. These models can be used for checking both safety

properties and termination of the considered programs using techniques such as (abstract)

symbolic reachability analysis (for safety and invariance checking) and automatic generation

of decreasing ranking functions (for termination checking).

Let us present in more detail the proposed approach. We start from the observation that

if we do not consider garbage (parts of the heap not reachable from the pointer variables of

the program), the heap graph is always a finite collection of graphs of a special form close to

a tree—namely, a tree where edges are directed towards the root and there may be a simple

cycle at the root. The number of such graphs is infinite, but it can be proved that for each

of them, the number of vertices where sharing occurs is bounded by the number of pointer

variables of the program.

Then, for data-insensitive programs (i.e., programs that do not assign nor test the data

within the list cells, such as the list reversal program from Figure 2) a natural abstraction

consists in mapping each sequence of elements between two sharing points into an abstract

sequence of some (fixed) bounded size. However, for each given value of the bound, this

abstraction is obviously not precise in general. In order to define a precise abstraction, we

need in fact to reason about the size of each sequence between two sharing points. This

leads to the idea of using counters in order to keep this information in the abstract model

(and therefore to use counter automata as abstract models).

In fact, considering counter automata-based models has several advantages. Not only it

allows us to define accurate abstractions, but it allows us to handle quantitative properties

depending on the sizes of some parts of the heap as well. Thus, we can handle programs

with integer variables whose value is related to the contents of the lists (e.g., to their length).

Moreover, it provides a powerful way for checking termination which typically requires

reasoning about decreasing values (e.g., the size of the part of the list to be treated).

A first contribution of the paper is to define an abstraction mapping from data-insensitive

programs to counter automata for which we prove that the (concrete) program and its ab-

straction are bisimilar. This result is significant since every property that can be proved (or

disproved) on the counter automaton (e.g., reachability or termination) automatically holds

(or does not hold) on the concrete program. In other words, our abstraction does not loose

information for the class of data-insensitive programs.

The idea of the abstraction is the following. The control states of the built automaton cor-

respond to abstract shapes (heap graphs where sequences between shared points are reduced

to single vertices), and each transition corresponds to the execution of a program statement.
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Each transition represents a modification in the shape together with a modification on the

counters which are attached to nodes of the abstract shapes and which count the length of

the concrete sequences of list nodes abstracted by the abstract nodes.

The control structure of the built counter automata can be arbitrary in general. However,

it turns out that these automata have an important property: we prove that if we consider the

evolution of the sum of all counters, the effect of executing any control loop is to increment

this sum by a constant which depends on the program. We use this fact to establish a signif-

icant decidability result for list programs: for every given (data-insensitive) list program, if

the control structure of the generated counter automaton has no nested loops, the verification

problems of safety properties and termination are both decidable.

Subsequently, we consider programs that manipulate objects ranging over a potentially

infinite data domain supplied with an ordering relation, assuming that the only allowed op-

erations on these data values are comparisons w.r.t. the ordering relation and assignments of

data between two list cells. This class of programs includes, for instance, sorting programs.

We extend our previous abstraction principle to the heap graphs of these programs by tak-

ing into account (in addition to the size) some information about the order of the elements

in the abstracted sequences between sharing points, and we provide a construction which

associates with each program a counter-automaton-based abstract model. We show that this

abstraction is sound w.r.t. the chosen ordering predicates. We briefly discuss ways of dealing

with a richer class of data manipulating statements too.

We have implemented our verification method for data-insensitive programs in a proto-

type tool called L2CA (Lists To Counter Automata) [28], and performed a number of exper-

iments on several textbook list sorting programs (BubbleSort, InsertSort, MergeSort,

and SelectionSort), in which, for simplicity, the data comparisons were replaced by non-

deterministic choices. On these examples, we have successfully checked absence of null

pointer dereferences, shape invariance, as well as termination. For two of the sorting al-

gorithms (BubbleSort, InsertSort), we have then also built counter automata tracking

the chosen ordering predicates, which allowed us to prove sortedness of the output of these

algorithms.

1.1 Related Work

The area of automated verification of programs manipulating dynamic linked data struc-

tures has recently attracted quite a lot of interest. Various approaches to verification of such

programs differing in their principles, degree of automation, generality, and scalability have

been proposed. The approaches are based, e.g., on monadic second order logic [30], 3-valued

predicate logic with transitive closure [33], separation logic [31,21,8,35], other logics [14,

3,29], automata [11,7,19,12], or other symbolic representations such as [36,4,25,17,1].

Interestingly, among the works concentrating on verification of programs manipulating

singly-linked lists, the idea of abstracting away the interior of list segments between in-

coming edges is quite common to many works, even though they are independent and use

different approaches and frameworks. Such an abstraction, of course, involves a loss of pre-

cision. An idea of partially avoiding this loss by joining a counter with each abstract list

segment appears, e.g., in [36] where the possible values of such counters are tracked in an

abstract way using a widening operator. This suffices for verification of certain safety prop-

erties, but an irrecoverable loss of precision is still involved unlike in our work. In [13], the

authors use an abstract shape model with counters, but their concerns are mostly related to

the decidability of a specification logic. The approaches that are the closest to ours are [5]

3



and its later extension [7] where an alternative translation to a bisimilar counter system is

also considered, but without the extension to ordered data and without the decidability result

for the case when a flat counter automaton is derived.

More recently, in [15], we have also investigated the complexity of several verification

problems (e.g., for safety and termination properties) for programs with singly-linked lists.

However, this line of work uses a different translation to counter automata in order to guar-

antee that the obtained models are flat. This translation scheme is less general than the one

considered here as it does not consider destructive update statements.

Another similar work that involves tracking the lengths of list segments and considers

termination is [20]. However, this approach does not generate a counter automaton simulat-

ing the original program. Instead, it first obtains invariants of the program (using separation

logic) and then computes the so-called variance relations that say how the invariants change

within each loop when the loop is fired once more. When the computed variance relations

are well-founded, termination of the program is guaranteed. Unlike our (bisimulation pre-

serving) approach, the analysis of [20] fails if the initial abstraction is not precise enough.

The approach of [20] was later generalised in [9] to a general framework that one can use to

extend existing invariance analyses to variance analyses that can in turn be used for checking

termination. Checking termination of programs with lists is tackled also by [34,3]. In these

works, ranking functions must be given manually whereas our approach is fully automated.

Termination of tree manipulation programs is then considered in [22] using a translation

to counter automata which is refinable via a counterexample-guided abstraction refinement

(CEGAR) loop—up to the fact that the set of progress measures over the trees being ma-

nipulated by the considered programs is fixed in advance. The lossy abstraction involved in

this case is unavoidable as one cannot derive a bisimilar counter model like in our case for

tree-manipulating programs. This is due to the fact that there are infinitely many reachable

abstract shape graphs for such programs. Automated checking of termination of a program

manipulating trees is also considered in [26] where the Deutsch-Schorr-Waite tree traversal

algorithm was proved to terminate using a manually created progress monitor, encoded in

first-order logic.

2 Programs with Lists

In this section, we define a model for imperative programs manipulating dynamic list data

structures. We assume that lists are implemented using data types with one selector, i.e.,

next pointer (or reference) field, as it is the case in most common imperative programming

languages. We consider programs without function calls and concurrency constructs, there-

fore all variables are assumed to be global. We assume the lists to store elements from some

ordered domain. In addition to the list data structures, the programs we consider can have

(unbounded) integer variables. Simple examples of such programs include list reversion, list

insertion, sorting procedures, programs counting the elements in a list, etc.

The programming model presented in this section has been simplified compared to ac-

tual programming languages, such as C or C++, in the following respects: (i) the values of

pointers are either allocated memory addresses or null (i.e., no dangling pointers), (ii) no

pointer arithmetic is allowed, (iii) allocation statements never fail, and (iv) unreachable

memory cells are automatically garbage collected.

In the first part of the paper, we assume the data stored in the lists to be completely

abstracted away and we concentrate purely on pointer manipulations. In the second part, we

allow a limited form of manipulation of the data contents of the lists, namely assignments of
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data between memory cells and comparisons of the data contents of the cells. We concentrate

mainly on checking ordering properties on programs that reorder the lists which they are

given rather than change their contents. Dealing with other forms of data manipulations,

such as increment or decrement, is briefly discussed at the end of the second part of the paper

too—however, since dealing with such data manipulations is not the goal of this paper, we

do not consider them in the supported program syntax given below.

2.1 Syntactic Definitions

The abstract syntax of the programs considered in this paper is given in Figure 2.1. We

use Lab to denote a finite set of program labels (control locations), PVar to denote a fi-

nite set of pointer variables, and IVar to represent a finite set of integer variables (coun-

ters). The pointer variables refer to list cells. Pointers can be used in assignments such

as u := null, u := w, and u := w.next; selector updates u.next := w and u.next := null; and

new cell creation u := new. Assignment of data between memory cells is possible via the

u.data := v.data statements. Counters can be incremented i := i+1, decremented i := i − 1,

and reset i := 0. The control structure is composed of iteration (while) statements and con-

ditional (if-then-else) statements. The guards of the control statements are pointer equal-

ity u = w and u = null, data comparisons u.data ≤ v.data, zero tests for counters i = 0, and

boolean combinations of the above. An example of a simple program from the considered

class is the list reversal program in Figure 2.

l ∈ Lab

u,v,w ∈ PVar

i, j,k ∈ IVar

Program := {l : Stmnt;}∗

Stmnt := WhileStmnt | I f Stmnt | Asgn

WhileStmnt := while Guard do {Stmnt;}∗ od

I f Stmnt := if Guard then {Stmnt;}∗ [
else {Stmnt;}∗] fi

Asgn := u := null | u := new | u := w | u := w.next | u.next := null

| u.next := w | u.data := v.data | i := 0 | i := i+1 | i := i − 1

Guard := u = v | u = null | u.data ≤ v.data | i = 0 | ¬Guard | Guard ∧ Guard | Guard ∨ Guard

Fig. 1 Abstract syntax of programs with lists

To simplify the definition of the operational semantics given below, we assume that

all programs are precompiled as follows. Each pointer assignment of the form u := new,

u := w, or u := w.next is immediately preceded by an assignment of the form u := null.

A pointer assignment of the form u := u.next is turned into v := u; u := null; u := v.next,

possibly introducing a fresh variable v. Each pointer assignment of the form u.next := w is

immediately preceded by u.next := null.

A program is said to be data-insensitive if it does not use any data assignment statements

(u.data := v.data) nor data comparisons (u.data ≤ v.data).
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1: j := null;
2: while i '= null do
3: k := i.next;
4: i.next := j;
5: j := i;
6: i := k;
7: od

Fig. 2 A list reversal program

2.2 Concrete Operational Semantics

In order to define the concrete semantics of programs with lists, we have to formalise the

notion of heaps. For our purposes, we view a heap as a graph in which nodes represent

allocated memory cells, and each node has at most one successor. Moreover, we consider a

partial mapping between pointer variables from PVar and graph nodes. Intuitively, if all the

edges are reversed, one can imagine a heap as a set of disjoint trees in which, for each tree,

there may be at most one extra edge from an arbitrary node back to the root.

In the rest of the paper, for a set A, we denote by A⊥ the set A ∪{⊥}. The element ⊥ is

used to denote that a (partial) function is undefined at a given point, e.g., f (x) =⊥. Also, for

a function f : A → B, we denote by f ↓C the projection of f on C, i.e., f ↓C= f ∩ (C × B).
Finally, for a function f : A → B, an element a ∈ A, and an element b ∈ B, we use the

notation f [a → b] to denote a function which arises from f by setting the value of a to b,

i.e., f [a → b] = ( f \{(a, f (a))})∪{(a,b)}.

Definition 1 Let 〈D,/〉 be an infinite, totally ordered set and PVar a non-empty finite set

of pointer variables. A heap is a tuple H = 〈N,S,V,D〉 where N is a finite set of nodes,

S : N → N⊥ is a successor function, V : PVar → N⊥ is a function associating to each variable

a node, and D : N → D is a function associating to each node a data element.

The set of all heaps using variables from PVar is denoted by H (PVar). We denote the

fact that S(n1) = n2 in H by n1 −→
H

n2. We use u −→
H

n to denote the formula ∃m . V (u) =

m ∧ m −→
H

n. Here, H might be omitted when it is clear from the context. We denote by
∗

−→
H

the reflexive and transitive closure of −→
H

. A node n is said to be a cut-point in H, denoted as

cutH(n), if it has two predecessors or it is pointed to by a variable. Formally, let

cutH(n) : ∃n1,n2 ∈ N . n1 '= n2 ∧ S(n1) = S(n2) = n ∨ ∃u ∈ PVar . V (u) = n.

