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Abstract

We show how to underapproximate the procedure summaries of re-
cursive programs over the integers using off-the-shelf analyzers for non-
recursive programs. The novelty of our approach is that the non-recursive
program we compute may capture unboundedly many behaviors of the orig-
inal recursive program for which stack usage cannot be bounded. Moreover,
we identify a class of recursive programs on which our method terminates
and returns the precise summary relations without underapproximation.
Doing so, we generalize a similar result for non-recursive programs to the re-
cursive case. Finally, we present experimental results of an implementation
of our method applied on a number of examples.

1 Introduction
Formal approaches to reasoning about behaviors of programs usually fall into one
of the following two categories: certification approaches, that provide proofs of
correctness, and bug-finding approaches, that explore increasingly larger sets of
traces in order to find possible errors. While the methods in the first category are
used typically in the development of safety-critical software whose failures may
incur dramatic losses in terms of human lives (airplanes, space missions, or nuclear
power plants), the methods in the second category have a broad application in
industry, outside of the safety-critical market niche. Another difference between
the two categories is methodological: certification approaches are based on
over-approximations of the set of behaviors (if the over-approximation is free
of errors, the original system is correct), while bug-finding needs systematic
under-approximation techniques (if there are errors, the method will eventually
discover all of them). Finally, over-approximation methods are guaranteed to
terminate, but the answer might be inconclusive (spurious errors are introduced
due to the abstraction), whereas under-approximation methods provide precise
results (all reported errors are real), but with no guarantee for termination.

Procedure summaries are relations between the input and return values of a
procedure, resulting from its terminating executions. Computing summaries is
important, as they are a key enabler for the development of modular verification
techniques for inter-procedural programs, such as checking safety, termination
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or equivalence properties. Summary computation is, however, challenging in the
presence of recursive procedures with integer parameters, return values, and local
variables. While many analysis tools exist for non-recursive programs, only a
few ones address the problem of recursion (e.g. InterProc [19]).

In this paper, we propose a novel technique to generate arbitrarily precise
underapproximations of summary relations. Our technique is based on the
following idea. The control flow of procedural programs is captured precisely
by the language of a context-free grammar. A k-index underapproximation of
this language (where k ě 1) is obtained by filtering out those derivations of
the grammar that exceed a budget, called index, on the number (at most k) of
occurrences of nonterminals occurring at each derivation step. As expected, the
higher the index, the more complete the coverage of the underapproximation.
From there we define the k-index summary relations of a program by considering
the k-index underapproximation of its control flow. Our method then reduces
the computation of k-index summary relations for a recursive program to the
computation of summary relations for a non-recursive program, which is, in
general, easier to compute because of the absence of recursion. The reduction
was inspired by a decidability proof [4] in the context of Petri nets.

The contributions of this paper are threefold. First, we show that, for a given
index, recursive programs can be analyzed using off-the-shelf analyzers designed
for non-recursive programs. Second, we identify a class of recursive programs,
with possibly unbounded stack usage, on which our technique is complete, i.e. it
terminates and returns the precise result. Third, we present experimental results
of an implementation of our method applied on a number of examples.
Motivating Example To properly introduce the reader to our result, we
describe our source-to-source program transformation through an illustrative
example. Consider the recursive program P “ tP u, consisting of a single
recursive procedure P , given in Fig. 1 (a), whose control flow graph is given
in Fig. 1 (b). The nodes of this graph represent control locations in the
program, with a designated initial location Qinit1 and a final location ε. The
edges are labeled with relations denoting the program semantics, where primed
variables x1 and z1 denote the values at the next step. For instance, the edge

t2 : Q2
z1“P px´1q^x1“x
ÝÝÝÝÝÝÝÝÝÝÝÑ Q3 corresponds to the recursive call on line 3 in the

program—the edge labels of the control flow graph explicitly mention the copies
of variables not changed by the program action corresponding to the edge, e.g.
x1 “ x.

In this paper, we model programs using visibly pushdown grammars (VPG)
[3]. The VPG for P is given in Fig. 1 (c). The role of the grammar is to define
the set of interprocedurally valid paths in the control-flow graph of the program
P . Every edge in the control-flow graph matches one or two symbols from the
finite alphabet tτ1, xxτ2, τ2yy, τ3, τ4u, where xxτ2 and τ2yy denote the call and return,
respectively. Each edge in the graph translates to a production rule in the
grammar, labeled pb1, pc2, pa3 and pa4—the superscript a, b and c distinguishes rules
with 0, 1 and 2 nonterminals on the right-hand side, respectively. For instance,
the call edge t2 becomes the rule Q2 Ñ xxτ2Q

init
1 τ2yyQ3. The language of the

grammar of Fig. 1 (c) (with axiom Qinit1 ) is the set tpτ1xxτ2q
n
τ4 pτ2yyτ3q

n
| n P Nu

of interprocedurally valid paths, where each call symbol xxτ2 is matched by a
return symbol τ2yy, and the matching relation is well-parenthesized.

The outcome of the program transformation applied to P is the non-recursive
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program Q “
 

query i
(K

i“0
, depicted in Fig. 1 (d), where K is a parameter of our

analysis. The main idea is that the executions of the procedure queryk, ending
with an empty stack, correspond to the derivations of the VPG in Fig. 1 (c), of
index at most k—since there is no derivation of index 0, the set of executions
of query0 will be empty. The body of a procedure queryk consists of a main
loop, starting at the control label begin_loop in Fig. 1 (d). Each branch inside
the main loop corresponds to the simulation of one of the production rules of
the grammar in Fig. 1 (c) and starts with a control label which is the name
of that rule (pb1, pc2, pa3 , pa4). Next, we explain the relations labeling the control
edges of queryk. For each production rule p in the grammar we have a relation
ρppxI , zI , xO, zOq, where subscript I and O denote the input and output copies
of the program variables of P , respectively. In addition, we consider auxiliary
copies xJ , zJ , xK , zK and xL, zL, defined in a similar way. For instance, the
auxiliary variables store intermediate results of the computation of pc2 as follows:
rxI , zI s xxτ2 rxJ , zJ s Q

init
1 rxK , zKs τ2yy rxL, zLs Q3 rxO, zOs. The transition

pc2 Ñ in_order{out_of_order can be understood by noticing that xxτ2 gives
rise to the constraint xJ “ xI ´ 1, τ2yy to zL “ zK and xI “ xL corresponds to
the frame condition x1 “ x.

The peculiarity of the resulting program is that a function call is modeled
in two possible ways: (i) in-order execution of the function body, followed by
the continuation of the call, and (ii) out-of-order execution of the continuation,
followed by the execution of the function body. The two cases correspond
to k-index derivations of the VPG in Fig 1 (c) of the form uQinit1 vQ3w ñ˚

uv1vQ3w ñ
˚ uv1vv2w and uQinit1 vv2w ñ

˚ uv1vv2w ñ
˚ uv1vv2w, respectively,

where Qinit1 ñ˚ v1 and Q3 ñ
˚ v2 are derivations of the VPG. In the first case,

the control path simulating the derivation in queryk follows the left branch
in_order{out_of_order Ñ begin_loop, whereas the second case is simulated
by the right branch.

Since the only call of queryk is to queryk´1, on the edges in_order{out_of_order Ñ
begin_loop, the whole program is a non-recursive under-approximation of the
semantics of the original program P , amenable to analysis using intra-procedural
program analysis tools. Indeed, the computation of the pre-condition relation of
the program Q “ tquery2, query1, query0u with the Flata tool [17] yields the
formula zO “ 2 ¨ xI , which matches the summary z1 “ 2 ¨ x of the program P .

In other words, the analysis of the under-approximation of P of index at most
2 suffices to infer the complete summary of the program (the analysis for values
K ą 2 will necessarily yield the same result, since the under-approximation
method is monotonic in K). This fact matches the completeness result of
Section 5, stating that the analysis needs to be carried up to a certain bound
(linear in the size of the program’s VPG) whenever the language of the VPG
is included in the language of the regular expression w˚1 . . . w

˚
n, for some non-

empty words w1, . . . , wn. In our case, the completeness result applies due to
tpτ1xxτ2q

n
τ4 pτ2yyτ3q

n
| n P Nu Ď pτ1xxτ2q˚ τ˚4 pτ2yyτ3q

˚.
Related Work The problem of analyzing recursive programs handling integers
(in general, unbounded data domains) has gained significant interest with the
seminal work of Sharir and Pnueli [24]. They proposed two orthogonal approaches
for interprocedural dataflow analysis. The first one keeps precise values (call
strings) up to a limited depth of the recursion stack, which bounds the number
of executions. In contrast to the methods based on the call strings approach,
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pb
1

: Qinit
1

→ τ1Q2

pc
2

: Q2 → 〈〈τ2 Q
init
1

τ2〉〉 Q3

pa
3

: Q3 → τ3

pa
4

: Qinit
1

→ τ4

(c)

init

begin loop

pa
4

pb
1

ε

pc
2

out of order/in order

(d)

queryk(X, xI , zI , xO, zO)

ε

pa
3

t2

t1

t4

q3

q2

ε

qinit
1

(b)

t3

PC = Q3

zO = zI + 2
xO = xI

PC = Q2

Y ′ = Qinit
1

Z′ = Q3

xI = xL

xJ = xI − 1
zK = zL

xI = 0
zO = 0

PC = Qinit
1

queryk−1(Z, xL, zL, xO, zO)

x′
I

= xJ

PC′ = Y

z′
I

= zJ

x′
O

= xK
z′
O

=zK queryk−1(Y, xJ , zJ , xK, zK )

x′
I

= xL

PC′ = Z

z′
I

= zL

PC = Qinit
1

xI > 0
xJ = xI

z′
I

= zJ

x′
I

= xJ

PC′ = Q2

PC′ = X

x > 0

x′ = x

x′ = x
z′ = z + 2

x = 0
z′ = 0z′ = P (x − 1)

x′ = x

(a)

int z;

1: assume(x ≥ 0);

2: if (x > 0)

3: z := P(x-1);

4: z := z+2;

6: z := 0

7: return z; }

5: else

int P(int x) {

Figure 1: A recursive program returning the parameter value multiplied by two
(a), its corresponding control flow graph (b) and visibly pushdown grammar
(c), and the non-recursive program querykpX,xI , zI , xO, zOq resulting from our
index-bounded under-approximation (d).

our method can also analyse precisely certain programs for which the stack is
unbounded, allowing for unbounded number of executions to be represented at
once.

The second approach of Sharir and Pnueli [24] is based on computing the
least fixed point of a system of recursive dataflow equations (the functional
approach). This approach to interprocedural analysis is based on computing
an increasing Kleene sequence of abstract summaries. It is to be noticed that
abstraction is key to ensuring termination of the Kleene sequence, the result
being an over-approximation of the precise summary. Recently [11], a Newton
sequence defined over the language semiring was shown to converge at least as
fast as the Kleene sequence over the same semiring. An iterate of a Newton
sequence is the set of control paths in the program that correspond to words
produced by a grammar, with bounded number of nonterminals at each step
in the derivation. By increasing this bound, we obtain an increasing sequence
of languages that converges to the language of behavior of the program. Our
contribution can be thus seen as a technique to compute the iterates of the
Newton sequence for programs with integer parameters, return values, and local
variables, the result being, at each step, an under-approximation of the precise
summary.
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The complexity of the functional approach was shown to be polynomial in
the size of the (finite) abstract domain, in the work of Reps, Horwitz and Sagiv
[23]. This result is achieved by computing summary information, in order to
reuse previously computed information during the analysis. Following up on this
line of work, most existing abstract analyzers, such as InterProc [19], also
use relational domains to compute over-approximations of function summaries
– typically widening operators are used to ensure termination of fixed point
computations. The main difference of our method with respect to static analyses
is the use of under-approximation instead of over-approximation. If the final
purpose of the analysis is program verification, our method will not return false
positives. Moreover, the coverage can be increased by increasing the bound on
the derivation index.

Previous works have applied model checking based on abstraction refinement
to recursive programs. One such method, known as nested interpolants represents
programs as nested word automata [3], which have the same expressive power as
the visibly pushdown grammars used in our paper. Also based on interpolation
is the Whale algorithm [2], which combines partial exploration of the execution
paths (underapproximation) with the overapproximation provided by a predicate-
based abstract post operator, in order to compute summaries that are sufficient to
prove a given safety property. Another technique, similar to Whale, although not
handling recursion, is the Smash algorithm [15] which combines may- and must-
summaries for compositional verification of safety properties. These approaches
are, however, different in spirit from ours, as their goal is proving given safety
properties of programs, as opposed to computing the summaries of procedures
independently of their calling context, which is our case. We argue that summary
computation can be applied beyond safety checking, e.g., to prove termination
[5], or program equivalence.

