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Abstract. This paper describes our generic framework for detecting termination of
programs handling infinite and complex data domains, such as pointer structures.
The framework is based on a counterexample-driven abstraction refinement loop.
We have instantiated the framework for programs handling tree-like data structures,
which allowed us to prove automatically termination of programs such as the depth-
first tree traversal, the Deutsch-Schorr-Waite tree traversal, or the linking leaves
algorithm.

Keywords: Formal verification, Termination analysis, Büchi automata, Tree au-
tomata, Programs with pointers

1 INTRODUCTION

Proving termination is an important challenge for the existing software verification
tools, requiring specific analysis techniques [26, 8, 24]. The basic principle under-
lying all these methods is proving that, in every (potentially) infinite computation
of the program, there exists a suitable measure which decreases infinitely often.

MSC2000: 68N30, 68Q60, 68Q70, 68W30
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The commonly used measures are from so-called well-founded domains. The well-
foundedness guarantees that in the domain, there is no infinite decreasing sequence.
As a consequence, the measure cannot decrease infinitely often, and hence the pro-
gram must terminate.

In this paper, we provide an extended and improved description of our termi-
nation analysis, originally presented in [21]. The proposed termination analysis is
based on the following principles:

1. We consider programs working on infinite data domains 〈D,"1, . . . ,"n〉
equipped with an arbitrary number of well-founded partial orders.

2. For any transformation ⇒ ⊆ D ×D induced by a program statement, and any

partial order on D "i, 1 ≤ i ≤ n, we assume that the problem ⇒ ∩ "i
?
= ∅ is

decidable algorithmically.

3. An abstraction of the program is built automatically and checked for the exis-
tence of potential non-terminating execution paths. If such a path exists, then
an infinite path of the form σλω (called lasso) is exhibited.

4. Due to the over-approximation involved in the construction of the abstraction,
the lasso found may be spurious, i.e., it may not correspond to a real execution
of the program. In this case we use domain-specific procedures to detect spuri-
ousness, and, if the lasso is found to be spurious, the abstraction is refined by
eliminating it.

The framework described here needs to be instantiated for particular classes of
programs, by providing the following ingredients:

• well-founded relations "1, . . . ,"n on the working domain D. In principle, their
choice is naturally determined by the working domain. As an example, if D is
the set of terms (trees) over a finite ranked alphabet, then "i can be classical
well-founded orderings on terms (e.g., Recursive Path Ordering, Knuth-Bendix
Ordering, etc.).

• a decision procedure for the problems ⇒ ∩ "i
?
= ∅, 1 ≤ i ≤ n, where ⇒ is any

transition relation induced by a program statement. This is typically achieved by
choosing suitable symbolic representations for relations on D, which are closed
under intersection, and whose emptiness problem is decidable. For instance, this
is the case when both ⇒ and "i can be encoded using finite (tree) automata.

• a decision procedure for the spuriousness problem: given a lasso σλω, where σ
and λ are finite sequences of program statements, does there exist an initial data
element d0 ∈ D such that the program, started with d0, has an infinite execution
along the path σλω?

The main reason for which we currently ask the user to provide the relations
is that our technique is geared towards data domains which cannot be encoded by
a finite number of descriptors, such as tree-structured domains, and more complex
pointer structures. Well-founded relations for classical such domains (e.g., terms
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over a ranked alphabet) are provided in the literature. Moreover, we are not aware
of efficient techniques for automatic discovery of well-founded relations on such
domains, which is an interesting topic for future research.

Providing suitable representations for the well-founded relations, as well as for
the program transitions enables the framework to compute an initial abstraction of
the program. The initial abstraction is an automaton which has the same control
states as the program, and each edge in the control flow graph of the program is
covered by one or more transitions labeled with relational symbols.

The abstraction is next checked for the existence of potentially non-terminating
executions. This check uses the information provided by the well-founded relations,
and excludes all lassos for which there exists a strictly decreasing well-founded re-
lation +i, 1 ≤ i ≤ n, that holds between the entry and exit of the loop body. This
step amounts to checking non-emptiness of the intersection between the abstraction
and a predefined Büchi automaton. If the intersection is empty, the original program
terminates, otherwise a lasso-shaped counterexample of the form σλω is exhibited.

Deciding spuriousness of lassos is also a domain-dependent problem. For integer
domains, techniques exist in cases where the transition relation of the loop is a
difference bound matrix (DBM) [7] or an affine transformation with the finite monoid
property [18]. For general affine transformations, the problem is currently open, as
[10] mentions it1. For tree-structured data domains, the problem is decidable in
cases, where the loop does not modify the structure of trees [20].

If a lasso is found to be spurious, the program model is refined by excluding the
lasso from the abstraction automaton. In our framework based on Büchi Automata,
this amounts to intersecting the abstraction automaton with the complement of
the Büchi Automaton representing the lasso. Since a lasso is trivially a Weak De-
terministic Büchi Automaton (WDBA), complementation increases the size of the
automaton by at most one state, and is done in constant time. This refinement
scheme can be extended to exclude entire families of spurious lassos, also described
by WDBA.

We have instantiated the framework to the verification of programs handling
tree data structures. The basic statements we consider are data assignments, non-
destructive pointer assignments, creation of leaves, and deletion of leaves. As an
extension, we also allow tree rotations. This is a sufficient fragment for verifying
termination of many practical programs over tree-shaped data structures (e.g., AVL
trees or red-black trees) used, in general, for storage and a fast retrieval of data.
Moreover, many programs working on singly- and doubly-linked lists fit into our
framework as well. We provide two families of well-founded relations on trees, (i) a
lexicographical ordering on positions of program variables and (ii) a subset relation
on nodes labeled with a given data element (from a finite domain). Program state-
ments as well as the well-founded relations are encoded using tree automata, which

1 In fact the spuriousness problem for integer affine transition relations covers another
open problem, that of detecting a zero in an integer linear recurrent sequence. The latter
has been shown to be NP-hard in [2] but no decidability results have been found so far.
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provide an efficient method for checking emptiness of intersections between relations.
For programs on trees without destructive updates, the spuriousness problem has
been shown decidable in [20].

The presented well-founded relations for trees fits very well for the encoding
from [6], where data structures more complex than trees are encoded using a tree-
like backbone and a regular set of extra edges. The encoding itself is quite general
and allows us, on one hand, to handle structures like, e.g., trees with root pointers,
or trees with linked leaves, and, on the other hand, to handle destructive updates.

A prototype tool has been implemented on top of the ARTMC [6, 4] invariant
generator for programs with dynamic linked data structures. Experimental results
include push-button termination proofs for the Deutsch-Schorr-Waite tree traversal,
deleting nodes in red-black trees, as well as for the Linking Leaves procedures. Most
of these programs could not be verified by existing approaches.

Contributions of the Paper:

1. The paper presents our original generic approach for termination analysis of
programs. The approach is based on Büchi automata, well-founded relations,
and CEGAR [11] loop.

2. We provide a set of well-founded relations on trees.

3. We instantiate the generic framework to programs manipulating tree like data
structures as well as programs manipulating more general data structures (en-
coded as a tree-backbone and a regular set of extra edges).

4. We have implemented our technique in the prototype tool based on ARTMC
[6, 4]. We can prove termination of examples which are, to the best of our
knowledge, not handled by any other tool.

Related Work. Efficient techniques have been developed in the past for proving
termination of programs with integer variables [26, 8, 9, 14, 28]. This remains
probably the most extensively explored class of programs, concerning termination.

Recently, techniques for programs with singly-linked lists have been developed
in [3, 17, 23]. These techniques rely on tracking numeric information related to the
sizes of the list segments. An extension of this method to tackle programs handling
trees has been given in our previous work [20]. Unlike the works on singly-linked
lists from [3, 17], where refinement (of the counter model) is typically not needed,
in [20] we considered a basic form of counterexample-driven refinement, based on a
symbolic unfolding of the lasso-shaped counterexample.

Abstraction refinement for termination has been first considered in [14], where
the refinement consists of discovering and adding new well-founded relations to the
set of relations used by the analysis. Since techniques for the discovery of well-
founded relations (based on, e.g., spurious program loops) are available only for
integer domains, it is not clear for the time being whether the algorithm proposed
in [14] can be also applied to programs handling pointer structures.
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Several ideas in this paper can be also found elsewhere. Namely, (1) extract-
ing variance assertions from loop invariants was reported in [1], (2) using Büchi
automata to encode the non-termination condition of the program was introduced
by [24], and (3) proving termination for programs handling tree-like data structures
was also considered in [20]. However, the method presented here distinguishes itself
from the body of existing work, on the following aspects:

1. The framework is general and can be instantiated to any class of programs,
whose semantic domains are known to have well-founded orderings. In particu-
lar, we provide well-founded orderings on a domain of trees, e.g., lexicographical
orderings, that cannot be directly encoded in quantifier-free linear arithmetic,
whereas all variant assertions from [1] are confined to quantifier-free linear arith-
metic. Moreover, we consider examples in which the variant relations considered
track the evolution of an unbounded number of data elements (tree node labels),
whereas in [1] only a finite number of seed variables could be considered.

2. We provide an automated method of abstracting programs into Büchi automata,
whereas the size-change graphs from [24] are produced manually. Moreover, the
use of Büchi automata to encode the termination condition provides us with a
natural way of refining the abstract model, by intersection of the model with
the complement of the counterexample, encoded by a Weak Deterministic Büchi
Automaton.

3. We generalize the refinement based on Weak Deterministic Büchi Automata to
exclude infinite sets of spurious counterexamples, all at once. On the other
hand, the refinement given in [20] could only eliminate one counterexample at
the time, at the cost of expanding the model by unfolding the lasso a number of
times exponential in the number of program variables. In our setting, the size
of the refined model is theoretically bounded by the product between the size
of the model and the size of the lasso. Since, in practice the lassos are found
to be rather small, the blowup caused by the refinement does not appear to be
critical.