When a node n is removed from a heap, or when its successor link is changed, some

successors of n may become unreachable from the pointer variables. Due to the implicit

garbage collection, such nodes are removed from the heap. The set of nodes whose lifetime

depends exclusively on their reachability through the node n is denoted as depH(n) in the

following. Formally, for a heap H = 〈N,S,V,D〉 and n ∈ N:

depH(n) =
{

m ∈ N | ∀u ∈ PVar. ¬
(

u
∗

−−−−−−−−→
〈N,S[n→⊥],V,D〉

m
)}

The state of a program with lists is a triple 〈l,H, ι〉 where l ∈ Lab is the current program

label, H ∈ H (PVar) is the current heap configuration, and ι : IVar → Z is the current

valuation of counter variables. A pointer assignment statement s between locations l and
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l′ (denoted l : s; l′) changes the state from 〈l,H, ι〉 to 〈l′,H ′, ι〉, where H ′ is a new heap

configuration such that H
s

−→ H ′ in conformance with the rules presented in Figure 3.

Rules C1, C2, and C3 describe the effect of assigning null to a pointer variable u. If u

is not allocated, then there is no change in the heap (C1). Otherwise, the location n pointed

to by u and its dependent nodes are removed if and only if it is not reachable from another

variable than u (C2, C3). The assignment between two pointer variables u and w assumes that

u is previously null (C4). Analogously, the allocation statement described by (C5) assumes

that the allocated variable was previously null. Notice that the data element of the newly

allocated cell is chosen randomly from the data domain D. Further, setting the next field of

an allocated memory cell to null may generate garbage cells, which must be collected (C9).

Notice that assigning the next field to another pointer variable is possible only provided that

it was previously set to null (C10). When a null pointer dereference is encountered, the heap

is changed to a special sink heap configuration Herr (C6, C8, C11), Herr '∈ H (PVar).

A pointer equality test u = v evaluates to true in a heap H = 〈N,S,V,D〉 iff V (u) =V (v).
Also, u = null is true iff V (u) = ⊥. A data comparison u.data ≤ v.data leads to Herr iff

V (u) = ⊥ or V (v) = ⊥. Otherwise, it evaluates to true iff D(V (u)) ≤ D(V (v)). The seman-

tics of tests and updates on counters is as usual, and so is the semantics of the conditional

statements and loops.

V (u) = ⊥

H
u := null
−−−−−−→ H

C1

V (u) '= ⊥ ∃w ∈ PVar \{u} . w
∗

−→
H

V (u)

H
u := null
−−−−−−→ 〈N,S,V [u → ⊥],D〉

C2

V (u) = n ∈ N ∀w ∈ PVar \{u} . ¬
(
w

∗
−→
H

n
)

N′ = N \ ({n}∪ depH(n))

H
u := null
−−−−−−→ 〈N′,S↓N′ ,V [u → ⊥],D↓N′ 〉

C3

V (u) = ⊥

H
u := w
−−−−−→ 〈N,S,V [u → V (w)],D〉

C4

V (u) = ⊥ n '∈ N is a fresh node d ∈ D

H
u := new
−−−−−−→ 〈N ∪{n},S[n → ⊥],V [u → n],D[n → d]〉

C5

V (w) = ⊥

H
u := w.next
−−−−−−−−→ Herr

C6

V (u) = ⊥ V (w) = n ∈ N

H
u := w.next
−−−−−−−−→ 〈N,S,V [u → S(n)],D〉

C7

V (u) = ⊥

H
u.next := null
−−−−−−−−−−→ Herr

C8

V (u) = n ∈ N N′ = N \depH(n)

H
u.next := null
−−−−−−−−−−→ 〈N′,S[n → ⊥]↓N′ ,V,D↓N′ 〉

C9

V (u) = n ∈ N S(n) = ⊥

H
u.next := w
−−−−−−−−→ 〈N,S[n → V (w)],V,D〉

C10

V (u) = ⊥ or V (v) = ⊥

H
u.data := v.data
−−−−−−−−−−−−→ Herr

C11

V (u) = n ∈ N V (v) = m ∈ N

H
u.data := v.data
−−−−−−−−−−−−→ 〈N,S,V,D[n → D(m)]〉

C12

Herr
s

−→ Herr

C13

Fig. 3 Concrete semantics of heap updates
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3 Counter Automata

A counter automaton with n counters is a tuple A = 〈Q,X ,q0,→〉 where Q is a finite set

of control states, q0 ∈ Q is an initial state, X = {x1, . . . ,xn} are counter variables, and →∈
Q × Φ × Q are transitions where Φ is the set of Presburger formulae with free variables

from {xi,x′
i | 1 ≤ i ≤ n}. A configuration of a counter automaton with n counters is a tuple

〈q,ν〉 where ν is a mapping from X to N. The set of all configurations is denoted by C . Let

FV (ϕ) denote the set of free variables of a formula ϕ. The transition relation
C
−→⊆ C × C

is defined by letting (q,ν)
C
−→ (q′,ν′) iff there exists a transition q

ϕ
−→ q′ such that if σ is

an assignment of FV (ϕ) where σ(x) = ν(x) and σ(x′) = ν′(x), we have that ϕ(FV (ϕ)σ)
holds and ν(x) = ν′(x) for all variables x with x′ '∈ FV (ϕ). A run of A is a sequence of

configurations (q0,ν0),(q1,ν1),(q2,ν2) . . . such that (qi,νi)
C
−→ (qi+1,νi+1) for each i ≥ 0.

Definition 2 Let A = 〈Q,X ,q0,→〉 be a counter automaton where X = {x1, . . . ,xn} are

counter variables that range over positive integers. A is said to be linear if all its transitions

are of the form ϕ(X) ∧
∧

1≤i≤n x′
i = fi(X) where ϕ is a formula of Presburger arithmetic and

fi = ∑n
j=1 ai jx j +bi, 1 ≤ i ≤ n, are linear functions with integer coefficients. Moreover, A is

said to be positive if ai j ≥ 0 for all 1 ≤ i, j ≤ n. A is also said to be restrictive if there exists a

constant α ∈ N such that for each control state q ∈ Q, on each run π that visits q, the sum of

values taken by the counters, ∑n
i=1 xi, increases by at most α between any two consecutive

times when the control state is q.

The control graph of a counter automaton A is the graph having as vertices the set Q of

control states, and, for any two states q and q′, there is an edge between q and q′ in the control

graph if and only if there exists a transition q
ϕ
−→ q′ in A. A counter automaton is said to be

flat if its control graph has no nested loops. A control path scheme is a regular expression

over the edges of a control graph describing a set of paths between two control states. For

a flat counter automaton A = 〈Q,X ,q0,→〉 and any two control states q,q′ ∈ Q, the set of

paths between q and q′ is a finite union of path schemes of the form L∗
1S1L∗

2S2 . . .Sn−1L∗
n

where Li are possibly empty elementary loops (i.e., paths starting and ending in the same

control state, with no repeated states in between), and Si are sequential paths between loops.

We use q
E
−→ q′ to denote that E is a control path scheme describing a set of paths between

the states q and q′.

Theorem 1 The problems of reachability and termination for flat linear positive restrictive

counter automata are decidable.

Proof Let A = 〈Q,X ,q0,→〉 be a flat counter automaton where X = {x1, . . . ,xn}. We reduce

the problems of reachability and termination for flat counter automata to the problem of

computing the relation between input and output values of the counters, for any execution

path. This amounts essentially to computing the transitive closure of a transition relation

labelling a loop q −→ . . . −→ q in the automaton, where the input values of the counters are

restricted by an initial condition Iq(X). This initial condition summarises all possible execu-

tions up to the beginning of the loop. Formally, we have the following for each control state

q ∈ Q:

Iq(X) = ∃X0∃X ′
0 . . .∃Xn−1 .

∨

q0

L∗
1S1L∗

2S2...Sn−1L∗
n−−−−−−−−−→q

λ∗
1(X0,X

′
0)∧σ1(X

′
0,X1)∧ . . .∧σn−1(X

′
n−2,Xn−1)∧λ∗

n(Xn−1,X)
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where λi is the transition relation of Li, 1 ≤ i ≤ n, and σi is the transition relation of Si,

1 ≤ i < n, respectively. Here, R∗ denotes the transitive closure of a relation R.

Hence we can restrict our attention w.l.o.g. to one self-loop of the form q
φ
−→ q, param-

eterised by an initial condition on counters Iq(X). The transition relation φ is of the form

ϕ(X)∧ X ′ = f (X) where f (X) = X ·A+B is an affine transformation, according to Defini-

tion 2. Here, A ∈ Z|X |×|X | is a square matrix and B ∈ Z|X | is a row vector. We assume w.l.o.g.

that all columns of A are linearly independent, for else the value of some counters are linear

combinations of the other counters and could be encoded as a part of ϕ. As a consequence,

A is invertible, i.e., there exists A−1 ∈ Q|X |×|X | such that AA−1 = A−1A = 1, where 1 is the

identity matrix.

Let x
(m)
i denote the value of the counter xi at the m-th visit of control state q. We have

the following for all m ≥ 0:

n

∑
i=1

x
(m+1)
i −

n

∑
i=1

x
(m)
i ≤ α

n

∑
i=1

( fi(x
(m)
1 , . . . ,x(m)

n )− x
(m)
i ) ≤ α

n

∑
i=1

(
n

∑
j=1

ai jx
(m)
j +bi − x

(m)
i ) ≤ α

n

∑
i=1

(
n

∑
j=1

a ji − 1)x(m)
i ≤ α −

n

∑
i=1

bi

Since all coefficients are positive, we have ∑n
j=1 a ji ≥ 0 for all 1 ≤ i ≤ n. If it is the case

that ∑n
j=1 a ji = 0 for some 1 ≤ i ≤ n, i.e., all coefficients of xi are zero, then xi is not used

in computing the next values of X , and we can eliminate xi from the transition relation as

described in the following.

Let X = X \ {xi}, and f (X) be the projection of f onto X . Then the loop executes as

follows:

Iq(X
(0))∧ ϕ(X (0)) ∧ X (1) = f (X (0))

ϕ(X (1)) ∧ X (2) = f (X (1))

ϕ(X (2)) ∧ X (3) = f (X (2))

. . .

which is equivalent to:

∃x
(0)
i . [Iq(X

(0))∧ ϕ(X (0))] ∧ X (1) = f (X (0))

∃x
(1)
i ∃Xp . [X

(1) = f (Xp)∧ ϕ( f (Xp))] ∧ X (2) = f (X (1))

∃x
(2)
i ∃Xp . [X

(2) = f (Xp)∧ ϕ( f (Xp))] ∧ X (3) = f (X (2))

. . .

The equivalence between ϕ(X (i))∧X (i+1) = f (X (i)) and ∃x
(i)
i ∃Xp . [X (i) = f (Xp)∧ϕ( f (Xp))]∧

X (i+1) = f (X (i)), for i > 0, can be seen by the fact that X (i) = X (i−1)A+B (by the previous

transition). Hence there exist values Xp such that X (i) = f (Xp). Now it remains to be shown

9



that Xp and X (i−1) are the same values. But since A is invertible, we have Xp = X (i−1) =
(X (i) − B)A−1.

Hence it is enough to unfold the loop once and consider the first transition separately.

Obviously, all incoming and outgoing transitions will have to be duplicated, but this does

not change the flatness of the control structure. The result is a machine with the following

control structure and with counters X :

q0

∃xi . [Iq(X)∧ϕ(X)] ∧ X ′= f (X)
−−−−−−−−−−−−−−−−→ q1

q1

∃xi∃Xp . [X= f (Xp)∧ϕ( f (Xp))] ∧ X ′= f (X)
−−−−−−−−−−−−−−−−−−−−−−→ q1

Obviously, all properties (reachability, termination) of the original machine are preserved

by the transformation.

We can therefore restrict w.l.o.g. to the case where ∑n
j=1 a ji > 0 for all 1 ≤ i ≤ n. Then

either:

– ∑n
j=1 a ji > 1, in which case 0 ≤ x

(m)
i ≤ α−∑n

i=1 bi

∑n
j=1 a ji−1

, or

– ∑n
j=1 a ji = 1, i.e., aki = 1 for some k and a ji = 0 for all j '= k.

This (static) case split partitions the set of counters X into two disjoint subsets: a set of

counters Y for which the first case applies and which are bounded by a constant throughout

the execution of the automaton, and a set of counters Z for which the second case applies

and which must occur exactly once in the computation of X ′; i.e., for each z ∈ Z there exists

exactly one x ∈ X such that x′ = z+g where g is a linear combination not involving z.

We now distinguish three cases. (1) If x ∈ Y , the value of z is also bounded by a constant.