The technique of under-approximation is typically used for bug discovery,
rather than certification of correctness. For instance, bug detection based on
under-approximation has been developed for non-recursive C programs with
arrays [18]. Our approach in orthogonal, as we consider more complex control
structures (possibly recursive procedure calls) but simpler data domains (scalar
values such as integers).
Paper organization. After introducing the basic definition in Section 2, we
present, in Section 3, our model for programs, a semantics based on nested
words and another one, equivalent, based on derivations of the underlying
grammar. Then, in Section 4, we present our main contribution which is a
program transformation underapproximating the semantics of the input program.
In Section 5, we define a class of programs for which the underapproximation is
complete. Finally, after reporting on experiments in Section 6 we conclude in
Section 7.

2 Preliminaries

2.1 Grammars
Let Σ be an alphabet, that is a finite non-empty set of symbols. We denote by Σ˚

the set of finite words over Σ including ε, the empty word. Given a word w P Σ˚,
let |w| denote its length and let pwqi, with 1 ď i ď |w|, be the i-th symbol of w.
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By pwqi...j , with 1 ď i ď j ď |w|, we denote the subword pwqi . . . pwqj of w. For
a word w P Σ˚ and Σ1 Ď Σ, we denote by wÓΣ1 the result of erasing all symbols
of w not in Σ1.

A context-free grammar (or simply grammar) is a tuple G “ xΞ,Σ,∆y,
where Ξ is a finite nonempty set of nonterminals, Σ is an alphabet, such that
ΞX Σ “ H, and ∆ Ď Ξˆ pΣY Ξq˚ is a finite set of productions. A production
pX,wq P ∆ is often conveniently noted X Ñ w. Also define headpX Ñ wq “ X
and tailpX Ñ wq “ w. Given two strings u, v P pΣYΞq˚, a production pX,wq P ∆

and 1 ď j ď |u|, we define a step u
pX,wq{j
ùùùùùñG v if, and only if, puqj “ X and

v “ puq1 ¨ ¨ ¨ puqj´1 ¨ w ¨ puqj`1 ¨ ¨ ¨ puq|u|. We omit pX,wq or j above the arrow
when it is not important. In this notation and others, when G is clear from the
context, we omit it. Step sequences (including the empty sequence) are defined
using the reflexive transitive closure of the step relation ùñG, denoted ùñ˚

G. For
instance, X ùñ˚

G w means there exists a sequence of steps that produces the
word w P pΣ Y Ξq˚, starting from X. We call any step sequence v ùñ˚

G w a
derivation whenever v P Ξ and w P Σ˚. The language produced by G, starting
with a nonterminal X is the set LXpGq “ tw P Σ˚ | X ùñ˚

G wu.
By defining a control word to be a sequence of productions γ P ∆˚, we can

annotate step sequences as expected: ε P ∆˚ is the control word for empty step
sequences, and given a control word γ of length n we write u

γ
ùñG v whenever

there exists w0, . . . , wn P pΞY Σq˚ such that

u “ w0
pγq1
ùùñG w1

pγq2
ùùñG . . . wn´1

pγqn
ùùñG wn “ v .

Given a nonterminal X P Ξ and a set Γ Ď ∆˚ of control words (a.k.a control
set), we denote by L̂XpΓ, Gq “ tw P Σ˚ | Dγ P Γ: X

γ
ùñ wu the language

generated by G using only control words in Γ.

2.2 Visibly Pushdown Grammars
To model the control flow of procedural programs we use languages generated by
visibly pushdown grammars, a subset of context-free grammars. In this setting,
words are defined over a tagged alphabet pΣ “ ΣYxxΣYΣyy, where xxΣ “ txxa | a P Σu
represents procedure call sites and Σyy “ tayy | a P Σu represents procedure return
sites. Formally, a visibly pushdown grammar G “ xΞ, pΣ,∆y is a grammar that
has only productions of the following forms, for some a, b P Σ:

X Ñ a X Ñ a Y X Ñ xxa Y byyZ .

It is worth pointing that, for our purposes, we do not need a visibly pushdown
grammar to generate the empty string ε. Each tagged word generated by visibly
pushdown grammars is associated a nested word [3] the definition of which we
briefly recall. Given a finite alphabet Σ, a nested word over Σ is a pair pw,;q,
where ; Ď t1, . . . , |w|u ˆ t1, . . . , |w|u is a set of nesting edges (or simply edges)
where:

1. i; j only if i ă j; edges only go forward;

2. ||tj | i; ju|| ď 1 and ||ti | i; ju|| ď 1; no two edges share a call/return
position;
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3. if i; j and k ; ` then it is not the case that i ă k ď j ă `; edges do not
cross.

Intuitively, we associate a nested word to a tagged word as follows: there is an
edge between tagged symbols xxa and byy if and only if both symbols are produced
by the same derivation step. Finally, let w_nw denote the mapping which given
a tagged word in the language of a visibly pushdown grammar returns the nested
word thereof.

Example 2.1. For the tagged word w “ τ1xxτ2τ1xxτ2τ4τ2yyτ3τ2yyτ3, w_nwpwq “
pτ1τ2τ1τ2τ4τ2τ3τ2τ3, t2 ; 8, 4 ; 6uq is the associated nested word. �

2.3 Integer Relations
Given a set S, let ||S|| denote its cardinality. We denote by Z the set of integers.
Let x “ xx1, . . . , xdy be a tuple of variables, for some d ą 0. We define by x1 the
primed variables of x to be the tuple xx11, x12, . . . , x1dy. We consider implicitly
that all variables range over Z. We denote by |x| “ d the length of the tuple
x, and for a tuple y “ xy1, . . . , yey, we denote by x ¨ y “ xx1, . . . , xd, y1, . . . , yey
their concatenation. For two tuples of variables t and s such that |t| “ |s| “ k,
we denote by t “ s the conjunction

Źk
i“1 ti “ si.

A linear term t is a linear combination of the form a0 `
řd
i“1 aixi, where

a0, . . . , ad P Z. An atomic proposition is a predicate of the form t ď 0, where
t is a linear term. We consider formulae in the first-order logic over atomic
propositions t ď 0, also known as Presburger arithmetic. A valuation of x
is a function ν : x ÝÑ Z. The set of all valuations of x is denoted by Zx. If
x “ xx1, . . . , xdy and ν P Zx, then νpxq denotes the tuple xνpx1q, . . . , νpxdqy.
An arithmetic formula Rpx,y1q defining a relation R Ď Zx ˆ Zy is evaluated
with respect to two valuations ν1 P Zx and ν2 P Zy, by replacing each x P x
by ν1pxq and each y1 P y1 by ν2pyq in R. The composition of two relations
R1 Ď Zx ˆ Zy and R2 Ď Zy ˆ Zz is denoted by R1 ˝ R2 “ txu,vy P Zx ˆ Zz |

Dt P Zy. xu, ty P R1 and xt,vy P R2u. We denote y Ď x if y “ xxi1 , . . . , xi`y,
for a sequence of indices 1 ď i1 ă . . . ă i` ď d of x. For a valuation ν P Zx

and a tuple y Ď x, we denote by νÓy P Zy the projection of ν onto variables y,
i.e. νÓxy1,...,yky

“ xνpy1q, . . . , νpykqy. Finally, given two valuations I,O P Zx, we
denote by I ¨O the valuation Ipxq¨Opxq, and we define Zxˆx “ tI ¨O | I,O P Zxu.

2.4 Parikh Images
Let Θ “ tθ1, . . . , θku be a linearly ordered subset of the alphabet Σ. For a
symbol a P Σ its Parikh image is defined as PkΘpaq “ ei if a “ θi, where ei
is the k-dimensional vector having 1 on the i-th position and 0 everywhere
else. Otherwise, if a P ΣzΘ, let PkΘpaq “ 0 where 0 is the k-dimensional
vector with 0 everywhere. For a word w P Σ˚ of length n, we define PkΘpwq “
řn
i“1 PkΘppwqiq.1 Furthermore, let PkΘpLq “ tPkΘpwq | w P Lu for any

language L Ď Σ˚.
1We adopt the convention that the empty sum evaluates to 0.
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2.5 Labelled Graphs
In this paper we use of the notion of labelled graph G “ xQ,L, δy, where Q is a
finite set of vertices, L is a set of labels whose elements label edges as defined by
the edge relation δ Ď Qˆ S ˆQ. We denote by q `

ÝÑ q1 the fact that pq, `, q1q P δ.
A path π in G is an alternating sequence of vertices and edges whose endpoints
are vertices. Sometimes, π is conveniently written as q0

`1
ÝÑ q1

`2
ÝÑ . . . qn´1

`n
ÝÑ qn

and further abbreviated q0
w
ÝÑ qn where w “ `1 . . . `n.

3 Integer Recursive Programs
We consider in the following that programs are collections of procedures calling
each other, possibly according to recursive schemes. Formally, an integer program
is an indexed tuple P “ xP1, . . . , Pny, where P1, . . . , Pn are procedures. Each
procedure is a tuple Pi “ xxi,xini ,xouti , Si, q

init
i , Fi,∆iy, where xi are the local

variables2 of Pi (xiXxj “ H for all i ‰ j), xini ,xouti Ď xi are the tuples of input
and output variables, Si are the control states of Pi (Si X Sj “ H, for all i ‰ j),
qiniti P SizFi is the initial, and Fi Ď Si (Fi ‰ H) are the final states of Pi, and
∆i is a set of transitions of one of the following forms:

• q Rpxi,x1iq
ÝÝÝÝÝÑ q1 is an internal transition, where q, q1 P Si, and Rpxi,x1iq is a

Presburger arithmetic relation involving only the local variables of Pi;

• q z1“Pjpuq
ÝÝÝÝÝÝÑ q1 is a call, where q, q1 P Si, Pj is the callee, u are linear terms

over xi, z Ď xi are variables, such that |u| “ |xinj | and |z| “ |xoutj |. The
call is said to be terminal if q1 P Fi. It is well-known that terminal calls
can be replaced by internal transitions.

The call graph of a program P “ xP1, . . . , Pny is a directed graph with vertices
P1, . . . , Pn and an edge pPi, Pjq, for each Pi and Pj , such that Pi has a call to Pj .
A program is recursive if its call graph has at least one cycle, and non-recursive
if its call graph is a dag.

In the rest of this paper, we denote by FpPq “
Ťn
i“1 Fi the set of final states

of the program P, by nFpPiq the set SizFi of non-final states of Pi, and by
nFpPq “

Ťn
i“1 nFpPq be the set of non-final states of P.

3.1 Simplified syntax
To ease the description of programs defined in this paper, we use a simplified,
human readable, imperative language such that each procedure of the program
conforms to the following grammar:3

P ::“ proc Pipid
˚
q begin var id˚ S0; S end

S0 ::“ assume f | goto `` | havoc id` | idÐ t

S ::“ S0 | S; S | idÐ Pipt
˚q; S0 | Pipt

˚q; S0 | return id

2Observe that there are no global variables in the definition of integer program. Those can
be encoded as input and output variables to each procedure.

3Our simplified syntax does not seek to capture the generality of integer programs. Instead,
our goal is to give a convenient notation for the programs given in this paper and only those.
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The local variables occurring in P are denoted by id, linear terms by t, Pres-
burger formulae by f , and control labels by `. Each procedure consists in local
declarations followed by a sequence of statements. Statements may carry a label.
Program statements can be either assume statements4, assignments, procedure
calls (possibly with a return value), return to the caller (possibly with a value),
non-deterministic jumps goto `1 or . . . or `n, and havoc x1, x2, . . . , xn state-
ments5. In order to simplify the upcoming technical developments, we forbid
empty procedures, procedures starting with a call or a return, i.e. each procedure
must start with a statement generated by the S0 nonterminal. We consider the
usual syntactic requirements (used variables must be declared, jumps are well
defined, no jumps outside procedures, etc.). We do not define them, it suffices to
know that all simplified programs in this paper comply with the requirements.
A program using the simplified syntax can be easily translated into the formal
syntax (Fig. 1).

Example 3.1. Figure 1 shows a program in our simplified imperative language
and its corresponding integer program P. Formally, P “ xP y, where P is the
only procedure in the program, defined as:

P “ xtx, zu, txu, tzu, tqinit1 , q2, q3, εu, q
init
1 , tεu, tt1, t2, t3, t4uy

Since P calls itself once (within the call transition t2), this program is recursive.
�

3.2 Semantics
We are interested in computing the summary relation between the values of the
input and output variables of a procedure. To this end, we give the semantics of
a program P “ xP1, . . . , Pny as a tuple of relations, denoted JqK in the following,
describing, for each non-final control state q P nFpPiq of a procedure Pi, the effect
of the program when started in q upon reaching a state in Fi. The summary of a
procedure Pi is the relation corresponding to its unique initial state, i.e. Jqiniti K.

An interprocedurally valid path is represented by a tagged word over an
alphabet pΘ, which maps each internal transition t to a symbol τ , and each call
transition t to a pair of symbols xxτ, τyy P pΘ. In the sequel, we denote by Q the
nonterminal corresponding to the control state q, and by τ P Θ the alphabet
symbol corresponding to the transition t of P . Formally, we associate P a visibly
pushdown grammar, denoted in the rest of the paper by GP “ xΞ, pΘ,∆y, such
that Q P Ξ if and only if q P nFpPq and:
(a) QÑ τ P ∆ if and only if t : q R

ÝÑ q1 and q1 P FpPq

(b) QÑ τ Q1 P ∆ if and only if t : q R
ÝÑ q1 and q1 P nFpPq

(c) QÑ xxτ Qinit
j τyy Q1 P ∆ if and only if t : q

z1“Pjpuq
ÝÝÝÝÝÝÑ q1.

