N

N

Underapproximation of Procedure Summaries for
Integer Programs
Pierre Ganty, Radu losif, Filip Kone¢ny

» To cite this version:

Pierre Ganty, Radu losif, Filip Kone¢ny. Underapproximation of Procedure Summaries for Integer
Programs. International Journal on Software Tools for Technology Transfer, 2016. hal-01418863

HAL Id: hal-01418863
https://hal.science/hal-01418863
Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Public Domain

https://hal.science/hal-01418863
https://hal.archives-ouvertes.fr

1210.4289v3 [cs.PL] 24 Oct 2016

arXiv

Underapproximation of Procedure Summaries
for Integer Programs

Pierre Ganty!, Radu Iosif?, and Filip Koneény??3

'IMDEA Software Institute, Madrid, Spain
) 2VERIMAG/CNRS, Grenoble, France
3Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

We show how to underapproximate the procedure summaries of re-
cursive programs over the integers using off-the-shelf analyzers for non-
recursive programs. The novelty of our approach is that the non-recursive
program we compute may capture unboundedly many behaviors of the orig-
inal recursive program for which stack usage cannot be bounded. Moreover,
we identify a class of recursive programs on which our method terminates
and returns the precise summary relations without underapproximation.
Doing so, we generalize a similar result for non-recursive programs to the re-
cursive case. Finally, we present experimental results of an implementation
of our method applied on a number of examples.

1 Introduction

Formal approaches to reasoning about behaviors of programs usually fall into one
of the following two categories: certification approaches, that provide proofs of
correctness, and bug-finding approaches, that explore increasingly larger sets of
traces in order to find possible errors. While the methods in the first category are
used typically in the development of safety-critical software whose failures may
incur dramatic losses in terms of human lives (airplanes, space missions, or nuclear
power plants), the methods in the second category have a broad application in
industry, outside of the safety-critical market niche. Another difference between
the two categories is methodological: certification approaches are based on
over-approzimations of the set of behaviors (if the over-approximation is free
of errors, the original system is correct), while bug-finding needs systematic
under-approximation techniques (if there are errors, the method will eventually
discover all of them). Finally, over-approximation methods are guaranteed to
terminate, but the answer might be inconclusive (spurious errors are introduced
due to the abstraction), whereas under-approximation methods provide precise
results (all reported errors are real), but with no guarantee for termination.
Procedure summaries are relations between the input and return values of a
procedure, resulting from its terminating executions. Computing summaries is
important, as they are a key enabler for the development of modular verification
techniques for inter-procedural programs, such as checking safety, termination

or equivalence properties. Summary computation is, however, challenging in the
presence of recursive procedures with integer parameters, return values, and local
variables. While many analysis tools exist for non-recursive programs, only a
few ones address the problem of recursion (e.g. INTERPROC [19]).

In this paper, we propose a novel technique to generate arbitrarily precise
underapproximations of summary relations. Our technique is based on the
following idea. The control flow of procedural programs is captured precisely
by the language of a context-free grammar. A k-index underapproximation of
this language (where k& > 1) is obtained by filtering out those derivations of
the grammar that exceed a budget, called index, on the number (at most k) of
occurrences of nonterminals occurring at each derivation step. As expected, the
higher the index, the more complete the coverage of the underapproximation.
From there we define the k-index summary relations of a program by considering
the k-index underapproximation of its control flow. Our method then reduces
the computation of k-index summary relations for a recursive program to the
computation of summary relations for a non-recursive program, which is, in
general, easier to compute because of the absence of recursion. The reduction
was inspired by a decidability proof [4] in the context of Petri nets.

The contributions of this paper are threefold. First, we show that, for a given
index, recursive programs can be analyzed using off-the-shelf analyzers designed
for non-recursive programs. Second, we identify a class of recursive programs,
with possibly unbounded stack usage, on which our technique is complete, i.e. it
terminates and returns the precise result. Third, we present experimental results
of an implementation of our method applied on a number of examples.
Motivating Example To properly introduce the reader to our result, we
describe our source-to-source program transformation through an illustrative
example. Consider the recursive program P = {P}, cousisting of a single
recursive procedure P, given in Fig. 1 (a), whose control flow graph is given
in Fig. 1 (b). The nodes of this graph represent control locations in the
program, with a designated initial location Q" and a final location . The
edges are labeled with relations denoting the program semantics, where primed
variables 2’ and 2’ denote the values at the next step. For instance, the edge

Z'=P(z—1)ra' =z
to 1 Qg —M————>

program—the edge labels of the control flow graph explicitly mention the copies
of variables not changed by the program action corresponding to the edge, e.g.
= .

In this paper, we model programs using visibly pushdown grammars (VPQG)
[3]. The VPG for P is given in Fig. 1 (c). The role of the grammar is to define
the set of interprocedurally valid paths in the control-flow graph of the program
P. Every edge in the control-flow graph matches one or two symbols from the
finite alphabet {71, {72, 72), T3, T4}, where {72 and 73) denote the call and return,
respectively. Each edge in the graph translates to a production rule in the
grammar, labeled p%, pS, p¢ and p¢—the superscript a, b and ¢ distinguishes rules
with 0, 1 and 2 nonterminals on the right-hand side, respectively. For instance,
the call edge t2 becomes the rule Qo — {(Qi"")Q3. The language of the
grammar of Fig. 1 (c) (with axiom Q") is the set {(T1{72)" 74 (T2)73)" | n € N}
of interprocedurally valid paths, where each call symbol {7, is matched by a
return symbol 72, and the matching relation is well-parenthesized.

The outcome of the program transformation applied to P is the non-recursive

@3 corresponds to the recursive call on line 3 in the

program Q = {queryi}fio, depicted in Fig. 1 (d), where K is a parameter of our
analysis. The main idea is that the executions of the procedure query*, ending
with an empty stack, correspond to the derivations of the VPG in Fig. 1 (c¢), of
index at most k—since there is no derivation of index 0, the set of executions
of query® will be empty. The body of a procedure query* consists of a main
loop, starting at the control label begin_loop in Fig. 1 (d). Each branch inside
the main loop corresponds to the simulation of one of the production rules of
the grammar in Fig. 1 (c) and starts with a control label which is the name
of that rule (p?, ps, p%,p%). Next, we explain the relations labeling the control
edges of query®. For each production rule p in the grammar we have a relation
pp(T1, 21,20, 20), where subscript I and O denote the input and output copies
of the program variables of P, respectively. In addition, we consider auxiliary
copies xy, 2y, Tx,2x and xp,zr, defined in a similar way. For instance, the
auxiliary variables store intermediate results of the computation of p§ as follows:
(21, 21] {72 [27,27] Q" |2k, 2K] ™) [71,20] Q3 [r0,20]. The transition
ps — in_order/out_of order can be understood by noticing that {7 gives
rise to the constraint x; = 1 — 1, 7o) to 2z, = zx and x; = xp, corresponds to
the frame condition z’ = z.

The peculiarity of the resulting program is that a function call is modeled
in two possible ways: (i) in-order execution of the function body, followed by
the continuation of the call, and (ii) out-of-order execution of the continuation,
followed by the execution of the function body. The two cases correspond
to k-index derivations of the VPG in Fig 1 (c) of the form uQi"*vQsw =*
uv1vQ3w =* uvivvew and uQi””vvgw =% uvivvaw =* uvivvow, respectively,
where Qi =* vy; and Q3 =* vy are derivations of the VPG. In the first case,
the control path simulating the derivation in query® follows the left branch
in_order/out _of order — begin_loop, whereas the second case is simulated
by the right branch.

Since the only call of query* is to query®*~1, on the edges in_order/out _of order —
begin_loop, the whole program is a non-recursive under-approximation of the
semantics of the original program P, amenable to analysis using intra-procedural
program analysis tools. Indeed, the computation of the pre-condition relation of
the program Q = {query?, query, query®} with the FLATA tool [17] yields the
formula zp = 2 - 27, which matches the summary 2z’ = 2 - of the program P.

In other words, the analysis of the under-approximation of P of index at most
2 suffices to infer the complete summary of the program (the analysis for values
K > 2 will necessarily yield the same result, since the under-approximation
method is monotonic in K). This fact matches the completeness result of
Section 5, stating that the analysis needs to be carried up to a certain bound
(linear in the size of the program’s VPG) whenever the language of the VPG
is included in the language of the regular expression wj ...w}, for some non-
empty words wi,...,w,. In our case, the completeness result applies due to
{(ri{m2)" 74 (12)73)" | n € N} < (11 {72)" 7 (T2)73)".

Related Work The problem of analyzing recursive programs handling integers
(in general, unbounded data domains) has gained significant interest with the
seminal work of Sharir and Pnueli [24]. They proposed two orthogonal approaches
for interprocedural dataflow analysis. The first one keeps precise values (call
strings) up to a limited depth of the recursion stack, which bounds the number
of executions. In contrast to the methods based on the call strings approach,

1

Pl{ : Qi"it — T1Q2

P ¢ Q2 = (m2 Q" 72) Q3
py ¢ Q3 — T3

pg : QINt - oy

int P(int x) {

int z;

1: assume(z > 0);

2: if (z > 0) 2 = Pl — 1)

3: oz := P(x-1); z/ ==z

4: z:=z42;

5: else

6: z:=0 o=
7: return z; } =5

(a) (<)

query® (X, xr, 21,20, 20) ™ init

begin_loop

/ l - Pg PC = Q2
I _ pinit
pa P PP Yi=Q
3 4 1 z' = Q3
l | @y = arg = 1l
PC Q init init o
= — m — nt x =
20 = a5 PC = Qj PC = Q! I =<
20 =z +2 zy =0 zr >0 \
zp =0 Ty =z
l l mlI =y out_of_order/in_order
!
z = ZJ
€ € I/
PO’ = @,
!’
(d) 1= I 90'1 =y
P/C’ =7 o/ p—
T =K 1%L
2l =zp pc’ =2z
k1.2 query* =1 (Y, 25,25, 25, 2K)
query (Z,zp,, 21,20, 20)

Figure 1: A recursive program returning the parameter value multiplied by two
(a), its corresponding control flow graph (b) and visibly pushdown grammar
(c), and the non-recursive program query®(X,z, 21, r0, zo0) resulting from our
index-bounded under-approximation (d).

our method can also analyse precisely certain programs for which the stack is
unbounded, allowing for unbounded number of executions to be represented at
once.