Otherwise, (2) if x ∈ Z and g contains another occurrence of a variable t from Z, this means

that there exists another variable s from Z whose next value depends only on values from

Y , or else there would be a variable from Z occurring in two places. In this case, the value

of s is also bounded by a constant. The last case (3) is z′ = t + g(Y ) for z, t ∈ Z. In the first

two cases, the partition can be modified by moving bounded variables from Z to Y until a

fixpoint is reached.

According to the resulting partition (Y,Z), the values taken by the counters at each

iteration have the following properties:

– Y range over an effectively computable finite set of values V = {v1, . . . ,vN},

– Y ′ are linear combinations of Y ,

– Z′ = Z +δ where δ are linear combinations of Y .

Since the values taken by Y are bounded, they can be encoded in the control of a new

counter machine. Given a self loop q
ϕ ∧ ψ
−−−→ q where ψ =

∧
1≤i≤n x′

i = fi(X) is the same as in

Definition 2, and a partition of the counters into (Y,Z) that satisfies the requirements above,

we can build a counter machine Asim = 〈V ||Y || ∪ {q0},Z,q0,δsim〉 where δsim is defined as

follows:

– q0
6
−→ v if v ∈ V ||Y || is an initial tuple of values for Y ,

– for all v,v′ ∈ Z||Y || and w,w′ ∈ Z||Z||, we have:

v
ϕ[v/Y ] ∧ ψ[v/Y,v′/Y ′,Z+δ/Z′] ∧ Z′=Z+δ
−−−−−−−−−−−−−−−−−−−−−−→

Asim

v′

10



Notice that the new transition relation δsim is deterministic since v′ and δ are linear com-

binations of v. This means that the control structure of Asim is in fact a loop, corresponding

to a finite number of unfoldings of q
ϕ ∧ ψ
−−−→ q. The new machine simulates the original loop

in the sense that any execution of the former corresponds to an execution of the latter and

vice-versa. Moreover, the set of configurations of the original loop is in a one-to-one relation

with the set of configurations of Asim.

Let M be the length of the loop constituting the control of Asim. This is an effectively

computable constant, bounded by N |y|, the number of control states. In other words, Asim

is of the form: v0
ϕ0∧Z′=Z+δ0−−−−−−−→ v1

ϕ1∧Z′=Z+δ1−−−−−−−→ v2 . . . −→ vM−1
ϕM−1∧Z′=Z+δM−1−−−−−−−−−−→ v0 where ϕi =

ϕ[vi/Y ]∧ψ[vi/Y,v′
i/Y ′,Z+δi/Z′]. The relation between the input Z and output Z′ values of

the counters of Asim can now be defined by the Presburger formula

∃l ≥ 0 .
∨M−1

j=0 Z′ = Z + l ∑M−1
i=0 δi +∑

j
i=0 δi ∧ (1)

∀0 ≤ m < lM+ j . ϕm mod M(Z + m
M ∑M−1

i=0 δi +∑m mod M
i=0 δi) (2)

where m
M

denotes integer division. Intuitively, the formula from the first row gives the dif-

ference between Z′ and Z whereas the second one ensures that the guards are satisfied all

along the way. Notice that ϕ j(Z+ m
M ∑M−1

i=0 δi+∑m mod M
i=0 δi), 0 ≤ i < M, are indeed formulae

of Presburger arithmetic provided that ϕ is.

Given a flat linear positive restrictive automaton, one can compute the above formula

for each individual loop. The reachability and termination problems for these automata can

be reduced to satisfiability of Presburger formulae. 78

4 Abstract Semantics of Programs with Lists

A common way of representing heaps compactly consists in mapping an entire list segment

with no edges incoming into the middle of it into a special (abstract) node. This idea con-

stitutes the basis of our abstraction too. Let N be a set of abstract nodes and X be a set of

counter variables, one for each node. We shall first define the abstract structure of heaps.

Definition 3 An abstract structure is a tuple H = 〈N,S,V 〉 where:

– N ⊆ N is a set of abstract nodes,

– S : N → N⊥ is a successor mapping, and

– V : PVar → N⊥ is a variable mapping.

A cut-point in H is a node n ∈ N such that there exist n1,n2 ∈ N with n1 '= n2 and S(n1) =
S(n2) = n or there exists u ∈ PVar with V (u) = n. An abstract structure is said to be in

normal form iff each node n ∈ N is a cut-point in H that is reachable from some u ∈ PVar,

i.e., u
∗

−→
H

n.

Intuitively, each abstract node corresponds to a set of concrete nodes, and the counter

corresponding to each node gives the number of nodes in this set. For abstract structures

in normal form, we do not allow sequences of successive abstract nodes that are neither

pointed by a variable, nor have their in-degree greater than one. This condition is needed in

order to ensure that any such abstract structure defined over a finite set of variables is finite.

We use H (PVar) to denote the set of all abstract structures with variables from PVar and

H n f (PVar) to denote the subset of H (PVar) containing abstract structures in normal form

only.

11



Lemma 1 Let PVar = {u1, . . . ,un} be a set of variables, and H = 〈N,S,V 〉 be an abstract

structure in normal form such that dom(V )⊆ PVar. Then ||N||≤ 2n. Moreover, ||H n f (PVar)||
is of the order of 2Θ(nlog(n)).

Proof We show that ||N|| ≤ 2n by induction on the cardinality n of PVar. For n = 1, it is

obvious that the abstract structures in normal form can have at most two nodes: either there

is no node at all, or the unique variable points to a node which points to null or to itself, or

the variable points to a first node which points to a second node which points to itself. Now,

let us suppose that ||N|| ≤ 2n holds for abstract structures in normal form with n variables. If

we have one more variable un+1, it either points to a part of the heap completely separated

from the other n variables, or not. In the former case, there can be at most two more nodes

using the same reasoning as in the base case. In the latter case, there can be at most one

node m (pointed to by un+1) which is not reachable from the other variables. Furthermore,

the successor of m must be a cut-point m′. If m′ is pointed to by a variable, we can remove m

and un+1 and apply the induction hypothesis on the remaining heap which is in normal form

since m′ is still a cut-point. The same can also be done if m′ is pointed to by at least two

other nodes distinct from m. If m′ is pointed to by exactly one other node m′′, it is no more

a cut-point after removing un+1 and m. However, if we remove m′ by letting m′′ point to the

successor of m′, then the obtained heap is in normal form and we can apply the induction

hypothesis on it yielding the desired bound.

For the second part, we compute an upper and lower bound on the number of heaps with

2n nodes. For the upper bound, we note that an abstract structure, not necessarily in normal

form, with 2n nodes can be uniquely encoded by the following mappings:

– s : {1, . . . ,2n} → {1, . . . ,2n,⊥} is the partial successor function, i.e., s(n) = ⊥ iff the

node n has no successor,

– v : {1, . . . ,n} →{ 1, . . . ,2n,⊥} maps variables into nodes, i.e., v(i) = ⊥ iff the i-th vari-

able is undefined.

Taking this into account, the number of abstract structures, not necessarily in normal form,

with 2n nodes is at most (2n+1)2n · (2n+1)n = (2n+1)3n. At the same time, this formula

gives an upper bound on the number of abstract structures in normal form with 2n nodes or

less as well. This is because for each abstract structure H in normal form with m < 2n nodes

there is at least one abstract structure not in normal form which has 2n nodes and which is

equal with H, up to having 2n − m garbage nodes (i.e., nodes unreachable from the pointer

variables).

For the lower bound, we consider only trees with n nodes, all of which are pointed to by

a variable. The number of unlabelled trees with n nodes is the Catalan number Cn =
(2n−2)!
n!(n−1)! ,

and the number of possible variable assignments is n!. Hence the number of labelled trees

is n · (n + 1) · . . . · (2n − 2) ≥ nn−1. So nn−1 is a lower bound on the number of abstract

structures in normal form with 2n nodes. Hence the number of abstract structures in normal

form pointed to by n pointer variables is of the order of 2Θ(nlog(n)). 78

Let us now define our first abstraction function, denoted by αs, that maps concrete

heaps into abstract structures. Given a concrete heap H = 〈N,S,V,D〉, let RH ⊆ N × N

be a relation on the set of nodes defined such that n1RHn2 holds for any n1,n2 ∈ N iff

n1 −→
H

n2 ∧¬cutH(n2). We denote by ∼H the reflexive, symmetric, and transitive closure

of RH . The H subscript shall be further omitted for simplicity. For a node n ∈ N, we denote

by [n] the equivalence class of n with respect to ∼, also referred to as a list segment. The

quotient heap H/∼ = 〈N/∼,S/∼,V/∼〉 is defined as follows:

12



– N/∼ = {[n] | n ∈ N},

– for all n,m ∈ N, S/∼([n]) = [m] iff ∃n0 ∈ [n] ∃m0 ∈ [m] . S(n0) = m0 ∧ cutH(m0),
– for all u ∈ PVar, n ∈ N, V/∼(u) = [n] iff V (u) ∈ [n], and

– S/∼ and V/∼ are undefined, otherwise.

Note that S/∼ and V/∼ are well defined partial functions. Indeed, assume that for some n ∈ N,

S/∼ maps [n] into two different equivalence classes, call them [m] and [p]. This would imply

that there are two nodes n1,n2 ∈ [n] such that n1 −→
H

m0 and n2 −→
H

p0 where m0 ∈ [m] is the cut-

point at the beginning of the list segment [m], and p0 ∈ [p] is the cut-point at the beginning

of the list segment [p]. Since [m] and [p] are different segments, m0 '= p0. Now, note that

since nodes in a list segment are linked together, each of them has just one successor, and

only the first node of a list segment is a cut-point, only the last node of a list segment may

point to a cut-point. However, then it must be the case that n1 = n2, and hence also m0 = p0,

which is a contradiction. The argument for V/∼ is straightforward.

In Figure 4 (a), an example of a concrete heap with its cut-points is given. For example,

the nodes n1 and n2 form an equivalence class.

2 1 2 1 3

3

(b)(a)

u

v

x

yy

x n′
6

u

n′
4n′

1 n′
5

n′
3

n′
2n1 n2 n3 n7 n8 n9 n10 n11 n12

n4 n5 n6

v

Fig. 4 Concrete and abstract structures. The cut-points are n1,n3,n4,n7,n9 and n10.

For an equivalence class [n] ∈ N/∼, we denote by hd([n]), tl([n]) the head and tail of the

list segment, respectively, and by [n]◦ [m] the concatenation of two list segments.

Definition 4 Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ = 〈N/∼,S/∼,V/∼〉 its quotient.

An abstract structure H = 〈N,S,V 〉 is said to be a structural abstraction of H if and only if

there exists a bijective function β : N/∼ ∪{⊥} → N ∪{⊥} such that β(⊥) = ⊥, and for all

u ∈ PVar:

– S(β([n])) = β(S/∼([n])) and

– V (u) = β(V/∼(u)).

Note that an abstract structure that is a structural abstraction of some concrete heap is

necessarily in normal form. Two abstract structures that differ only in the naming of nodes

and counter variables are semantically equivalent in the sense that they are abstractions of

the same set of concrete heaps. In practice, this increases the number of abstract structures

generated by a symbolic state exploration tool. This problem can be overcome by choosing

a canonical representation of abstract structures as described, e.g., in [23].

We define the structural abstraction function αs : H (PVar) → H n f (PVar), αs(H) = H

iff H is the canonical representative of a structural abstraction of H. Dually, the concretisa-

tion of an abstract structure H is the set of concrete heaps whose structural abstraction is H,

i.e., γs(H) = {H | αs(H) = H}.

Furthermore, let H = 〈N,S,V 〉 be an abstract structure in normal form and ν : N → N+ a

mapping of nodes to positive natural numbers. By ν(H), we denote the set of concrete heaps

obtained by replacing each node n ∈ N by a list segment of length ν(n) and data arbitrarily

chosen from D. Clearly, γs(H) =
⋃

ν:N→N+ ν(H).
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For example, the concrete heap in Figure 4 (a) is one possible concretisation of the

abstract structure in Figure 4 (b), for the valuation: ν(n′
1) = 2, ν(n′

2) = 1, ν(n′
3) = 3, ν(n′

4) =
2, ν(n′

5) = 1, ν(n′
6) = 3.

4.1 Data-Insensitive Programs

This section is devoted to a description of counter automata that abstract the behaviour of

data-insensitive programs with lists. We formalise correctness of our construction by prov-

ing bisimulation between the semantics of a data-insensitive list program and the semantics

of a counter automaton. This entails a strong preservation of temporal logic properties. In

particular, safety and termination are strongly preserved by the counter automata, meaning

that one can prove as well as disprove safety and termination properties of the programs

based on the behaviour of their representation by the counter automata.