It is easily seen that interprocedurally valid paths in P and tagged words in GP
are in one-to-one correspondence. In fact, each interprocedurally valid path of
P between state q P nFpPiq and a state of Fi, where 1 ď i ď n, corresponds
exactly to one tagged word of LQpGPq.

4assume φ is executable if and only if the current values of the variables satisfy the
Presburger formula φ.

5havoc assigns non deterministically chosen integers to x1, x2, . . . , xn.
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Example 3.2. (contd. from Ex. 3.1) The visibly pushdown grammar GP cor-
responding to P is given in Fig. 1 (c). In the following, we use superscripts
a, b, c to distinguish productions of the form (a) Q Ñ τ , (b) Q Ñ τ Q1 or (c)
Q Ñ xxτ Qinit

j τyyQ1, respectively. The language LQinit
1
pGPq generated by GP

starting with Qinit
1 contains the word w “ τ1xxτ2τ1xxτ2τ4τ2yyτ3τ2yyτ3, of which

w_nwpwq “ pτ1τ2τ1τ2τ4τ2τ3τ2τ3, t2 ; 8, 4 ; 6uq is the corresponding nested
word. The word w corresponds to an interprocedurally valid path where P calls
itself twice. The control words γ1 “ pb1p

c
2p
b
1p
c
2p
a
4p
a
3p
a
3 and γ2 “ pb1p

c
2p
a
3p
b
1p
c
2p
a
4p
a
3

both produce w in this case, i.e. Qinit
1

γ1
ùñ w and Qinit

1

γ2
ùñ w. �

The semantics of a program is the union of the semantics of the nested words
corresponding to its executions, each of which being a relation over input and
output variables. To define the semantics of a nested word, we first associate to
each τ P pΘ an integer relation ρτ , defined as follows:
• for an internal transition t : q

R
ÝÑ q1 P ∆i, we define ρτ ” Rpxi,x1iq Ď

Zxi ˆ Zxi ;

• for a call transition t : q
z1“Pjpuq
ÝÝÝÝÝÝÑ q1 P ∆i, we define a call relation ρxxτ ”

pxinj
1
“ uq Ď Zxi ˆ Zxj , a return relation ρτyy ” pz

1 “ xoutj q Ď Zxj ˆ Zxi

and a frame relation φτ ”
Ź

xPxizz
x1 “ x Ď Zxi ˆ Zxi . Intuitively, the

frame relation copies the values of all local variables, that are not involved
in the call as return value receivers (z), across the call.

We define the semantics of the program P “ xP1, . . . , Pny in a top-down manner.
Assuming a fixed ordering of the non-final states in the program, i.e. nFpPq “
xq1, . . . , qmy, the semantics of the program P, denoted JPK, is the tuple of
relations xJq1K, . . . , JqmKy. For each non-final control state q P nFpPiq where
1 ď i ď n, we denote by JqK Ď Zxi ˆ Zxi the relation (over the local variables of
procedure Pi) defined as JqK “

Ť

αPLQpGPq
JαK.

It remains to define JαK, the semantics of the tagged word (or equivalently
interprocedural valid path) α. Out of convenience, we define the semantics of
its corresponding nested word w_nwpαq “ pθ,;q over alphabet Θ, and define
JαK “ Jw_nwpαqK. For a nesting relation ; Ď t1, . . . , |θ|u ˆ t1, . . . , |θ|u, we
define ;i,j “ tps ´ pi´1q, t ´ pi´1qq | ps, tq P ; X ti, . . . , ju ˆ ti, . . . , juu, for
some i, j P t1, . . . , `u, i ă j. Finally, we define Jpθ,;qK Ď Zxi ˆ Zxi as follows:

$

’

&

’

%

ρpθq1 if |θ| “ 1

ρpθq1 ˝ Jppθq2...|θ|,;2,|θ|qK if |θ| ą 1, 1 ; j for no j
CaRetjθ ˝ Jppθqj`1...|θ|,;j`1,|θ|qK if |θ| ą 1, 1 ; j for a j

where, in the last case, which corresponds to call transition t P ∆i, we have
pθq1 “ pθqj “ τ and define CaRetjθ “

`

ρxxτ ˝ Jpθq2...j´1,;2,j´1qK ˝ ρτyy
˘

X φτ .

Example 3.3. (contd. from Ex. 3.2) The semantics of a given the nested
word θ “ pτ1τ2τ1τ2τ4τ2τ3τ2τ3, t2 ; 8, 4 ; 6uq is a relation between valuations
of tx, zu, given by:

JθK “ ρτ1 ˝
`

pρxxτ2 ˝ ρτ1 ˝
`

pρxxτ2 ˝ ρτ4 ˝ ρτ2yyq X φτ2
˘

˝ ρτ3 ˝ ρτ2yyq X φτ2
˘

˝ ρτ3

One can verify that JθK ” x “ 2^ z1 “ 4, i.e. the result of calling P with input
valuation x “ 2 is an output valuation z “ 4. �
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Finally, we introduce a few useful notations. An interprocedural valid path α
is said to be feasible whenever JαK ‰ H. We denote by JPKq the component of
JPK corresponding to q P nFpPq. Notice that JPKq P Zxi ˆ Zxi , i.e. is a relation
over the valuations of the local variables of the procedure Pi if q is a state of
Pi, i.e. q P Si. Slightly abusing notations, we define LPipGPq as LQinit

i
pGPq and

JPKPi as JPKqiniti
. Clearly we have that JPKPi Ď Zxi ˆ Zxi .

3.3 A Semantics of Depth-First Derivations
We present an alternative, but equivalent, program semantics, using derivations
of visibly pushdown program grammars, instead of the generated (nested) words.
This semantics brings us closer to the notion of under-approximation defined in
the next section.

We start by defining depth-first derivations, that have the following informal
property: if X and Y are two nonterminals produced by the application of one
rule, then the steps corresponding to a full derivation of the form X ùñ˚ u will
be applied without interleaving with the steps corresponding to a derivation of
the form Y ùñ˚ v. In other words, once the derivation of X has started, it will
be finished before the derivation of Y begins.

For an integer tuple α “ xα1, . . . , αny, we denote by }α}max “ maxni“1 αi.
For a set of symbols S Ď ΞY Σ, and a set of positive integers I Ď N, we define
SI “ txxiy | x P S, i P Iu. Given a word w P pΞ Y Σq˚ of length n ě 0, and
a n-dimensional vector α “ xα1, . . . , αny P Nn, we define wα as the birthdate-
annotated word (bd-word) pwq1

xα1y . . . pwqn
xαny over the alphabet pΞ Y ΣqN.

We denote wxxcyy “ wc, where c P N and c “ xc, . . . , cy P N|w|. For instance,
abcx1,2,3y “ ax1y bx2y cx3y and abcxx2yy “ ax2ybx2ycx2y.

Let G “ xΞ,Σ,∆y be a grammar and u
pZ,wq{j
ùùùùñ v be a step, for some

production pZ,wq P ∆ and 1 ď j ď |u|. If α P N|u| is a vector of birth-
dates, the corresponding birthdate-annotated step (bd-step) is defined as fol-

lows: uα
pZ,wq{j
ùùùùñ vβ if and only if puαqj “ Zxiy and vβ “ puαq1 ¨ ¨ ¨ pu

αqj´1 ¨

wxx}α}max`1yy ¨ puαqj`1 ¨ ¨ ¨ pu
αq|u|.

Example 3.4. Consider the grammar G “ xtX,Y, Zu, ta, bu,∆y with rules

∆ “ tX Ñ Y Z, Y Ñ aY | ε, Z Ñ Zb | εu. Then Xx0y
pX,Y Zq
ùùùùñ Y x1yZx1y

pY,aY q
ùùùùñ

ax2yY x2yZx1y
pZ,Zbq
ùùùùñ ax2yY x2yZx3ybx3y

pY,εq
ùùùñ ax2yZx3ybx3y

pZ,εq
ùùùñ ax2ybx3y and

Xx0y
pX,Y Zq
ùùùùñ Y x1yZx1y

pY,aY q
ùùùùñ ax2yY x2yZx1y

pY,εq
ùùùñ ax2yZx1y

pZ,Zbq
ùùùùñ ax2yZx3ybx3y

pZ,εq
ùùùñ

ax2ybx3y are birthdate-annotated step sequences. �

A birthdate annotated step is further said to be depth-first whenever, in
the above definition of a bd-step, we have, moreover, that i is the most recent
birthdate among the nonterminals of u , i.e. i “ max tj | PkΞtjupu

αq ‰ 0u. We
write this fact as follows uα ùñ

df
vβ . A birthdate annotated step sequence is said to

be depth-first if all of its steps are depth-first. Finally, a step sequence w0
pγq1{j1
ùùùùñ

w1 . . . wn´1
pγqn{jn
ùùùùñ wn for some control word γ is said to be depth-first, written

w0
γ
ùñ
df

wn, if there exist vectors α1 P N||PkΞpw1q||, . . . , αn P N||PkΞpwnq|| such that

w
xx0yy
0

pγq1{j1
ùùùùñ

df
wα1

1 . . . w
αn´1

n´1

pγqn{jn
ùùùùñ

df
wαnn holds.
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Example 3.5. (contd. from Ex. 3.4) Consider the grammar G from Example

3.4. Then X
pX,Y Zq
ùùùùñ Y Z

pY,aY q
ùùùùñ aY Z

pZ,Zbq
ùùùùñ aY Zb

pY,εq
ùùùñ aZb

pZ,εq
ùùùñ ab is not

a depth-first derivation, whereas X
pX,Y Zq
ùùùùñ Y Z

pY,aY q
ùùùùñ aY Z

pY,εq
ùùùñ aZ

pZ,Zbq
ùùùùñ

aZb
pZ,εq
ùùùñ ab is a depth-first derivation. �

Since we are dealing with visibly pushdown grammars GP “ xΞ, pΘ,∆y
corresponding to programs P, for every production Q ÝÑ xxτQinitj τyyQ1 P ∆ we

have Qinitj ‰ Q1. Hence, we can assume wlog that for all productions p P ∆,
all nonterminals occurring in tailppq are distinct (e.g. X Ñ Z Z is not allowed).
As we show next, under that assumption, a control word uniquely identifies a
depth-first derivation:

Lemma 3.1. Let GP “ xΞ, pΘ,∆y be a visibly pushdown grammar corresponding
to a program P, Q P Ξ be a nonterminal, Q

γ
ùñ
df
u and Q

γ
ùñ
df
v be two depth-first

derivations of GP . Then they differ in no step, hence u “ v.

Proof. By contradiction, suppose that there exists a step that differs in the two
derivations from Q with control word γ P ∆˚. Thus, there exists an integer

i, 1 ď i ă |γ|, such that Q “ w0
pγq1
ùñ w1 ¨ ¨ ¨wi´1

pγqi
ùñ wi and wi contains

two occurrences of the nonterminal headppγqi`1q, that is, there exists p1 ‰ p2

pwiqp1
“ pwiqp2

“ headppγqi`1q. Two cases arise:
1. pwiqp1

and pwiqp2
result from the occurrence of some pγqj with j ď i which

contradicts that all nonterminals occurring in tailppγqjq are distinct.
2. pwiqp1

and pwiqp2
result from the occurrence of pγqk and pγql with k ‰

l respectively. Hence in the bd-step sequence thereof, their birthdate
necessarily differ. Therefore there is only one occurence of headppγqi`1q

with the most recent birthdate which contradicts the existence of two
distinct depth-first derivations.

Consequently, in a visibly pushdown grammar corresponding to a program,
a control word uniquely determines a step sequence, and, moreover, if this step
sequence is a derivation, the control word determines the word produced by
it. This remark leads to the definition of an alternative semantics of programs,
based on control words, instead of produced words. To this end, for each
non-final control location q P nFpPiq, of a program P “ xP1, . . . , Pny, where
1 ď i ď n, we define the semantics of a control word γ that induces a depth-first
derivation Q

γ
ùñ
df

w of the grammar GP “ xΞ, pΘ,∆y, as a set JγK Ď Zx ˆ Zx,

where x “ x1 ¨ . . . ¨ xn is the set of variables in P. The definition of JγK is by
induction on the structure of γ:
(a) if γ “ Q ÝÑ τ then JγK “

 

I ¨O | xIÓxi , OÓxiy P ρτ
(

, where Q P Ξ corre-
sponds to q P nFpPiq;

(b) if γ “ pQ ÝÑ τQ1q ¨ γ1 then

JγK “
 

I ¨O | DJ . xIÓxi , JÓxiy P ρτ and J ¨O P Jγ1K
(

where Q,Q1 P Ξ correspond to q, q1 P nFpPiq;

12



(c) if γ “ pQ ÝÑ xxτQinitj τyyQ1q ¨ γ1 then JγK is given by

tI ¨O | DJ,K,L P Zx. xIÓxi , JÓxj y P ρxxτ , J ¨K P Jγ1K,

xKÓxj , LÓxiy P ρτyy, xIÓxi , LÓxiy P φτ , L ¨O P Jγ2Ku ,

where Qinitj , Q1 P Ξ correspond to qinitj (the initial control location of Pj),

q1 P nFpPiq, and Qinitj

γ1
ùñ
df

w1, Q1
γ2
ùñ
df

w2, γ1 “ γ1γ2, respectively; since γ is

the control word of a depth-first derivation, the derivations of Qinitj and Q1
are unique, and will not interleave with each other.