The second approach of Sharir and Pnueli [24] is based on computing the
least fixed point of a system of recursive dataflow equations (the functional
approach). This approach to interprocedural analysis is based on computing
an increasing Kleene sequence of abstract summaries. It is to be noticed that
abstraction is key to ensuring termination of the Kleene sequence, the result
being an over-approximation of the precise summary. Recently [11], a Newton
sequence defined over the language semiring was shown to converge at least as
fast as the Kleene sequence over the same semiring. An iterate of a Newton
sequence is the set of control paths in the program that correspond to words
produced by a grammar, with bounded number of nonterminals at each step
in the derivation. By increasing this bound, we obtain an increasing sequence
of languages that converges to the language of behavior of the program. Our
contribution can be thus seen as a technique to compute the iterates of the
Newton sequence for programs with integer parameters, return values, and local
variables, the result being, at each step, an under-approximation of the precise
summary.

The complexity of the functional approach was shown to be polynomial in
the size of the (finite) abstract domain, in the work of Reps, Horwitz and Sagiv
[23]. This result is achieved by computing summary information, in order to
reuse previously computed information during the analysis. Following up on this
line of work, most existing abstract analyzers, such as INTERPROC [19], also
use relational domains to compute over-approximations of function summaries
— typically widening operators are used to ensure termination of fixed point
computations. The main difference of our method with respect to static analyses
is the use of under-approximation instead of over-approximation. If the final
purpose of the analysis is program verification, our method will not return false
positives. Moreover, the coverage can be increased by increasing the bound on
the derivation index.

Previous works have applied model checking based on abstraction refinement
to recursive programs. One such method, known as nested interpolants represents
programs as nested word automata [3], which have the same expressive power as
the visibly pushdown grammars used in our paper. Also based on interpolation
is the WHALE algorithm [2], which combines partial exploration of the execution
paths (underapproximation) with the overapproximation provided by a predicate-
based abstract post operator, in order to compute summaries that are sufficient to
prove a given safety property. Another technique, similar to WHALE, although not
handling recursion, is the SMASH algorithm [15] which combines may- and must-
summaries for compositional verification of safety properties. These approaches
are, however, different in spirit from ours, as their goal is proving given safety
properties of programs, as opposed to computing the summaries of procedures
independently of their calling context, which is our case. We argue that summary
computation can be applied beyond safety checking, e.g., to prove termination
[5], or program equivalence.

The technique of under-approximation is typically used for bug discovery,

rather than certification of correctness. For instance, bug detection based on
under-approximation has been developed for non-recursive C programs with
arrays [18]. Our approach in orthogonal, as we consider more complex control
structures (possibly recursive procedure calls) but simpler data domains (scalar
values such as integers).
Paper organization. After introducing the basic definition in Section 2, we
present, in Section 3, our model for programs, a semantics based on nested
words and another one, equivalent, based on derivations of the underlying
grammar. Then, in Section 4, we present our main contribution which is a
program transformation underapproximating the semantics of the input program.
In Section 5, we define a class of programs for which the underapproximation is
complete. Finally, after reporting on experiments in Section 6 we conclude in
Section 7.

2 Preliminaries

2.1 Grammars

Let X be an alphabet, that is a finite non-empty set of symbols. We denote by ¥*
the set of finite words over ¥ including ¢, the empty word. Given a word w € %*|
let |w| denote its length and let (w);, with 1 < i < |w]|, be the i-th symbol of w.

< |w|, we denote the subword (w); ... (w); of w. For

By (w);..j, with 1 <i<j
Cc ¥, we denote by w|y, the result of erasing all symbols

a word w € ¥* and ¥’
of w not in Y.

A context-free grammar (or simply grammar) is a tuple G = (2,3, A),
where = is a finite nonempty set of nonterminals, 3 is an alphabet, such that
EnY=g,and A € E x (¥ U E)* is a finite set of productions. A production
(X,w) € A is often conveniently noted X — w. Also define head(X — w) = X
and tail(X — w) = w. Given two strings u, v € (X UZ)*, a production (X,w) € A

X,w)/j . .
and 1 < j < |ul, we define a step u %G v if, and only if, (u); = X and

v =(u)- - (w)j—1-w-(u)jp1---(u). Weomit (X,w) or j above the arrow
when it is not important. In this notation and others, when G is clear from the
context, we omit it. Step sequences (including the empty sequence) are defined
using the reflexive transitive closure of the step relation =¢, denoted =¢,. For
instance, X =¢ w means there exists a sequence of steps that produces the
word w € (¥ U E)*, starting from X. We call any step sequence v =% w a
derivation whenever v € Z and w € £*. The language produced by G, starting
with a nonterminal X is the set Lx(G) = {w e ¥* | X =% w}.

By defining a control word to be a sequence of productions v € A*, we can
annotate step sequences as expected: € € A* is the control word for empty step
sequences, and given a control word «y of length n we write u %G v whenever
there exists wy, ..., w, € (2 U X)* such that

(M1 ()2 (Mn
U =Wy =g W) ==G ... Wp1] =—=G Wy, =0 .
Given a nonterminal X € = and a set I' € A* of control words (a.k.a control

set), we denote by Lx(I,G) = {w e ¥* | Iy e I': X 2 w} the language
generated by G using only control words in I'.

2.2 Visibly Pushdown Grammars

To model the control flow of procedural programs we use languages generated by
visibly pushdown grammars, a subset of context-free grammars. In this setting,
words are defined over a tagged alphabet ¥ = Lu{XUX), where (X = {{a | a € &}
represents procedure call sites and ¥) = {a) | a € L} represents procedure return
sites. Formally, a visibly pushdown grammar G = (Z, i, A) is a grammar that
has only productions of the following forms, for some a,b € 3:

X —>a X —-aY X —><aYbyz .

It is worth pointing that, for our purposes, we do not need a visibly pushdown
grammar to generate the empty string . Each tagged word generated by visibly
pushdown grammars is associated a nested word [3] the definition of which we
briefly recall. Given a finite alphabet X, a nested word over ¥ is a pair (w,~),
where ~ < {1,...,|w|} x {1,...,|w|} is a set of nesting edges (or simply edges)
where:

1. i~ j only if i < j; edges only go forward;

2. {j i~ j}| <1and |{i]|i~ j}| <1; no two edges share a call/return
position;

3. if i ~ j and k ~» ¢ then it is not the case that i < k < j < ¢; edges do not
CToss.

Intuitively, we associate a nested word to a tagged word as follows: there is an
edge between tagged symbols {a and b) if and only if both symbols are produced
by the same derivation step. Finally, let w_nw denote the mapping which given
a tagged word in the language of a visibly pushdown grammar returns the nested
word thereof.

Example 2.1. For the tagged word w = 71 {ToT1{TaT4To)T3T2)73, w_nw(w) =
(T1ToT1TaTaToT3TaTs, {2 ~ 8,4 ~» 6}) is the associated nested word. B

2.3 Integer Relations

Given a set S, let |S| denote its cardinality. We denote by Z the set of integers.
Let x = {(x1,...,24) be a tuple of variables, for some d > 0. We define by x’ the
primed variables of x to be the tuple {z},z5,...,z}). We consider implicitly
that all variables range over Z. We denote by |x| = d the length of the tuple
x, and for a tuple y = (y1,..., Yy, we denote by x -y =<{Z1,...,Za,Y1,---,Yey
their concatenation. For two tuples of variables t and s such that [¢| = |s| = &,
we denote by t = s the conjunction /\f:1 t; = s;.

A linear term t is a linear combination of the form ag + Z?Zl a;x;, where
ag, - - -,aq € Z. An atomic proposition is a predicate of the form ¢ < 0, where
t is a linear term. We consider formulae in the first-order logic over atomic
propositions ¢t < 0, also known as Presburger arithmetic. A wvaluation of x
is a function v : x — Z. The set of all valuations of x is denoted by Z*. If
x = {x1,...,xq) and v € Z*, then v(x) denotes the tuple (v(x1),...,v(x4)).
An arithmetic formula R(x,y’) defining a relation R € Z* x ZY is evaluated
with respect to two valuations v; € Z* and vy € ZY, by replacing each z € x
by v1(x) and each ¢y € y’ by v5(y) in R. The composition of two relations
Ry € 7Z* x7ZY and Ry € ZY x Z* is denoted by Ry o Ry = {{u,v) e Z* x Z* |
Jt € ZY.{u,t) € Ry and {t,v) € Ro}. We denote y € x if y = {(ws,,...,Ti,),
for a sequence of indices 1 < iy < ... < iy < d of x. For a valuation v € Z*
and a tuple y < x, we denote by v|, € Z¥ the projection of v onto variables y,
Le. vy mo = V(Y1) ., v(yx)). Finally, given two valuations I, 0 € Z*, we
denote by I-O the valuation I(x)-O(x), and we define Z*** = {I-O | I, O € Z*}.

2.4 Parikh Images

Let © = {f1,...,0;} be a linearly ordered subset of the alphabet X. For a
symbol a € ¥ its Parikh image is defined as Pke(a) = e; if a = 6;, where e;
is the k-dimensional vector having 1 on the i-th position and 0 everywhere
else. Otherwise, if a € ¥\O, let Pkg(a) = 0 where 0 is the k-dimensional
vector with 0 everywhere. For a word w € ¥* of length n, we define Pkg(w) =
>t Pko((w);).! Furthermore, let Pkg(L) = {Pke(w) | w € L} for any
language L < X*.

1We adopt the convention that the empty sum evaluates to 0.