Consider a data-insensitive list program with k pointer variables and l counter variables,

i.e., ||PVar|| = k and ||IVar|| = l. We construct a counter automaton A = 〈Q,X ,
s

−→〉 with

2k+ l counters as follows. The control states Q of the counter automaton are elements of

the set Lab× (H n f (PVar)∪{Herr}) where Herr '∈ H (PVar) is a special sink error state. Let

N =
⋃
{N | 〈N,S,V 〉 ∈ H n f (PVar)} be the set of nodes used in the structural abstraction.

The counters are X = {xn | n ∈ N }∪ IVar, i.e., one counter for each node used in the

structural abstraction plus the counter variables from the original program. The transitions

are given by triples q
ϕ
−→ q′ such that (1) q = 〈l,H〉, (2) q′ = 〈l′,H ′〉, (3) there is a statement

l : s; l′ in the program, and (4) it is the case that H
ϕ
−→
s

H ′ where the relation
ϕ
−→
s

is described

by the structural rules given in Figures 5 and 7. More precisely, Figures 5 and 7 contain rules

Ai which correspond to the rules Ci from Figure 3. Sometimes several rules in the abstract

semantics are needed for one rule in the concrete semantics. The rules for data manipulation

(C11, C12) are not needed in the abstract semantics for data-insensitive programs. In order to

simplify the treatment of the different cases in the rules of Figures 5 and 7, they are based

on two low-level operations for merging and splitting abstract nodes, which are explained in

the following paragraphs.

Intuitively, when the effect of some pointer manipulating statement is simulated over

an abstract structure in normal form, it may happen that we obtain an abstract structure

H = 〈N,S,V 〉 in which there are two abstract nodes n and m such that m is a successor of n,

and m is not a cut-point. In such a case, we need to merge the two abstract nodes n and m in

order to re-normalise the abstract structure. For this purpose, we use the merging function

µ : H (PVar)×N ×N → H (PVar) defined as µ(H,n,m) = 〈N ′,S↓N ′ [n → S(m)],V 〉 where

N ′ = N \{m}.

Furthermore, when simulating the effect of the statement u := w.next, we need to split

the abstract node n pointed to by w into two nodes n and m provided that the value of its

corresponding counter is greater than one (i.e., xn > 1). For this purpose, we use the splitting

function σ : H (PVar)× N × N → H (PVar) defined as σ(H,n,m) = 〈N ∪ {m},S′,V 〉
where S′ =

(
S\{(n,S(n))}

)
∪ {(n,m),(m,S(n))}.

The semantics of tests (u = v and u = null) is similar to the concrete case, and the same

holds for the conditional statements, while loops, and counter manipulating statements.

For an illustration of the translation, the reader is referred to the list reversal example in

Figure 8.

Now we can state the main theorem of this section, establishing bisimilarity between a

data-insensitive program manipulating lists and the counter automaton modelling it. Given
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V (u) = ⊥

H
true

−−−−→
u:=null

H
A1

∃w ∈ PVar \{u} V (w) =V (u) '= ⊥

H
true

−−−−→
u:=null

〈N,S,V [u → ⊥]〉
A2

V (u) = n ∈ N ∀w ∈ PVar \{u} . V (w) '= n
∃m, p ∈ N . p '= m ∧ S(m) = S(p) = n

H
true

−−−−→
u:=null

〈N,S,V [u → ⊥]〉
A′

2

V (u) = n ∈ N ∀w ∈ PVar \{u} . V (w) '= n
∃m ∈ N \ {n} . S(m) = n
∀p ∈ N \ {m} . S(p) '= n

H
x′

m=xm+xn
−−−−−−→

u:=null
µ(〈N,S,V [u → ⊥]〉,m,n)

A′′
2

V (u) = n ∈ N ∀w ∈ PVar \ {u} . w '
∗

−→
H

n

S(n) ∈ {⊥,n} N′ = N \{n}

H
true

−−−−→
u:=null

〈N′,S↓
N′ ,V [u → ⊥]〉

A3

V (u) = n ∈ N ∀w ∈ PVar \ {u} . w '
∗

−→
H

n

S(n) = m ∈ N \{n}
∃w ∈ PVar \{u} . V (w) = m N′ = N \{n}

H
true

−−−−→
u:=null

〈N′,S↓
N′ ,V [u → ⊥]〉

A′
3

V (u) = n ∈ N ∀w ∈ PVar \ {u} . w '
∗

−→
H

n

S(n) = m ∈ N \ {n}
∀w ∈ PVar \ {u} . V (w) '= m
∃p,q ∈ N \ {n} . p '= q ∧ S(p) = m ∧ S(q) = m
N′ = N \{n}

H
true

−−−−→
u:=null

〈N′,S↓
N′ ,V [u → ⊥]〉

A′′
3

V (u) = n ∈ N ∀w ∈ PVar \ {u} . w '
∗

−→
H

n

S(n) = m ∈ N \ {n}
∀w ∈ PVar \{u} . V (w) '= m
∃p ∈ N \ {n,m} . S(p) = m
∀q ∈ N \ {n, p} . S(q) '= m N′ = N \ {n}

H
x′

p=xp+xm
−−−−−−→

u:=null
µ(〈N′,S↓

N′ ,V [u → ⊥]〉, p,m)

A′′′
3

V (u) = n ∈ N ∀w ∈ PVar \ {u} . w '
∗

−→
H

n

S(n) = m ∈ N \ {n}
∀w ∈ PVar \{u} . V (w) '= m
∀p ∈ N \ {n,m} . S(p) '= m
N′ = N \ {n,m}

H
true

−−−−→
u:=null

〈N′,S↓
N′ ,V [u → ⊥]〉

A′′′′
3

Fig. 5 The data-insensitive counter automata semantics of u := null on an abstract structure H = 〈N,S,V 〉 in
normal form—see Fig. 6 for an illustration of the different cases

a data-insensitive, list manipulating program P, let 〈S ,
c

−→〉 be its concrete semantics with

the set of states S = Lab × H (PVar)× (IVar → Z) and
c

−→ being its transition relation. Let

S =Q×(X →Z) be the set of all configurations of the corresponding counter automaton and
s

−→ its transition relation. Let !s ⊆ S ×S be the relation defined such that (l,H, ι)!s (l,H,ν)

holds for a concrete heap H = 〈N,S,V,D〉, an abstract structure H = 〈N,S,V 〉 in normal

form, program labels l and l, and valuations ι : IVar → Z and ν : X → Z iff one of the two

following cases happens:

– l = l, H is a structural abstraction of H based on a bijection β : N/∼ ∪{⊥} → N ∪{⊥}
in accordance with Definition 4, ν↓IVar= ι, and ∀n ∈ N . ν(xn) = ||β−1(n)||; or

– l = l ∧ H = Herr ∧ H = Herr.

Theorem 2 The relation !s is a bisimulation between 〈S ,
c

−→〉 and 〈S ,
s

−→〉.

Proof We prove the theorem by considering all possible different statements in the program.

The case of Herr and Herr is trivial. Suppose that we are given (l,H, ι)!s (l,H,ν) such that
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Fig. 6 An illustration of the different cases of the counter automata semantics of u := null from Fig. 5

H '= Herr, and let β : N/∼ ∪{⊥} → N ∪{⊥} be the bijection from Definition 4 linking H/∼

and H.

We need to show that for each statement s, (1) (l,H, ι)
s

−→ (l′,H ′, ι′) implies (l,H,ν)
s

−→

(l′,H
′
,ν′) and (l′,H ′, ι′) !s (l′,H

′
,ν′), and (2) (l,H,ν)

s
−→ (l′,H

′
,ν′) implies (l,H, ι)

s
−→

(l′,H ′, ι′) and (l′,H ′, ι′)!s (l′,H
′
,ν′).

For statements which are assignments involving integer variables, this is obvious. For

statements which are guards involving integer variables, this is also obvious. For guards of

the type u= v involving pointer variables, this follows directly from Claim (1) proven below.

The case of guards of the type u = null is analogical.

Claim (1) Given an abstract structure H = 〈N,S,V 〉 such that H is a structural abstraction of

a concrete heap H = 〈N,S,V,D〉, we have for all u,w ∈ PVar, V (u) =V (w) iff V (u) =V (w).

Proof V (u) = V (w) = ⊥ iff V/∼(u) = V/∼(w) = ⊥ iff V (u) = V (w) = ⊥, by Definition 4.

If V (u) = V (w) '= ⊥, then V (u) = V (w) '= ⊥ follows. Dually, if V (u) = V (w) = n, then
V/∼(u) =V/∼(w) = β−1(n). Then either V (u) =V (w), or V (u) '=V (w) and V (u) ∼H V (w).
The latter case leads to a contradiction due the fact that V (w) is a cut-point. 78

For the other cases, we need another property.

Claim (2) Given a concrete heap H = 〈N,S,V,D〉 and its structural abstraction H based on

a bijection β, for all n,m ∈ N such that cutH(m) and cutH(n), n
∗

−→
H

m iff β([n])
∗

−→
H

β([m]).

Proof “⇒” We show that for all n,m ∈ N such that cutH(m) and cutH(n), n
∗

−→
H

m implies

β([n])
∗

−→
H

β([m]) by induction on the number c of cut-points different from n and m which

appear along the shortest path from n to m. For c = 0, we have two cases: First, n = m, in

which case, we trivially have β([n]) = β([m]). Second, n '= m. In this case, there must be

some n′ ∈ [n] such that n
∗

−→
H

n′ −→
H

m, and we are done since [n] = [n′] and S/∼([n
′]) = [m].

Assume now that the implication holds for all pairs of cut-points linked by shortest paths of

length at most c. Let n and m be cut-points linked by a shortest path of length c+ 1. Then,
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Fig. 7 The data-insensitive counter automata semantics of program statements other than u := null

there must be some cut-point n′ ∈ N such that n
∗

−→
H

n′ −→
H

m and there is no further cut-point

on the shortest path between n′ and m. We are done by considering the induction hypothesis

over n
∗

−→
H

n′ and the base case over n′ −→
H

m.

“⇐” We show that for all n,m ∈ N such that cutH(m) and cutH(n), β([n])
∗

−→
H

β([m])

implies n
∗

−→
H

m by induction on the length c of the shortest path between β([n]) and β([m])

in H. If c = 0, it must be the case that n = m since both n and m are cut-points, and we are

done. If c = 1, there must be some n′ ∈ [n] such that n′ −→
H

m. Since n
∗

−→
H

n′, we have n
∗

−→
H

m.

Assume now that the implication holds for all paths of length up to c. Since any path of
length c+1 can easily be split to two paths of length at most c, we may apply the induction
hypothesis and we are done. 78

We now consider all statements involving pointer variables. We suppose that they go

from l to l′.

Case s = [ u := null ]. There are several different sub-cases:

17



– V (u) =⊥. We have V (u) =⊥ iff V (u) =⊥, by Definition 4. Therefore, rule C1 applies to

H (without changing it) iff the analogical rule A1 applies to H (again, without changing

it), and it is clear that (l′,H, ι)!s (l′,H,ν).

– V (u) '= ⊥ and ∃w ∈ PVar \{u} . V (w) = V (u). We have V (u) = V (w) '= ⊥ iff V (u) =
V (w) '= ⊥, by Claim (1). In this case, rule C2 applies to H iff rule A2 applies to H, and

it can easily be checked that (l′,〈N,S,V [u → ⊥],D〉, ι)!s (l,〈N,S,V [u → ⊥]〉,ν).

– V (u) '= ⊥ and ∀w ∈ PVar \ {u} . V (w) '= V (u) and ∃w ∈ PVar \ {u} . w
∗

−→
H

V (u). Let

w ∈ PVar \ {u} be any variable such that w
∗

−→
H

V (u). Since V (u) and V (w) are cut-

points, we have V (w)
∗

−→
H

V (u) iff V (w)
∗

−→
H

V (u), by Claim (2). Moreover, V (u) '=V (w),

by Claim (1), and rule C2 applies to H iff rule A′
2 or rule A′′

2 applies to H. We have to

distinguish two cases—either the node V (u) is still a cut-point after u := null or not:

– In the former case, rule C2 applies to H iff rule A′
2 applies to H. Since there is no

change in H nor H (except for the value of u that is set to ⊥ in both cases) and there

is no change in ι and ν, we are done.

– In the latter case, rule C2 applies to H iff rule A′′
2 applies to H. Let H ′ = 〈N,S,V [u →

⊥],D〉 be the heap obtained after rule C2 and H ′ = 〈N ′,S′,V ′〉 be the abstract struc-

ture obtained after rule A′′
2. Let V (u) = n and let m ∈ N be such that w

∗
−→
H

m −→
H

n.