Automated checking of termination of programs manipulating trees has been
also considered in [25], where the Deutsch-Schorr-Waite tree traversal algorithm
was proved to terminate using a manually created progress monitor, encoded in
first-order logic. In our approach, this example could be verified using the common
well-founded relations on trees that is, without adding case-specific information to
the framework.

The rest of the paper is organized as follows: The Section 2 describes pre-
liminaries. The Section 3 contains general description of our termination analysis
framework. The Section 4 describes the way, how the framework is instantiated for
trees and more complex data structures. The section 5 presents our experimental
results. And finally, we conclude the paper by Section 6.
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2 PRELIMINARIES

2.1 Well-founded Relations

Definition 1. Given a set X, a relation "⊆ X ×X is well-founded iff

1. " is a partial order on X

2. ∀x ∈ X there is no infinite sequence x0, x1, x2, . . . such that (i) x0 = x and (ii)
∀i ≥ 0 : xi+1 " xi ∧ xi+1 /= xi

As an example of a well-founded relation, we can take a standard ≤ ordering on
natural numbers. But the same standard ≤ ordering on positive real numbers is not
well-founded, because there exists, e.g., the sequence 1 > 0.1 > 0.01 > 0.001 > . . .

2.2 Büchi Automata

This section introduces the necessary notions related to the theory of Büchi au-
tomata [22]. Let Σ = {a, b, . . .} be a finite alphabet. We denote by Σ∗ the set of
finite words over Σ, and by Σω we denote the set of all infinite words over Σ. For
an infinite word w ∈ Σω, let inf(w) be the set of symbols occurring infinitely often
in w. If u, v ∈ Σ∗ are finite words, uvω denotes the infinite word uvvv . . ..

Definition 2. A Büchi automaton (BA) over Σ is a tuple A = 〈S, I,→, F 〉, where:
S is a finite set of states, I ⊆ S is a set of initial states, → ⊆ S × Σ × S is a
transition relation – we denote (s, a, s′) ∈ −→ by s

a
−→ s′, and F ⊆ S is a set of final

states. The size of the automaton A is denoted as ||A|| and it is equal to the number
of states—i.e., ||A|| = ||S||.

A run of A over an infinite word a0a1a2 . . . ∈ Σω is an infinite sequence of states
s0s1s2 . . . such that s0 ∈ I and for all i ≥ 0 we have si

ai−→ si+1. A run π of A is

said to be accepting iff inf(π) ∩ F /= ∅. An infinite word w is accepted by a Büchi
automaton A iff A has an accepting run on w. The language of A, denoted by L(A),
is the set of all words accepted by A.

It is well-known that Büchi-recognizable languages are closed under union, in-
tersection and complement. For two Büchi automata A and B, let A ⊗ B be the
automaton recognizing the language L(A)∩L(B). It can be shown that ||A⊗B|| ≤
3 · ||A|| · ||B||2.

A Büchi automaton A = 〈S, I,→, F 〉 is said to be complete if for every s ∈ S
and a ∈ Σ there exists s′ ∈ S such that s

a
−→ s′. A is said to be deterministic

2 Intersection of A and B is done by a synchronous product of these two automata. For
each pair of states, one has to remember an extra information whether a finite state has
been seen in the automaton A, in the automaton B or nowhere. Therefore the size of the
resulting automaton is bounded by 3 · ||A|| · ||B||. See, e.g., [22] for details.
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(DBA) if I is a singleton, and for each s ∈ S and a ∈ Σ, there exists at most
one state s′ ∈ S such that s

a
−→ s′. A is moreover said to be weak if, for each

strongly connected component C ⊆ S, either C ⊆ F or C ∩F = ∅. It is well-known
that complete weak deterministic Büchi automata can be complemented by simply
reverting accepting and non-accepting states. Then, for any Weak Deterministic
Büchi automaton (WDBA), we have that ||A|| ≤ ||A||+ 1, where A is the automaton
accepting the language Σω \ L(A)—i.e., the complement of A.

2.3 Trees and Tree Automata

Definition 3. (Binary alphabet and tree) For a partial mapping f : A → B we
denote f(x) = ⊥ the fact that f is undefined at some point x ∈ A. The domain of
f is denoted dom(f) = {x ∈ A | f(x) /= ⊥}. For a set A we denote by A⊥ the set
A ∪ {⊥}.

Given a finite set of colors C, we define the binary alphabet ΣC = C ∪ {!},
where the arity function is ∀c ∈ C.#(c) = 2 and #(!) = 0. Π denotes the set of
tree positions {0, 1}∗. Let ε ∈ Π denote the empty sequence, and p.q denote the
concatenation of sequences p, q ∈ Π. p ≤pre q denotes the fact that p is a prefix of
q and p ≤lex q is used to denote the fact that p is less than q in the lexicographical
order. We denote by p 5pre q the fact that either p ≤pre q, or p ≥pre q. A tree t over
C is a partial mapping t : Π → ΣC such that dom(t) is a finite prefix-closed subset
of Π, and for each p ∈ dom(t):

• if #(t(p)) = 0, then t(p.0) = t(p.1) = ⊥,

• otherwise, if #(t(p)) = 2, then p.0, p.1 ∈ dom(t).

When writing t(p) = ⊥, we mean that t is undefined at position p.

Let tε be the empty tree, tε(p) = ⊥ for all p ∈ Π. A subtree of t starting
at position p ∈ dom(t) is a tree t|p defined as t|p(q) = t(pq) if pq ∈ dom(t), and
undefined otherwise. t[p← c] denotes the tree that is labeled as t, except at position
p where it is labeled with c. t{p← u} denotes the tree obtained from t by replacing
the t|p subtree with u. We denote by T (C) the set of all trees over the binary
alphabet ΣC.

Definition 4. A (binary) tree automaton [13, 27] over an alphabet ΣC is a tuple
A = (Q,F,∆) where Q is a set of states, F ⊆ Q is a set of final states, and ∆ is a
set of transition rules of the form:
(i) ! → q or (ii) c(q1, q2) → q, c ∈ C. The size of the automaton A is denoted as
||A|| and it is equal to the number of states—i.e., ||A|| = ||Q||.

A run of A over a tree t : Π → ΣC is a mapping π : dom(t) → Q such that for
each position p ∈ dom(t), where q = π(p), we have:

• if #(t(p)) = 0 (i.e., if t(p) = !), then !→ q ∈ ∆,

• otherwise, if #(t(p)) = 2 and qi = π(p.i) for i ∈ {0, 1}, then t(p)(q0, q1)→ q ∈ ∆.
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A run π is said to be accepting if and only if π(ε) ∈ F . The language of A, denoted
as L(A), is the set of all trees over which A has an accepting run. A set of trees
T ⊆ T (C) (a tree relation R ⊆ T (C1 × C2)) is said to be rational if there exists a
tree automaton A such that L(A) = T (respectively, L(A) = R).

Example: Let C = {◦, •} and the following tree automaton over ΣC: A =
({q, r}, {r},∆A) with ∆A = {! → q, ◦(q, q) → q, •(q, q) → r, ◦(r, q) → r, ◦(q, r) →
r}. This automaton accepts all binary trees which contains exactly one node labeled
by •. An example of runs can be seen in Fig. 1. Note that for some trees there is no
run which maps a state to the most-top node (symbol X corresponds to non-existing
mapping), and hence such a tree is not accepted.

run

run

q q

q qq

r

r

r

X

q q

q q qq

q r

r

Fig. 1.

Remark: In this paper, we use only tree automata restricted to binary trees.
But in general, the tree automata can accept trees of arbitrary arity. See [13, 27]
for general definitions. Note that standard finite automata are special case of tree
automata, where all rules are unary (except the initial one !→ q, which represents
the initial state in standard finite automaton).

2.3.1 Rational Tree Relations

A pair of trees (t1, t2) ∈ T (C1)× T (C2) can be encoded by a tree over the alphabet
(C1∪{!,⊥})× (C2∪{!,⊥}), where #(〈⊥,⊥〉) = 0, #(〈α,⊥〉) = #(〈⊥,α〉) = #(α)
if α /= ⊥, and #(〈α1,α2〉) = 2 if α1 ∈ C1 ∧ α2 ∈ C2. The projection functions
are defined as usual, i.e., for all p ∈ dom(t) we have pr1(t)(p) = c1 if t(p) =
〈c1, c2〉 and pr2(t)(p) = c2 if t(p) = 〈c1, c2〉. Finally, let T (C1 × C2) = {t | pr1(t) ∈
T (C1) and pr2(t) ∈ T (C2)} be a set of all pair trees. A set R ⊆ T (C1×C2) is further
called a tree relation.
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Definition 5. A tree relation R ⊆ T (C1 × C2) is said to be rational if there exists
a tree automaton A such that L(A) = R.

Definition 6. For two relations R′ ⊆ T (C× C ′) and R′′ ⊆ T (C ′× C ′′) we define the
composition R′ ◦R′′ = {〈pr1(t′), pr2(t′′)〉 | t′ ∈ R′, t′′ ∈ R′′, pr2(t′) = pr1(t′′)}.

It is well-known that rational tree languages are closed under union, intersection,
complement and projection. As a consequence, rational tree relations are closed
under composition.

3 THE TERMINATION ANALYSIS FRAMEWORK

In this section, we describe our termination analysis framework and demonstrate its
principles on a simple running example.

3.1 Programs and Abstractions

First we introduce a model for programs handling data from a possibly infinite
domain D equipped by a set of partial orders "1, . . . ,"n, where "i⊆ D × D for
1 ≤ i ≤ n. In the following, we use the notion 〈D,"1, . . . ,"n〉 to denote the data
domain with the partial orders. Then we define program abstractions as Büchi
automata.