2.5 Labelled Graphs

In this paper we use of the notion of labelled graph G = {(Q, L,), where Q is a
finite set of vertices, L is a set of labels whose elements label edges as defined by

the edge relation 6 € Q x S x Q. We denote by ¢ 4 ¢ the fact that (¢,4,q’) € 6.
A path 7 in G is an alternating sequence of vertices and edges whose endpoints

. A £, L,
are vertices. Sometimes, 7 is conveniently written as g9 — ¢1 — ... ¢n—1 — Gn

and further abbreviated gy — ¢, where w = ¢1 ... 4,.

3 Integer Recursive Programs

We consider in the following that programs are collections of procedures calling
each other, possibly according to recursive schemes. Formally, an integer program
is an indexed tuple P = (Py,..., P,), where Py,..., P, are procedures. Fach
procedure is a tuple P; = (x;,xi" x%% S, ¢/ F;, A;), where x; are the local
variables® of P; (x; nx; = & for all i # j), xi",x%%! C x; are the tuples of input
and output variables, S; are the control states of P; (S; nS; = &, for all i # j),
g™t € S;\F; is the initial, and F; < S; (F; # (J) are the final states of P;, and
A; is a set of transitions of one of the following forms:

(wa/i)
_

oqR !

¢’ is an internal transition, where ¢, ¢’ € S;, and R(x;,x}) is a

Presburger arithmetic relation involving only the local variables of P;;
Z,=P]' (u) ;. / . .

o ¢ ——> ¢ is a call, where q,¢' € S;, P; is the callee, u are linear terms
over x;, z € X; are variables, such that |u| = |x}"| and |z| = [x3*/|. The
call is said to be terminal if ¢’ € F;. It is well-known that terminal calls
can be replaced by internal transitions.

The call graph of a program P = (Py,..., P,) is a directed graph with vertices
Py, ..., P, and an edge (P;, P;), for each P; and P;, such that P, has a call to P;.
A program is recursive if its call graph has at least one cycle, and non-recursive
if its call graph is a dag.

In the rest of this paper, we denote by F(P) = (J;_, F; the set of final states
of the program P, by nF(F;) the set S;\F; of non-final states of P;, and by
nF(P) = |J;_, nF(P) be the set of non-final states of P.

3.1 Simplified syntax

To ease the description of programs defined in this paper, we use a simplified,
human readable, imperative language such that each procedure of the program
conforms to the following grammar:3

P ::= proc P;(id*) begin var id* Sy; S end
Sp ::= assume f | goto ¢ | havoc id ™" | id < t
S u=S0|S;S|id<— P(t*); Sy | P;(t*); So | return id

20bserve that there are no global variables in the definition of integer program. Those can
be encoded as input and output variables to each procedure.

30ur simplified syntax does not seek to capture the generality of integer programs. Instead,
our goal is to give a convenient notation for the programs given in this paper and only those.

The local variables occurring in P are denoted by id, linear terms by ¢, Pres-
burger formulae by f, and control labels by £. Each procedure consists in local
declarations followed by a sequence of statements. Statements may carry a label.
Program statements can be either assume statements?, assignments, procedure
calls (possibly with a return value), return to the caller (possibly with a value),
non-deterministic jumps goto ¢, or ... or {,, and havoc x1,zs, ..., x, state-
ments®. In order to simplify the upcoming technical developments, we forbid
empty procedures, procedures starting with a call or a return, i.e. each procedure
must start with a statement generated by the Sy nonterminal. We consider the
usual syntactic requirements (used variables must be declared, jumps are well
defined, no jumps outside procedures, etc.). We do not define them, it suffices to
know that all simplified programs in this paper comply with the requirements.
A program using the simplified syntax can be easily translated into the formal
syntax (Fig. 1).

Example 3.1. Figure 1 shows a program in our simplified imperative language
and its corresponding integer program P. Formally, P = (P), where P is the
only procedure in the program, defined as:

P = <{xvz}7{x}v{Z}a{qinitaq%q&e},qinita{5}7{tlat23t33t4}>

Since P calls itself once (within the call transition ts), this program is recursive.
|

3.2 Semantics

We are interested in computing the summary relation between the values of the
input and output variables of a procedure. To this end, we give the semantics of
a program P = (Py,..., P,) as a tuple of relations, denoted [¢] in the following,
describing, for each non-final control state ¢ € nF(P;) of a procedure P;, the effect
of the program when started in ¢ upon reaching a state in F;. The summary of a
procedure P; is the relation corresponding to its unique initial state, i.e. [¢"*].

An interprocedurally valid path is represented by a tagged word over an
alphabet ©, which maps each internal transition ¢ to a symbol 7, and each call
transition ¢ to a pair of symbols {7, 7) € ©. In the sequel, we denote by Q the
nonterminal corresponding to the control state ¢, and by 7 € © the alphabet
symbol corresponding to the transition ¢ of P. Formally, we associate P a visibly
pushdown grammar, denoted in the rest of the paper by Gp = (2,0, A}, such
that @ € =2 if and only if ¢ € nF(P) and:

(a) @ —> 7€ Aif and only if ¢: q&q’ and ¢’ € F(P)
(b) Q > 7 Q e Aifandonly if t: ¢ = ¢ and ¢ € nF(P)
!

(¢) @ > {1 Q;mt 7y Q € Aif and only if ¢: ¢ q.
It is easily seen that interprocedurally valid paths in P and tagged words in Gp
are in one-to-one correspondence. In fact, each interprocedurally valid path of
P between state ¢ € nF(P;) and a state of F;, where 1 < i < n, corresponds
exactly to one tagged word of Lg(Gp).

z'=P;(u)

4assume ¢ is executable if and only if the current values of the variables satisfy the

Presburger formula ¢.
5havoc assigns non deterministically chosen integers to 1,2, ..., Zn.

Example 3.2. (contd. from Ex. 3.1) The visibly pushdown grammar Gp cor-
responding to P is given in Fig. 1 (c). In the following, we use superscripts
a,b,c to distinguish productions of the form (a) Q@ — 7, (b) Q@ — 7Q’ or (c)
Q — {7 Q;-"“ 7YQ', respectively. The language LQ@{M(G’P) generated by Gp
starting with Q'™ contains the word w = T1{moT1{TaTaT2)T3T2)73, Of which
w_nw(w) = (T1TaT1T2TaTaT3TaT3, {2~ 8,4 ~» 6}) is the corresponding nested
word. The word w corresponds to an interprocedurally valid path where P calls
itself twice. The control words 1 = pipSpspspipips and 2 = pipSpspspspsps
both produce w in this case, i.e. Q" L w and Qinit EN [|

The semantics of a program is the union of the semantics of the nested words
corresponding to its executions, each of which being a relation over input and
output variables. To define the semantics of a nested word, we first associate to
each 7 € © an integer relation p,, defined as follows:

e for an internal transition ¢: ¢ N ¢ € A;, we define p, = R(x;,x}) S
7% x 7%

'=P;
e for a call transition ¢ : g 2 =P ()

q' € A, we define a call relation p¢r =
(x§”/ =u) C Z% x 7%, a return relation pry = (2 = x§*) € 7% x 1%
and a frame relation ¢, = /\wexi\zx’ = x C Z* x Z*i. Intuitively, the
frame relation copies the values of all local variables, that are not involved
in the call as return value receivers (z), across the call.
We define the semantics of the program P = (Py,..., P,) in a top-down manner.
Assuming a fixed ordering of the non-final states in the program, i.e. nF(P) =
{q1,--.,qm)y, the semantics of the program P, denoted [P], is the tuple of
relations ([¢1], ..., [gm])- For each non-final control state ¢ € nF(P;) where
1 <i < n, we denote by [¢] € Z* x Z*i the relation (over the local variables of
procedure ;) defined as [q] = U,erq (0 []-

It remains to define [a], the semantics of the tagged word (or equivalently
interprocedural valid path) a. Out of convenience, we define the semantics of
its corresponding nested word w_nw(a) = (6,~) over alphabet ©, and define
[o] = [w_nw(a)]. For a nesting relation ~ < {1,...,|0|} x {1,...,]|0]}, we
define ~; ; = {(s — (i—1),t — (i—1)) | (s,¢) e ~n {i,..., 5} x {i,...,j}}, for
some 4,7 € {1,...,£}, i < j. Finally, we define [(#,~)] S Z* x Z* as follows:

Py, ° [((0)2... 101, ~2,50))] if 0] > 1,1~ j for no j

CaRety o [((0) 41,101~ j410)] I |0] > 1,1~ jforaj
where, in the last case, which corresponds to call transition ¢ € A;, we have
(0)1 = (8); = 7 and define CaRet) = (p¢r © [(0)2...j—1.~2,-1)] © pry) N -

Example 3.3. (contd. from Ex. 3.2) The semantics of a given the nested
word 0 = (T1TaT1 TaTaTaT3T2aT3, {2 ~> 8,4 ~ 6}) is a relation between valuations
of {x, z}, given by:

[0 = pro ((0rs © P © (P © Pra @ Pray) O 673)
°© p7'3 ° p7’2>) N ¢7'2) °© pTS

One can verify that [0] =z = 2 A 2/ =4, i.e. the result of calling P with input
valuation x = 2 1s an output valuation z = 4. |

10

Finally, we introduce a few useful notations. An interprocedural valid path «
is said to be feasible whenever [a] # &. We denote by [P], the component of
[P] corresponding to ¢ € nF(P). Notice that [P], € Z* x Z*i, i.e. is a relation
over the valuations of the local variables of the procedure P; if ¢ is a state of
P, ie. ¢ € S;. Slightly abusing notations, we define Lp,(Gp) as L (Gp) and
[Plp, as [P]gm:. Clearly we have that [P]p, € Z* x Z*:.

3.3 A Semantics of Depth-First Derivations

We present an alternative, but equivalent, program semantics, using derivations
of visibly pushdown program grammars, instead of the generated (nested) words.
This semantics brings us closer to the notion of under-approximation defined in
the next section.