The following lemma proves the equivalence of the semantics of a (tagged) word
generated by a visibly pushdown grammar and that of a control word that
produces it.

Lemma 3.2. Let GP “ xΞ, pΘ,∆y be a visibly pushdown grammar for a program
P “ xP1, . . . , Pny, x “ x1 ¨ . . . ¨ xn be the concatenation of all tuples of local
variables in P, Q P Ξ be a nonterminal corresponding to a non-final control
location q P nFpPiq, and Q

γ
ùñ
df
α be a depth-first derivation of GP , where α P pΘ˚

and γ P ∆˚. Then, we have:

JγK “
 

I ¨O P Zxˆx | xIÓxi , OÓxiy P JαK
(

.

Proof. By induction on |γ| ą 0. If |γ| “ 1, i.e. γ “ Q ÝÑ τ , we have α “ τ ,
hence JαK “ Jw_nwpαqK “ ρτ and the equality follows trivially. If |γ| ą 1, let
γ “ p ¨ γ1, for some p P ∆ and some γ1 P ∆˚. We distinguish two cases, based on
the type of p:

• p “ Q ÝÑ τ Q1: in this case α “ τ ¨ β and Q1
γ1

ùñ
df

β is a depth-first

derivation of GP . By the induction hypothesis, since |γ1| ă |γ|, we have
Jγ1K “

 

J ¨O | xJÓxi , OÓxiy P JβK
(

.

JγK “ tI ¨O | DJ . xIÓxi , JÓxiy P ρτ and xJÓxi , OÓxiy P JβKu
“ tI ¨O | xIÓxi , OÓxiy P Jw_nwpαqKu
“ tI ¨O | xIÓxi , OÓxiy P JαKu

• p “ Q ÝÑ xxτ Qinitj τyyQ1: in this case α “ xxτ β1 τyyβ2 and GP has depth-

first derivations Qinitj

γ1
ùñ
df

β1 and Q1
γ2
ùñ
df

β2. We have two symmetrical

cases: either γ1 “ γ1γ2 or γ1 “ γ2γ1. We consider the first case in the
following:

JγK “ tI ¨O | DJ,K,L P Zx . xIÓxi , JÓxj y P ρxxτ ,

J ¨K P Jγ1K, xKÓxj , LÓxiy P ρτyy,
xIÓxi , LÓxiy P φτ , L ¨O P Jγ2Ku

We apply the induction hypothesis to γ1 and γ2, since |γ1| ă |γ| and |γ2| ă |γ|,
and obtain:

JγK “ tI ¨O | DJ,K,L P Zx . xIÓxi , JÓxj y P ρxxτ ,

xJÓxj ,KÓxj y P Jβ1K, xKÓxj , LÓxiy P ρτyy,
xIÓxi , LÓxiy P φτ , xLÓxi , OÓxiy P Jβ2Ku

“ tI ¨O | xIÓxi , OÓxiy P Jw_nwpαqKu
“ tI ¨O | xIÓxi , OÓxiy P JαKu

13



Consequently, the semantics of a program P “ xP1, . . . , Pny can be equiva-
lently defined considering the sets

JPKq “ txIÓxi , OÓxiy | I ¨O P
Ť

Q
γ
ùñ
df
w
JγKu ,

for each non-final state q P nFpPiq of the procedure Pi of P.

4 Underapproximating the Program Semantics
In what follows we define context-free language underapproximations by filtering
out derivations. In particular, in this section, we define a family of underap-
proximations of JPK, called bounded-index underapproximations. Then we show
that each k-index underapproximation of the semantics of a (possibly recursive)
program P coincides with the semantics of a non-recursive program computable
from P and k.

4.1 Index-bounded derivations
The central notion of this section are index-bounded derivations, i.e. derivations
in which each step has a limited budget of nonterminals. This notion is the key
to our underapproximation method.

For a given integer constant k ą 0, a word u P pΣYΞq˚ is said to be of index
k, if u contains at most k occurrences of nonterminals (formally, |uÓΞ| ď k ). A
step uñ v is said to be k-indexed, denoted u ùñ

pkq
v, if and only if both u and

v are of index k. As expected, a step sequence is k-indexed if all its steps are
k-indexed. For instance, both derivations from Ex. 3.5 are of index 2.

Lemma 4.1. For every grammar G “ xΞ,Σ,∆y the following properties hold:

(1) ùñ
pkq

˚ Ď ùùùñ
pk`1q

˚ for all k ě 1

(2) ùñ “
Ť8

k“1 ùñ
pkq

˚

(3) for all X,Y P Ξ, XY ùñ
pkq

˚ w P Σ˚ if and only if there exist w1, w2 P Σ˚,

such that w “ w1w2 and either: (i) X ùùùñ
pk´1q

˚ w1 and Y ùñ
pkq

˚ w2, or

(ii) Y ùùùñ
pk´1q

˚ w2 and X ùñ
pkq

˚ w1.

Proof. The proof of points (1) and (2) follow immediately from the definition of
ùñ
pkq

˚. Let us now turn to the proof of point (3) (only if). First we define w1 and

w2. Consider the step sequence XY ùñ
pkq

˚ w and look at the last step. It must

be of the form uZv ùñ
pkq

˚ uyv “ w, where u, v, y P Σ˚, and one of the following

must hold: Z has been generated from either X or Y . Suppose that Z stems
from Y (the other case is treated similarly). In this case, transitively remove
from the step-sequence all the steps transforming the rightmost occurrence of

14



Y . Hence we obtain a step sequence XY ùñ
pkq

˚ w1Y . Then w2 is the unique

word satisfying w “ w1w2. Since XY ùñ
pkq

˚ w1Y , by removing the occurrence of

Y in rightmost position at every step, we find that X ùùùñ
pk´1q

˚ w1, and we are

done. Having Z stemming from X yields Y ùùùñ
pk´1q

˚ w2. For the proof of the

other direction (if) assuming (i) (the other case is similar), it is easily seen that
XY ùñ

pkq

˚ w1Y ùñ
pkq

˚ w1w2.

The previous definitions extend naturally to bd-steps and bd-step sequences,
and we define Υpkq “ twβ P

`

pΞ Y ΣqN
˘˚
| |wβÓΞN | ď ku the set of bd-words

with at most k occurrences of nonterminals. We write the fact that a bd-step
sequence uα ñ˚ vβ is both k-indexed and depth-first as uα ùùùñ

dfpkq

˚ vβ . For any

symbol X P Ξ and constant k ą 0, we define the languages:

L
pkq
X pGq “ tw P Σ˚ | X ùñ

pkq

˚ wu

ΓdfpkqpGq “ tγ P ∆˚ | Duα, vβ P Υpkq : uα
γ

ùùùñ
dfpkq

vβu .

Example 4.1. (contd. from Ex. 3.2) Inspecting the grammar GP from Ex.3.2
reveals that

LQinit
1
pGPq “ tpτ1xxτ2q

n
τ4 pτ2yyτ3q

n
| n P Nu .

For each value of n we give a 2-index derivation capturing the word: repeat n
times the steps

Qinit
1

pb1p
c
2

ùùñ τ1xxτ2Q
init
1 τ2yyQ3

pa3
ùñ τ1xxτ2Q

init
1 τ2yyτ3

followed by the step

Qinit
1

pa4
ùñ τ4 .

Therefore the 2-index approximation of GP shows that LQinit
1
pGPq “ L

p2q

Qinit
1
pGPq.

�

Example 4.2. (contd. from Ex. 3.5) For the grammar G from Ex. 3.5, we
obtain the following control sets:

Γdfp1q “ pY, aY q˚pY, εq Y pZ,Zbq˚pZ, εq

Γdfp2q “ pX,Y ZqpY, aY q˚pY, εqpZ,Zbq˚pZ, εqY

pX,Y ZqpZ,Zbq˚pZ, εqpY, aY q˚pY, εq Y Γdfp1q . �

We recall a known result.

Proposition 1 ([20]). For all k ě 1, G “ pΞ,Σ,∆q and X P Ξ, we have
L
pkq
X pGq “ L̂XpΓ

dfpkq, Gq.

Finally, given k ě 1, we define the k-index semantics of P as JPKpkq “
xJq1Kpkq, . . . , JqmKpkqy, where nFpPq “ tq1, . . . , qmu and the k-index semantics of
a non-final control state q P nFpPiq of a procedure Pi of the program P is the
relation JqK “ JPKpkqq Ď Zxi ˆ Zxi , defined as:

JPKpkqq “ txIÓxi , OÓxiy | I ¨O P
Ť

Q
γ

ùùùñ
dfpkq

w
JγKu .
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Figure 2: The graph AdfpkqpGq for k ě 2 and for the grammar G of Ex. 3.5

4.2 Depth-first index-bounded control sets
For a bd-word wα, let

rwαs “ PkΞt}α}maxupw
αq ¨ PkΞt}α}max´1upwαq ¨ ¨ ¨PkΞt0upw

αq .

Each symbol in rwαs is a ||Ξ||-dimensional vector, that is rwαs P pN||Ξ||q˚. There-
fore with a slight abuse, we can view each of these tuples as a multiset on Ξ.
Moreover, each tuple PkΞtiupw

αq in rwαs is the multiset of nonterminals that
occur in wα with the same birthdate 0 ď i ď }α}max, and the elements of rwαs
are ordered in the reversed order of their birthdates. For instance, the first tuple
PkΞt}α}maxupwαq is the multiset of the most recently added nonterminals. Notice
that for each bd-word u we have rus “ 0 if u P pΣNq˚. Finally, let 0 be the
identity element for concatenation, i.e. rwαs ¨ 0 “ 0 ¨ rwαs “ rwαs.

Example 4.3. (contd. from Ex. 3.5) For the bd-step sequence Xx0y ùñ Y x1yZx1y ùñ
ax2yY x2yZx1y ùñ ax2yY x2yZx3ybx3y (Ex. 3.5) we have

“

Xx0y
‰

“ tXu,
“

Y x1yZx1y
‰

“

tY, Zu,
“

ax2yY x2yZx1y
‰

“ tY u ¨ tZu and
“

ax2yY x2yZx3ybx3y
‰

“ tZu ¨ tY u . �

The r.s operator is lifted from bd-words to sets of bd-words, i.e. subsets of
`

pΣYΞqN
˘˚. The set

“

Υpkq
‰

is of particular interest in the following developments.
Next we define the graph AdfpkqpGq “ x

“

Υpkq
‰

, p∆˚, ¨q,Ñy, where
“

Υpkq
‰

is the
set of vertices, ∆ is the set of edge labels and Ñ is the edge relation, defined as:
rv
pZ,wq
ÝÝÝÑ rw if and only if:

• rv “ prvq1 ¨ rvt, where prvq1 P N||Ξ||, and PkΞpZq ď prvq1, i.e. Z occurs with
maximal birthdate rv, that is, it occurs in prvq1, and

• rw “ PkΞpwq ¨ pprvq1 ´ PkΞpZqq ¨rvt, i.e. Z is removed from its multiset prvq1,
and the nonterminals of w are added, with maximal birthdate to obtain rw.

Next, define LpAdfpkqpGqq “ tγ P ∆˚ | rv
γ
ÝÑ rw in AdfpkqpGqu. For example,

Fig. 2 shows the Adfpkq graph for the grammar G from Ex. 3.5. The next lemma
proves that the paths of AdfpkqpGq represent the control words of the depth-first
derivations of G of index k. In the following, we omit the argument G from
ΓdfpkqpGq, or AdfpkqpGq, when it is clear from the context.
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Lemma 4.2. Given a grammar G “ xΞ,Σ,∆y, and k ą 0, for each X P Ξ and
γ P ∆˚, there exists a derivation X

γ
ùùùñ
dfpkq

w, for some w P Σ˚, if and only if

rXs
γ
ÝÑ 0 in AdfpkqpGq.

Proof. “ñ” We shall prove the following more general statement. Let uα
γ

ùùùñ
dfpkq

wβ be a k-indexed depth-first bd-step sequence. By induction on |γ| ě 0, we
show the existence of a path ruαs γ

ÝÑ
“

wβ
‰

in Adfpkq.
For the base case |γ| “ 0, we have uα “ wβ which yields ruαs “

“

wβ
‰

and
since uα P Υpkq by definition of Γdfpkq we have that ruαs P

“

Υpkq
‰

and we are
done.