Definition 7. (Instruction) Let 〈D,"1, . . . ,"n〉 be a data domain. An instruction
is a pair 〈g, a〉 where g ⊆ D is called the guard and a : D → D is called the action.

The guard represents a condition, which must be true before the action is ex-
ecuted. The guards are used to model conditional statements from programming
languages—e.g., one instruction 〈g, a1〉 is used for then branch and another one
〈D \g, a2〉 for else branch. An unspecified guard is assumed to be the entire domain
D.

Definition 8. (Program) Let 〈D,"1, . . . ,"n〉 be a data domain and I be a set of
instructions. A program over the set of instructions I is a graph P = 〈I, L, l0,⇒〉,
where L is the set of control locations, l0 ∈ L is the initial location, and⇒⊆ L×I×L
is the edge relation denoted as l

g:a
=⇒ l′. We assume furthermore, that there is at

most one instruction in between any two control locations, i.e., if l
g1:a1=⇒ l′ and l

g2:a2=⇒ l′

then g1 = g2 and a1 = a2. This condition is common in programming languages.

In the following, we will use both textual and graphical representations of programs.

Definition 9. (Configuration, execution, reachable configuration)
Let 〈D,"1, . . . ,"n〉 be a data domain, P = 〈I, L, l0,⇒〉 a program and D0 ⊆ D be
a set of initial data values. A program configuration is a pair 〈l, d〉 ∈ L×D, where
l is a control location and d is a data value.
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An execution is a (possibly infinite) sequence of program configurations
〈l0, d0〉, 〈l1, d1〉, 〈l2, d2〉, . . . starting with the initial program location l0 and some
configuration d0 ∈ D such that, for all i ≥ 0 there exists an edge li

g:a
=⇒ li+1 in the

program, such that di ∈ g and di+1 = a(di).
A configuration 〈l, d〉 is said to be reachable if there exists d0 ∈ D0, and the

program P has an execution from 〈l0, d0〉 to 〈l, d〉.

Definition 10. (Invariant) Let 〈D,"1, . . . ,"n〉 be a data domain, P = 〈I, L, l0,⇒〉
a program and D0 ⊆ D be a set of initial data values. An invariant of the program
(with respect to the set D0) is a function ι : L → 2D such that, for each l ∈ L, if
〈l, d〉 is reachable, then d ∈ ι(l). If the dual implication holds, we say that ι is an
exact invariant.

Definition 11. Given a program P = 〈I, L, l0,⇒〉 working over a domain 〈D,"1

, . . . ,"n〉 we define the alphabet Σ(P,D) = L × {>, '(, =}n. For a tuple ρ ∈ {>, '(
, =}n, we define [ρ] ∈ D ×D as : d [ρ] d′ if and only if, ρ = 〈r1, . . . , rn〉 and for all
1 ≤ i ≤ n:

• d +i d′ iff ri is >,

• d /8i d′ iff ri is '(,

• d ≈i d′ iff ri is =.

Definition 12. (Abstraction) Let P = 〈I, L, l0,⇒〉 be a program, and 〈D,"1

, . . . ,"n〉 be a domain. A Büchi automaton A = 〈S, I,→, F 〉 over Σ(P,D) is said
to be an abstraction of P if and only if, for every infinite execution of P :
〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . ., there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di [ρi] di+1,for all i ≥ 0.

Consequently, if P has a non-terminating execution, then its abstraction A will
be non-empty. However, for reasons related to the complexity of the universal
termination problem, one cannot in general build an abstraction of a program that
will be empty if and only if the program terminates.

3.1.1 The Running Example: A Program and Its Abstraction

We will now demonstrate the abstraction of a real program on our running example.
Let us consider the program in Fig. 2, working on a binary tree data structure, in
which each node has two pointers to its left- and right-sons and one pointer up

to its parent. We assume that leaves have null left and right pointers, and the
root has a null up pointer.

The first loop (lines 2,3) terminates because the variable x is bound to reach a
node with x.left = null (or x.left.right = null), since the tree is finite and
no new nodes are created. The second loop (lines 4,5) terminates because no matter
where x points to in the beginning, by going up, it will eventually reach the root
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1 x := root;
2 while (x.left != null) and (x.left.right != null)
3 x := x.left.right;
4 while (x != null)
5 x := x.up;

Fig. 2.

4

5

(x.left.right==null)]
[(x.left==null) or

[(x.left!=null) and
(x.left.right!=null)]

2

3

x:=x.up
x:=x.left.right

[x!=null]

1

x:=root

Fig. 3. Guards are represented inside ”[ ]” brackets, and actions without brackets. Un-
specified action is equal to identity relation.

and then become null. Fig. 3 represents the c-like program from Fig. 2 as a program
according to the definition 8.

Now, we are going to create an abstraction of program in Fig. 3 Let us suppose
the following well-founded ordering: for any two trees t1 and t2, we have t1 ≥x t2 if
and only if the position of the pointer variable x in t2 is a prefix of the position of
the variable x in t1. Using the ≥x ordering, we build an abstraction of the program
given in Fig. 4. The states in the abstract program correspond to line numbers
in the original program, and every state is considered to be accepting (w.r.t Büchi
accepting condition), initially.

Note that the action x := root is abstracted by two edges—first, labeled by =x,
describes the case when x was originally placed in the root node and the other one,
labeled by >x, describes the cases when x was originally deeper in the tree.

4

5

21>

3

〈2, =x〉

〈1, =x〉

〈1, >x〉

〈2, =x〉
〈4, =x〉

〈5, >x〉
〈3, #$x〉

Fig. 4.

3.2 Building Abstractions Automatically

The first question is how to build abstractions of programs effectively. Here, we
propose a method that performs well under the following assumptions: There exists
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a symbolic representation S (e.g., some logic or automata) such that (a) the program
instructions can be represented using the S, (b) the well-founded relations on the
working domain can be also represented using S, (c) S is closed under projection,
intersection and complement, and (d) the emptiness problem for S is decidable. In
the concrete case of programs with trees (see Section 4), we use finite tree automata
[13] as a suitable symbolic representation S.

Definition 13. (Initial abstraction) Given a program P = 〈I, L, l0,⇒〉 working
over the domain 〈D,"1, . . . ,"n〉, and an invariant ι : L → 2D, with respect to a
set of initial data values D0, the initial abstraction is the Büchi automaton Aι

P =
〈L, {l0},−→, L〉, where, for all l, l′ ∈ L and ρ ∈ {>, '(, =}n, we have :

l
〈l,ρ〉
−−→ l′ ⇐⇒ l

g:a
=⇒ l′ and pr1(R〈g,a〉 ∩ [ρ]) ∩ ι(l) /= ∅ (1)

where R〈g,a〉 = {(d, d′) ∈ D | d ∈ g, d′ = a(d)} and, for a relation R ⊆ D ×D, we
denote by pr1(R) = {x | ∃y ∈ D . 〈x, y〉 ∈ R}.

Intuitively, a transition between l and l′ is labeled with a tuple of relational
symbols ρ if and only if there exists a program instruction between l and l′ and
a pair of reachable configurations 〈l, d〉, 〈l′, d′〉 ∈ L × D such that d[ρ]d′ and the
program can move from 〈l, d〉 to 〈l′, d′〉 by executing the instruction 〈g, a〉. The
intuition is that every transition relation induced by the program is “covered” by
all partial orderings that have a non-empty intersection with it. Notice also that,
for any d, d′ ∈ D, there exists ρ ∈ {>, '(, =}n such that d [ρ] d′. For reasons related
to abstraction refinement, that will be made clear in the following, the transition in
the Büchi automaton Aι

P is also labeled with the source program location l3. As an
example, Fig. 2 (b) gives the initial abstraction for the program in Fig. 2 (a).

The program invariant ι(l) from (1) is needed in order to limit the coverage
only to the relations involving configurations reachable at line l. In principle, we
can compute a very coarse initial abstraction by considering that ι(l) = D at each
program line. However, using stronger invariants enables us to compute more pre-
cise program abstractions. The following lemma proves that the initial abstraction
respects Def. 12.

Lemma 1. Let P be a program working over the domain 〈D,"1, . . . ,"n〉, and
D0 ⊆ D be an initial set, and ι : L→ 2D be an invariant with respect to the initial
set D0, the Büchi automaton Aι

P is an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . is an arbitrary infinite execution of the program
P . Then for each i ≥ 0: li

gi:ai=⇒ li+1, di ∈ gi, and ai(di) = di+1—i.e., (di, di+1) ∈
R〈gi,ai〉, where R〈g,a〉 = {(d, d′) ∈ D | d ∈ g, d′ = a(d)}. Moreover di ∈ ι(li) and

3 After the abstraction refinement, the relation between program locations and büchi
automata states is no more 1 : 1 (as in the initial abstraction) but it is m : n. The labels
are then used to relate the edges in the abstract model with the corresponding program
actions.
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di+1 ∈ ι(li+1). We know that there exists ρi such that di[ρi]di+1. Therefore for

each i ≥ 0 there exists an edge li
〈li,ρi〉
−−−→ li+1 in the automaton Aι

P , i.e., the word

〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(Aι
P ), where di [ρi] di+1. !

3.3 Checking Termination on Program Abstractions

In light of Def. 12, if a Büchi automaton A is an abstraction of a program P , then
each accepting run of A reveals a potentially infinite execution of P . However, the set
of accepting runs of a Büchi automaton is, in general infinite, therefore an effective
termination analysis cannot attempt to check whether each run of A corresponds to
a real computation of P . We propose an effective technique, based on the following
assumption:

Assumption 1. The given domain is 〈D,"1, . . . ,"n〉 for a fixed n > 0, and the
partial orders "i are well-founded, for all i = 1, . . . , n.