We start by defining depth-first derivations, that have the following informal
property: if X and Y are two nonterminals produced by the application of one
rule, then the steps corresponding to a full derivation of the form X =* u will
be applied without interleaving with the steps corresponding to a derivation of
the form Y =* v. In other words, once the derivation of X has started, it will
be finished before the derivation of Y begins.

For an integer tuple o = {aq,...,ay), we denote by [o|lmax = maxl_; a;.
For a set of symbols S € = U X, and a set of positive integers I € N, we define
ST = {2 |z € S,ie I} Given aword w e (£ U X)* of length n > 0, and
a n-dimensional vector a = {ayq,...,an,) € N, we define w® as the birthdate-
annotated word (bd-word) (w);‘*" ... (w),‘*™ over the alphabet (2 U £)N.
We denote w<” = w®, where ¢ € N and ¢ = {c,...,c) € N*I. For instance,
abc1:2:3 — O (2 3 and abcl?” = PP K2,

Let G = (E,%,A) be a grammar and u % v be a step, for some
production (Z,w) € A and 1 < j < |u|. If @ € N is a vector of birth-
dates, the corresponding birthdate-annotated step (bd-step) is defined as fol-

o ue M} v if and only if (u®); = Z® and v® = (w1 (u®)j1 -
wlelmaxt 1) (@) (U

Example 3.4. Consider the grammar G = ({X,Y,Z}, {a,b}, A) with rules

A={X>YZ Y —>aY |e, Z— 2Zb|e}. Then x© ZXE yaza Lol
DY@z EE) @y s Y 2 ZE (@5 and

(X,YZ) (Y,aY) (Y,e) (Z,Zb)

(Z.¢)

5@ XYD) 3y iy K)oy) 2y any (B2Y) oy piayisy (2E)

a2b3 are birthdate-annotated step sequences. B

A birthdate annotated step is further said to be depth-first whenever, in
the above definition of a bd-step, we have, moreover, that ¢ is the most recent
birthdate among the nonterminals of u , i.e. i = max{j | Pkzy) (u®) # 0}. We
write this fact as follows u® T; vP. A birthdate annotated step sequence is said to

be depth-first if all of its steps are depth-first. Finally, a step sequence wq %

Wi ... Wp_1 M wy,, for some control word -y is said to be depth-first, written
wo % wy, if there exist vectors a; € NIPA=(wnl o e NIPk=(wn)l guch that

wi :>”Llf/j1 W :>(”)"f/ 2 holds.

11

Example 3.5. (contd. from Ez. 3.4) Consider the grammar G from Ezample
(X,YZ) (Y,aY) (2,2b) (Yie) (Ze) .

3.4. Then X YZ aYZ aY Zb aZb ab is not
X,YZ Y,aY Y,e Z.2b

a depth-first derivation, whereas X () YZ () aY Z (%) aZ ()

Z,€ . . .
aZb ('——)> ab is a depth-first derivation. B

Since we are dealing with visibly pushdown grammars Gp = <E,C:),A>
corresponding to programs P, for every production @ — <TQ3—”“T>Q’ e A we

have Q;"” # @'. Hence, we can assume wlog that for all productions p € A,
all nonterminals occurring in tail(p) are distinct (e.g. X — Z Z is not allowed).
As we show next, under that assumption, a control word uniquely identifies a
depth-first derivation:

Lemma 3.1. Let Gp = (E, @), A be a visibly pushdown grammar corresponding

to a program P, Q € = be a nonterminal, Q %; u and Q %; v be two depth-first

derivations of Gp. Then they differ in no step, hence u = v.

Proof. By contradiction, suppose that there exists a step that differs in the two
derivations from @ with control word v € A*. Thus, there exists an integer

i, 1 < i < |vy|, such that Q@ = wyp g wy - Wi—1 (72); w; and w,; contains

two occurrences of the nonterminal head(();+1), that is, there exists p; # po
(wi)p, = (wi)p, = head((7)i41). Two cases arise:
1. (w;)p, and (w;)p, result from the occurrence of some (7y); with j < ¢ which
contradicts that all nonterminals occurring in tail((7y);) are distinct.
2. (w;)p, and (w;)p, result from the occurrence of (y); and (v); with k #
[respectively. Hence in the bd-step sequence thereof, their birthdate
necessarily differ. Therefore there is only one occurence of head((7);+1)
with the most recent birthdate which contradicts the existence of two
distinct depth-first derivations.
O O

Consequently, in a visibly pushdown grammar corresponding to a program,
a control word uniquely determines a step sequence, and, moreover, if this step
sequence is a derivation, the control word determines the word produced by
it. This remark leads to the definition of an alternative semantics of programs,
based on control words, instead of produced words. To this end, for each
non-final control location ¢ € nF(F;), of a program P = (Py,...,P,), where
1 < i < n, we define the semantics of a control word ~ that induces a depth-first
derivation @ % w of the grammar Gp = <E,@, A, as a set [y] € Z* x Z*,
where x = x3 - ... X, is the set of variables in P. The definition of [v] is by
induction on the structure of :
(a) if v = @ — 7 then [y] = {I-O|l,,,0ly,> € p-}, where Q € E corre-

sponds to g € nF(F;);
(b) if v = (Q - 7Q’) -7 then

[V ={1-013J.l,,,Jl,)>€p-and J-O €[]}

where @, Q' € E correspond to ¢, ¢’ € nF(F;);

12

(c) if v = (Q = (TQF""*7)Q") -+ then [4] is given by

{I 0 | ElJ’K’L € Zx'<le17J~LxJ‘>e p(‘l’a J-Ke II’Yl]]v
(Kl L) € pry, by Ll y € 6, L O €]}
where Q%" Q" € = correspond to g;""*

init Y1 V2 . . .
q' € nF(P;), and Q;-”” = w, Q' = w2, ~' = ~179, respectively; since v is

the control word of a depth-first derivation, the derivations of Q;’”t and Q'
are unique, and will not interleave with each other.
The following lemma proves the equivalence of the semantics of a (tagged) word
generated by a visibly pushdown grammar and that of a control word that
produces it.

(the initial control location of F;),

Lemma 3.2. Let Gp = (5, (:), A) be a visibly pushdown grammar for a program
P =(P,....P), Xx = X1 ... X, be the concatenation of all tuples of local
variables in P, Q € = be a nonterminal corresponding to a non-final control

location q € nF(P;), and Q %f « be a depth-first derivation of Gp, where a € oF
and v € A*. Then, we have:

V] ={1- 0 ez |{Il4,,Olx,) € [} .
Proof. By induction on |y| > 0. If |y| = 1, i.e. vy = Q — 7, we have a = T,
hence [a] = [w_nw(a)] = p, and the equality follows trivially. If |y| > 1, let
v =p-+, for some p € A and some v € A*. We distinguish two cases, based on
the type of p:
ep=Q — 7@ in this case « = 7 - and Q' % B is a depth-first
derivation of Gp. By the induction hypothesis, since || < |y|, we have

[Vl = {70 <Jly,, 0Ly, € [Bl}-

I = {1-0137 . {ly, Jlx,) € pr and (i, Oly,) € [B]}
= {1-0[|{ly,;0ly,) € [w_nw(a)]}
= {I-O0[{lx;;0lx,) € [a]}

e p=Q— (TQ"7)Q": in this case o = (7 f17) f2 and Gp has depth-
first derivations Q;”” % B1 and Q' % B2. We have two symmetrical

cases: either 7/ = v172 or v/ = ~v9y1. We consider the first case in the
following:

] = {I-0| LK, LeZ* (Il b€ pers
J'KE [71}]7 <Kixj7 lei>€p‘r>7
<I~in7L~in> € ¢T7 L ' O € [[72]}}

We apply the induction hypothesis to v, and s, since |y1| < || and |y2| < |7/,
and obtain:

]

{I-0] LK LeZ* (Il Tl)€ pers
<Jlxjalej> e [p1], <lej, Li,,)€pry,
Uy Llx,) € 7y {(Llx,, Olx,) € [B2]}

= {I-0| l,,,0ly,) € [w_nw(a)]}

= {I-0] l,,,0ly,) € o]}

13

O O

Consequently, the semantics of a program P = (Py,..., P,) can be equiva-
lently defined considering the sets

[Ply = (T O | 10Uy, D}

for each non-final state ¢ € nF(P;) of the procedure P; of P.

4 Underapproximating the Program Semantics

In what follows we define context-free language underapproximations by filtering
out derivations. In particular, in this section, we define a family of underap-
proximations of [P], called bounded-index underapprozimations. Then we show
that each k-index underapproximation of the semantics of a (possibly recursive)
program P coincides with the semantics of a non-recursive program computable
from P and k.

4.1 Index-bounded derivations

The central notion of this section are indez-bounded derivations, i.e. derivations
in which each step has a limited budget of nonterminals. This notion is the key
to our underapproximation method.

For a given integer constant k£ > 0, a word u € (X U E)* is said to be of index
k, if u contains at most k occurrences of nonterminals (formally, |ul=| < k). A
step u = v is said to be k-indexed, denoted u = v, if and only if both u and

v are of index k. As expected, a step sequence is k-indexed if all its steps are
k-indexed. For instance, both derivations from Ex. 3.5 are of index 2.