For the induction step |γ| ą 0, let vη
pZ,xq
ùùùñ
dfpkq

wβ be the last step of the sequence,

for some pZ, xq P ∆, i.e. γ “ σ ¨ pZ, xq with σ P ∆˚. By the induction hypothesis,
Adfpkq has a path ruαs σ

ÝÑ rvηs. Let rvηs “ v1 ¨ rvt, where v1 “ prvηsq1 P N|Ξ|, and
rvt P pN|Ξ|q˚ is a sequence of multisets of nonterminals. It remains to show that
“

wβ
‰

P Υpkq, PkΞpZq ď v1 and
“

wβ
‰

“ PkΞpxq ¨ pv
1 ´ PkΞpZqq ¨ rvt to conclude

that Adfpkq has an edge rvηs
pZ,xq
ÝÝÝÑ

“

wβ
‰

, hence a path ruαs γ
ÝÑ

“

wβ
‰

.

Since vη
pZ,xq{j
ùùùùñ
dfpkq

wβ for some 1 ď j ď |vη| we have that pvηqj “ Zxiy

where i “ max tj | PkΞtjupv
ηq ‰ 0u and wβ “ pvηq1 . . . pv

ηqj´1 ¨ x
xx}η}max`1yy ¨

pvηqj`1 . . . pv
ηq|vη|. It is easily seen that }β}max “ }η}max ` 1. Moreover, since

i is the maximal birthdate among the non-terminals of vη, we have rvηs “
PkΞtiupv

ηq . . . PkΞt0upv
ηq, hence v1 “ PkΞtiupv

ηq and rvt “ PkΞti´1upvηq . . . PkΞt0upv
ηq.

Also we have PkΞtjupw
βq “ 0 for all j, i ă j ď }η}max, PkΞtiupw

βq “ PkΞtiupv
ηq´

PkΞtiupZ
xiyq and PkΞt`upw

βq “ PkΞt`upv
ηq for all `, 0 ď ` ă i. Using the forego-

ing properties of wβ the following equalities are easy to check:
“

wβ
‰

“ PkΞt}η}max`1upwβq ¨ PkΞt}η}maxupwβq . . . PkΞt0upw
βq

“ PkΞt}η}max`1upw
βq ¨ PkΞtiupw

βq ¨ PkΞti´1upwβq . . . PkΞt0upw
βq

“ PkΞpxq ¨ PkΞtiupw
βq ¨ PkΞti´1upwβq . . . PkΞt0upw

βq

“ PkΞpxq ¨ pPkΞtiupv
ηq ´ PkΞtiupZ

xiyqq . . . PkΞt0upw
βq

“ PkΞpxq ¨ pv
1 ´ PkΞpZqq ¨ PkΞti´1upwβq . . . PkΞt0upw

βq

“ PkΞpxq ¨ pv
1 ´ PkΞpZqq ¨ PkΞti´1upvηq . . . PkΞt0upv

ηq

“ PkΞpxq ¨ pv
1 ´ PkΞpZqq ¨ rvt

This concludes that
“

wβ
‰

“ PkΞpzq ¨ pv
1 ´PkΞpZqq ¨ rvt, and since wβ P Υpkq, we

obtain that rvηs
pZ,xq
ÝÝÝÑ

“

wβ
‰

is an edge in Adfpkq, and finally that ruαs γ
ÝÑ

“

wβ
‰

is a path in Adfpkq.
“ð” We prove a more general statement. Let ru

γ
ÝÑ rw be a path of AdfpkqpGq.

We show by induction on |γ| that there exist bd-words uα, wβ P Υpkq, such that
ruαs “ ru,

“

wβ
‰

“ rw, and uα
γ

ùùùñ
dfpkq

wα.

The base case |γ| “ 0 is trivial, because ru “ rw and since ru P
“

Υpkq
‰

then
there exists uα P Υpkq such that ruαs “ ru, and we are done.

For the induction step |γ| ą 0, let γ “ σ¨pZ, xq, for some production pZ, xq P ∆
and σ P ∆˚. By the induction hypothesis, there exist bd-words uα, vη P Υpkq
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such that ru “ ruαs
σ
ÝÑ rvηs

pZ,xq
ÝÝÝÑ rw is a path in Adfpkq, and uα

σ
ùùùñ
dfpkq

vη is a

k-index bd-step sequence. By the definition of the edge relation in Adfpkq, it
follows that rvηs “ PkΞtiupv

ηq ¨rvt where i “ max tj | PkΞtiupv
ηq ‰ 0u. Moreover,

there exists j, 1 ď j ď |vη| such that pvηqj “ Zxiy since PkΞpZq ď PkΞtiupv
ηq.

Now define wβ “ pvηq1 . . . pvηqj´1 ¨x
xx}η}max`1yy ¨ pvηqj`1 . . . pv

ηq|vη |. It is routine

to check vη
pZ,xq{j
ùùùùñ

df
wβ holds. Next we show, rw “

“

wβ
‰

which concludes the
proof.

rw

“PkΞpxq¨pPkΞtiupv
ηq´PkΞpZqq¨rvt

“PkΞt}η}max`1upxxx}η}max`1yyq¨pPkΞtiupv
ηq´PkΞtiupZ

xiyqq¨rvt

“PkΞt}η}max`1upwβq¨pPkΞtiupv
ηq´PkΞtiupZ

xiyqq¨rvt

“PkΞt}η}max`1upwβq¨pPkΞtiupv
ηq´PkΞtiupZ

xiyqq¨

PkΞti´1upvηq . . . PkΞt0upv
ηq

Since i “ max tj | PkΞtiupv
ηq ‰ 0u; PkΞt`upw

βq “ PkΞt`upv
ηq for 0 ď ` ă i and

PkΞtiupw
βq “ PkΞtiupv

ηq´PkΞtiupZ
xiyq show that

“PkΞt}η}max`1upwβq¨PkΞtiupw
βqPkΞti´1upwβq . . . PkΞt0upw

βq

“PkΞt}η}max`1upwβq¨PkΞtiupw
βqPkΞti´1upwβq . . . PkΞt0upw

βq

“
“

wβ
‰

Consequently, we have the following (also proved in [22]):

Corollary 1. For all k ě 1, G “ pΞ,Σ,∆q and X P Ξ, we have Γdfpkq is regular.

4.3 Bounded-index Underapproximations of Control Struc-
tures

We start describing our program transformation, from a recursive program to
a non-recursive program in which all computation traces correspond to words
generated by an index-bounded grammar. In the beginning we choose to ignore
the data manipulations, and give the non-recursive program only in terms of
transitions between control locations and (non-recursive) calls. Then we show
that the execution traces of this new program match the depth-first index-
bounded derivations of the visibly pushdown grammar of the original program.

Let P “ xP1, . . . , Pny be a recursive program. For the moment, let us assume
that P has no (local) variables, and thus, all the labels of the internal transitions,
as well as all the call, return and frame relations are trivially true. As we did
previously, we assume a fixed ordering q1, . . . , qm on the set nFpPq of non-final
states of P. Let GP “ xΞ, pΘ,∆y be the visibly pushdown grammar associated
with P, where each non-final state q of P is associated a nonterminal Q P Ξ.
Then, for a given constant K ą 0, we define a non-recursive program HK that
captures only the traces of P corresponding to K-index depth-first derivations
of GP (Algorithm 1). Formally, we define HK “ xquery0, query1, . . . , queryKy,
i.e. the program is structured in K ` 1 procedures, such that:
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• query0 consists of a single statement assume false, i.e. no execution going
through a call of query0 is possible,

• all executions of queryk, for each 1 ď k ď K correspond to k-index
depth-first derivations of GP .

We distinguish between grammar productions of type (a) Q ÝÑ τ , (b) Q ÝÑ τQ1

and (c) Q ÝÑ xxτ,Qinitj τyy Q1 (see Ex. 3.2) of the visibly pushdown grammar

G “ xΞ, pΘ,∆y. Since Ξ and pΘ are finite sets, we associate each nonterminal Q P Ξ

an integer 1 ď IQ ď ||Ξ||, each alphabet symbol τ P pΘ an integer 1 ď Iτ ď ||pΘ||,
and define the productions by the following formulae:

πapx, yq ”
ł

pQÝÑτqP∆

x “ IQ ^ y “ Iτ

πbpx, y, zq ”
ł

pQÝÑτQ1qP∆

x “ IQ ^ y “ Iτ ^ z “ IQ1

πcpx, y, z, t, sq ”
ł

pQÝÑxxτQinit
j τyyQ1qP∆

`

x “ IQ ^ y “ Ixxτ^

z “ IQinit
j
^ t “ Iτyy ^ s “ IQ1

˘

It is easy to see that the sizes of the πa, πb and πc formulae are linear in the
size of P (there is one disjunctive clause per production of GP , and each such
production corresponds to a transition of P). The translation of P into H can
hence be implemented as a linear time source-to-source program transformation.

Algorithm 1: proc querykpXq for 1 ď k ď K

begin
var PC, y, z ;

asgnk0 : PCÐ X ;
startk: goto prodka or prod

k
b or prod

k
c ;

prodka: assume Dτ. πapPC, τq ; /* QÑ τ */
asgnka: assume true ;

return;
prodkb : havoc (y) ;

assume Dτ. πbpPC, τ,yq ; /* QÑ τ Q1 */
asgnkb : PCÐ y ;

goto startk ;
prodkc : havoc (y,z) ;

assume Dτ, τ 1. πcpPC, τ,y, τ 1, zq ; /* QÑτ Qinit
j τ 1Q1 */

ndetk: goto swapk or asgnkc ;
swapk: swap (y, z) ;
asgnkc : PCÐ z ;

queryk´1pyq ;
goto startk;

end

Next, we show a mapping from the paths of Adfpkq onto the feasible interpro-
cedural valid paths of queryk. To relate these paths, we need to introduce the
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Given s P
“

Υpkq
‰

Y tsinku and p P ∆ define δps, pq “ s1 if s p
ÝÑ s1 holds in Adfpkq

for some s1, otherwise (s p
ÝÑ s1 holds for no s1) then δps, pq “ sink . The output

mapping λ is defined as follows:
1. λptXu ¨ rv, pX, τqq “ startk´|rv|prodk´|rv|a asgn

k´|rv|
a startk´|rv|`1, if rv ‰ ε;

2. λptXu, pX, τqq “ startk prodka asgnka
3. λptXu ¨ rv, pX, τ X 1qq “ startk´|rv|prod

k´|rv|
b asgn

k´|rv|
b startk´|rv|

4. λptXu ¨ rv, pX, τ X1 τ
1X2qq “ startk´|rv|prodk´|rv|c ndetk´|rv|

5. λp
 

Qinit, Q1
(

¨ rv, pQinit, τ Q2qq “

asgn
k´|rv|
c asgn

k´|rv|´1
0 startk´|rv|´1prod

k´|rv|´1
b asgn

k´|rv|´1
b startk´|rv|´1

6. λp
 

Qinit, Q1
(

¨ rv, pQ1, τqq “

swapk´|rv|asgn
k´|rv|
c asgn

k´|rv|´1
0 startk´|rv|´1prodk´|rv|´1

a asgn
k´|rv|´1
a startk´|rv|

7. λp
 

Qinit, Q1
(

¨ rv, pQ1, τ Q2qq “

swapk´|rv|asgn
k´|rv|
c asgn

k´|rv|´1
0 startk´|rv|´1prod

k´|rv|´1
b asgn

k´|rv|´1
b startk´|rv|´1

8. λps, pq “ K, for all s and p, such that δps, pq “ sink holds.

Figure 3: Definition of the mappings δ and λ for SC k
Q.

notion of gsm mappings.

Definition 1 ([14]). A generalized sequential machine, abbreviated gsm, is a
6-tuple S “ xK,Σ,∆, δ, λ, q1y where (1) K is a finite non-empty set of states;
(2) Σ and ∆ respectively are input and output alphabet; (3) δ and λ are mappings
from K ˆ Σ into K and ∆˚, respectively; (4) q1 P K is the start state. The
functions δ and λ are extended by induction to K ˆ Σ˚ by defining for every
state q, x P Σ˚, and y P Σ:
• δpq, εq “ q and λpq, εq “ ε.
• δpq, xyq “ δpδpq, xq, yq and λpq, xyq “ λpq, xqλpδpq, xq, yq.

The operation defined by Spxq “ λpq1, xq for each x P Σ˚ is called a gsm mapping.

We define the gsm SC k
Q “ x

“

Υpkq
‰

Y tsinku,∆,L, δ, λ, rQsy upon Adfpkq,
where L denotes the statement labels found in query0, . . . , queryk; and the
mappings δ and λ are given by the rules of Fig. 3.

Lemma 4.3. For a visibly pushdown grammar G “ xΞ, pΘ,∆y, and k ą 0, for
each Q P Ξ the set of feasible interprocedural valid paths of querykpQq coincides
with the set tSC k

Qpγq | rQs
γ
ÝÑ 0 in Adfpkqu.