Consequently, any infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A) from which we
can extract4 a sequence (ρ0)i(ρ1)i(ρ2)i . . . ∈ (=∗>)ω, for some 1 ≤ i ≤ n, cannot cor-
respond to a real execution of the program, in the sense of Definition 12. Therefore,
we must consider only the words for which, for all 1 ≤ i ≤ n, either:

1. there exists K ∈ N such that, (ρk)i is =, for all k ≥ K, or

2. for infinitely many k ∈ N, (ρk)i is '(.

Si

Ei

Ei
Σ

Σ

s0
i

s2
is1

i

Fig. 5.
The condition above can be encoded by a Büchi automaton defined as follows.

Consider that Σ(P,D) = L × {>, '(, =}n is fixed. Let Si = {〈l, (r1, . . . , rn)〉 ∈
Σ(P,D) | ri is '(} and Ei = {〈l, (r1, . . . , rn)〉 ∈ Σ(P,D) | ri is =}, for 1 ≤ i ≤ n.
With this notation, let Bi be the Büchi automaton recognizing the ω-regular lan-
guage Σ∗(SiΣ∗)ω ∪ Σ∗Eω

i . This automaton is depicted in Fig. 5. Since the above
condition holds for all 1 ≤ i ≤ n, we need to compute B =

⊗n
i=1 Bi. Finally, the

automaton which accepts all words witnessing potentially non-terminating runs of
the original program is A⊗B.

4 Each element 〈l, ρ〉 in the sequence is first converted into ρ by omitting the l-part.
Then all the relations except the ith one are projected out of ρ. The result is denoted as
(ρ)i
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If A is an abstraction of P and L(A⊗B) = L(A) ∩ L(B) = ∅, we can infer
that P has no infinite runs. Otherwise, it is possible to exhibit a lasso-shaped non-
termination witness of the form σλω ∈ L(A⊗B), where σ,λ ∈ Σ∗ are finite words
labeling finite paths in A⊗B. In the rest of the paper, we refer to σ as to the stem
and to λ as to the loop of the lasso. The following lemma proves the existence of
lasso-shaped counterexamples.

Lemma 2. Let 〈D,"1, . . . ,"n〉 be a well-founded domain, A be a Büchi automaton
representing the abstraction of a program and B =

⊗n
i=1 Bi be a Büchi automaton

representing the non-termination property such that L(A⊗B) /= ∅. Then there
exists σλω ∈ L(A⊗B) for some σ,λ ∈ Σ∗

(P,D), such that |σ|, |λ| ≤ ||A|| · (n + 1) · 2n.

Proof. If L(A⊗B) /= ∅, then A⊗B has a run π in which at least one final state s
occurs infinitely often. Let σ be the word labeling the prefix of π from the beginning
to the first occurrence of s, and λ be the word labeling the segment between the
first and second occurrences of s on π. Then σλω ∈ L(A⊗B).

To prove the bound on |λ|, we consider that B is the result of a generalized
product

⊗n
i=1 Bi, whose states are of the form 〈s1, . . . , sn, k〉 where si ∈ {s0

i , s
1
i , s

2
i }

is a state of Bi (cf. Fig 5) and k ∈ {0, 1, . . . , n}. Since λ is the label of a cycle in
A⊗B, the projection of the initial and final states on B1, . . . , Bn must be the same.
Then for each state in the cycle, either si ∈ {s0

i , s
1
i } or si = s2

i , for each 1 ≤ i ≤ n.
This is because the projection of a cycle from A ⊗ B on Bi, 1 ≤ i ≤ n is again
a cycle, and the only cycles in Bi are composed either of {s0

i , s
1
i } or {s2

i }. Hence
|λ| ≤ ||A|| · (n + 1) · 2n. A similar reasoning is used to establish the bound on |σ|. !

Despite the exponential bound on the size of the counterexamples, in practice it
is possible to use efficient algorithms for finding lassos in Büchi automata on-the-fly,
such as for instance the Nested Depth First Search algorithm [16].

3.3.1 The Running Example: The Termination Check

Checking (non-)termination of the abstract program in Fig. 4 is done by checking
emptiness of the intersection between the abstraction and the complement of the
Büchi automaton recognizing the language (〈 , =x〉∗〈 , >x〉)ω (cf. Fig. 6 (b)). In the
case of our running example, the intersection is not empty, counterexamples being
〈1, >x〉(〈2, =x〉〈3, '(x〉)ω and 〈1, =x〉(〈2, =x〉〈3, '(x〉)ω, which both correspond to the
infinite execution of the first loop, i.e., lines 1(23)ω.

3.4 Counterexample-based Abstraction Refinement

If a Büchi automaton A is an abstraction of a program P = 〈I, L, l0,⇒〉 (cf. Def.
12), D0 ∈ D is a set of initial values, and σλω ∈ L(A) is a lasso, where σ =
〈l0, ρ0〉 . . . 〈l|σ|−1, ρ|σ|−1〉 and λ = 〈l|σ|, ρ|σ|〉 . . . 〈l|σ|+|λ|−1, ρ|σ|+|λ|−1〉, the spuriousness
problem asks whether P has an execution along the infinite path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)ω starting with some value d0 ∈ D0. Notice that each pair of control
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〈 , =〉
〈 , >〉

〈 , #$〉

〈 , =〉
〈 , >〉

〈 , #$〉

〈 , =〉
〈 , #$〉

〈 , =〉

Fig. 6.

locations corresponds to exactly one program instruction, therefore the sequence of
instructions corresponding to the infinite unfolding of the lasso is uniquely identified
by the sequences of locations l0, . . . , l|σ|−1 and l|σ|, . . . , l|σ|+|λ|−1.

Algorithms for solving the spuriousness problem exist, depending on the struc-
ture of the domain D and on the semantics of the program instructions. Details
regarding spuriousness problems for integer and tree-manipulating lassos can be
found in [20].

Given a lasso σλω ∈ L(A), the refinement builds another abstraction A′ of P such
that σλω /∈ L(A′). Having established that the program path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)ω, corresponding to σλω, cannot be executed for any value from the initial
set, allows us to refine by excluding potentially more spurious witnesses, than just
σλω. Let C be the Büchi automaton recognizing the language LσLω

λ , where:

Lσ = {〈l0, ρ0〉 . . . 〈l|σ|−1, ρ|σ|−1〉 | ρi ∈ {>, '(, =}n, 0 ≤ i < |σ|}

Lλ = {〈l|σ|, ρ0〉 . . . 〈l|σ|+|λ|−1, ρ|λ|−1〉 | ρi ∈ {>, '(, =}n, 0 ≤ i < |λ|}

Then A′ = A⊗C, where C is the complement of C, is the refinement of A that
excludes the lasso σλω, and all other lassos corresponding to the program path
(l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)ω.

On the down side, complementation of Büchi automata is, in general, a costly
operation: the size of the complement is bounded by 2O(n log n), where n is the size of
the automaton [29]. However, the particular structure of the automata considered
here comes to rescue. It can be seen that LσLω

λ can be recognized by a WDBA,
hence complementation is done in constant time, and ||A′|| ≤ 3 · (|σ|+ |λ|+ 1) · ||A||.

Lemma 3. Let A be a Büchi automaton that is an abstraction of a program P , and
σλω ∈ L(A) be a spurious counterexample. Then the Büchi automaton recognizing
the language L(A) \ Lσ · Lω

λ is an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12, there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di [ρi] di+1, for all i ≥ 0. Since σλω is a spurious lasso, then the se-
quence of control locations l0, l1, l2, . . . cannot correspond to the sequence of first
positions from σλω. Hence 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . /∈ Lσ · Lω

λ . Since the infinite
run 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . was chosen arbitrarily, it follows that the automaton
recognizing L(A) \ Lσ · Lω

λ is an abstraction of P . !
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3.4.1 The Running Example: The Refinement

In the case of our running example, we discovered the lasso 1(23)ω. This execution
is found to be spurious by a specialized procedure that checks whether a given
program lasso can be fired infinitely often. For this purpose, the method given in
[20] could be used here, since the loop 1(23)ω does not change the structure of the
tree. The refinement of the abstraction consists in eliminating the infinite path
1(23)ω from the model. This is done by intersecting the model with the automaton
that recognizes the complement of the language {〈1, >x〉, 〈1, =x〉}(〈2, =x〉〈3, '(x〉)ω,
which corresponds to the program path 1(23)ω. The result of this intersection is
shown Fig. 7. Notice that, in this case, the refinement does not increase the size of
the abstraction. Since now, only 4 and 5 are accepting states, another intersection
with the automaton in Fig. 6 will be empty and hence the refined abstraction
does not have further non-terminating executions, proving thus termination of the
original program.

4

5

21>

3

〈2, =x〉

〈1, =x〉

〈1, >x〉

〈2, =x〉
〈4, =x〉

〈5, >x〉
〈3, #$x〉

Fig. 7.

3.5 Refinement Heuristics

The refinement technique, based on the closure of ω-regular languages under inter-
section and complement, can be generalized to exclude an entire family of coun-
terexamples, described as an ω-regular language, all at once. In the following we
provide such a refinement heuristics.

The main difficulty here is to generalize from lasso-shaped counterexamples to
more complex sets of counterexamples. In the following, we provide two refinement
heuristics that eliminate entire families of counterexamples, at once. We assume in
the following that we are given an invariant ι : L→ 2D of the program.

Infeasible Elementary Loop Refinement Let σλω be a lasso representing
a spurious counterexample. To apply this heuristic method, we suppose that there
exists an upper bound B ∈ N, B > 0, on the number of times λ can be iterated,
starting with any data value from ι(l|σ|), where ι(l|σ|) denotes the program invariant
on location reachable in the program by the sequence of instructions σ from the ini-
tial location. The existence of such a bound can be discovered by, e.g., a symbolic
execution of the loop. In case of such a bound B exists, let C be a WDBA such
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that L(C) = Σ∗
(P,D) ·L

B
λ ·Σω

(P,D). Then the Büchi automaton A⊗C is an abstraction
of P , which excludes the spurious trace σλω, as shown by the following Lemma:

Lemma 4. Let P = 〈I, L, l0,⇒〉 be a program, ι : L→ 2D be an invariant of P , A
be an abstraction of P , and λ ∈ Σ∗

(P,D) be a lasso starting and ending with + ∈ L.