Then, there exist equivalence classes [k] and [l] such that β−1(m) = [k] and β−1(n) =
[l]. H ′

/∼ contains one less equivalence class than H/∼ because [k] and [l] become

equivalent in H ′ and they together form an equivalence class [k′] in H ′
/∼. We de-

fine a function β′ which maps H ′
/∼ into H ′ by β′([p]) = β([p]) for all equivalence

classes [p] different from [k′] and β′([k′]) = m. Then, it is clear that H ′ = 〈N ′,S′,V ′〉
is a structural abstraction of H ′ due to β′. Furthermore, ||β′−1(m)|| = ||β−1(m)||+
||β−1(n)||. Therefore, we have ν′(xm) = ||β′−1(m)||, and for all n ∈ N ′ different from

m, we have ν′(xn) = ν(xn) = ||β−1(n)|| = ||β′−1(n)||. Therefore, (l,H,ν)!s (l,H,ν)
implies (l′,H ′,ν′)!s (l′,H ′,ν′).

– The other cases are treated in a similar way.

Case s= [ u :=w.next ]. There are two cases: Either the equivalence class of the node pointed

to by u in the concrete heap contains one node or more than one node. In the latter case, the

structure obtained after the instruction contains one more equivalence class. This is taken

care of by splitting an abstract node into two abstract nodes, exploiting the splitting function

σ.

Cases s = [ u := w ], s = [ u.next := null ], s = [ u.next := w ], s = [ u := new ]. These cases

are treated in a similar way to the case of u := null.

Finally, the cases of the conditional and while statements are trivial.

78

The following is a consequence of Theorems 1 and 2.

Corollary 1 For every data-insensitive program with lists, if its counter automaton is flat,

then safety and termination are decidable properties.
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Notice that the number of objects created by a loop iteration in a flat list program is al-

ways bounded by a constant, therefore its counter automaton is linear positive and restrictive

(but not necessarily flat). If this automaton is moreover flat, we can apply Theorem 1.

The problem of defining syntactic classes of programs that can be translated into flat

counter automata has been tackled in detail in [15] using a different translation scheme

(which works for a more restricted class of programs). The method of this paper, although

more general, makes it hard to predict whether the outcome will be flat or not. The main

reason is the translation of the u := w.next statement which generates a branch in the

counter automaton (rules A7 and A′
7)—hence even a program without nested loops may

translate into a non-flat counter automaton when such statements occur within loops.

An example of a data-insensitive program that yields a flat counter automaton is the

list reversal program from Figure 2 (both when applied to non-circular as well as circular

lists)1. Other examples of data-insensitive programs that yield flat counter automata are, for

instance, the programs ListCounter and InsDel considered in Section 5 (the former pro-

gram computes the length of a non-circular list and then uses the length to limit a subsequent

pass through the list, the latter program creates a list, records its length, and then destroys

the list using the recorded length). The other programs considered in Section 5, which are

various list sorting programs, lead to non-flat counter automata.

The List Reversal Example. Figure 8 shows the counter automaton bisimulating the list

reversal program from Figure 2, started with a non-circular list pointed to by i as its input.

The counter variable corresponding to each abstract node is depicted inside the node itself.

Variables pointing to null are omitted. For each label of the program the corresponding

control states are those reached after execution of the instruction at the label. The counter

automaton for the same program working on a circular input is shown in Figure 9. For space

reasons, only the control states where branching occurs are depicted.

4.2 Ordered Data Programs

In this section, we complete the definition of abstraction for programs with lists by introduc-

ing an abstraction for heaps containing data from an ordered domain 〈D,/〉. More precisely,

we need to abstract the order relations that may occur inside a list segment and between two

list segments.

Definition 5 Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ its quotient w.r.t. the RH

relation. If R ⊆ N × N is any relation on the set of nodes, we define the following for any

[n], [m] ∈ N/∼:

– oR([n]) iff ∀n1,n2 ∈ [n] . (n1 '= n2 ∧ n1RHn2) ⇒ n1 R n2,

– [n] /R
f f [m] iff hd([n]) R hd([m]),

– [n] /R
f a [m] iff ∀n1 ∈ [m] . hd([n]) R n1,

– [n] /R
a f [m] iff ∀n1 ∈ [n] . n1 R hd([n]),

– [n] /R
aa [m] iff ∀n1 ∈ [n] ∀n2 ∈ [m] . n1 R n2.

1 Notice that a statement of the type u := w.next is used in a loop in this program, but in the derived
counter automaton, only one of the branches that arise from translating this statement stays in a loop—the
other branch leads out of the loop.
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Fig. 8 Non-circular list reversal

For a concrete heap H = 〈N,S,V,D〉, we define the relation c ⊆ N × N such that, for

any n1,n2 ∈ N, n1 c n2 holds iff D(n1) / D(n2). Then, oc([n]) is true for a list segment [n] iff

all its elements are ordered w.r.t. /. Similarly, [n] /c
= [m] holds for = ∈ { f f , f a,a f ,aa} iff

the first (all) element(s) of [n] is (are) less than the first (all) element(s) of [m], respectively.

Definition 6 An abstract heap is a tuple H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 where H = 〈N,S,V 〉
is an abstract structure, o ⊆ N is a unary ordering predicate, and / f f , f a,a f ,aa⊆ N × N are bi-

nary ordering predicates.

An abstract heap H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 sharing the same structure H = 〈N,S,V 〉

as another abstract heap H̃ ′ = 〈H,o′,/′
f f ,/

′
f a,/

′
a f ,/

′
aa〉 is said to be more precise, de-

noted as H̃ > H̃ ′, if and only if we have o(n) ⇐ o′(n) and n /= m ⇐ n /′
= m for all

= ∈ { f f , f a,a f ,aa} and for each n,m ∈ N. Intuitively, the fact that a predicate does not hold

for some abstract node indicates uncertainty w.r.t. the concrete ordering of the configuration.

For instance, if o(n) does not hold, this means that in the concrete setting, n “represents” a

list segment that may or may not be ordered.

Given a set S of abstract heaps sharing the same structure, we denote by 8S the least

upper bound, and by 7S the greatest lower bound of S with respect to >. Note that 8 and

7 are undefined for sets of abstract heaps that have different structures. The domain of

abstract heaps is denoted by 〈H̃ (PVar),>〉. We say that an abstract heap is in normal form

if the underlying abstract structure is in normal form. We write H̃n f (PVar) for the set of

abstract heaps in normal form.

Definition 7 Let H = 〈N,S,V,D〉 be a concrete heap with data from an ordered domain

〈D,/〉 and let H/∼ = 〈N/∼,S/∼,V∼〉 be its quotient. An abstract heap H̃ = 〈H,o,/ f f ,/ f a
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Fig. 9 Circular list reversal

,/a f ,/aa〉 is said to be an abstraction of H based on H iff H is a structural abstraction of H

and for all [n], [m] ∈ N/∼ and all = ∈ { f f , f a,a f ,aa}:

– o(β([n])) ⇒ oc([n]) and

– β([n]) /= β([m]) ⇒ [n] /c
= [m]

where β is the bijection linking H/∼ and H in accordance with Definition 4.

For any concrete heap H ∈ H (PVar) and one of its structural abstractions H, we further

define the most precise abstraction of H w.r.t. H as αH(H) = 7{H̃ | H̃ is an abstraction

of H based on H}. For any abstract heap H̃ ∈ H̃n f (PVar), we define the concretisation of

H̃ as γ(H̃) = {H | αH(H) > H̃ where H is the underlying abstract structure of H̃}. Clearly,

γ(H̃1) ⊆ γ(H̃2), if H̃1 > H̃2, but the dual does not necessarily hold. Finally, the canonical

most precise abstraction of H is defined as ααS(H)(H).
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4.3 Counter Automata Semantics with Ordering Predicates

Taking ordering predicates o and / f f , f a,a f ,aa into account refines the notion of counter au-

tomata that we have so far introduced to model list manipulating programs. The counter

automata defined in this section keep track of the ordering information, allowing one to ver-

ify properties related to the ordering of lists, needed, e.g., to establish correctness of various

sorting programs, such as InsertSort, BubbleSort, etc.

In order to achieve an enhanced precision of our abstract operational semantics without

introducing too many different cases into it, we have designed our abstract state transformer

function in two stages. The first stage yields the actual change of the predicates, and the

second one is an operation of “saturation” whose goal is to add all the predicates that can be

derived from the existing ones for a given abstract heap without changing the corresponding

set of concrete heaps. Moreover, we assume to initially start from saturated abstract heaps.

In order to understand the intuition behind the saturation step, let us consider the case

depicted in Figure 10. There are three abstract nodes n, m, and p in the figure such that n

and m are ordered, and n ≺a f p and p ≺ f a m hold. Setting the v variable to null in this state

causes the nodes n and m to merge into n′ which is ordered. In our abstract semantics, we

introduce a rule for inferring o(n′) if n ≺aa m is known. In the example, we do not explicitly

have n ≺aa m, but n ≺aa m is a consequence of the transitivity of the order relation: n ≺a f

p ∧ p ≺ f a m ⇒ n ≺aa m. In order not to have to introduce the situation of n ≺a f p ∧ p ≺ f a m

as a separate case for when o(n′) can be inferred, we saturate the original state by adding

n ≺aa m to it before merging the nodes n and m.

u v

w

v := null
u

o o o

≺a f ≺ f a

n m

p

n′

Fig. 10 An example of saturation

For the rest of this section, a counter automaton with ordering predicates is defined as

Aa = 〈Qa,X ,
a
−→〉 where the set of control states is now constructed as Qa = Lab×(H̃n f (PVar)

∪{Herr}) and the set of configurations as Sa = Qa × (X → N), with the usual notation. In

addition to updating the abstract structure, the transition relation
a
−→ has to also update the

ordering predicates.

4.3.1 Saturation

Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap in normal form based on an abstract

structure H = 〈N,S,V 〉, and let H̃ ′ be just like H̃ except that all the components of the tuples

are primed. We define the saturation of H̃ to be the most precise abstract heap in normal

form whose concretisation is the concretisation of H̃. More precisely, H̃0 is the saturation

of H̃ if and only if H̃0 = 7{H̃ ′ | γ(H̃) = γ(H̃ ′)∧ H̃ =S H̃ ′} where H̃ =S H̃ ′ holds for two

abstract heaps iff they are based on the same abstract structure. We say that H̃ is saturated

if and only if H̃ = H̃0.

Unfortunately, the above definitions do not allow one to effectively check that H̃ ′ is the

saturation of H̃ for arbitrary abstract heaps in normal form. The problem is that the set γ(H̃)
is infinite. To overcome this problem, we introduce “syntactical” saturation rules, given in
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Weakening
1. n /aa m ⇒ n /a f m
2. n /aa m ⇒ n / f a m
3. n /a f m ⇒ n / f f m
4. n / f a m ⇒ n / f f m

Reflexivity
9. n / f f n

Transitivity
5. n / f f m ∧ m / f f p ⇒ n / f f p
6. n /a f m ∧ m / f f p ⇒ n /a f p
7. n / f f m ∧ m / f a p ⇒ n / f a p
8. n /a f m ∧ m / f a p ⇒ n /aa p

Order
10. n /aa n ⇒ o(n)
11. o(n) ⇒ n / f a n

Fig. 11 Saturation rules

Figure 11. The closure of an abstract heap H̃ in normal form w.r.t. the rules in Figure 11 is

denoted as sat(H̃). The saturation rules need to be applied with the following premises. Let

(H̃,ν) be a configuration of the counter automaton and n an abstract node of H̃.

– If ν(xn) = 1, then it must be the case that o(n) and n /= n, = ∈ { f f , f a,a f ,aa}, all hold

in H̃. The reason is that list segments of size one are implicitly ordered, and the ordering

relations are reflexive.

– If ν(xn) = 2 and n / f a n, then o(n) must also hold in H̃. In a list segment of size two, if

the first element is less than the second, then the segment must be ordered.

The generated counter automaton tests, at each step, for each node n ∈ N, whether xn ∈ {1,2}
and update the ordering predicates accordingly. Formal arguments for these updates are

provided separately in Section 4.3.2. For the moment, let us carry on with the soundness

proof for our abstraction.

Definition 8 Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap in normal form based

on an abstract structure H = 〈N,S,V 〉, let H = 〈N,S,V,D〉 ∈ γ(H̃) be a possible concreti-

sation of H̃, and let β : N/∼ ∪ {⊥} → N ∪ {⊥} be the bijection from Definition 4. Then "

is defined to be the strongest partial order on N satisfying the following for all n,m ∈ N,

= ∈ { f f , f a,a f ,aa}:

– o(n) ⇒ o!(β−1(n)) and

– n /= m ⇒ β−1(n) /!

= β−1(m).