Proof. The feasible interprocedural valid paths of querykpQq at Algorithm 1

matches sequences of the form σ0
δ0
ÝÑ σ1

δ1
ÝÑ . . .

δn´1
ÝÝÝÑ σn, where each σi P Ξ˚ is

a stack, i.e. a possibly empty sequence of frames each containing a snapshot of
the value of the local variable PC, δi P ∆ are productions of G. The sequence of
stacks σ0, σ1, . . . , σn are snapshots of values of the local variable PC between two
consecutive visit to a start label or between the last visit to a start label and
the last return. Instances of such consecutive visits are given by startk, prodka,
asgnka; or startk, prodka, asgnka, return, start

k`1 (when returning from a
previous call); or startk, prodkc , ndet

k, swapk, asgnkc , start
k´1 (immediately

after entering the call queryk´1).
When Algorithm 1 is started with a call to querykpQq, the first stack in the

trace is Q. The set of stack sequences are generated by a labelled graph defined

20



by the following rules, where the stack on both sides of each rule are words
w P Ξ˚ such that |w| ď k.

(a) Q ¨ σ
pQ,τq
ÝÝÝÑ σ

(b) Q ¨ σ
pQ,τQ1q
ÝÝÝÝÝÑ Q1 ¨ σ

(c) we have either (i) Q ¨ σ
pQ,xxτQ1τyyQ2q
ÝÝÝÝÝÝÝÝÝÑ Q1 ¨Q2 ¨ σ, or (ii) Q ¨ σ

pQ,xxτQ1τyyQ2q
ÝÝÝÝÝÝÝÝÝÑ

Q2 ¨Q1 ¨ σ
Following the previous definition, we find that the set of sequences of control
labels tSC k

Qpγq | Q
γ
ÝÑ εu coincides with the feasible interprocedural valid path

of querykpQq.
Next we show that Q γ

ÝÑ ε is a valid stack sequence of querykpQq if and only

if rQs γ
ÝÑ 0 in AdfpkqpGq. For this, consider the following relation between the

stacks σ P Ξ˚ such that |σ| ď k and words rw P
“

Υpkq
‰

: we write σ Î rw if and
only if exactly one of the following holds:
(1) |σ| “ | rw| and, for all 1 ď i ď | rw| : tpσqiu “ p rwqi, or
(2) |σ| “ | rw| ` 1, p rwq1 “ tpσq1, pσq2u, and for all 1 ă i ď | rw| : tpσqi`1u “ p rwqi.
The proof goes by induction and shows the following stronger statement relating
the reachable stacks and the states of Adfpkq reachable from rQs: for any stack
sequence Q γ

ÝÑ σ, there exists a path rQs γ
ÝÑ rw in Adfpkq, such that σ Î rw, and

vice versa.
By putting together the previous result about the feasible interprocedural

valid paths of querykpQq we find that they coincide with the set tSC k
Qpγq |

rQs
γ
ÝÑ 0 in Adfpkqu.

4.4 Bounded-index Underapproximations of Programs
Algorithm 1 implements the transformation of the control structure of a recursive
program P into a non-recursive program HK “ xquery0, . . . , queryKy, which
simulates its K-index derivations (actually, the control words thereof). In this
section we extend this construction to programs with integer variables and data
manipulations (Algorithm 2), by defining a set of procedures queryk, for all
0 ď k ď K, such that each procedure queryk has five sets of local variables, all
of the same cardinality as x: two sets, named xI and xO, are used as input
variables, whereas the other three sets, named xJ ,xK and xL are used locally
by queryk. Besides, each queryk has local variables called PC, τ , y, z and input
variable X. There are no output variables in queryk. Let Vkquery denote the
tuple of local variables of queryk, and let VKH “ V1

query ¨ . . . ¨ VKquery be the tuple
of all variables of HK .

For two tuples of variables x and y of equal length, and a valuation ν P Zx,
we denote by νry{xs the valuation that maps pyqi into pνpxqqi, for all 1 ď i ď |x|.
The following lemma is needed in the proof of Thm. 1.

Lemma 4.4. Let GP “ xΞ, pΘ,∆y be a visibly pushdown grammar for a program
P “ xP1, . . . , Pny, let x “ x1 ¨ . . . ¨ xn be the tuple of variables in P, and let
HK “ xquery0, . . . , queryKy be the program defined by Algorithm 2. Given a
nonterminal Q P Ξ, corresponding to a non-final control state q P nFpPq, γ P ∆˚,
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Algorithm 2: proc querykpX,xI ,xOq for 1 ď k ď K

begin
var xJ ,xK ,xL;
var PC, τ,y, z ;

asgnk0 : PCÐ X ;
startk: goto prodka or prod

k
b or prod

k
c ;

prodka: havoc (τ);
assume πapPC, τq; /* QÑ τ */

asgnka: assume ρτ pxI ,xOq;
return;

prodkb : havoc (τ,y);
assume πbpPC, τ,yq; /* QÑ τ Q1 */
havoc (xJ);
assume ρτ pxI ,xJq;
xI Ð xJ ;

asgnkb : PCÐ y;
goto startk ;

prodkc : havoc (τ,y, z);
assume πcpPC, xxτ,y, τyy, zq; /* QÑxxτQinit

j τyyQ1 */
havoc (xJ ,xK ,xL);
assume ρxxτ pxI ,xJq ; /* call relation */
assume ρτyypxK ,xLq ; /* return relation */
assume φτ pxI ,xLq ; /* frame relation */

ndetk: goto swapk or asgnkc ;
swapk: swap(y, z);

swap(xJ ,xL);
swap(xK ,xO);

asgnkc : xI Ð xL;
PCÐ z;
queryk´1py,xJ ,xKq;
goto startk;

end
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Example 4.4. Let us consider an execution of query for the

call query2pQinit
1 , p 1 0 q, p 1 2 qq following Qinit

1

pb1p
c
2

ùñ τ1xxτ2Qinit
1 τ2yyQ3

pa3
ùñ

τ1xxτ2Qinit
1 τ2yyτ3

pa4
ùñ τ1xxτ2τ4τ2yyτ4. In the table below, the first row (labelled

PC) gives the value of local variable PC when control hits the labelled statement
given at the second row (labelled ip). The third row (labelled xI{xO) represents
the content of the two arrays. xI{xO “ p a b qp c d q says that, in xI , x has value
a and z has value b; in xO, x has value c and z has value d.

PC Qinit
1 ´ Q2 ´ ´

ip start2 prod2
b pp

b
1q start2 prod2

c pp
c
2q swap2

xI{xO p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 1 0 qp 1 2 q

PC Q3 ´ Qinit
1 ´

ip start1 prod1
a pp

a
3q start2 prod2

a pp
a
4q

xI{xO p 1 0 qp 1 2 q p 1 0 qp 1 2 q p 0 0 qp 42 0 q p 0 0 qp 42 0 q

The execution of query2pQinit
1 , p 1 0 q, p 1 2 qq starts on row 1, column 1 and pro-

ceeds until the call to query1pQ3, p 1 0 q, p 1 2 qq at row 2, column 1 (the out
of order case). The latter ends at row 2, column 2, where the execution of
query2pQinit

1 , p 1 0 q, p 1 2 qq resumes. Since the execution is out of order, and
the previous havocpxJ ,xK ,xLq results into xJ “ p 0 0 q, xK “ p 42 0 q and
xL “ p 1 0 q (this choice complies with the call relation), the values of xI{xO are
updated to p 0 0 q{p 42 0 q. �

w P pΘ˚, and 1 ď k ď K, such that Q
γ

ùùùñ
dfpkq

w, we have:

JγK “
!

`

IÓxI ¨xO
˘

rx ¨ x{xI ¨ xOs | I ¨O P JSC k
QpγqK

)

where JγK Ď Zxˆx and JSC k
QpγqK Ď ZVKH .

Proof. By induction on |γ| ą 0, applying a case split on the type of the first
production in γ.

The following theorem summarizes the first major result in this paper, namely
that any K-index underapproximation of the semantics of a recursive program
P can be computed by looking at the semantics of a non-recursive program HK ,
obtained from P by a syntactic source-to-source transformation.

Theorem 1. Let P “ xP1, . . . , Pny be a program, x “ x1 ¨ . . . ¨ xn be the
tuple of variables in P, and let q P nFpPiq be a non-final control state of
Pi “ xxi,x

in
i ,x

out
i , Si, q

init
i , Fi,∆iy. Moreover, let HK “ xquery0, . . . , queryKy

be the program defined by Algorithm 2. For any 1 ď k ď K, we have:

JPKpkqq “ txprI ÓxI rx{xI sqÓxi , p
rI ÓxO rx{xOsqÓxiy |

rI ¨ rO P JHKKqueryk , rIpXq “ Qu .

Proof. Let GP “ xΞ, pΘ,∆y be the visibly pushdown grammar corresponding to
P. By definition, we have

JPKpkqq “

!

xIÓxi , OÓxiy | I ¨O P
Ť

Q
γ

ùùùñ
dfpkq

w
JγK

)
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”Ď” Let Q
γ

ùùùñ
dfpkq

w be a derivation of GP , and I ¨O P JγK be a tuple from Zxˆx.

By Lemma 4.2, rQs γ
ÝÑ 0 is a path in AdfpkqpGPq, and by Lemma 4.3, SC k

Qpγq is

a feasible interprocedurally valid path of querykpQq. By Lemma 4.4, there exists
tuples rI, rO such that rI ¨ rO P JSC k

QpγqK, and I ¨ O “

´

rIÓxI ¨xO

¯

rx ¨ x{xI ¨ xOs.

We obtain thus I “ rI ÓxI rx{xI s and O “ rI ÓxO rx{xOs.
”Ě” Let rI, rO P ZVkquery , such that rI ¨ rO P JHKKqueryk and rIpXq “ Q. Then
there exists a feasible interprocedurally valid path π of querykpQq, such that
rI ¨ rO P JπK. By Lemma 4.3, there exists a control word γ P ∆˚, such that
rQs

γ
ÝÑ 0 and π “ SC k

Qpγq. By Lemma 4.4,
´

rIÓxI ¨xO

¯

rx ¨ x{xI ¨ xOs P JγK. By

Lemma 4.2, we have that Q
γ

ùùùñ
dfpkq

w is a derivation of GP . We can conclude

that xprI ÓxI rx{xI sqÓxi , prI ÓxO rx{xOsqÓxiy P JPKq.

As a last point, we observe that the bounded-index sequence tJPKpkqu8k“1

satisfies several conditions that advocate its use in program analysis, as an
underapproximation sequence. The subset order and set union is extended to
tuples of relations, point-wise.

JPKpkq Ď JPKpk`1q for all k ě 1 pA1q

JPK “
Ť8

k“1JPKpkq pA2q

Condition (A1) requires that the sequence is monotonically increasing, the limit
of this increasing sequence being the actual semantics of the program (A2). These
conditions follow however immediately from the two first points of Lemma 4.1.
To decide whether the limit JPK has been reached by some iterate JPKpkq, it is
enough to check that the tuple of relations in JPKpkq is inductive with respect to
the statements of P. This can be implemented as an SMT query.

5 Completeness of Index-Bounded Underapprox-
imations for Bounded Programs

In this section we define a class of recursive programs for which the precise
summary semantics of each program in that class is effectively computable. We
show for each program P in the class that (a) JPK “ JPKpkq for some value k ě 1,
bounded by a linear function in the total number locpPq of control states in P,
and moreover (b) the semantics of Hk is effectively computable (and so is that
of JPKpkq by Thm. 1).

Given an integer relation R Ď Zn ˆ Zn, its transitive closure R` “
Ť8

i“1R
i,

where R1 “ R and Ri`1 “ Ri ˝ R, for all i ě 1. In general, the transitive closure
of a relation is not definable within decidable subsets of integer arithmetic, such
as Presburger arithmetic. In this section we consider two classes of relations,
called periodic, for which this is possible, namely octagonal relations, and finite
monoid affine relations.
Octagonal relation An octagonal relation is defined by a finite conjunction of

constraints of the form ˘x˘y ď c, where x and y range over the set xYx1,
and c is an integer constant. The transitive closure of any octagonal relation
has been shown to be Presburger definable and effectively computable [8].
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Linear affine relation A linear affine relation is defined by a formulaRpx,x1q ”
Cx ě d ^ x1 “ Ax ` b, where A P Znˆn, C P Zpˆn are matrices and
b P Zn, d P Zp. R is said to have the finite monoid property if and only if
the set tAi | i ě 0u is finite. It is known that the finite monoid condition
is decidable [7], and moreover that the transitive closure of a finite monoid
affine relation is Presburger definable and effectively computable [12, 7].

We define a bounded-expression b to be a regular expression of the form
b “ w˚1 . . . w

˚
d , where d ě 1 and each wi is a non-empty word. A language (not

necessarily context-free) L over alphabet Σ is said to be bounded if and only if L
is included in (the language of) a bounded expression b.