Lemma 4.1. For every grammar G = (E,%, A) the following properties hold:

(1) =*c =="* forallk =1
(k) (k+1)

= w0 *
(2 = Us=1 ﬁ

(8) for all X, Y € E, XY ?* w € X¥F if and only if there exist wyi,wy € X¥,

such that w = wywe and either: (i) X ﬁ* w; and Y ﬁ* wy, Or
k—1 k

(it) Y =—=* we and X =>* w;.
(k=1) (k)

Proof. The proof of points (1) and (2) follow immediately from the definition of
?*. Let us now turn to the proof of point (3) (only if). First we define w; and
wy. Consider the step sequence XY (:>* w and look at the last step. It must
be of the form uZv ﬁ* uyv = w, where u, v,y € X*, and one of the following
k
must hold: Z has been generated from either X or Y. Suppose that Z stems
from Y (the other case is treated similarly). In this case, transitively remove
from the step-sequence all the steps transforming the rightmost occurrence of

14

Y. Hence we obtain a step sequence XY ?* w1Y. Then wsy is the unique
word satisfying w = wiwsy. Since XY (=)>* w1Y, by removing the occurrence of
k

Y in rightmost position at every step, we find that X (:)>* wy, and we are
k—1
done. Having Z stemming from X yields Y (:)>* wsy. For the proof of the
k—1

other direction (if) assuming (7) (the other case is similar), it is easily seen that

XY ﬁ}* ’LU1Y =% wiwsy. O] O

The previous definitions extend naturally to bd-steps and bd-step sequences,
and we define Y = {wf e ((Eu E)N)* | |w?|=x| < k} the set of bd-words
with at most k occurrences of nonterminals. We write the fact that a bd-step

sequence u® =* v is both k-indexed and depth-first as u® df=(k)>* vP. For any

symbol X € = and constant k& > 0, we define the languages:

LG = {wex* | X ?* w}

T¥F (@) = {y e A* | Fu®, 0% e TR 2 %(k) P}

Example 4.1. (contd. from Ex. 3.2) Inspecting the grammar Gp from Ez.3.2
reveals that

LQiuit (Gp) = {(Tl<7’2)n7’4 (T2>>T3>n | ne N} .
For each value of n we give a 2-index derivation capturing the word: repeat n
times the steps

init P1P5 ini Py ini
" == 11(1Q"" 12)Q3 = Ti{n Q" 1273
followed by the step
Qinit LZ} T4 -
Therefore the 2-index approxzimation of Gp shows that Lo (Gp) = Lg,,)m (Gp).
1
]

Example 4.2. (contd. from Ex. 3.5) For the grammar G from Ezx. 3.5, we
obtain the following control sets:

W = (Y,aY)*(Y,e) U (Z, Zb)*(Z,¢)
4@ = (X, YZ)(Y,aY)*(Y,e)(Z, Zb)*(Z,e)u
(X,YZ)(Z,Zb)*(Z,e)(Y,aY)*(Y,e) u THD) . m
We recall a known result.

Proposition 1 ([20]). For all k = 1, G = (E,3,A) and X € E, we have
L¥(G) = Ly (r4'®), G).
Finally, given k > 1, we define the k-index semantics of P as [P]*) =

qa)™, ... [gm] ™), where nF(P) = {q1, ..., ¢m} and the k-index semantics of
a non-final control state g € nF(F;) of a procedure P; of the program P is the

relation [q] = [[P]]ék) C 7% x I, defined as:

[P = {1y, 0L)| T-0el M} -

5
E———
Q df(k) v

15

(Y, aY) (2, Zb)

S IS
YHZ) ————= {2}

<Y7ay' \2\ ‘)
(X,Y2))

{X} {v, 2} 0
(zm /;,5)
{Z}{Y} {v}
N N
(Z, Zb) (Y, aY)

Figure 2: The graph A9 (%) (@) for k > 2 and for the grammar G of Ex. 3.5

4.2 Depth-first index-bounded control sets

For a bd-word w®, let
[wa] = PkE{”aHulax} (wa) . PkE{uaumaxfu (’wa) ce Pkg(o) (’LUO‘) .

Each symbol in [w®] is a |Z|-dimensional vector, that is [w®] € (NIZI)*, There-
fore with a slight abuse, we can view each of these tuples as a multiset on Z=.
Moreover, each tuple Pkg (w®) in [w®] is the multiset of nonterminals that
occur in w* with the same birthdate 0 < ¢ < ||| max, and the elements of [w®]
are ordered in the reversed order of their birthdates. For instance, the first tuple
Pk (jalmax (w®) is the multiset of the most recently added nonterminals. Notice
that for each bd-word u we have [u] = 0 if u € (¥V)*. Finally, let 0 be the
identity element for concatenation, i.e. [w*]-0 = 0 - [w*] = [w*].

Example 4.3. (contd. from Ex. 3.5) For the bd-step sequence X© o yLzL o
aPYPZYV = ¢ DYDZEOKD (Br. 3.5) we have [X V] = {X}, [y ZDV] =
(v, 2}, [aPYPZV] = {Y} - {Z} and [aPY P ZOpD]| = {Z} - {Y} .]

The [.] operator is lifted from bd-words to sets of bd-words, i.e. subsets of
(ZuE)M) *. The set [T(k)] is of particular interest in the following developments.
Next we define the graph A¥®)(G) = ((Y®], (A*,.), —), where [T*)] is the
set of vertices, A is the set of edge labels and — is the edge relation, defined as:
~ (Zw) . .
v ——> w if and only if:

e ¥ = (¥); - ¥, where (?); € NIEl and Pk=(Z) < (v)1, i.e. Z occurs with
maximal birthdate ¥, that is, it occurs in (?);, and

e W= Pk=(w) ((¥)1 — Pk=(Z)) ¥, i.e. Z is removed from its multiset (v),
and the nonterminals of w are added, with maximal birthdate to obtain .

Next, define L(AY®) (@) = {y € A* | ¥ L @ in A¥H*)(G)}. For example,
Fig. 2 shows the A9(®) graph for the grammar G from Ex. 3.5. The next lemma
proves that the paths of AY(*)(G) represent the control words of the depth-first
derivations of G of index k. In the following, we omit the argument G from
rE) (@), or A¥H®)(G), when it is clear from the context.

16

Lemma 4.2. Given a grammar G = (2, %, A), and k > 0, for each X € E and

~v € A*, there exists a derivation X % w, for some w € X¥, if and only if
d

[X] 2 0 in AXE)(Q).

Proof. “=" We shall prove the following more general statement. Let u® %
df(k

w? be a k-indexed depth-first bd-step sequence. By induction on |y| > 0, we
show the existence of a path [u®] - [w’] in AdE®).

For the base case |y| = 0, we have u® = w” which yields [u®] = [w”] and
since u® € T by definition of '(*) we have that [u®] € [Y(*)] and we are
done.

For the induction step |y| > 0, let v" % w? be the last step of the sequence,
for some (Z,z) € A, ie. v = 0-(Z,x) with 0 € A*. By the induction hypothesis,
A () has a path [u®] 5 [v7]. Let [v"] = v/ - ¥, where v/ = ([v"]); € NI¥I, and
7, € (NIFh)* is a sequence of multisets of nonterminals. It remains to show that
[w?] e Y™, Pk=(Z) < v’ and [w?] = Pkz(z) - (v/ — Pk=(Z)) - ¥, to conclude

that AY(*) has an edge [v"] 2=, [wﬁ] hence a path [u®] - [w?].
(Z,2)/3
df (k)

where i = max {j | Pkzy (v7) # 0} and w? = (v")1 ... (v7);_1 - 2 lmax+10) .
(V)41 .- (V7))yn)- Tt is easily seen that |B||lmax = [7]max + 1. Moreover, since
i is the maximal birthdate among the non-terminals of v”, we have [v"] =
PkE{i} (’Un) ce PkE{O} (’Un)7 hence v/ = PkE{i} (’Un) and % = PkE{i—l} (U") ce PkE{o} (1)7]).
Also we have Pk=g;) (w?) = 0 forall j,i < j < |1 max, Pz (0?) = Pkziy (v7)—
Pkzy (Z7) and Pkzey (w?) = Pkz (v") for all £,0 < ¢ < i. Using the forego-
ing properties of w? the following equalities are easy to check:

[w”]
= Pkztintmacts (W?) - Phzgnima (W?) ... Pkzoy (0?)
PkH{HT,HmWX-H}(wﬁ) Pk—{ }(wﬁ) Pk—{z 1}(wﬂ) PkE{o}(’wﬁ)
Pk=(x) - Pkzg (w?) - Phzg-u (w?) ... Pkzgo (wP)

Since v" w? for some 1 < j < [v7] we have that (v7); = Z®

= Pk (z) - (Pkzy (v") — Pkzy (Z2)) ... Pkzioy (w?)
= E(Jj) (V - PkE(Z)) : PkE{i—l} (wﬁ) . Pk‘E{o} (wﬁ)
= kE(Z) (V PkE(Z)) . PkE{i—l} (’Un) [N PkE{o} (Un)
— Pke(z)- (V' — Pk=(2)) -,

This concludes that [w?] = Pk=(z) - (v — Pk=(Z)) - %, and since w? € T we

obtain that [v"] Zn), [w?] is an edge in AY*), and finally that [u®] 5 [w”]
is a path in A9f(F),

<” We prove a more general statement. Let % - @ be a path of AY*) (@),
We show by induction on || that there exist bd-words u®,w” € T such that

[u*] = @, [w’] = @, and u® =L we.
df (k)
The base case |y| = 0 is trivial, because & = w and since @ € [T(k)] then
there exists u® € T such that [u®] = %, and we are done.
For the induction step || > 0, let v = o-(Z, x), for some production (Z,x) € A
and o € A*. By the induction hypothesis, there exist bd-words u®,v" € T*)

17

such that ¥ = [u®] 5 [v7] P2, s a path in AY®*) and u® ;f—o—(k; v is a
k-index bd-step sequence. By the definition of the edge relation in A4(*) it
follows that [v"] = Pkge (v") -0 where ¢ = max {j | Pkse) (v"7) # 0}. Moreover,
there exists j, 1 < j < |[0"] such that (v7); = Z since Pkz(Z) < Pkzi (V7).
Now define w® = (v"); ... (v7);_1 - aXIMlmaxt10),y (V")) It is routine

(Z,%)/j B ~ B .
to check v" v holds. Next we show, w = [w] which concludes the

proof.