If there exists B > 0 such that λB is infeasible, for any d ∈ ι(+), then the Büchi
automaton recognizing the language L(A) \ Σ∗

(P,D) · L
B
λ · Σω

(P,D) is an abstraction of
P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12, there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di [ρi] di+1, for all i ≥ 0. Since λB cannot be fired for any data element
d ∈ ι(+), then the infinite sequence l0, l1, l2, . . . may not contain the subsequence
(l|σ|l|σ|+1 . . . l|σ|+|λ|−1)B, corresponding to the first positions from λB. Consequently
〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . /∈ Σ∗

(P,D) · L
B
λ · Σω

(P,D). Since the infinite run 〈l0, d0〉〈l1, d1〉
〈l2, d2〉 . . . was chosen arbitrarily, it follows that the automaton recognizing L(A) \
Σ∗

(P,D) · L
B
λ · Σω

(P,D) is an abstraction of P . !

As an example, let us consider the following program:

1 while (x != null)
if (root.data)

2 x := x.left;
3 else x := x.up;

Here we assume that the root of the tree has a boolean data field, which is used
by the loop to determine the direction (i.e., left, up) of the variable x. The initial
abstraction for this program is:

312

〈2, <x, #$r
x〉

〈1, =x, =r
x〉

〈1, =x, =r
x〉

〈3, #$x, <r
x〉

This abstraction uses two well-founded relations, ≤x defined in Section 3, and
≤r

x which is a stronger version of the reversed relation (≥x): t1 ≤r
x t2 iff dom(t1) =

dom(t2)5 and t2 ≤x t1.
Then a spurious lasso is σλω, where σ is the empty word, and λ is 〈1, =x

, =r
x〉〈2, <x, '(r

x〉〈1, =x, =r
x〉〈3, '(x, <r

x〉, which corresponds to the program path 1213.
This path is infeasible for any tree, and any position of x, therefore we refine the
abstraction by eliminating the language Σ∗

(P,D)LλΣω
(P,D). The refined automaton is

given bellow:
The intersection of the refined automaton with the automaton B = B1 ⊗ B2 is

empty, where Bi, i = 1, 2 are the automata from Fig 5, hence, by Definition 12, we
can conclude that the program terminates.

5 For a tree t, dom(t) is the set of positions in the tree.
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2 31a1b
〈1, =x, =r

x
〉 〈1, =x, =r

x
〉

〈3, !"x, <r
x
〉〈2, <x, !"r

x
〉

〈1, =x, =r
x
〉

This heuristic was used to prove termination of the Red-black delete algorithm,
reported in Section 5. Interestingly, this algorithm could not be proved to terminate
using standard refinement (cf. Lemma 3).

Infeasible Nested Loops Refinement Let us assume that the location l|σ| is
the source (and destination) of k > 1 different elementary loops in A: λ1, . . . ,λk.
Moreover, let us assume that:

1. these loops can only be fired in a given total order, denoted λi1 " λi2 " . . .λik ,
for each input value in the set Dσ = {d | 〈l0, d0〉

σ
⇒ 〈l|σ|, d〉, d0 ∈ D0}6.

2. the infinite word σ(λi1 · . . . ·λik)
ω is a spurious counterexample for non-termina-

tion, i.e., the corresponding program path is infeasible for any initial value from
D0.

Under these assumptions, let C be the Büchi automaton recognizing the language
Lσ · (Lλ1

∪ . . . ∪ Lλk
)ω. The following lemma shows that A⊗C is an abstraction of

the program, that excludes the spurious lasso σλω:

1 while (x != null)
if (root.data == 0)

2 x := x.left;
else if (root.data == 1)

3 x := x.right;
else if (root.data == 2)

4 x := x.up;
5 root.data := (root.data+1) % 3;

(a)

12 4

3

5

〈1, =x, =r
x
〉

〈1, =x, =r
x
〉

〈5, =x, =r
x
〉

〈2, !"x, >r
x
〉

〈3, !"x, >r
x
〉〈1, =x, =r

x
〉

〈4, >x, !"r
x
〉

(b)
Fig. 8.

Lemma 5. Let P = 〈I, L, l0,⇒〉 be a program, ι : L→ 2D be an invariant of P , A
be an abstraction of P , and λ1, . . . ,λk ∈ Σ∗

(P,D) be words labeling different cycles of
A starting and ending with the same location + ∈ L. Moreover, let σ ∈ Σ∗

(P,D) be the
label of a path from l0 to + in A. If there exists a total order λi1". . ."λik in which the
cycles can be executed, for any d ∈ ι(+), and σ · (λi1 · . . . ·λik)

ω is moreover spurious,
then the Büchi automaton recognizing the language L(A) \ Lσ · (Lλ1

∪ . . . ∪ Lλk
)ω

is an abstraction of P .

6 Notice that checking the existence of such an ordering amounts to performing at most
k2 feasibility checks, for all paths of the form λi · λj , 1 ≤ i, j ≤ k, i /= j.
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Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12, there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di [ρi] di+1, for all i ≥ 0. We show that 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . /∈ Lσ ·
(Lλ1

∪ . . . ∪ Lλk
)ω. Assume by contradiction that 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ Lσ ·

(Lλ1
∪ . . . ∪ Lλk

)ω. Then the infinite sequence l0l1l2 . . . of first positions can be
decomposed into a prefix corresponding to σ, followed by an infinite succession of
blocks corresponding to some λi, 1 ≤ i ≤ k. Since λi1 " λi2 " . . .λik is the only
possible execution order, these blocks must respect the order ". However this is in
contradiction with the fact that σ(λi1 · . . . · λik)

ω is a spurious lasso. The conclusion
follows. !

As an example, let us consider the program in Fig 8(a). Its initial abstraction,
using the relations ≤x and ≤r

x, is given in Fig. 8(b). The three nested loops are, in
the unique execution order: 1251"1351"1451"1251. Moreover, the composed loop
(1251)(1351)(1451) cannot be iterated infinitely often because the pointer variable x,
moving twice down and once up in the tree, is bound to become null. This fact can be
also detected automatically using, e.g., the technique from [20]. Therefore we can re-
fine the initial abstraction by eliminating the language {〈1, =x, =r

x〉〈2, '(x, >r
x〉〈5, =x

, =r
x〉, 〈1, =x, =r

x〉〈3, '(x, >r
x〉〈5, =x, =r

x〉, 〈1, =x, =r
x〉〈4, >x, '(r

x〉〈5, =x, =r
x〉}

ω. The re-
fined abstraction is empty, hence the program has no infinite runs.

Remark In light of the fact that the universal halting problem in not r.e., in
general, the abstraction-refinement loop is not guaranteed to terminate, even if the
program terminates.

4 PROVING TERMINATION OF PROGRAMS WITH TREES

In this section we instantiate our termination verification framework for programs
manipulating tree-like data structures. We consider sequential, non-recursive C-
like programs working over tree-shaped data structures with a finite set of pointer
variables PV ar. Each node in a tree contains a data value field, ranging over a finite
set Data and three selector fields, denoted left, right, and up.7 For x, y ∈ PV ar
and d ∈ Data, we consider the programs over the set of instructions IT composed
of the following :

• guards : x == null, x == y, x.data == d, and boolean combinations of the
above,

• actions : x = null, x = y, x = y.{left|right|up}, x.data = d, x.{left
|right} = new and x.{left|right} = null.

7 Generalizing to trees with another arity is straightforward.
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0 x := root;
1 while (x!=null)
2 if (x.left!=null) and

(x.left.data!=mark)
3 x:=x.left;
4 else if (x.right!=null) and

(x.right.data!=mark)
5 x:=x.right;

else
6 x.data:=marked;
7 x:=x.up;

Fig. 9. Depth-first tree traversal

This set of instructions covers a large class of practical tree-manipulating pro-
cedures8. For instance, Fig. 9 shows a depth-first tree traversal procedure, com-
monly used in real-life programs. In particular, here PV ar = {x} and Data =
{marked, unmarked}. This program will be used as a running example in the rest
of the section.

In order to use our framework for analyzing termination of programs with trees,
we need to provide (1) well-founded partial orderings on the tree domain, (2) sym-
bolic encodings for the partial orderings as well as for the program semantics and
(3) a decision procedure for the spuriousness problem. The last point was tackled
in our previous work [20], for lassos without destructive updates (i.e., instructions
of the form x.left|right := new|null).

4.1 Abstracting Programs with Trees into Büchi Automata

A memory configuration is a binary tree with nodes labeled by elements of the set
C = Data × 2PV ar ∪ {!}, i.e., a node is either null (!) or it contains a data value
and a set of pointer variables pointing to it (〈d, V 〉 ∈ D × 2PV ar). Each pointer
variable can point to at most one tree node (if it is null, it does not appear in the
tree). For a tree t ∈ T (C) and a position p ∈ dom(t) such that t(p) = 〈d, V 〉, we
denote δt(p) = d and νt(p) = V . For clarity reasons, the semantics of the program
instructions considered is given in Figure 10. First we show that all program actions
considered here can be encoded as rational tree relations.

Lemma 6. For any program instruction i = 〈g, a〉 ∈ IT , the tree relation Ri =
{〈t, t′〉 | t ∈ g, t′ = a(t)} is rational.