Theorem 2 ([21]). Let G “ pΞ,Σ,∆q be a grammar, and X P Ξ be a nontermi-
nal, such that LXpGq is bounded. Then there exists a linear function B : NÑ N
such that LXpGq “ L

pkq
X pGq for some 1 ď k ď Bp||Ξ||q.

If the grammar in question is GP , for a program P, then clearly ||Ξ|| is
bounded by the number of control locations in P, by the definition of GP . The
class of programs for which our method is complete is defined below:

Definition 2. Let P be a program and GP “ pΞ, pΘ,∆q be its corresponding
visibly pushdown grammar. Then P is said to be bounded periodic if and only if:

1. LXpGPq is bounded for each X P Ξ;
2. each relation ρτ occurring in the program, for some τ P pΘ, is periodic.

Example 5.1. (continued from Ex. 4.1) Recall that LQinit
1
pGPq “ L

p2q

Qinit
1
pGPq

which equals to the set t
`

τ1xxτ2
˘n
τ4
`

τ2yyτ3
˘n
| n ě 0u Ď

`

τ1τ2xx
˘˚
τ˚4

`

τ2yyτ3
˘˚. �

Concerning condition 1, it is decidable [14] and previous work [16] defined a
class of programs following a recursion scheme which ensures boundedness of
the set of interprocedurally valid paths.

This section shows that the underapproximation sequence tJPKpkqu8k“1, de-
fined in Section 4, when applied to any bounded periodic programs P, always
yields JPK in at most BplocpPqq steps, and moreover each iterate JPKpkq is com-
putable and Presburger definable. Furthermore the method can be applied as
it is to bounded periodic programs, without prior knowledge of the bounded
expression b Ě LQpGPq.

The proof goes as follows. Because P is bounded periodic, Thm. 2 shows
that the semantics JPK of P coincide with its k-index semantics JPKpkq for some
1 ď k ď BplocpPqq. Hence, the result of Thm. 1 shows that for each q P nFpPq,
the k-index semantics JPKpkqq “ txIÓxI , IÓxOy | I ¨ O P JHKKqueryk , IpXq “ Qu,
that is, the semantics JPKpkqq is computed from that of procedure queryk called
with X “ Q. Then, because P is bounded, we show in Thm. 3 that every
procedure queryk of program H is flattable (Def. 3). Moreover, since the only
transitions of H which are not from P are equalities and havoc, all transitions of
H are periodic. Since each procedure queryk is flattable then JPK is computable
in finite time by existing tools, such as Fast [6] or Flata [9, 8]. In fact, these
tools are guaranteed to terminate provided that (a) the input program is flattable;
and (b) loops are labelled with periodic relations.

Definition 3. Let P “ xP1, . . . , Pny be a non-recursive program and GP “

pΞ, pΘ,∆q be its corresponding visibly pushdown grammar. Procedure Pi is said
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to be flattable if and only if there exists a bounded and regular language R over
pΘ, such that JPKPi “

Ť

αPLPi pGPqXR
JαK.

Notice that a flattable program is not necessarily bounded (Def. 2), but its
semantics can be computed by looking only at a bounded subset of interproce-
durally valid paths.

The proof that the procedures queryk are flattable relies on grammar based
reasoning, and, in particular, on control-sets with relative completeness properties.
Let us now turn to our main result, Theorem 3 stated next, whose proof is
organized as follows. First, Proposition 2 roughly states that provided LpGq is
bounded, then a bounded subset of the k-index depth-first derivations suffices to
capture LpkqpGq for some k. The proof of this proposition is split into Theorem 4,
Lemma 5.1 and Lemma 5.2. The rest of the proof uses Lemma 4.3 which
roughly states that there is a well-behaved mapping from the k-index depth-first
derivations of GP from Q to the runs of querykpQq for every value of k and Q.

Theorem 3. Let P “ xP1, . . . , Pny be a bounded program, then, for any k ě 1,
procedure queryk of program H is flattable.

5.1 Bounded languages with bounded control sets
The following result was proved in [13]:

Theorem 4 (Thm. 1 from [13], also in [20]). For every regular language L over
alphabet Σ there exists a bounded expression bΓ such that PkΣpLXbΓq “ PkΣpLq.

Next we prove a result characterizing a subset of derivations sufficient to
capture a bounded context-free language. But first, given a grammar G “

pΞ,Σ,∆q and X P Ξ define

Γ
dfpkq
X “ tγ P ∆˚ | rXs

γ
ÝÑ 0 in Adfpkqu .

Observe that Γ
dfpkq
X is a regular language, because Adfpkq is a finite state au-

tomaton.

Lemma 5.1. Let G “ pΞ,Σ,∆q be a grammar and X P Ξ be a nontermi-
nal, such that for all p P ∆, X does not occur in tailppq. Also LXpGq Ď
pa1w1q

˚ . . . padwdq
˚ where a1, . . . , ad are distinct symbols of Σ none of which

occurs in w1 ¨ ¨ ¨wd. Then, for each k ě 1 there exists a bounded expression bΓ

over ∆ such that LpkqX pGq “ L̂XpbΓ X Γ
dfpkq
X , Gq.

Proof. We first establish the claim that for each k ě 1, there exists a bounded
expression bΓ over ∆ such that Pk∆pΓ

dfpkqXbΓq “ Pk∆pΓ
dfpkqq. By Corollary 1,

Γdfpkq is a regular language, and by Theorem 4, there exists a bounded expression
bΓ over ∆ such that Pk∆pΓ

dfpkq X bΓq “ Pk∆pΓ
dfpkqq which proves the claim.

Define A “ ta1, . . . , adu and assume ∆ is given as a linearly ordered set of
m productions tp1, . . . , pmu. Then for u such that X

γ
ùñ u, we have PkApuq “

Pk∆pγq ˆ Π where Π is the matrix of m rows and d columns where row i
is given by PkAptailppiqq. Next, let γ1, γ2 be two control words such that
Pk∆pγ1q “ Pk∆pγ2q and each γi (i “ 1, 2) generates a word ui of LXpGq, that is
X

γi
ùñ ui. We conclude from the above that PkApu1q “ PkApu2q. Moreover, the
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assumption LXpGq Ď pa1w1q
˚ . . . padwdq

˚ where a1, . . . , ad are distinct symbols
shows that u1ÓA “ u2ÓA. Furthermore, because no symbol of A occurs in
w1 ¨ ¨ ¨wd we find that u1 “ u2.

To show L
pkq
X pGq “ L̂XpbΓ X Γ

dfpkq
X , Gq we prove that LpkqX pGq Ď L̂XpbΓ X

Γ
dfpkq
X , Gq the other direction being immediate because of Proposition 1 which

says that LpkqX pGq “ L̂XpΓ
dfpkq, Gq and because only those control words γ such

that headppγq1q “ X matters.
So, let u P L̂XpΓ

dfpkq
X , Gq be a word, and X

γ
ùùùñ
dfpkq

u be a depth-first derivation

of u. Since Pk∆pΓ
dfpkq
X X bΓq “ Pk∆pΓ

dfpkq
X q, there exists a control word

β P Γdfpkq X bΓ such that Pk∆pβq “ Pk∆pγq. Also because no production
p P ∆ is such that tailppq contains an occurrence of X, we find that pβq1 “ pγq1.
Finally, Lemma 3.1 shows that given β P Γdfpkq, there exist a (unique) word u1

such that X
β

ùùùñ
dfpkq

u1, hence u1 “ u as shown above.

For the rest of this section, let G “ pΞ,Θ,∆q be a visibly pushdown grammar
(we ignore for the time being the distinction between tagged and untagged
alphabet symbols), and X0 P Ξ be an arbitrarily chosen nonterminal.

Let b “ w˚1 ¨ ¨ ¨w
˚
d be a bounded expression 6 over alphabet Θ and define

the bounded expression rb “ pa1w1q
˚ . . . padwdq

˚ such that ta1, . . . , adu and
Θ are disjoint. Next, let `i “ |ai wi| for every 1 ď i ď d and let Grb “

pΞ
rb,ΘY ta1, . . . , adu, δ

rbq be the regular grammar where

Ξ
rb “

!

qpsqr | 1 ď s ď d ^ 1 ď r ď `s

)

δ
rb “

!

qpsqi Ñ pas wsqi qpsqi`1 | 1 ď s ď d ^ 1 ď i ă `s

)

Y
!

qpsq`s Ñ pas wsq`s qps
1
q

1 | 1 ď s ď s1 ď d
)

.

Checking tw | qpsq1 ñ˚ w qpxq1 for some 1ďsďxďdu “ Lprbq holds is routine.
Next, given G and G

rb, define G’ “ pΞ’,Θ Y ta1, . . . , adu,∆
’q such that

LX’
0
pG’q “ LX0

pGq ‖ Lprbq.7

• Ξ’ “
 

X’
0

(

Y

!

rqpsqr Xqpxqy s | X P Ξ, qpsqr ,qpxqy P Ξ
rb, s ď x

)

• ∆’ is the set containing for every 1 ď s ď x ď d a production X’
0 Ñ

rqpsq1 X0q
pxq
1 s, and:

– for every production X Ñ γ P ∆, ∆’ has a production

rqpsqr Xqpxqy s Ñ γ if qpsqr Ñ γ qpxqy P ∆
rb ; (1)

6Recall that each wi is a non-empty word.
7Given two languages L1 Ď Σ˚

1 and L2 Ď Σ˚
2 their asynchronous product, denoted L1 ‖ L2,

is the language L over the alphabet Σ “ Σ1 Y Σ2 such that w P L iff the projections of w to
Σ1 and Σ2 belong to L1 and L2, respectively. Observe that the L1 ‖ L2 depends on L1, L2

and also their underlying alphabet Σ1 and Σ2.
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– for every production X Ñ γ Y P ∆, ∆’ has a production

rqpsqr Xqpxqy s Ñ γ rqpzqt Y qpxqy s

if qpsqr Ñ γ qpzqt P ∆
rb; (2)

– for every production X Ñ τ Z σ Y P ∆, ∆’ has a production

rqpsqr Xqpxqy s Ñ τ rqpzqt Zqpuqv s σ rqp`qk Y qpxqy s

if qpsqr Ñ τ qpzqt P ∆
rb and qpuqv Ñ σ qp`qk P ∆

rb; (3)

– for every production qpsq1 Ñ as qpuqv P δ
rb, ∆’ has a production

rqpsq1 Xqpxqy s Ñ as rqpuqv Xqpxqy s . (4)

∆’ has no other production.

Next we define the mapping ξ which maps each nonterminal rqpsqr Xqpxqy s P Ξ’

onto X, X’
0 onto X0, every ai, 1 ď i ď d, onto ε and maps any other terminal

(Θ) onto itself. Then ξ is naturally extended to words over ΘYta1, . . . , aduYΞ’.
Next we lift ξ to productions of ∆’ such that the mapping of a production is
defined by the mapping of its head and tail. The lifting of ξ to sequences of
productions and sets of sequences of productions is defined in the obvious way.

From the above definition we observe that given a derivation D’ ” X’
0 ñ

rqpsq1 X0q
pxq
1 s ùñ˚ w in G’, ξ maps D’ onto a derivation of G of the form

X0 ñ X0 ùñ
˚ wÓΘ.

Lemma 5.2. Let G “ pΞ,Θ,∆q be a visibly pushdown grammar, X0 P Ξ be a
nonterminal such that LX0pGq Ď b for a bounded expression b “ w˚1 . . . w

˚
d . Let

ta1, . . . , adu be a set of d symbols disjoint from Θ. Then for every k ě 1, the
following hold:

1. Let i1, . . . , id P N we have

wi11 . . . widd P L
pkq
X0
pGq iff pa1w1q

i1 . . . padwdq
id P L

pkq

X’
0

pG’q ;

2. Given a control set Γ over ∆’ such that

L̂X’
0
pΓX ΓdfpkqpG’q, G’q “ L

pkq

X’
0

pG’q

then the control set Γ1 “ ξpΓq over ∆ satisfies

L̂X0
pΓ1 X ΓdfpkqpGq, Gq “ L

pkq
X0
pGq .

Proof. The proof of point 1 is by induction. As customary, we show the fol-
lowing stronger statement: let k ě 1 and w P pΘY ta1, . . . , aduq

˚ ¨Θ, we have
rqpsqr Xqpuqv s ùñ

pkq

˚ w iff qpsqr ñ˚ w qpuqv and X ùñ
pkq

˚ wÓΘ. The proof of the if

direction is by induction on the length of qpsqr ñ˚ w qpuqv .
i “ 1. Then qpsqr Ñ τ qpuqv P ∆

rb. Two cases can occur: (i) τ P Θ; or (ii) τ P
ta1, . . . , adu.
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In case (i), we conclude from X ùñ
pkq

˚ wÓΘ that w“w ÓΘ “τ and X Ñ τ P ∆,

hence that rqpsqr Xqpuqv s Ñ τ P ∆’, and finally that rqpsqr Xqpuqv s ùñ
pkq

˚ w. Case

(ii) is not allowed since w must end with a symbol in Θ.

i ą 1. Then qpsqr ñ τ qps
1
q

r1 ñ ˝ ñ˚

w
hnlj

τ y qpuqv . As seen previously, two cases
can occur: (i) τ P ta1, . . . , adu; or (ii) τ P Θ. In case (i), because w “ τ y and
τ R Θ we find that X ùñ

pkq

˚ wÓΘ “ yÓΘ. Hence the induction hypothesis shows

that rqps
1
q

r1 Xqpuqv s ùñ
pkq

˚ y. Finally the definition of G’ shows that rqpsqr Xqpuqv s Ñ

τ rqps
1
q

r1 Xqpuqv s P ∆’, hence that rqpsqr Xqpuqv s

ùñ
pkq

˚ τ rqps
1
q

r1 Xqpuqv s ùñ
pkq

˚ τ y “ w and we are done.