Proposition 1 Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap in normal form based

on an abstract structure H = 〈N,S,V 〉, and let H = 〈N,S,V,D〉 ∈ γ(H̃) be a possible con-

cretisation of H̃. Let β : N/∼ ∪ {⊥} → N ∪ {⊥} be the bijection from Definition 4, and let

sat(H̃) be 〈H,osat ,/sat
f f ,/

sat
f a ,/

sat
a f ,/

sat
aa 〉. We have that, for all n,m ∈ N, if n " m holds, then

one of the following holds:

1. n = hd([n]), m = hd([m]) and β([n]) /sat
f f β([m]),

2. n = hd([n]), m ∈ tl([m]) and β([n]) /sat
f a β([m]),

3. n ∈ tl([n]), m = hd([m]) and β([n]) /sat
a f β([m]),

4. n ∈ tl([n]), m ∈ tl([m]) and either:

(a) n R∗
H m and osat(β([n])) or

(b) not n R∗
H m and β([n]) /sat

aa β([m]).

Proof The proof is by induction on the length of the argument that one can use to show that

n " m holds according to Definition 8, i.e., according to the number of times one uses the

defining implications of Definition 8 to show that n"m holds. For the base case, we have:

– If n = hd([n]), m = hd([m]), we distinguish whether [n] = [m] or [n] '= [m]. In the former

case, we have β([n]) /sat
f f β([n]) by the reflexivity rule 9. In the latter case, n " m holds

because β([n]) /= β([m]) for = ∈ { f f , f a,a f ,aa}, and we use the weakening rules 2, 3,

4 to obtain β([n]) /sat
f f β([m]).
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– If n = hd([n]), m ∈ tl([m]), then n"m either because [n] = [m] and o(β([n])), or because

β([n]) /= β([m]) for some = ∈ { f a,aa}. In the first case, we apply the ordering rule 11,

and in the second case, the weakening rule 2 to obtain β([n]) /sat
f a β([m]).

– If n ∈ tl([n]), m = hd([m]), then n " m because β([n]) /= β([m]) for = ∈ {a f ,aa}, in

which case we apply the weakening rule 1 to obtain β([n]) /sat
a f β([m]).

– If n ∈ tl([n]), m ∈ tl([m]), we distinguish two sub-cases:

– nR∗
Hm. In this case, n"m either because o(β([n])), in which case osat(β([n])) directly

holds, or because β([n]) /aa β([m]), which implies osat(β([n])), by rule 10.

– Not n R∗
H m. In this case, n " m because β([n]) /aa β([n]), which directly gives

β([n]) /sat
aa β([m]).

The induction step:

– If n = hd([n]), m = hd([m]), then n"m because p"m for some p ∈ N, and either:

– p = hd([p]) and β([n]) /= β([p]) for some = ∈ { f f , f a,a f ,aa}. By the weaken-

ing rules 1–4, we obtain β([n]) /sat
f f β([p]). By the induction hypothesis, we have

β([p]) /sat
f f β([m]), and by the transitivity rule 5, we obtain β([n]) /sat

f f β([m]).
– p ∈ tl([p]) and β([n]) /= β([p]) for some = ∈ { f a,aa}. By the weakening rules 2,

4 we obtain β([n]) / f f β([p]). By the induction hypothesis, we have β([p]) /sat
a f

β([m]), and by the weakening rule 3, β([p]) /sat
f f β([m]). By the transitivity rule 5,

we obtain β([n]) /sat
f f β([m]).

– If n = hd([n]), m ∈ tl([m]), then n"m because p"m for some p ∈ N, and either:

– p = hd([p]) and β([n]) /= β([p]) for some = ∈ { f f , f a,a f ,aa}. By the weaken-

ing rules 1–4, we obtain β([n]) /sat
f f β([p]). By the induction hypothesis, we have

β([p]) /sat
f a β([m]), and by the transitivity rule 7, we obtain β([n]) /sat

f a β([m]).
– p ∈ tl([p]) and β([n]) /= β([p]) for some = ∈ { f a,aa}. By the weakening rules 2, 4,

β([n])/ f f β([p]). By the induction hypothesis, we have β([p])/sat
aa β([m]), therefore

by the weakening rule 2, we have β([p]) /sat
f a β([m]) and by the transitivity rule 7,

we obtain β([n]) /sat
f a β([m]).

– If n ∈ tl([n]), m = hd([m]), then n"m because p"m for some p ∈ N, and either:

– p= hd([p]) and β([n])/= β([p]) for some = ∈ {a f ,aa}. By the weakening rule 1, we

obtain β([n]) /sat
a f β([p]). By the induction hypothesis, we have β([p]) /sat

f f β([m]),
and by the transitivity rule 6, we obtain β([n]) /sat

a f β([m]).
– p ∈ tl([p]) and β([n]) /aa β([p]), hence β([n]) /a f β([p]), by the weakening rule 1.

By the induction hypothesis, we have β([p]) /sat
a f β([m]), hence β([p]) /sat

f f β([m]),
by the weakening rule 3. By the transitivity rule 6, we obtain β([n]) /sat

a f β([m]).
– If n ∈ tl([n]), m ∈ tl([m]), we distinguish the following sub-cases:

– nR∗
Hm. This case is covered by the base case.

– Not n R∗
H m. In this case, n"m because p"m for some p ∈ N, and either:

• p = hd([p]) and β([n]) /= β([p]) for some = ∈ {a f ,aa}. By the weakening

rule 1, we have β([n]) /sat
a f β([p]), and by the induction hypothesis, we have

β([p]) /sat
f a β([m]). By the transitivity rule 8, we obtain β([n]) /sat

aa β([m]).
• p ∈ tl([p]) and β([n]) /aa β([p]). By the weakening rule 1, we have β([n]) /sat

a f

β([p]). By the induction hypothesis, we have β([p]) /sat
aa β([m]), and by the

weakening rule 2, we obtain β([p]) /sat
f a β([m]). By the transitivity rule 8, we

obtain β([n]) /sat
aa β([m]).

78

The next theorem establishes soundness and completeness of the saturation rules.
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Theorem 3 Given an abstract heap H̃ in normal form, we have sat(H̃) = 7{H̃ ′ | γ(H̃ ′) =

γ(H̃)∧ H̃ =S H̃ ′}.

Proof Clearly, sat(H̃) =S 7{H̃ ′ | γ(H̃ ′) = γ(H̃)∧ H̃ =S H̃ ′} since the saturation rules in

Figure 11 do not change the underlying abstract structure.

We show sat(H̃)@ 7{H̃ ′ | γ(H̃ ′) = γ(H̃)∧ H̃ =S H̃ ′} by showing that γ(sat(H̃)) = γ(H̃).
This is proved by induction on the number of applications of the rules from Figure 11. In

particular, we need to show for each such rule R that γ(H̃) = γ(H̃ ′) where H̃ ′ is the result of

applying R to H̃. This check is straightforward.

To show that sat(H̃) > 7{H̃ ′ | γ(H̃ ′) = γ(H̃)∧ H̃ =S H̃ ′}, we let H̃ ′ ∈ H̃ (PVar) be

any abstract heap such that γ(H̃ ′) = γ(H̃)∧ H̃ =S H̃ ′, and prove that sat(H̃) > H̃ ′. Let H =

〈N,S,V 〉 be the abstract structure underlying both sat(H̃) and H̃ ′. Let sat(H̃) = 〈H,o,/ f f

,/ f a,/a f ,/aa〉 and H̃ ′ = 〈H,o′,/′
f f ,/

′
f a,/

′
a f ,/

′
aa〉. It remains to be shown that:

Claim For any nodes n,m ∈ N, we have o(n) ⇐ o′(n) and n /= m ⇐ n /′
= m for all = ∈

{ f f , f a,a f ,aa}.

Proof Let H0 = 〈N0,S0,V0,D0〉 ∈ γ(sat(H̃)) be a concrete heap and β0 : N0/∼ ∪ {⊥} →
N ∪{⊥} the associated bijection. Let n,m ∈ N be arbitrary nodes. To show that /= ⊇ /′

= for

= ∈ { f f , f a,a f ,aa}, we make a case split based on the relation /=:

– /= is / f f : n = m is a special case since n / f f m by the reflexivity rule 9. Otherwise,

consider n '=m. Let n0 = hd(β−1
0 (n)), m0 = hd(β−1

0 (m)). If n0 "m0 is the case, by Propo-

sition 1, we have n / f f m. Otherwise, we can build a concrete heap H1 = 〈N0,S0,V0,D1〉
where for all n′,m′ ∈ N0, we let D1(n′) / D1(m′) iff n′

"m′. In particular, we can choose

D1(n0) B D1(m0). This is always possible due to the fact that 〈D,/〉 is infinite. As-

sume n /′
f f m. Then, H1 ∈ γ(sat(H̃))\γ(H̃ ′), which is in contradiction with the fact that

γ(sat(H̃)) = γ(H̃) = γ(H̃ ′).
– The rest of the cases are analogous.

To show that o ⊇ o′, let n0,m0 ∈ β−1
0 (n) be arbitrary nodes such that n0RHm0. Note that it is

always possible to choose H0 ∈ γ(sat(H̃)) such that n0,m0 ∈ tl([n]). For this, it is sufficient

to choose H0 in such a way that ||β−1
0 (n)|| > 2. If n0 " m0, it must be that o(n) holds, by

Proposition 1. Otherwise, suppose that there exist n0,m0 ∈ tl(β−1
0 (n)) such that n0 " m0

does not hold. Then it is possible to build a concrete heap H1 = 〈N0,S0,V0,D1〉 where for all
n′,m′ ∈ N0, we let D1(n′)/ D1(m′) iff n′

"m′. In particular, we can choose D1(n0)B D1(m0).
This is always possible due to the fact that 〈D,/〉 is infinite. Assume o′(n), we get H1 ∈

γ(sat(H̃))\ γ(H̃ ′), which is in contradiction with the fact that γ(sat(H̃)) = γ(H̃) = γ(H̃ ′). 78

This concludes the proof of Theorem 3. 78

4.3.2 Saturation and Size Information

We show now how a limited amount of information about the sizes of concrete nodes can be

used to enhance the precision of the abstraction. The results below provide formal grounds

for implementing runtime tests of the form xn = 1, xn = 2, and xn > 2 for each n ∈ N as was

briefly mentioned in the previous. To do that we need to extend the notion of concretisation

as follows.
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Let us recall the definition of structural concretisation γs(H) =
⋃

ν:N→N+ ν(H). Let ϕ
be an arithmetic formula with free variables FV (ϕ) ⊆ X where X denotes the set of coun-

ters. A mapping ν : X → N+ satisfies a given formula ϕ, denoted ν |= ϕ, iff the formula

obtained by substituting each variable xn with ν(n) is valid. With this notation, we de-

fine the structural concretisation w.r.t. ϕ as γϕ
s (H) =

⋃
ν|=ϕ ν(H). Given an abstract heap

H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 in normal form, the concretisation w.r.t. ϕ is defined as

γϕ(H̃) = {H | H ∈ ν(H), αH(H) > H̃, and ν |= ϕ}. Now an abstract heap H̃ in normal

form is said to be saturated w.r.t. ϕ if and only if H̃ = 7{H̃ ′ | γϕ(H̃) = γϕ(H̃ ′)∧ H̃ =S H̃ ′}.

Notice that saturation w.r.t. ϕ is a generalisation of the previous notion of saturation since

saturation coincides with saturation w.r.t. 6.

Lemma 2 If ϕ and ψ are two formulae such that FV (ϕ) ⊆ X, FV (ψ) ⊆ X, and |= ϕ → ψ,

then an abstract heap H̃ in normal form using X as the set of counters is saturated w.r.t. ϕ
only if it is saturated w.r.t. ψ.

Proof Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap in normal form using X as the

set of counters. By definition, H̃ is saturated w.r.t. ϕ iff

∀H̃ ′ . γϕ(H̃) = γϕ(H̃ ′)∧ H̃ =S H̃ ′ ⇒ H̃ > H̃ ′

Now let H̃ ′ be an arbitrary abstract heap in normal form over X such that γψ(H̃) = γψ(H̃ ′)∧

H̃ =S H̃ ′. We aim at proving that H̃ > H̃ ′. It is sufficient to show that γϕ(H̃) = γϕ(H̃ ′) and

apply the fact that H̃ is saturated w.r.t. ϕ in order to obtain H̃ > H̃ ′. “⊆” Let H ∈ γϕ(H̃),
i.e., H ∈ ν(H) and αH(H) > H̃ for some ν such that ν |= ϕ. Since |= ϕ → ψ, we have also

ν |= ψ, hence H ∈ γψ(H̃) = γψ(H̃ ′). Hence we have αH(H) > H̃ ′, and so H ∈ γϕ(H̃ ′). The

“⊇” direction is symmetrical. 78

The following theorem relates the notions of saturation and saturation w.r.t. ϕ for the

cases of ϕ = [xn = 1], [xn = 2], and [xn > 2]. In particular, it shows that the [xn = 1], [xn = 2],
and [xn > 2] cases are the only cases we need to consider in order to saturate with respect to

size information.