~

w
=Pk=(z)-(Pkz (vV")—Pk=(Z))-0;
e T — (x<<|\n|\max+1>>).(pkam (v")— Pk (Z<i>))~17t

)
= Pkz(inimax+1y (WP)-(Pkzin (01— Phzi (Z7))-
PkE(’Fl} (’Un) e PkE{o} (1)77)

Since i = max {j | Pkz((v") # 0}; Pz (w?) = Phzie (v7) for 0 < £ < i and
Pkziy (w?) = Pkzy (v")— Pz (Z<) show that

:PkE{HnHmaxH} (U}B>'Pk15{i) (wB)PkE{i—l} (’LUB) e Pk‘E(o} (wﬂ)
:PkE{HnHmaxH} (wﬁ>'Pk‘5m (wﬁ)PkE{i—l} (wﬁ) e PkE{o} (wﬁ)
= [w]

[[

Consequently, we have the following (also proved in [22]):

Corollary 1. Forallk > 1, G = (£,%,A) and X € Z, we have TY¥®) js regular.

4.3 Bounded-index Underapproximations of Control Struc-
tures

We start describing our program transformation, from a recursive program to
a non-recursive program in which all computation traces correspond to words
generated by an index-bounded grammar. In the beginning we choose to ignore
the data manipulations, and give the non-recursive program only in terms of
transitions between control locations and (non-recursive) calls. Then we show
that the execution traces of this new program match the depth-first index-
bounded derivations of the visibly pushdown grammar of the original program.

Let P = (Py,...,P,) be a recursive program. For the moment, let us assume
that P has no (local) variables, and thus, all the labels of the internal transitions,
as well as all the call, return and frame relations are trivially true. As we did
previously, we assume a fixed ordering gy, ..., g, on the set nF(P) of non-final
states of P. Let Gp = (5, (:), A) be the visibly pushdown grammar associated
with P, where each non-final state ¢ of P is associated a nonterminal Q € =.
Then, for a given constant K > 0, we define a non-recursive program HX that
captures only the traces of P corresponding to K-index depth-first derivations
of Gp (Algorithm 1). Formally, we define X = (query®, query!, ..., query™),
i.e. the program is structured in K + 1 procedures, such that:

18

o query® consists of a single statement assume false, i.e. no execution going
through a call of query® is possible,
e all executions of query®, for each 1 < k < K correspond to k-index
depth-first derivations of Gp.
We distinguish between grammar productions of type (a) @ — 7, (b) Q - 7Q’

and (c) Q — (7,Q""'7) Q' (see Ex. 3.2) of the visibly pushdown grammar

G =<(E, @), A). Since Z and O are finite sets, we associate each nonterminal Q € 2
an integer 1 < Zg < |Z|, each alphabet symbol 7 € © an integer 1 < Z, < O],
and define the productions by the following formulae:

Wa(xay)z \/ x:IQAy:IT

(Q—™71)eA
m(x,y,2) = \/ x=TIogry=T. nz=Ty
(Q—71Q")eA
(X, y, 2, t,8) = \/ (aczIQ ANy =T A

(R TQ™T)QNeA
z = IQ}nzf, ANt = IT> NS = IQ/)
It is easy to see that the sizes of the 7., m, and 7. formulae are linear in the
size of P (there is one disjunctive clause per production of Gp, and each such

production corresponds to a transition of P). The translation of P into H can
hence be implemented as a linear time source-to-source program transformation.

Algorithm 1: proc query*(X) for 1 <k < K

begin
var PC, v, 7 ;
asgnﬁ: PC — X 3
start®: goto prod]; or prodlg or prod]j ;
prod”: assume 37.7,(PC, 1) ; /* Q — T */
asgn”: assume true ;
return;
prod}: havoc (Y) H
assume 37.m,(PC, 7,Y) ; /¥ Q> 1Q */
asgny: PC«—vYy ;
goto start” ;
prodF: havoc (v,2) ;
assume 37, 7. 7.(PC,7,Y,7,7) ; /x Q-1 QUVT'Q */
ndet’: | goto swap® or asgn! ;
swap”: swap (Y, Z) ;
asgn’: PC <1z ;
query* = (v) ;
goto startk;
end

Next, we show a mapping from the paths of A4¥(*) onto the feasible interpro-
cedural valid paths of query®. To relate these paths, we need to introduce the

19

Given s € [T®] U {sink} and p € A define §(s,p) = s’ if s 2> s’ holds in A4F*)
for some s’, otherwise (s 2 s’ holds for no s') then é(s, p) = sink. The output
mapping A is defined as follows:

L A{X}-9,(X,7)) = start"~ ‘“‘prod’c lasgntPlstarth =171+ if i £ o

2. M{X}, (X, 7)) = start” prod® asgn’
3. A({ X}, (X, 7 X)) :startk_mprodlg v ‘asgn “Plgtartk-1ol
4. M({X}-7, (X, TXlT X)) = start Plprod®~1? ‘ndetk v
5.\ {szt Q} szt TQ”)) _
asgn ||asgnk 1= 'startF— 11— lprodk 1= 1asgnk 11— 'starth— 1711
6. ({szt Q } Q/) _
swapk’masgnk v |asgnk W= tgtarth—1o1- 1prodk 19— 1asgnk WI=tstartk—17l
7o\ {szt Q} 1~) Q”)) _
swapF~ |”|asg k= ||asgnk Iv1- 'starth— 11— 1prodk Iv1= 1asgnk 11— 'starth—1P1-1

8. A(s,p) = L, for all s and p, such that d(s,p) = sink holds.

Figure 3: Definition of the mappings § and A for SC”ZQ.

notion of gsm mappings.

Definition 1 ([14]). A generalized sequential machine, abbreviated gsm, is a
6-tuple S = (K, %, A, 6,)\, q1) where (1) K is a finite non-empty set of states;
(2) ¥ and A respectively are input and output alphabet; (8) § and \ are mappings
from K x 3 into K and A*, respectively; (4) q1 € K is the start state. The
functions 0 and A are extended by induction to K x ¥* by defining for every
state q, v € X%, and y € 3:

e i(q,e) = q and A\(¢,¢) = ¢.

* (g, xy) = 6(0(q,2),y) and A(q,zy) = g, 2)A(6(q, x),y).
The operation defined by S(x) = A(q1,x) for each x € ¥* is called a gsm mapping.

We define the gsm SCg = {(TW] U {sink}, A, L£,6,\,[Q]) upon AWK
where £ denotes the statement labels found in query®,..., query*; and the
mappings d and A are given by the rules of Fig. 3.

Lemma 4.3. For a visibly pushdown grammar G = (E, (:), A, and k > 0, for
each Q € Z the set of feasible interprocedural valid paths of query®(Q) coincides

with the set {SCH(7) | [Q] > 0 in AX®}.

Proof. The feasible interprocedural valid paths of query®(Q) at Algorithm 1

(51 67:. 1

do
matches sequences of the form oy - 07 = ... — 0,,, where each o; € Z* is

a stack, i.e. a possibly empty sequence of frames each containing a snapshot of
the value of the local variable PC, ¢; € A are productions of G. The sequence of
stacks g, 01, ..., 0, are snapshots of values of the local variable PC between two
consecutive visit to a start label or between the last visit to a start label and
the last return. Instances of such consecutive visits are given by start®, prod ,
asgn . or start”, proda, asgna, return, start®*! (when returning from a
previous call); or start”, prod’f,, ndet”, swap”, asgn’, start®*~! (immediately
after entering the call query*~1).

When Algorithm 1 is started with a call to query®(Q), the first stack in the
trace is Q. The set of stack sequences are generated by a labelled graph defined

20

by the following rules, where the stack on both sides of each rule are words
w € 2* such that |w| < k.

Q1)
(a) Q-0 —>o0

(b) Q-0 (@@, Qo

(c) we have either (i) Q - o (@AL',

Q" Q o
Following the previous definition, we find that the set of sequences of control
labels {SCg(v) | @ 2 ¢} coincides with the feasible interprocedural valid path
of query*(Q).

Next we show that Q - ¢ is a valid stack sequence of query*(Q) if and only

Q- Q" -0, or (i) Q- o LTIV,

if [Q] & 0 in A (¥)(G). For this, consider the following relation between the

stacks o € ¥ such that |o| < k and words @ € [T®]: we write o < @ if and
only if exactly one of the following holds:

(1) |o| = |@| and, for all 1 <4 < |W|: {(0);} = (@), or

(2) |o| =|w|+ 1, (@)1 = {(0)1,(0)2}, and for all 1 < i < |@]: {(0)i41} = (W);.
The proof goes by induction and shows the following stronger statement relating

the reachable stacks and the states of AY(*) reachable from [Q]: for any stack

sequence Q - o, there exists a path [Q] - @ in AY(*¥) such that o < @, and

vice versa.
By putting together the previous result about the feasible interprocedural
valid paths of query®(Q) we find that they coincide with the set {506(7) |

[Q] 5 0 in A9f()}, O O

4.4 Bounded-index Underapproximations of Programs

Algorithm 1 implements the transformation of the control structure of a recursive
program P into a non-recursive program HX = (query?, ..., query®), which
simulates its K-index derivations (actually, the control words thereof). In this
section we extend this construction to programs with integer variables and data
manipulations (Algorithm 2), by defining a set of procedures query®, for all
0 < k < K, such that each procedure query” has five sets of local variables, all
of the same cardinality as x: two sets, named x; and xp, are used as input
variables, whereas the other three sets, named x;,xx and xj, are used locally
by query”®. Besides, each query” has local variables called PC, 7, Y, z and input
variable X. There are no output variables in query®. Let V¥ denote the

query
tuple of local variables of query®, and let Vi = V1 .. -...- VE __ be the tuple

of all variables of H¥.

For two tuples of variables x and y of equal length, and a valuation v € Z*,
we denote by v[y/x] the valuation that maps (y); into (v(x));, for all 1 < i < |x].
The following lemma is needed in the proof of Thm. 1.