8 Handling general updates of the form x.left|right := y is more problematic, since
in general the result of such instructions is not a tree anymore. Up to some extent, this
kind of programs can be handled by the extension described in the Section 4.3.
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∀p ∈ dom(t) : x #∈ ν(t(p))

〈l, t〉 → 〈l′, t〉

p ∈ dom(t) x ∈ ν(t(p))

〈l, t〉 → 〈l′, t[p ← 〈δ(t(p)), ν(t(p)) \ {x}〉]〉
x = null

p ∈ dom(t) y ∈ ν(t(p))

t(p.0) #= ! 〈l, t〉
x=null
−→ 〈l′, t′〉

〈l, t〉 → 〈l′, t′[p.0 ← 〈δ(t(p.0)), ν(t(p.0)) ∪ {x}〉]〉
x = y.left(a)

p ∈ dom(t) y ∈ ν(t(p))

t(p.0) = ! 〈l, t〉
x=null
−→ 〈l′, t′〉

〈l, t〉 → 〈l′, t′〉

∀p ∈ dom(t) . y #∈ ν(t(p))

〈l, t〉 → Err
x = y.left(b)

p ∈ dom(t) x ∈ ν(t(p))

〈l, t〉 → 〈l′, t[p ← 〈d, ν(t(p))〉]〉

∀p ∈ dom(t) . x #∈ ν(t(p))

〈l, t〉 → Err
x.data = d

d ∈ Data p ∈ dom(t)
x ∈ ν(t(p)) t(p.0) = !

〈l, t〉 → 〈l′, t[p.0 ← 〈d, ∅〉, p.0.0 ← !, p.0.1 ← !]〉

(∀p ∈ dom(t) . x #∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.0) #= !)

〈l, t〉 → Err
x.left = new

p ∈ dom(t) x ∈ ν(t(p)) p.0 ∈ dom(t)
t(p.0.0) = t(p.0.1) = !

〈l, t〉 → 〈l′, t[p.0 ← !, p.0.0 ← ⊥, p.0.1 ← ⊥]〉

(∀p ∈ dom(t) . x #∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧

(t(p.0) = ! ∨ t(p.0.0) #= ! ∨ t(p.0.1) #= !))

〈l, t〉 → Err
x.left = null

Fig. 10. The concrete semantics of program statements—the upper part of a rule represents
a guard and the lower part an action. Err is equal to abnormal termination of the
program (it is not possible to execute the given statement).

Proof. We will now show, how to construct a tree automaton for each guard and
each statement. The automaton for the guarded action is then created as compo-
sition of the corresponding guard and the action. Both the guards and actions are
tree automata A = (Q,F,∆) over the pair alphabet (C ∪ {!,⊥}) × (C ∪ {!,⊥}).
We use the following subsets of the alphabet C within the proof:

• NV = {〈d,X〉 ∈ C|∀x ∈ V.x /∈ X}

• PV = {〈d,X〉 ∈ C|∀x ∈ V.x ∈ X}

guards

• x == null: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– ∀p ∈ N{x}〈p, p〉(q1, q1)→ q1}

• x == y: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– ∀p ∈ N{x,y}〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x,y}〈p, p〉(q1, q1)→ q1}

• x.data == d: A = ({q1, q2}, {q2},∆) with ∆ = {
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– 〈!,!〉 → q1

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1}
– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X〉〉(q1, q1)→ q2

– ∀p ∈ N{x}〈p, p〉(q2, q1)→ q2 and 〈p, p〉(q1, q2)→ q2}

actions

• x = null: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– ∀p ∈ N{x}〈p, p〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}〈〈d,X〉, 〈d,X \ {x}〉〉(q1, q1)→ q1}

• y = x: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– ∀p ∈ N{x,y}.〈p, p〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X ∪ {y}〉〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ {P{y} \ P{x}}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q1)→ q1}

• y = x.left, A = ({q1, qy, q2}, {q2},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈!,!〉 → qy

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X ∪ {y}〉〉(q1, q1)→ qy

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(qy, q1)→ q2

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q2, q1)→ q2

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q2)→ q2}

• x.data = d: A = ({q1, q2}, {q2},∆) with ∆ = {

– 〈!,!〉 → q1

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀〈dorig, X〉 ∈ P{x}.〈〈dorig, X〉, 〈d,X〉〉(q1, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2 and 〈p, p〉(q1, q2)→ q2}

• x.left = new: A = ({q1, qnew, q⊥, q2}, {q2},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈⊥,!〉 → q⊥
– 〈!, 〈dinit, ∅〉〉(q⊥, q⊥)→ qnew

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x}〈p, p〉(qnew, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2 and 〈p, p〉(q1, q2)→ q2}
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• x.left = null. A = ({q1, qdel, q⊥, q2}, {q2},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈!,⊥〉 → q⊥
– ∀p ∈ N{x}〈p, !〉(q⊥, q⊥)→ qdel

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x}〈p, p〉(qdel, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2 and 〈p, p〉(q1, q2)→ q2}

Instructions y = x.right and y = x.up are similar to the y = x.left, the instruction
x.right = new to the x.left = new, and the instruction x.right = null to the
x.left = null, !

In order to abstract programs with trees as Büchi automata (cf. Def. 12), we
must introduce the well-founded partial orders on the working domain—i.e., trees.
These well founded orders are captured by Def. 14, and the working domain will be
DT = 〈T (C), {"x,"r

x}x∈PV ar, {"d,"r
d}d∈Data〉.

Definition 14. (Well-founded orders on trees)

• t1 "x t2, for some x ∈ PV ar iff (i) dom(t1) ⊆ dom(t2), and (ii) there exists
positions p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1), x ∈ νt2(p2) and
p1 ≤lex p2. In other words t1 is smaller than t2 if all nodes in t1 are also present
in t2 and the position of x in t1 is lexicographically smaller than the position of
x in t2.

• t1 "r
x t2, for some x ∈ PV ar iff (i) dom(t1) ⊆ dom(t2), and (ii) there exists

positions p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1), x ∈ νt2(p2) and
p1 ≥lex p2. In other words, t1 is smaller than t2 if all nodes in t1 are also present
in t2 and the position of x in t1 is lexicographically bigger than the position of
x in t2.

• t1 "d t2, for some d ∈ Data iff for any position p ∈ dom(t1) such that δt1(p) = d
we have p ∈ dom(t2) and δt2(p) = d. In other words, t1 is smaller than t2 if the
set of nodes colored with d in t1 is a subset of the set of nodes colored with d in
t2.

• t1 "r
d t2, for some d ∈ Data iff (i) dom(t1) ⊆ dom(t2), and (ii) for any position

p ∈ dom(t2) such that δt2(p) = d we have p ∈ dom(t1) and δt1(p) = d. In other
words, t1 is smaller than t2 if all nodes in t1 are also present in t2 and the set of
nodes colored with d in t2 is a subset of the set of nodes colored with d in t1.

Lemma 7. The relations "x, "r
x, x ∈ PV ar and "d,"r

d, d ∈ Data are well-founded.

Proof.
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1

23 [x.left!=NULL and
x.left.data!=mark]

4

5

[x.right!=NULL and
x.right.data!=mark]

6[x.right==NULL or
x.right.data==mark]

7

0

[x.left==NULL or
x.left.data==mark]

[x==null]

[x!=null]

x = x.right x=x.up

x = x.left

x:=root

8

x.data=mark

1

23

4

5 6

7

0

=r
mark>x

r5,
=r

markx
r7,=r

markx
r0,

=r
mark1, x

r=

=r
mark1, x

r=
=r

mark2, r=x

=r
mark4, r=x

=r
mark4, r=x

=r
mark>x

r3,

=r
mark2, r=x

>mark
r=x

r6,

8

Fig. 11. The Depth-first tree traversal procedure and its initial abstraction

• Let us suppose that there exists an infinite sequence of trees t0 +x t1 +x t2 +x

. . .. Then according to the definition of 8x: ∀i ≥ 0 ∃pi ∈ dom(ti) such that
x ∈ νti(pi) and pi ≥lex pi+1 and dom(ti) ⊇ dom(ti+1). Moreover, due to the fact
that ti+1 !x ti, one of the following holds for each i ≥ 0: (i) pi >lex pi+1 or (ii)
dom(ti) ⊃ dom(ti+1). Note that at least one of the cases (i) or (ii) holds for
infinite many different values of i.

Therefore in the infinite sequence of trees t0 +x t1 +x t2 +x . . ., there must
exists an infinite subsequence9 t0 +x t1 +x t2 +x . . . such that either (i) or (ii)
holds for all i ≥ 0 in this sequence.

Let us suppose that we have the infinite sequence t0 +x t1 +x t2 +x . . . where the
condition (i) holds for all i ≥ 0. Note that for all i ≥ 0.dom(ti) ⊆ dom(t0) and
dom(t0) is finite. Therefore there exists only a finite number of different position
p0, p1, . . . , pk, hence the sequence t0 +x t1 +x t2 +x . . . cannot be infinite.

Let us suppose that the condition (ii) holds for all i ≥ 0. Then there must be
an infinite sequence dom(t0) ⊃ dom(t1) ⊃ dom(t2) ⊃ . . .. The dom(t0) is finite,
hence the sequence cannot exists.

The proof of well-foundedness of "r
x is similar.

• Let us suppose that for some d ∈ Data there exists an infinite sequence t0 +d

t1 +d t2 +d . . .. Let Sd(t) = {p ∈ dom(t) | δt(p) = d} be a set of all position
labeled by a data value d in the tree t. Then according to the definition of "d:
Sd(t0) ⊃ Sd(t1) ⊃ Sd(t2) ⊃ . . .. The dom(t0) is finite, hence the set Sd(t0) is
finite also. Therefore the sequence t0 +d t1 +d t2 +d . . . must be finite.