Theorem 4 Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap in normal form, let H =
〈N,S,V 〉 be its abstract structure, and n ∈ N an arbitrary abstract node. Then the following

holds:

1. H̃ is saturated w.r.t. xn = 1 if and only if it is saturated and o(n), n /= n hold for all

= ∈ { f f , f a,a f ,aa}.

2. H̃ is saturated w.r.t. xn = 2 if and only if it is saturated and n / f a n ⇒ o(n).

3. For any k > 2, H̃ is saturated w.r.t. xn = k if and only if it is saturated.

Proof We start with point 1:

“⇒” If H̃ is saturated w.r.t. xn = 1, then it is saturated, by Lemma 2 (we have |= xn = 1 →
6). Let H ∈ γxn=1(H̃) be an arbitrary concretisation of H̃ w.r.t. xn = 1, and β be the mapping

of list segments of H/∼ into abstract nodes. Then we have ||β−1(n)|| = 1, hence oc(β−1(n))

and β−1(n) /c
= β−1(n). Suppose now that o(n) is not the case in H̃, and let H̃ ′ be like H̃ with

o(n) added. Then we have H̃ ′ # H̃ and γxn=1(H̃) = γxn=1(H̃ ′), which contradicts with the fact

that H̃ is saturated w.r.t. xn = 1. The same argument works for n /= n, = ∈ { f f , f a,a f ,aa}.

“⇐” It is sufficient to prove that γxn=1(H̃) = γxn=1(H̃ ′) ⇒ γ(H̃) = γ(H̃ ′) holds for any

H̃ ′ such that H̃ ′ =S H̃, and then use the fact that H̃ is saturated to obtain H̃ > H̃ ′. Let H̃ ′
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be an arbitrary abstract heap in normal form such that H̃ ′ =S H̃ and γxn=1(H̃) = γxn=1(H̃ ′).

We first show γ(H̃) ⊆ γ(H̃ ′). Let H ∈ γ(H̃) be an arbitrary concretisation of H̃, and β be

the mapping of list segments of H/∼ into abstract nodes. Since n /aa n, we have β−1(n) /c
aa

β−1(n), i.e., all nodes from β−1(n) have equal data. If ||β−1(n)|| > 1, let H ′ be the same

as H except for β−1(n) which is replaced by a single concrete node with the same data.

Obviously, αH(H) = αH(H
′), hence αH(H

′) > H̃, therefore H ′ ∈ γxn=1(H̃) = γxn=1(H̃ ′).

The latter implies αH(H) = αH(H
′) > H̃ ′, i.e., H ∈ γ(H̃ ′). The case of γ(H̃) ⊇ γ(H̃ ′) is

symmetric.

We continue with point 2:

“⇒” This direction is similar to the “⇒” direction of point 1.

“⇐” Like above, it is sufficient to show that γxn=2(H̃) = γxn=2(H̃ ′)⇒ γ(H̃) = γ(H̃ ′) holds

for any H̃ ′ such that H̃ ′ =S H̃. Let H̃ ′ be an arbitrary abstract heap in normal form such that

H̃ ′ =S H̃ and γxn=2(H̃) = γxn=2(H̃ ′). We first show γ(H̃) ⊆ γ(H̃ ′). Let H ∈ γ(H̃), and β be the

mapping of list segments of H/∼ into abstract nodes. There are three cases:

– ||β−1(n)|| = 1: Let H ′ be like H except for β−1(n) which is replaced by a list segment

consisting of two nodes with the same data as hd(β−1(n)). Obviously, αH(H) =αH(H
′),

which leads to H ′ ∈ γxn=2(H̃) = γxn=2(H̃ ′), therefore αH(H) > H̃ ′, i.e., H ∈ γ(H̃ ′).

– ||β−1(n)||= 2: H ∈ γxn=2(H̃) = γxn=2(H̃ ′) ⊆ γ(H̃ ′).
– ||β−1(n)||> 2: There are two sub-cases:

– n / f a n: We have β−1(n) /c
f a β−1(n), hence hd(β−1(n)) is the node with the mini-

mal data value of the entire list segment β−1(n). Since ||tl(β−1(n))|| > 1, let H ′ be

the same as H except for tl(β−1(n)), which consists now of only one element, and

namely the one with the maximum value in tl(β−1(n)). One can easily show that

αH(H) = αH(H
′) since no predicate needs to be updated as a result of the trans-

formation. In particular, the new segment obtained from β−1(n) is ordered, but due

to n / f a n ⇒ o(n) and n / f a n, the original segment β−1(n) is ordered too. By the

same argument as above, we obtain H ∈ γ(H ′).
– H ′ is now built from H by keeping only the minimum and maximum elements of

β−1(n), possibly in the reversed order. In this way, one does not introduce o(n) in

αH(H
′) when not necessary (notice that o(n) might not hold in αH(H)), and we can

still show that αH(H) = αH(H
′).

The case of γ(H̃) ⊇ γ(H̃ ′) is symmetric.

Finally, we handle point 3:

“⇒” This direction is similar to the “⇒” direction of point 1.

“⇐” The argument is similar to the “⇐” direction of point 2. Namely, if H ∈ γ(H̃), we

have three cases based on whether ||β−1(n)|| < k, = k, or > k. The construction of H ′ such

that αH(H
′) = αH(H) is similar to the one of point 2. 78

4.3.3 Abstract Pointer Updates and Tests

We now describe how the ordering predicates are to be treated and updated when simulating

the effect of program statements. It turns out that, compared to the data-insensitive case,

most of the rules describing the abstract execution of pointer updates and tests needs not

be modified more than by adding a copy of the ordering predicates from the source to the

destination state. To be more precise, all rules from Figures 5 and 7 except for the ones that

use the merging (µ) or the splitting (σ) functions (and the new statement which we treat

in the next section) have to simply maintain the same predicates between the source and
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destination of the transition. For example, if we had V (u) =V (w) = n and n / f a m, then the

result of applying the statement u := null is V
′
=V [u → ⊥] and n /′

f a m. Clearly, the same

holds for pointer equality tests too.

The rules from Figures 5 and 7 that use merging and splitting are dealt with by introduc-

ing ordered versions of the merging and splitting functions, called µo and σo, respectively.

As a general rule, the new merging and splitting operations are performed on abstract heaps

resulting from an application of a basic pointer update to a saturated abstract heap in nor-

mal form. Another saturation is then applied to the result in order to maintain the desired

precision.

Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap based on an abstract structure

H = 〈N,S,V 〉, and let n,m ∈ N be such that S(n) = m and m is not a cut-point in H. We

recall that the result of µ(H,n,m) in this case is the abstract structure in which n takes

the place of both n and m. Then, µo(H̃,n,m) = 〈µ(H,n,m),o′,/′
f f ,/

′
f a,/

′
a f ,/

′
aa〉 where

o′,/′
f f , f a,a f ,aa are the (unique) relations on N and N ×N satisfying the following constraints

for all p ∈ N \{m}, q,r ∈ N \{n,m}, and = ∈ { f f , f a,a f ,aa}:

o(n) ∧ o(m) ∧ n /aa m ⇔ o′(n) o(q) ⇔ o′(q) and q /= r ⇔ q /′
= r

n / f f p ⇔ n /′
f f p p / f f n ⇔ p /′

f f n

p / f a n ∧ p / f a m ⇔ p /′
f a n n / f a p ⇔ n /′

f a p

n /a f p ∧ m /a f p ⇔ n /′
a f p p /a f n ⇔ p /′

a f n

n /aa p ∧ m /aa p ⇔ n /′
aa p p /aa n ∧ p /aa m ⇔ p /′

aa n

The splitting operation on abstract structures replaces one node n with two nodes n

and m such that m becomes the successor of n, and the original successor of n becomes

the successor of m. The effect of the split operation on the ordering predicates is modelled

by the rules given in the following. Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 be an abstract heap

based on an abstract structure H = 〈N,S,V 〉. We define σo(H̃,n,m) = 〈σ(H,n,m),o′,/′
f f

,/′
f a,/

′
a f ,/

′
aa〉 where o′,/′

f f , f a,a f ,aa are the (unique) relations on N and N × N that satisfy

the following constraints for all p ∈ N \{n}, q,r ∈ N \{p,n}, and all = ∈ { f f , f a,a f ,aa}:

o′(n), n /′
= n, = ∈ { f f , f a,a f ,aa}

o(n) ⇔ n /′
aa m ∧ o′(m) n /aa n ⇔ n /′

aa m ∧ m /′
aa n ∧ m /′

aa m

n / f f p ⇔ n /′
f f p p / f f n ⇔ p /′

f f n

n / f a p ⇔ n /′
f a p p / f a n ⇔ p /′

f a n ∧ p /′
f a m

n /a f p ⇔ n /′
a f p ∧ m /′

a f p p /a f n ⇔ p /′
a f n

n /aa p ⇔ n /′
aa p ∧ m /′

aa p p /aa n ⇔ p /′
aa n ∧ p /′

aa m

o(q) ⇔ o′(q) q /= r ⇔ q /′
= r

The first conditions concerning o′(n) and n /′
= n are due to the fact that the actual size of the

list segment represented by n is one, i.e., a split operation separates the head from the tail of

a list segment.

4.3.4 Abstract Data Updates and Tests

In this section, we describe how the ordering relations are to be treated within assignments

of data between list cells, within the new statement, and within comparisons of data stored in

list cells. At the end, we also briefly discuss possible treatment of further data manipulating

statements.
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We start by defining how the ordering relations are modified by a data assignment state-

ment of the form u.data := v.data. Let H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 ∈ H̃ (PVar) be a sat-

urated abstract heap in normal form with H = 〈N,S,V 〉 ∈ H(PVar) being its underlying

abstract structure. We suppose that both u and v are defined in H, i.e., V (u) = n, V (v) = m,

n,m ∈ N, and n '= m (if V (u) = ⊥ or V (v) = ⊥, the result of the statement is Herr; on the

other hand, if n = m '= ⊥, the assignment u.data := v.data has no effect whatsoever). In the

following, let p ∈ N \ {n,m} be an arbitrary node. Below, we provide rules that establish

(1) which relations of the form n /= x, x /= n for = ∈ { f f , f a,a f ,aa} and x ∈ {n,m, p}
hold and (2) whether o(n) holds after performing the assignment. Since n is the only node

changed by the assignment, p /= q and o(p) are clearly the same before and after the as-

signment for any p,q ∈ N \{n}.

m / f f p

n / f f p

p / f f m

p / f f n n / f f n n / f f m m / f f n

m / f a p

n / f a p

p / f f m p / f a n

p / f a n

m / f a n

n / f a n

m / f a m

n / f a m

m / f a n

m / f a n

n /a f p m / f f p

n /a f p

p /a f m

p /a f n

n /a f m

n /a f n

n /a f m

n /a f m

m /a f m

m /a f n

n /aa p m / f a p

n /aa p

p /aa n p /a f m

p /aa n

n /aa n m / f a n n /a f m

n /aa n

n /aa m m / f a m

n /aa m

m /aa n m /a f m

m /aa n

o(n) m / f f n

o(n)

The new statement is treated in a simple way: No ordering relation is established be-

tween the value of the new node and the already existing ones, hence all ordering relations

involving the new node are left purely random.

For evaluating a conditional test involving data (i.e., u.data ≤ v.data), it is crucial whether

V (u) '= ⊥ and V (v) '= ⊥—if either of these conditions does not hold, the result is Herr.

Assume that V (u) '= ⊥ and V (v) '= ⊥ holds. If the test u.data ≤ v.data is used in an if

statement and V (u) / f f V (v) holds, only the then branch is enabled. Otherwise, both the

then and else branches are enabled. In such a case, when following the then branch, the

relation V (u) / f f V (v) is established, and when following the else branch, the relation

V (v) / f f V (u) is established (as is usual also in other works involving some data abstrac-

tion). Conditional tests on data used in while loops are handled analogously.

In principle, the rules for handling the u.data := v.data assignment can be extended

to arithmetic data updates, such as increment, decrement, reset, or other transformations

involving data within memory cells. The idea relies on computing weakest preconditions of

the abstract predicates with respect to the updates, and finding combinations of predicates

that imply the weakest preconditions.

For example, for statements of the form u.data := u.data + c where c is a positive

constant, if V (u) = n '= ⊥, then for any m ∈ N \ {n}, we can establish m /= n for = ∈
{ f f , f a,a f ,aa} in the target state if and only if m /= n holds in the source state. On the

other hand, no other ordering relations involving n can be established (apart from o(n) in

case xn = 1, of course). Dealing with negative constants is analogous. Statements of the form

u.data := v.data+c can then be decomposed into u.data := v.data and u.data := u.data+c.
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Another way in which the data can be handled is to use integer abstract domains (inter-

vals, octagons, polyhedra) to characterise data within nodes, and between nodes. Since most

common abstract domains for integers come with abstract transformers, we could use these

abstract transformers to define the updates. However, such extensions are beyond the scope

of this work.