Lemma 4.4. Let Gp = (5, é, A) be a visibly pushdown grammar for a program
P =(P,...,Py), let x = x1 ... %Xy be the tuple of variables in P, and let
HE = Lquery®, ..., query™) be the program defined by Algorithm 2. Given a
nonterminal Q € E, corresponding to a non-final control state q € nF(P), v € A*,

21

asgn(’?:
start”:
prod];:

asgnﬁ:

prod’g:

asgn;’:

prod’:

ndet”:

swap”:

asgn”:

begin

var Xj,Xg,Xr;
var PC, 7,Y, Z ;
PC « X ;

goto prod]; or prod’g or prodf ;

havoc (7);

assume 7,(PC, 7);
assume p.(X7,X0);
return;

havoc (7,Y);
assume 7,(PC, 7, Y);
havoc (x;);

assume p,(X7,XJ);
X1 <~ X7J;

PC «v;

goto start” ;

havoc (7,v,2);
assume 7.(PC,{(7,Y,7),7);
havoc (x;,xx,XL);
assume p¢-(X7,X7) ;
assume pry(Xx,Xr) ;
assume ¢, (x7,Xz) ;
goto swapk or asgnf, ;
swap (Y, 2);
swap(xy,Xr);
swap(Xx,X0);

X[< XL;

PC « z;
query* (v, x5, XK);
goto startk;

end

Algorithm 2: proc query®(X,x7,x0) for 1 <k < K

/¥ Q> T

/x Q> T1Q

/% Q_)<TQ']{nit7_>Q/

/* call relation
/* return relation
/* frame relation

*/

*/

*/

*/
*/
*/

22

Example 4.4. Let us consider an execution of query for the

b, c a
call query?(Qi* (1 0),(12)) following Qinit 2L 1 (rQinitr, Qs =

T1{m2 Qi o)3 By ot ((ramam)rs. In the table below, the first row (labelled
PC) gives the value of local variable PC when control hits the labelled statement
given at the second row (labelled ip). The third row (labelled x;/x0) represents
the content of the two arrays. x;/xo = (ab)(cd) says that, in x;, x has value
a and z has value b; in xo, © has value ¢ and z has value d.

PC | Qe - Q> - -
ip start? prodb p1 start2 prod? (p§) swap?
xr/x0 | (10)(12) (1o0)(12) (ro)(12)
PC Qs H g
ip start! prod start2 prod? (p2)
x7/%x0 || (10)(12) (420) (00)(420)

The execution of query?(Q““t starts on row 1, column 1 and pro-

ceeds until the call to query (Qg,(l 0) (1 2)) at row 2, column 1 (the out
of order case). The latter ends at row 2, column 2, where the execution of
query®(Qi™, (10),(12)) resumes. Since the execution is out of order, and
the previous havoc(xy,Xx,Xyr) results into x; = (00), xxg = (420) and
xr = (10) (this choice complies with the call relation), the values of x1/xo are
updated to (00)/(420). W

w E @*, and 1 < k < K, such that Q %(k) w, we have:

[= { (T o) b /1 0] | 1-0 € [SCE ()]}

where [y] € Z*** and [[SC%(W)]] c ZVh.

Proof. By induction on |y| > 0, applying a case split on the type of the first
production in 7. O O

The following theorem summarizes the first major result in this paper, namely
that any K-index underapproximation of the semantics of a recursive program
P can be computed by looking at the semantics of a non-recursive program H%,
obtained from P by a syntactic source-to-source transformation.

Theorem 1. Let P = (Py,..., P,y be a program, x = X1 - ... X, be the
tuple of wvariables in P, and let ¢ € nF(P;) be a non-final control state of
P, = (x;,xi", x0% S, ¢t Fy Ay, Moreover, let HE = (query®, ..., query™)

1 7

be the program deﬁned by Algorithm 2. For any 1 < k < K, we have:
[PIS = (T by B/ b, (T g (/%01 b |
I-0 e [H") guerys> 1(X) = Q) .

Proof. Let Gp = (5, o, A) be the visibly pushdown grammar corresponding to
‘P. By definition, we have

[PI) = {Ts, 0L 11-0e U, o,]}

df(k)

23

"’ Let @ %(k) w be a derivation of Gp, and I - O € [y] be a tuple from Z***.

By Lemma 4.2, [Q] 2 0 is a path in AY(*)(Gp), and by Lemma 4.3, SC% () is
a feasible interprocedurally valid path of query®(Q). By Lemma 4.4, there exists
tuples I,0 such that I - O € [[SC%(W)]], and I -0 = (fle-xo) [x - x/x5 - %x0]-
We obtain thus I =T |, [x/x;] and O = T |, [x/x0]-

"> Let 1,0 € ZVwer | such that I -0 € [H5] juery and I(X) = Q. Then
there exists a feasible interprocedurally valid path m of query*(Q), such that
I-0 € [n]. By Lemma 4.3, there exists a control word v € A* such that

[Q] 5 0 and 7 = SC%(V). By Lemma 4.4, (Tle-xo) [x - x/x;-x0] € [v]- By

Lemma 4.2, we have that @ df:’y(k; w is a derivation of Gp. We can conclude
that (T by, [x/%1])bx,» (T Lo, [x/%0]) x> € [Py O 0

As a last point, we observe that the bounded-index sequence {[[73]](’“)},;‘0:1
satisfies several conditions that advocate its use in program analysis, as an
underapproximation sequence. The subset order and set union is extended to
tuples of relations, point-wise.

[PI® < [P)E+D forall k> 1 (A1)

Pl = UL IPI® (A2)
Condition (A1) requires that the sequence is monotonically increasing, the limit
of this increasing sequence being the actual semantics of the program (A2). These
conditions follow however immediately from the two first points of Lemma 4.1.
To decide whether the limit [P] has been reached by some iterate [P]*), it is
enough to check that the tuple of relations in [P]*) is inductive with respect to
the statements of P. This can be implemented as an SMT query.

5 Completeness of Index-Bounded Underapprox-
imations for Bounded Programs

In this section we define a class of recursive programs for which the precise

summary semantics of each program in that class is effectively computable. We

show for each program P in the class that (a) [P] = [P]*) for some value k > 1,

bounded by a linear function in the total number loc(P) of control states in P,

and moreover (b) the semantics of H* is effectively computable (and so is that

of [P]*) by Thm. 1).

Given an integer relation R € Z™ x Z", its transitive closure Rt = Ufil RY,
where R! = R and R**! = R’ o R, for all i > 1. In general, the transitive closure
of a relation is not definable within decidable subsets of integer arithmetic, such
as Presburger arithmetic. In this section we consider two classes of relations,
called periodic, for which this is possible, namely octagonal relations, and finite
monoid affine relations.

Octagonal relation An octagonal relation is defined by a finite conjunction of
constraints of the form +x +y < ¢, where x and y range over the set x Ux/,
and c is an integer constant. The transitive closure of any octagonal relation
has been shown to be Presburger definable and effectively computable [8].

24

Linear affine relation A linear affine relation is defined by a formula R (x,x’) =
Cx>d A x' = Ax + b, where A € Z"*", C € ZP*™ are matrices and
beZ™ deZP. R is said to have the finite monoid property if and only if
the set {A® | i > 0} is finite. It is known that the finite monoid condition
is decidable [7], and moreover that the transitive closure of a finite monoid
affine relation is Presburger definable and effectively computable [12, 7].

We define a bounded-expression b to be a regular expression of the form

b = wf ... w}, where d > 1 and each w; is a non-empty word. A language (not

necessarily context-free) L over alphabet ¥ is said to be bounded if and only if L

is included in (the language of) a bounded expression b.

Theorem 2 ([21]). Let G = (E,%,A) be a grammar, and X € Z be a nontermi-
nal, such that Lx(G) is bounded. Then there exists a linear function B: N — N

such that Lx (G) = Lg?)(G) for some 1 < k < B(|E]).

If the grammar in question is Gp, for a program P, then clearly |Z| is
bounded by the number of control locations in P, by the definition of Gp. The
class of programs for which our method is complete is defined below:

Definition 2. Let P be a program and Gp = (E,é,A) be its corresponding
visibly pushdown grammar. Then P is said to be bounded periodic if and only if:
1. Lx(Gp) is bounded for each X € =Z;

2. each relation p; occurring in the program, for some T € (:), 1s periodic.
Example 5.1. (continued from Ex. 4.1) Recall that Lo (Gp) = ng)mt (Gp)
1 1
which equals to the set {(11{72)"1a(r2)m3)" | n =0} < (7’172<<)*Tj‘ (’7’2>>T3)*. |

Concerning condition 1, it is decidable [14] and previous work [16] defined a
class of programs following a recursion scheme which ensures boundedness of
the set of interprocedurally valid paths.

This section shows that the underapproximation sequence {[P]*)}%_,, de-
fined in Section 4, when applied to any bounded periodic programs P, always
yields [P] in at most B(loc(P)) steps, and moreover each iterate [P]*) is com-
putable and Presburger definable. Furthermore the method can be applied as
1t is to bounded periodic programs, without prior knowledge of the bounded
expression b 2 Lg(Gp).

The proof goes as follows. Because P is bounded periodic, Thm. 2 shows
that the semantics [P] of P coincide with its k-index semantics [P]*) for some
1 < k < B(loc(P)). Hence, the result of Thm. 1 shows that for each q € nF(P),
the k-index semantics [[73]]51’“) = {ly, Ty | T- 0 € [HE] ey, I(X) = Q},
that is, the semantics [[”P]]ék) is computed from that of procedure query”* called
with X = @. Then, because P is bounded, we show in Thm. 3 that every
procedure query® of program H is flattable (Def. 3). Moreover, since the only
transitions of 4 which are not from P are equalities and havoc, all transitions of
H are periodic. Since each procedure query” is flattable then [P] is computable
in finite time by existing tools, such as FAST [6] or FLATA [9, 8|. In fact, these
tools are guaranteed to terminate provided that (a) the input program is flattable;
and (b) loops are labelled with periodic relations.

Definition 3. Let P = (Py,...,P,) be a non-recursive program and Gp =
(2,0, A) be its corresponding visibly pushdown grammar. Procedure P; is said

25

to be flattable if and only if there exists a bounded and regular language R over
O, such that [P]p, = UaeLPi(GP)ﬁR[[a]].