• Let us suppose that for some d ∈ Data there exists an infinite sequence t0 +r
d

t1 +r
d t2 +r

d . . .. Let Sd(t) = {p ∈ dom(t) | δt(p) = d} be a set of all position
labeled by a data value d in the tree t. Then according to the definition of "r

d:
Sd(t0) ⊆ Sd(t1) ⊆ Sd(t2) ⊆ . . . and dom(t0) ⊇ dom(t1) ⊇ dom(t2) ⊇ . . .. More-
over, due to the fact that ∀i ≥ 0. ti+1 !x ti, one of the following situations holds
for each value of i: (i)Sd(ti) ⊂ Sd(ti+1) or (ii) dom(ti) ⊃ dom(ti+1). Therefore in

9 An infinite sequence a0, a1, a2, . . . is a subsequence of the infinite sequence b0, b1, b2, . . .
iff exists a mapping σ : N→ N such that ∀i ≥ 0. ai = bσ(i) and i < j ⇒ σ(i) < σ(j).
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the infinite sequence of trees t0 +r
d t1 +r

d t2 +r
d . . ., there must exists an infinite

subsequence t0 +r
d t1 +r

d t2 +r
d . . . such that either (i) or (ii) holds for all i ≥ 0

in this sequence.

(i) cannot be true in the whole infinite sequence, because ∀i > 0. Si ⊆ dom(t0)
and dom(t0) is finite. (ii) cannot be true, because dom(t0) is finite. Hence the
sequence t0 +r

d t1 +r
d t2 +r

d . . . must be finite.

!

The Lemma 7 implies that the the Assumption 1 is valid for the working do-
main DT = 〈T (C), {"x,"r

x}x∈PV ar, {"d,"r
d}d∈Data〉, and hence the whole termina-

tion analysis framework presented in the section 3 can be employed.
The choice of relations for the time being is ad-hoc. In practice these relations

are sufficient for proving termination of an important class of programs handling
trees.

Lemma 8. The relations "x, "r
x, x ∈ PV ar and "d,"r

d, d ∈ Data are rational.

Proof. By the construction of tree automata A = (Q,F,∆) over the pair alphabet
(C ∪ {!,⊥})× (C ∪ {!,⊥}) for each of the proposed relations.

• t1 "x t2: A = ({q1, qL, qR, qacc}, {qacc},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈⊥,!〉 → q1

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, q1)→ q1

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(qL, q1)→ qL

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, qL)→ qL

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(qR, q1)→ qR

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, qR)→ qR

– ∀px ∈ P{x}∀p ∈ N{x} ∪ {!,⊥}.〈px, p〉(q1, q1)→ qL

– ∀px ∈ P{x}∀p ∈ N{x} ∪ {!,⊥}.〈p, px〉(q1, q1)→ qR

– ∀p1, p2 ∈ P{x}.〈p1, p2〉(q1, q1)→ qacc

– ∀px ∈ P{x}∀p ∈ N{x}.〈px, p〉(qR, q1)→ qacc

– ∀px ∈ P{x}∀p ∈ N{x}.〈px, p〉(q1, qR)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qL, qR)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qacc, q1)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(q1, qacc)→ qacc

• t1 "r
x t2: A = ({q1, qL, qR, qacc}, {qacc},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈⊥,!〉 → q1

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, q1)→ q1

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(qL, q1)→ qL



1026 R. Iosif, A. Rogalewicz

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, qL)→ qL

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(qR, q1)→ qR

– ∀p1, p2 ∈ N{x} ∪ {!,⊥}.〈p1, p2〉(q1, qR)→ qR

– ∀px ∈ P{x}∀p ∈ N{x} ∪ {!,⊥}.〈px, p〉(q1, q1)→ qL

– ∀px ∈ P{x}∀p ∈ N{x} ∪ {!,⊥}.〈p, px〉(q1, q1)→ qR

– ∀p1, p2 ∈ P{x}.〈p1, p2〉(q1, q1)→ qacc

– ∀px ∈ P{x}∀p ∈ N{x}.〈p, px〉(qL, q1)→ qacc

– ∀px ∈ P{x}∀p ∈ N{x}.〈p, px〉(q1, qL)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qR, qL)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qacc, q1)→ qacc

– ∀p1, p2 ∈ N{x}.〈p1, p2〉(q1, qacc)→ qacc

• t1 "d t2: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈⊥,!〉 → q1

– 〈!,⊥〉 → q1

– ∀p1, p2 ∈ C ∪ {⊥}, p1 /= 〈d,X〉 for some X ∈ 2PV ar

〈p1, p2〉(q1, q1)→ q1.
– ∀X1, X2 ∈ 2PV ar.〈〈d,X1〉, 〈d,X2〉〉(q1, q1)→ q1}

• t1 "r
d t2: A = ({q1}, {q1},∆) with ∆ = {

– 〈!,!〉 → q1

– 〈⊥,!〉 → q1

– ∀p1, p2 ∈ C ∪ {⊥}, p2 /= 〈d,X〉 for some X ∈ 2PV ar

〈p1, p2〉(q1, q1)→ q1.
– ∀X1, X2 ∈ 2PV ar.〈〈d,X1〉, 〈d,X2〉〉(q1, q1)→ q1}

!

The Büchi automaton representing the initial abstraction of the depth-first tree
traversal procedure is depicted in Fig. 11. To simplify the figure, we use only the
orders "r

x and "r
mark. Thanks to these orders, there is no potential infinite run in

the abstraction.

Remark. In practice, one often obtains a more precise initial abstraction by com-
posing several program steps into one. In cases where the program instructions
induce rational tree relations, it is guaranteed that composition of two or more
program steps induces also a rational tree relation.

In order to decide which transitions will be composed, one can use the concept of
so-called cutpoints. Formally, given a program P = 〈I, L, l0,⇒〉, a set of cutpoints
S ⊆ L is a set of control locations such that each loop in the program contains at
least one location l ∈ S [12, 1]. The set of cutpoints can be provided manually or
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discovered automatically by means of some heuristics. In our heuristics we provide
one cutpoint on each branch in the control flow.

4.2 Adding Tree Rotations

As a possible extension of the proposed framework, one can allow tree left- and
right-rotations as program statements [15]. The effect of a left tree rotations on a
node pointed by variable x is depicted in Fig. 12 (the effect of the right rotation is
analogous). The concrete semantics of the rotations is depicted in Fig. 13, where
uleft = tε{λ ← t|p.1}{0 ← t|p}{0.1 ← t|p.1.0}, and uright = tε{λ ← t|p.0}{1 ←
t|p}{1.0← t|p.0.1}.

x,X

x,X

A

B A B

leftRotate(x)

C

C

Y

Y

Fig. 12. The left tree rotation on the node pointed by variable x. X, and Y denoted two
concrete nodes affected by the rotation and A, B, and C three subtrees.

p ∈ dom(t) x ∈ ν(t(p)) t(p.1) (= !

〈l, t〉 → 〈l′, t{p ← uleft}〉

(∀p ∈ dom(t) . x (∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.1) = !)

〈l, t〉 → Err
leftRotate(x)

p ∈ dom(t) x ∈ ν(t(p)) t(p.0) (= !

〈l, t〉 → 〈l′, t{p ← uright}〉

(∀p ∈ dom(t) . x (∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.0) = !)

〈l, t〉 → Err
rightRotate(x)

Fig. 13. The concrete semantics of tree rotations. As in the case of Fig. 10, the upper
part of a rule represents a guard and the lower part of a rule represents an action
on a tree. Err is equal to abnormal termination of the program (the rotation is not
possible).

Since rotations cannot be described by rational tree relations, we cannot check
whether "x,"r

x,"d and "r
d hold, simply by intersection. However we know that

rotations do not change the number of nodes in the tree, therefore we can label
them a-posteriori with =d,=r

d, d ∈ Data, and '(x, '(r
x, x ∈ PV ar, since the relative

positions of the variables after the rotations are not known10. This extension has

10 We could make this abstraction more precise by labeling with =x,=r
x for all x ∈ PV ar

situated above the rotation point – the latter condition can be checked by intersection with
a rational tree language.
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been used to verify termination of the Red-black delete and Red-black insert examples
reported in Section 5.

4.2.1 Example: Red-black Trees—Rebalancing After Delete

Red-black trees [15] are binary search trees with the following red-black balanceness
properties:

1. Every node carry an extra flag set eider to red, or black.

2. The root of the tree is black.

3. Every leaf node (node without a child) is black.

4. If a node is red, then both its children are black.

5. For each node in the tree, all simple paths from this node to the leaves have
equal number of black nodes.

After the deletion of a node from such a tree, the balanceness property can be broken.
In order to restore the red-black properties, the rebalance procedure displayed in
Figure 15 is executed. In order to simplify the presentation of our termination
analysis framework, we choose a set of cutpoints from the original program. The
initial abstraction using these cutpoints is depicted in Figure 14. We show only the
relation "x, which is important for the termination proof. Note, that there is no
edge 14 → 3 and 35 → 3 in the abstraction, because there is no execution of the
program following these edges.

x=3, x=3,
x=4,

x=4,

x6,

x=31,

x=25,
x=25,

x>11,
x>32,

x=10,
x=10,

x=31,
x27,

3

4

6

10

11

25

31

32

3514

27

Fig. 14. Red-Black: rebalance after delete - initial abstraction on the simplified control
flow

One can see in the Figure 14 that there are counterexamples of the following
forms:

1. Σ∗(Σ∗〈3, =x〉〈4, =x〉〈6, '(x〉〈10, =x〉〈11, >x〉Σ∗)ω

2. Σ∗(Σ∗〈3, =x〉〈25, =x〉〈27, '(x〉〈31, =x〉〈32, >x〉Σ∗)ω
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procedure rb rebalance(root)
0 while true
1 if x==root then return;
2 if x.color=RED return;
3 if x==x.parrent.left then
4 w=x.parrent.right
5 if w.color==red
6 w.color=black
7 x.parrent.color=red
8 leftrotate(x.parent)
9 w=x.parrent.right
10 if (w.left==null or w.left.color==black) and