4.3.5 Simulation between the Abstract and Concrete Semantics

Due to the non-determinism introduced in the execution of the various programs statements

w.r.t. the ordering relations, the semantics of the counter automaton for a data-sensitive

program is a simulation of the semantics of the original program, but not a bisimulation

anymore. Formally, given a data-sensitive list manipulating program P, let 〈S ,
c

−→〉 be its

concrete semantics with the set of states S = Lab × H (PVar)× (IVar → Z) and
c

−→ being

its transition relation. Let Sa = Qa × (X → Z) be the set of all configurations of the corre-

sponding counter automaton and
a
−→ its transition relation. Let !a ⊆ S × Sa be the relation

defined such that (l,H, ι)!a (l, H̃,ν) holds for a concrete heap H = 〈N,S,V,D〉, an abstract

heap H̃ = 〈H,o,/ f f ,/ f a,/a f ,/aa〉 in normal form, program labels l and l, and valuations

ι : IVar → Z and ν : X → Z iff one of the two following cases happens:

– l = l, H̃ is an abstraction of H such that H is a structural abstraction of H based on

a bijection β : N/∼ ∪ {⊥} → N ∪ {⊥} in accordance with Definition 4, ν ↓IVar= ι, and

∀n ∈ N . ν(xn) = ||β−1(n)||; or

– l = l ∧ H = Herr ∧ H = Herr.

Theorem 5 The relation !a is a simulation between 〈S ,
c

−→〉 and 〈Sa,
a
−→〉.

Proof Like in the case of Theorem 2, the proof can be done by considering all possible

different statements in the program. The case of Herr and Herr is trivial. Suppose that we are

given (l,H, ι)!a (l, H̃,ν) such that H '= Herr. Let H = 〈N,S,V,D〉 and let H̃ = 〈H,o,/ f f

,/ f a,/a f ,/aa〉 where H = 〈N,S,V 〉. Let β : N/∼H
∪{⊥} → N ∪{⊥} be the bijection from

Definition 4 linking H/∼H
and H. We need to show that for each statement s, (l,H, ι)

s
−→

(l′,H ′, ι′) implies (l, H̃,ν)
s

−→ (l, H̃ ′,ν′) and (l′,H ′, ι′)!a (l′, H̃ ′,ν′).

For most of the statements and most of the semantic rules describing their abstract se-

mantics, the proof of the above is a simple consequence of Theorem 2 and the fact that the

ordering predicates are copied from the source to the destination state. The only exceptions

are the abstract semantic rules based on the ordered merging and splitting functions and

then the rules describing statements testing or manipulating the data contents of list cells.

Proving the above for these different cases is very similar, and so we provide here just one

of the cases.

In particular, we consider the case of s = [ u := null ] in the situation when V (u) '= ⊥,

∀w ∈ PVar\{u} .V (w) '=V (u), ∃w ∈ PVar\{u} . w
∗

−→
H

V (u), and the node V (u) is no more

a cut-point after u := null. We know that H ′ = 〈N,S,V [u → ⊥],D〉 due to rule C2, and due

to rule A′′
2, H

′
= 〈N

′
,S

′
,V

′
〉 = µ(〈N,S,V [u → ⊥]〉,n,m) where m =V (u) and S(n) = m. Let

β′ : N/∼H′ ∪ {⊥} → N
′
∪ {⊥} be the bijection from Definition 4 linking H ′

/∼H′
and H

′
. We

have β(p) = β′(p) for all p ∈ N \{n,m} and β−1(n)◦ β−1(m) = β′−1(n).
Taking into account Theorem 2, it remains to be shown that for all p,q ∈ N \{m}:
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1. o′(p) ⇒ oc(β′−1(p)) and

2. p /′
= q ⇒ β′−1(p) /c

= β′−1(q) for all = ∈ { f f , f a,a f ,aa}.

As for item 1, there are two cases:

– p = n: o′(n) ⇒ o(n)∧ o(m)∧ n /aa m. Since H̃ is an abstraction of H, by Definition 7,

this implies oc(β−1(n)), oc(β−1(m)), and β−1(n) /c
aa β−1(m). Since β−1(n)◦ β−1(m) =

β′−1(n), we obtain oc(β′−1(n)).
– p '= n: o′(p) ⇒ o(p). Since H̃ is an abstraction of H, by Definition 7, this implies

oc(β′−1(n)).

As for item 2, we give the proof for / f a, the rest of the cases being similar. There are

four sub-cases:

– p = n,q = n: n /′
f a n ⇒ n / f a n ∧ n / f a m. Since H̃ is an abstraction of H, by Defi-

nition 7, this implies β−1(n) /c
f a β−1(n) and β−1(n) /c

f a β−1(m), i.e., the first element

of β−1(n) is less than all other elements of β−1(n) and all elements of β−1(m). Then it

is less than or equal to all elements of β−1(n)◦ β−1(m) = β′−1(n). Since this element is

also the first of β′−1(n), we have β′−1(n) /c
f a β′−1(n).

– p = n,q '= n: n /′
f a q ⇒ n / f a q. Since H̃ is an abstraction of H, by Definition 7, this

implies β−1(n) /c
f a β−1(q). Since hd(β−1(n)) = hd(β′−1(n)), we also have β′−1(n) /c

f a

β′−1(q).
– p '= n,q= n: p /′

f a n ⇒ p / f a n ∧ p / f a m. Since H̃ is an abstraction of H, by Definition

7, this implies β−1(p)/c
f a β−1(n) and β−1(p)/c

f a β−1(m). But then we have β−1(p)/c
f a

β−1(n)◦ β−1(m), and hence β′−1(p) /c
f a β′−1(n).

– p,q '= n: p /′
f a q ⇒ p /′

f a q. Since H̃ is an abstraction of H, by Definition 7, this implies

β−1(p) /c
f a β−1(q), i.e., β′−1(p) /c

f a β′−1(q).
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5 Experimental Results

We have implemented our translation of data-insensitive list manipulating programs into

(bisimilar) counter automata in a tool called L2CA (Lists To Counter Automata) [28]. In

order to obtain experimental evidence about the practical behaviour of our method, we have

checked several programs handling lists for both safety and termination properties. The

safety properties considered are absence of null pointer dereferences and shape invariance

(mainly non-circularity and absence of sharing between lists). The results are given in Ta-

ble 1. The experiments were performed on an Intel Pentium 3.00GHz machine with 2GB of

RAM.

The reported test cases are mostly sorting programs working on lists (BubbleSort,

InsertSort, MergeSort, and SelectionSort), in which the data comparisons are replaced

by non-deterministic choices. The remaining test cases are the ListReversal program (Fig-

ure 2), a ListCounter procedure that computes the length of non-circular lists in a counter

and then traverses the list while decrementing the counter, and a program that creates a list,

records its length in an integer counter, and then destroys it using the counter value (InsDel).

Our first set of experiments was done using the counter automata models generated by

L2CA according to the translation scheme in this paper, without any particular optimisation

of the models. Table 1 reports the number of lines of the particular considered programs

(Lines); the size of the generated counter automaton in terms of the number of control states
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Table 1 Experimental results

Lines Locations Transitions Counters Safety (sec) Termination (sec)
Initial examples

BubbleSort 32 506 577 8 3.62 2.41
InsertSort 30 1337 1633 8 14.34 6.80
MergeSort 26 109 119 6 0.50 0.38

SelectionSort 36 3564 4109 9 81.48 19.58
ListReversal 8 96 103 6 0.43 0.33
ListCounter 15 33 37 5 - 0.09

InsDel 14 30 33 3 - 0.07
Reduced examples

BubbleSort 32 6 86 8 0.36 0.31
InsertSort 30 27 104 8 0.51 0.43
MergeSort 26 4 13 6 0.07 0.06

SelectionSort 36 63 844 9 4.42 3.72
ListReversal 8 4 11 6 0.06 0.05
ListCounter 15 4 8 5 - 0.04

InsDel 14 4 6 3 - 0.03
Faulty examples

BubbleSort 32 734 857 8 6.17 5.95
InsertSort 30 1336 1667 8 20.70 20.00
MergeSort 26 607 677 6 4.22 4.10

SelectionSort 36 8522 10051 9 37.86 37.65
ListReversal 8 110 118 6 0.70 0.66
ListCounter 15 34 37 5 0.15 0.13

InsDel 14 30 32 3 0.31 0.31

(Locations), transitions (Transitions), and counters (Counters), as well as the time needed by

the counter automata analyser for checking safety (Safety) and termination (Termination).

In particular, we used the ARMC [32] tool for analysing the generated counter automata. In

all cases, but InsDel and ListCounter, ARMC managed to prove the properties of interest,

while in these two cases the analysis did not terminate in 30 minutes, and we stopped it.

In the second attempt, we used the FLATA toolset [27] to reduce the size of the models,

prior to the analysis with ARMC. The principle of this tool is to eliminate as many control

states as possible while preserving the input-output relation of the automaton. When all but

the initial and final states are eliminated, FLATA can also establish reachability of a final

state, using an SMT solver. In particular, the InsDel and ListCounter procedures were

analysed for safety using FLATA only—in both cases the reduction took roughly one second,

and the result was unreachability of the error state.

For most of the test cases, we have then also checked a faulty version, created by ab-

stracting away a null pointer test (BubbleSort, InsertSort, MergeSort, SelectionSort

and ListReversal) or by simply forgetting to initialise an integer counter (InsDel and

ListCounter). For the analysis of the faulty examples, we have also used ARMC. In all the

examples, we found a counterexample leading to the error state. At the same time, they all

proved to terminate.

L2CA in its current version does not support data-sensitive programs. In order to eval-

uate the analysis method for sorting programs with data, we have manually constructed the

counter automata tracking the ordering predicates for two of the sorting algorithms, namely

BubbleSort and InsertSort. When constructing the automata, we compacted sequences

of states with no incoming or outgoing edges. Due to this optimisation, we obtained signifi-

cantly smaller automata than the ones directly obtained from L2CA: 88 states and 6 counters
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for InsertSort and 149 states and 7 counters for BubbleSort. All the reachable final states

of the generated automata represented sorted lists, and hence we were able to prove that all

algorithms output sorted lists on all possible inputs.

Finally, let us note that all the above mentioned safety properties may often be checked

already at the counter automata extraction phase by checking that no faulty state (i.e., Herr,

a final unordered state, or a final state of an undesired shape) is ever generated. Moreover,

when the translation is slightly extended, one can often check also another safety property—

namely, preservation of list nodes (i.e., the fact that no nodes are accidentally lost)—at the

extraction phase. For this, one has to pay a special attention to ensure that no elements

of a list are lost via the u.next := w operations. A simple heuristics may be used for this

purpose. When we generate a counter automaton state containing a new abstract heap after

a u := w.next or w := new statement, we are sure that the node pointed by w has size one.

We record this fact by attaching a special flag to this node in the abstract heap. If we later

encounter the same abstract heap, we drop the flag if there is no static guarantee that the

node has size one. Then, when a u.next := w operation is performed on a flagged node,

it is clear that no list nodes are lost. If this is not the case, the dynamic behaviour of the

generated counter automaton must be analysed to see whether it may actually happen that

some list nodes get really lost (the same is needed when some unsorted final state or Herr is

generated). In fact, we have used the described heuristics when manually constructing the

automata for BubbleSort and InsertSort, and in both cases, we were able to check all the

considered safety properties—including preservation of list nodes—statically.

6 Conclusion

We have presented an approach for automatic verification of programs with 1-selector dy-

namic linked structures. It is based on using counter automata as accurate abstract models for

such programs. We have proved several significant properties of the derived models, includ-

ing their bisimilarity to the original programs in the data-independent case, decidability of

both safety and termination of data-insensitive programs for which a flat counter-automata-

based model is derived, as well as soundness of the counter-automata-based model extended

with selected ordering predicates for the data-sensitive case. Moreover, from a more practi-

cal point of view, the obtained counter-automata-based models can be handled using various

advanced techniques and tools which have been designed for automatic analysis of counter

automata (or, equivalently, programs with integer variables) in the past years— c.f., e.g., [24,

2,6,27], and in particular for checking termination and liveness properties, e.g., [18,16]. In-

deed, using counters referring to the sizes of parts of the heap structure (e.g., list segments)

of a program is a powerful means for dealing with quantitative reasoning about programs,

and in particular about their termination. An extension of this work to trees has been consid-

ered in [22] where, however, a bisimilar counter-automata-based model cannot be derived

and hence a CEGAR loop was used instead. Further improvements of the techniques for

fully automatically proving termination of programs handling doubly-linked lists, trees, and

more complex data structures are still of a large interest.
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