For case (ii) (τ P Θ), we do a (sub)case analysis according to the first
production rule used in the derivation X ùñ

pkq

˚ wÓΘ.

• X Ñ τ . Then X ùñ
pkq

˚ wÓΘ “ τ . On the other hand qpsqr ñ τ qps
1
q

r1 ñ

˝ ñ˚ τ y qpuqv and our assumption on w “ τ y shows that y ends with a
symbol in Θ. Hence a contradiction since wÓΘ “ τ does not coincide with
the projection of w “ τ y.

• X Ñ τ Y . Then X ùñ
pkq

τ Y ùñ
pkq

˚ τ yÓΘ “ wÓΘ. Also qpsqr ñ τ qps
1
q

r1 ñ

˝ ñ˚ τ y qpuqv . The induction hypothesis applied on Y ùñ
pkq

˚ yÓΘ and

qps
1
q

r1 ñ˚ y qpuqv shows that rqps
1
q

r1 Y qpuqv s ùñ
pkq

˚ y. Finally, X Ñ τ Y P ∆ and

qpsqr Ñ τ qps
1
q

r1 P ∆
rb show that rqpsqr Xqpuqv s Ñ τ rqps

1
q

r1 Y qpuqv s P ∆’, hence
that rqpsqr Xqpuqv s ùñ

pkq

˚ τ rqps
1
q

r1 Y qpuqv s ùñ
pkq

˚ τ y “ w and we are done.

• X Ñ τ X1 σX2. Then X ùñ
pkq

τ X1σX2 ùñ
pkq

˚ τ w1ÓΘ σ w2ÓΘ “ wÓΘ.

Moreover, since qprqs ñ˚ w qpuqv and τ, σ P Θ we find that there exist
qprqs ñ τ qpbqa ñ˚ τ w1 qpb

1
q

a1 ñ τ w1 σ qpdqc ñ˚ τ w1 σ w2q
puq
v . Hence, the

definition of G’ shows that

rqprqs Xqpuqv s Ñ τ rqpbqa X1q
pb1q
a1 s σ rq

pdq
c X2qpuqv s .

On the other hand, since X1X2 ùñ
pkq

˚ w1 ÓΘ w2ÓΘ (simply delete τ and

σ), Lemma 4.1 shows that either X1 ùùùñ
pk´1q

˚ w1ÓΘ and X2 ùñ
pkq

˚ w2ÓΘ;

or X1 ùñ
pkq

˚ w1ÓΘ and X2 ùùùñ
pk´1q

˚ w2ÓΘ. Let us assume the latter holds

(the other being treated similarly). Applying the induction hypothe-
sis, we find that rqpbqa X1q

pb1q
a1 s ùñ

pkq

˚ w1 and rqpdqc X2q
puq
v s ùùùñ

pk´1q

˚ w2,

hence we conclude the case with the k-index derivation rqprqs Xqpuqv s ùñ
pkq

˚

τ rqpbqa X1q
pb1q
a1 sσ rq

pdq
c X2q

puq
v s ùñ

pkq

˚ τ rqpbqa X1q
pb1q
a1 sσ w2 ùñ

pkq

˚ τ w1 σ w2.
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The “only if” direction is proved similarly, this time by induction on the length
of the derivation rqpsqr Xqpuqv s ùñ

pkq

˚ w.

For the proof of point 2 the “Ď” direction is obvious by definition of depth-first
derivations. For the reverse direction “Ě” point 1 combined with the assumption
shows that for every i1, . . . , id P N the following equivalence holds:

wi11 . . . widd P L
pkq
X0
pGq

iff
pa1w1q

i1 . . . padwdq
id P L̂X’

0
pΓX Γdfpkq, G’q .

So let D ” X’
0 ùñ

pkq

˚ w be a depth-first k-index derivation of G’ with control

word conforming to Γ. Now consider ξpDq, it defines again a depth-first k-index
derivation except that this time the control word conforms to ξpΓq. Further, the
definition of ξ shows that the word generated by ξpDq results from deleting the
symbols ta1, . . . , adu from w “ pa1w1q

i1 ¨ ¨ ¨ padwdq
id . To conclude, observe that

wi11 ¨ ¨ ¨w
id
d P L

pkq
X0
pGq and we are done.

The following proposition shows that LpkqQ pGPq is captured by a subset of
depth-first derivations whose control words belong to some bounded expression.

Proposition 2. Let G “ pΞ, pΘ,∆q be a visibly pushdown grammar, X0 P Ξ be
a nonterminal such that LX0

pGq is bounded. Then for each k ě 1 there exists a
bounded expression bΓ over ∆ such that L̂X0

pbΓ X Γdfpkq, Gq “ L
pkq
X0
pGq.

Proof. Since LX0
pGq is bounded there exists a bounded expression b “ w˚1 . . . w

˚
d

such that LX0
pGq Ď b.

Next, define ta1, . . . , adu be an alphabet disjoint from Θ. Lemma 5.2
shows that for every i1, . . . , id P N the equivalence wi11 . . . widd P L

pkq
X0
pGq iff

pa1w1q
i1 . . . padwdq

id P L
pkq

X’
0

pG’q holds. Next, applying Lemma 5.1 on Lpkq
X’

0

pG’q

(whose assumptions holds by definition of G’) we obtain a bounded expression
bΓ’ over ∆’ such that L̂X’

0
pbΓ’ X Γdfpkq, G’q “ L

pkq

X’
0

pG’q. Our next step

is to apply the results of Lemma 5.2 (second point) to obtain that LpkqX0
pGq “

L̂X0
pξpbΓ’qXΓdfpkqq, Gq. Finally, since bΓ’ is a bounded expression, and ξ is an

homomorphism we have that ξpbΓ’q is bounded (see Lem. 5.3), hence included
in a bounded expression and we are done by setting bΓ to ξpbΓ’q.

5.2 Proof of Theorem 3
We recall two results from Ginsburg [14].

Theorem 5 (Theorem 3.3.2, [14]). Each gsm mapping preserves regular sets.

Lemma 5.3 (Lemma 5.5.3, [14]). Spw˚1 . . . w
˚
nq is bounded for each gsm S and

all words w1, . . . , wn.

And finally, the proof that queryk is flattable.
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k “ 2 k “ 3 k “ 4
# t fp # t fp # t fp

identity 210 0.10 no 330 0.22 yes -
leq 152 0.12 no 240 0.27 no 328 0.41 yes
parity 384 0.14 no 606 0.54 no 828 1.31 yes
plus 462 0.53 no 728 2.54 no 994 9.20 yes
times2 210 0.14 no 330 0.35 yes -

Table 1: Experiments with recursive implementations of basic arithmetic func-
tions and predicates [1].

of Theorem. 3. Since P is bounded periodic we can apply Proposition 2 showing
the existence of a bounded expression bΓ over ∆ such that L̂QpbΓXΓdfpkq, GPq “

L
pkq
Q pGPq. Hence we find that JPKpkqq coincides with

Ť

αPL
pkq
Q pGPq

JαK which in

turn is equal to
Ť

αPL̂QpbΓXΓdfpkq,GPq
JαK.

Lemma 3.2 shows that for all control word γ P ∆˚ such that Q
γ
ùñ
df

α we

have that JγK “
 

I ¨O | xIÓxi , OÓxiy P JαK
(

. This enables the use of Lemma 4.3
showing that such control word γ is such that JγK “ JSC k

QpγqK. This is saying
the semantics of γ in P can be obtained by computing that of SC k

Qpγq in queryk.
We then conclude from Lem. 5.3 and Thm. 5, that SCkQpbΓq is a bounded

and regular language. Back to JHKqueryk , we find that

JHKqueryk “
Ť

αPL
queryk

pGHq
JαK “

Ť

αPL
queryk

pGHqXSCkQpbΓq
JαK

and that JHKqueryk is flattable since SCkQpbΓq is a bounded regular set.

6 Experiments
We have implemented the proposed method in the Flata verifier [17] and
experimented with several benchmarks. The Flata tool is publicly available8
and the benchmarks used in this section are given in the repository. First,
we have considered several programs from external sources [1], that compute
arithmetic functions or predicates in a recursive way such as identity (identity),
plus (addition), times2 (multiplication by two), leq (comparison), and parity
(parity checking). It is worth noting that all of these programs have bounded
index visibly pushdown grammars, i.e. LpGP q is of bounded index, for each
program P P tidentity, plus, times2, leq, parityu, the stabilization of the
under-approximation sequence is thus guaranteed. For all our benchmarks,
the condition that the tuple of relation JPKpkq is inductive with respect to the
statements of P is met for k ď 3. Table 1 shows the results, giving the size
(#) of each under-approximation queryk (the number of transitions) and the
time (t) needed to compute its summary (in seconds). The column fp indicates
whether the fixpoint check was successful. The platform used for all experiments
is MacBookPro with Intel Core i7 2, 3GHz with 16GB of RAM.

Next, we have considered two generalizations of the McCarthy 91 function
[10], a well-known verification benchmark that has long been a challenge. We
have automatically computed precise summaries of its generalizations Fa (Table

8https://github.com/filipkonecny/flata
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k “ 2 k “ 3 k “ 4
# t fp # t fp # t fp

F1 32 0.05 no 50 0.07 no 68 0.09 yes
F2 72 0.06 no 114 0.74 no 156 1.55 yes
F3 128 0.06 no 204 0.30 no 280 1.59 yes
F4 200 0.06 no 320 0.44 no 440 4.02 yes
F5 288 0.07 no 462 0.63 no 636 5.97 yes
F6 392 0.07 no 630 0.82 no 868 7.54 yes
F7 512 0.08 no 824 0.86 no 1136 14.23 yes
F8 648 0.08 no 1044 1.09 no 1440 12.87 yes

Fapxq “

"

x´ 10 if x ě 101
pFaq

apx` 10 ¨ a´ 9q if x ď 100

Table 2: Generalized McCarthy Fa Experiments. The function F2 is the original
McCarthy91 function.

k “ 2 k “ 3 k “ 4
# t fp # t fp # t fp

G11 72 0.06 no 114 0.74 no 156 1.55 yes
G12 72 0.08 no 114 1.53 no 156 n/a ?
G13 72 0.08 no 114 5.07 no 156 n/a ?
G14 72 0.08 no 114 7.07 no 156 n/a ?

Gbpxq “

"

x´ 10 if x ě 101
GpGpx` bqq if x ď 100

Table 3: Generalized McCarthy Gb Experiments. The function G11 is the original
McCarthy91 function.
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G11pxq
91 if x ď 100
x´ 10 if x ě 101

G12pxq
91 if x ď 100 and 2|x` 1
92 if x ď 100 and 2|x
x´ 10 if x ě 101

G13pxq

91 if x ď 100 and 3|x` 1
92 if x ď 100 and 3|x
93 if x ď 100 and 3|x` 2
x´ 10 if x ě 101

G14pxq

91 if x ď 100 and 4|x` 3
92 if x ď 100 and 4|x` 2
93 if x ď 100 and 4|x` 1
94 x ď 100 and 4|x
x´ 10 if x ě 101

Table 4: Automatically computed summaries for the generalized McCarthy Gb
functions (for index k “ 3).

2) and Gb (Table 3) above for a “ 2, . . . , 8 and b “ 12, 13, 14. For the Fa
functions, the computed summaries are given by:

Fapxq “

"

91 if x ď 100
x´ 10 if x ě 101

for all a “ 1, . . . , 8 .

The computed summaries for the Gb functions are given in Table 4.
The visibly pushdown grammars corresponding to the recursive programs

implementing the Fa, Gb functions are not bounded. In the case of the Fa
function, the under-approximation sequence reaches a fixpoint after 4 iterations.
In the case of Gb, for b “ 12, 13, 14, the summary of query3 is the expected
result. However, due to the limitations of the Flata tool, which is based on an
acceleration procedure without abstraction, we could not compute the summary
of query4, and we could not verify automatically that the fixpoint has been
reached.

7 Conclusions
We have presented an underapproximation method for computing summaries
of recursive programs operating on integers. The underapproximation is driven
by bounding the index of derivations that produce the execution traces of the
program, and computing the summary, for each index, by analyzing a non-
recursive program. We also present a class of programs on which our method is
complete. Finally, we report on an implementation and experimental evaluation
of our technique.
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