(w.right==null or w.right.color==black) then
11 w.color=red
12 x=x.parent
13 continue
14 if (w.right==null or w.right.color==black) then
15 w.left.color=black
16 w.color=red
17 rightrotate(w)
18 w=x.parrent.right
19 w.color=px.color
20 x.parrent.color=black
21 w.right.color=black
22 leftrotate(x.parent)
23 x=root
24 else
25 w=x.parrent.left
26 if w.color==red
27 w.color=black
28 x.parrent.color=red
29 rightrotate(x.parent)
30 w=x.parrent.left
31 if (w.left==null or w.left.color==black) and

(w.right==null or w.right.color==black) then
32 w.color=red
33 x=x.parent
34 continue
35 if (w.left==null or w.left.color==black) then
36 w.right.color=black
37 w.color=red
38 leftrotate(w)
39 w=x.parrent.left
40 w.color=x.parrent.color
41 x.parrent.color=black
42 w.left.color=black
43 rightrotate(x.parent)
44 x=root

Fig. 15. Red-Black: rebalance after delete
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The abstraction refinement works as follows. First, the counterexample (〈3, =x

〉〈4, =x〉〈6, '(x〉〈10, =x〉〈11, >x〉)ω is taken. There is no execution of the program
following the path 3, 4, 6, 10, 11, 3 in the program, so we can apply lemma 4
and remove the whole set of counterexamples Σ∗〈3, 〉〈4, 〉〈6, 〉〈10, 〉〈11, 〉(Σ∗)ω.
Note that all counterexamples of the type 1 are included. The next counterexample
is (〈3, =x〉〈25, =x〉〈27, '(x〉〈31, =x〉〈32, >x〉)ω. As for the previews one, there is no
execution in the program following the path 3, 25, 27, 31, 32, 3 so according to the
lemma 4, we can remove the counterexamples Σ∗〈3, 〉〈25, 〉〈27, 〉〈31, 〉〈32, 〉(Σ∗)ω

(all counterexamples of the type 2 are included).
After this second refinement, there is no counterexample left in the abstraction,

so we can conclude that the Red-Black rebalance procedure terminates.

4.3 From Trees to Complex Data Structure

In general, programs with pointer data types do not manipulate just lists and trees.
The structures that occur at execution time can be arbitrarily oriented graphs. In
this section we use the termination detection framework for programs that manipu-
late such complex structures. To compute program invariants, we use the approach
from [6], based on an encoding of graphs as trees with extra edges. The basic idea of
this encoding is that each each structure has an underlying tree (called a backbone)
which stays unchanged during the whole computation.

As in the previous, let PV ar be a finite set of pointer variables, Data a finite
set of data values, N the maximal number of selectors allowed in a single memory
node, and S is a finite set of pointer descriptors, which are references to regular
expressions (called routing expressions) over the alphabet of directions in the tree
(e.g., left, right, left-up, right-up, etc.). The backbone is a tree labeled by symbols
of the alphabet C = (Data × 2PV ar × SN) ∪ {!,♦}. The arity function is defined
as follows: #(!) = 0 and #(c) = b for all c ∈ C \ {!}, where b > 0 is a branching
factor fixed for the concrete encoding11. Each node of such a tree is either active,
removed, or unused, as follows:

• active nodes represent memory cells present in the memory. These nodes are
labeled by symbols from the alphabet Data× 2PV ar × SN .

• removed nodes are the nodes which were deleted from the memory. They are
labeled by the symbol ♦. These nodes are kept in the data structure in order to
preserve original shape of the underlying tree.

• unused nodes are labeled by ! and they are placed in leaves. These nodes can
be changed into active ones by a new statement.

Pointers between the active memory nodes are represented by pointer descriptors
(placed in the active nodes). A pointer descriptor corresponding to 1 ≤ i ≤ N
determines the destination of the i-th selector field of the node. There are two
special designated pointer descriptors for the null and undefined pointers. The

11 Usually, the branching factor b is equal to the number of selectors N .
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destructive updates on the data structure can be then performed simply by changing
the pointer descriptors inside the tree followed by an update of the corresponding
routing expression.

A set of such data structures (trees with routing expressions) can be represented
by tree automata. This allows one to apply the framework of abstract regular tree
model checking (ARTMC) [5] in order to compute (over-approximations of) the
invariants of programs handling complex data structures. The ARTMC tool derives
automatically the set of underlying trees and the corresponding routing expressions.

We apply the termination analysis framework along the same lines as in the
previous. For a tree t ∈ T (C) and a position p ∈ dom(t) such that t(p) =
〈d, V, s1, . . . sN〉, we denote δt(p) = d, νt(p) = V , and ξt(p)[i] = si. If t(p) = ♦,
δt(p) = ⊥, νt(p) = ∅, and ξt(p)[i] = undefined, 1 ≤ i ≤ N , i.e., all descriptors
represent undefined pointers.

Now, we need to provide well-founded orders on trees with routing expressions.
We use the fact that the tree backbone is not changed during the whole computation,
hence we can easily employ the orders "x, "r

x, "d and "r
d defined in Def. 14. In

addition, we define the following well-founded orders based on pointer descriptors
values captured by the Def. 15. The working domain will be DT = 〈T (C), {"x,"r

x

}x∈PV ar, {"d,"r
d}d∈Data, {"1:s,"r

1:s}s∈S, . . . , {"N :s,"r
N :s}s∈S〉.

Definition 15. (Well-founded orders based on pointer descriptors)

• t1 "i:s t2, for some 1 ≤ i ≤ N and s ∈ S iff for any position p ∈ dom(t1) such
that ξt1(p)[i] = s we have p ∈ dom(t2) and ξt2(p)[i] = s. In other words, t1 is
smaller than t2 if the set of nodes in t1, where the ith descriptor is set to s, is a
subset of the set of nodes in t2, where the ith descriptor is set to s.

• t1 "r
i:s t2, for some 1 ≤ i ≤ N and s ∈ S iff (i) dom(t1) ⊆ dom(t2) and (ii)

for any position p ∈ dom(t2) such that ξt2(p)[i] = s we have p ∈ dom(t1) and
ξt1(p)[i] = s. In other words t1 is smaller than t2 if all nodes in t1 are also present
in t2 (i.e., no new nodes were created) and the set of nodes in t2, where the ith

descriptor is set to s, is a subset of the set of nodes in t1, where the ith descriptor
is set to s.

Lemma 9. The relations on pointer descriptor fields "i:s and "r
i:s are well-founded

and rational.

Proof. The pointer descriptor is syntactically a data value from a finite set S.
Therefore the proofs of rationality and well-foundedness of "i:s (resp "r

i:s) are similar
to the proofs of "d (resp. "r

d).
!

To understand the use of the relations "i:s,"r
i:s, consider the program from

Fig. 16. This procedure traverses a binary tree in depth-first order and links all
its nodes into a cyclic singly-linked list using the selector next. In the beginning,
all next selector are set to null. Then the processed nodes has the selector next
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non-null. Due to this fact, one can establish termination proof using the orders "R
x

and "next:null. Note that the order based on data values (as in classical depth-first
traversal) cannot be used anymore to establish termination.

procedure link nodes(root)
0 x := root;
1 last:=root;
2 while (x!=null)
3 if (x.left!=null) and (x.left.next==null)
4 x:=x.left;
5 else if (x.right!=null) and (x.right.next==null)
6 x:=x.right;

else
7 x.next:=last;
8 last:=x;
9 x:=x.up;

Fig. 16. Linking nodes in Depth-first order

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented a prototype tool that uses this framework to detect termina-
tion of programs with trees and trees with extra edges. The tool was built as an
extension of the ARTMC [6] verifier for safety properties (null-pointer dereferences,
memory leaks, etc.). We applied our tool to several programs that manipulate:

Example Time Nrefs

DLL-insert 2s 0
DLL-delete 1s 0
DLL-reverse 2s 0
Depth-first search 17s 0
Linking leaves in trees 14s 0
Deutsch-Schorr-Waite 1m 24s 0
Linking Nodes 5m 47s 0
Red-black delete 4m 54s 2
Red-black insert 29s 0

Table 1. Experimental results

• doubly-linked lists: DLL-insert (DLL-delete) which inserts (deletes) a node
in (from) a doubly-linked list, and DLL-reverse which is the in-place reversal of
the doubly linked list.
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• trees: Depth-first search and Deutsch-Schorr-Waite which are tree traversals,
Red-black delete (insert) which rebalances a red-black tree after the deletion
(insertion) of a node.

• tree with extra edges: Linking leaves (Linking nodes) which insert all leaves
(nodes) of a tree in a singly-linked list.

The results obtained on a Intel Core 2 PC with 2.4 GHz CPU and 2 GB RAM
memory are given in the table 1. The field time represents the time necessary to
generate invariants and build the initial abstraction. The field Nrefs represents num-
ber of refinements. The only case in which refinement was needed is the Red-black
delete example, which was verified using the Infeasible Elementary Loop refinement
heuristic (Section 3.4).

6 CONCLUSIONS

We proposed a new generic termination-analysis framework. In this framework, in-
finite runs of a program are abstracted by Büchi automata. This abstraction is then
intersected with a predefined automaton representing potentially infinite runs. In
case of non-empty intersection, a counterexample is exhibited. If the counterexam-
ples is proved to be spurious, the abstraction is refined. We instantiated the frame-
work for programs manipulating tree-like data structures and we experimented with
a prototype implementation, on top of the ARTMC invariant generator. Test cases
include a number of classical algorithms that manipulate tree-like data structures.

Future work includes instantiation of the method for the class of programs han-
dled by a tool called Forester [19] based on a tuples of tree automata. The encoding
of complex data structures used in Forester is more flexible then the one used in
ARTMC and it would allows us to handle much bigger programs, as well as more
complex and tricky pointer manipulations. Using the proposed method, we would
like also to tackle the termination analysis for concurrent programs. Moreover, we
would like to investigate methods for automated discovery of well-founded orderings
on the complex data domains as trees and graphs.
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