Notice that a flattable program is not necessarily bounded (Def. 2), but its
semantics can be computed by looking only at a bounded subset of interproce-
durally valid paths.

The proof that the procedures query® are flattable relies on grammar based
reasoning, and, in particular, on control-sets with relative completeness properties.
Let us now turn to our main result, Theorem 3 stated next, whose proof is
organized as follows. First, Proposition 2 roughly states that provided L(G) is
bounded, then a bounded subset of the k-index depth-first derivations suffices to
capture L) (G) for some k. The proof of this proposition is split into Theorem 4,
Lemma 5.1 and Lemma 5.2. The rest of the proof uses Lemma 4.3 which
roughly states that there is a well-behaved mapping from the k-index depth-first
derivations of Gp from @ to the runs of query*(Q) for every value of k and Q.

Theorem 3. Let P = {(Py,...,P,) be a bounded program, then, for any k > 1,
procedure query® of program H is flattable.

5.1 Bounded languages with bounded control sets
The following result was proved in [13]:

Theorem 4 (Thm. 1 from [13], also in [20]). For every regular language L over
alphabet ¥ there exists a bounded expression br such that Pky,(Lnbr) = Pks(L).

Next we prove a result characterizing a subset of derivations sufficient to
capture a bounded context-free language. But first, given a grammar G =
(£,%,A) and X € E define

Y™ = {yea* [[X] 5 0in A¥®) .

Observe that Fg(f(k) is a regular language, because A4 is a finite state au-
tomaton.

Lemma 5.1. Let G = (E,3,A) be a grammar and X € = be a nontermi-
nal, such that for all p € A, X does not occur in tail(p). Also Lx(G) <
(arw1)* ... (aqwq)* where aq,...,aq are distinct symbols of ¥ none of which
occurs in wy - --wq. Then, for each k =1 there exists a bounded expression br
over A such that L()?)(G) — Lx(br n F(;(f(k)7 G).

Proof. We first establish the claim that for each k > 1, there exists a bounded
expression br over A such that Pka (T'9®*) nbr) = Pka (I'4(*)). By Corollary 1,
9 (k) is a regular language, and by Theorem 4, there exists a bounded expression
br over A such that Pka(TY¥®) A br) = Pka(T9¥®) which proves the claim.

Define A = {aq,...,aq} and assume A is given as a linearly ordered set of

m productions {p1,...,pm}.- Then for u such that X 2 u, we have Pk (u) =
Pka(v) x II where II is the matrix of m rows and d columns where row ¢
is given by Pka(tail(p;)). Next, let ~1,v2 be two control words such that
Pka(v1) = Pka(v2) and each +; (i = 1,2) generates a word u; of Lx(G), that is

X =2 u;. We conclude from the above that Pka(u1) = Pk.4(uz). Moreover, the

26

assumption Lx(G) € (ajwq)* ... (agwq)* where aq,...,aq are distinct symbols
shows that u1|4 = u2l 4. Furthermore, because no symbol of A occurs in
w1 -+ - wg we find that uq = us.

To show Lglg)(G) = Lx(bp n I‘gl(f(k),G) we prove that Lg?)(G) < Lx(bp n
F?(f(k), G) the other direction being immediate because of Proposition 1 which

says that Lg?)(G) = Lx (P4 ®) @) and because only those control words ~ such
that head((7y)1) = X matters.

So, let u € ZALX(F?(’“), G) be a word, and X %(k; u be a depth-first derivation

of u. Since PkA(ng(f(k) N br) = PkA(Fg(f(k)), there exists a control word
B e TH¥®) A br such that Pka(8) = Pka(y). Also because no production
p € A is such that tail(p) contains an occurrence of X, we find that (8); = (7);.
Finally, Lemma 3.1 shows that given 3 € T4 there exist a (unique) word o’

such that X T%; v, hence v’ = u as shown above. O O
For the rest of this section, let G = (2,0, A) be a visibly pushdown grammar
(we ignore for the time being the distinction between tagged and untagged
alphabet symbols), and Xy € Z be an arbitrarily chosen nonterminal.
Let b = wf ---w} be a bounded expression 6 over alphabet © and define

the bounded expression b = (aqwr)* ... (aqwg)* such that {ay,...,aq} and
O are disjoint. Next, let ¢; = |a; w;| for every 1 < i < d and let GP =
(EP,0 U {a1,...,aq},6°) be the regular grammar where

=b — {QSS)|1<S<dA1<T§£5}

5 QES)H(aSwS)ngfl\lésédA1<i<€s}u

(s)

Qe — (asws)e, Qgsl) |1<s<¢ < d} .

Checking {w | Qgs) =* ngx) for some 1<s<w<d} = L(b) holds is routine.
Next, given G and GP, define G = (2,0 u {ay,...,aq}, A™) such that
Ly (G™) = Lx,(G) || L(b).”

o =¥ = {X{'}u {[QSS)XQL”)] | X €2, Q. Q{" e =P, s < a:}

e A™ is the set containing for every 1 < s < z < d a production X' —
[Qgs)Xong)], and:

— for every production X — v € A, A™ has a production

[XQ™] — v if Q¥ — 7 Q™ e AP ; (1)

6Recall that each w; is a non-empty word.

7Given two languages L1 < E’f and Lo © E;" their asynchronous product, denoted L1 || Lo,
is the language L over the alphabet ¥ = ¥ U X9 such that w € L iff the projections of w to
31 and X2 belong to Ly and Lo, respectively. Observe that the Lq || L2 depends on L1, La
and also their underlying alphabet >;1 and Xo.

27

— for every production X — v Y € A; A™ has a production

if Qgs) — 5 ng) e AP: (2)

— for every production X - 7 Z oY € A, A™ has a production

[X Q] - 7 [of” 2a("] o [of V(]
if Qﬁs) — T ng) € Af’ and ngu) -0 Qg) € AS; (3)

— for every production Qgs) — a, Q' € 6P, A has a production

017X Qf"] - as [l Xof] . (4)
A™ has no other production.

Next we define the mapping £ which maps each nonterminal [QSS)X Q,(f)] ez
onto X, X' onto Xy, every a;, 1 <i < d, onto ¢ and maps any other terminal
(©) onto itself. Then ¢ is naturally extended to words over O U {a1,...,aq} UZE".
Next we lift £ to productions of A™ such that the mapping of a production is
defined by the mapping of its head and tail. The lifting of £ to sequences of
productions and sets of sequences of productions is defined in the obvious way.

From the above definition we observe that given a derivation D™ = X =

[Q:(LS)XOng)] =* w in G™, £ maps D™ onto a derivation of G of the form

X() = XO =% wl@.

Lemma 5.2. Let G = (E,0,A) be a visibly pushdown grammar, Xo € Z be a
nonterminal such that Lx,(G) < b for a bounded expression b = w¥ ... wk. Let
{ay,...,aq} be a set of d symbols disjoint from ©. Then for every k = 1, the
following hold:

1. Letiy,...,1q € N we have

wit .. wf e Lg’;g(G) iff (a1wy)™ ... (aqwg)™ € Lglgzq (G™) ;

[¢]

2. Given a control set T" over A™ such that
7 df (k) [sy _ 7 (k) (e
L (0 P40 (G7),67) = 19, (6)
then the control set T” = £(T') over A satisfies
A k
Ly, (I nTH®(G),6) = L (@) .

Proof. The proof of point 1 is by induction. As customary, we show the fol-
lowing stronger statement: let k > 1 and w € (O U {aq,...,aq})* - ©, we have

[Q&S)XQS,IL)] E}* w iff QSF) =* Qg,") and X (:k;* wlg. The proof of the if

direction is by induction on the length of Q&s) =% w Qg,u).

i=1. Then Qgs) — T qu)

{al,...,ad}.

e AP. Two cases can occur: (i) 7 € ©; or (i) 7 €

28

In case (i), we conclude from X (:k;* wlg that w=w |g =7 and X - 7€ A,

hence that [Q\”Xq{"] — 7 € A™, and finally that [Q" X Q"] ﬁ* w. Case
k
(i) is not allowed since w must end with a symbol in O.

; () () s 7 o) ;
i>1. Then @’ = 7Q,,’ = o=" Ty Qu . As seen previously, two cases
can occur: (i) 7 € {ay,...,aq}; or (i) 7 € ©. In case (i), because w = Ty and

7 ¢ © we find that X ?* wlg = Yle- Hence the induction hypothesis shows
that [ng')XQS)u)] (:k;* y. Finally the definition of G™ shows that [Qgs)Xqu)] —

T [QS/)XQSJu)] e A™, hence that [Q!¥ X ("]
(=k)>* T [fo)Xqu)] (=k)>* 7y = w and we are done.

For case (i) (7 € ©), we do a (sub)case analysis according to the first
production rule used in the derivation X ﬁ* wlg.

’

e X — 7. Then X (=k)>* wlg = 7. On the other hand fo) = TQS) =

o =% Tng)u) and our assumption on w = 7y shows that y ends with a

symbol in ©. Hence a contradiction since w|g = 7 does not coincide with
the projection of w = 7y.

=

e X - 7Y. Then X (=k)> TY ﬁ* Tyle = wle. Also Q¥ = TQS/)
(u)

o =* TyQy . The induction hypothesis applied on Y (=k)>* ylo and
QS’) =* yQSJu) shows that [QS/)YQSL)] ﬁ}* y. Finally, X - 7Y € A and

Q¥ - TQS,) e AP show that [QSS)XQS,H)] - T [QS/)YQS;H)] € A™, hence
that [Q&s)Xqu)] (=k)>* T [QS)YQg,“)] ?* 7y = w and we are done.

e X —» 7X;0X5. Then X (=k)> 7 X0 X5 ﬁ* TwilgoWalg = Wle-
Moreover, since Qgr) =% wQSJu) and 7,0 € © we find that there exist
(r) (b) (b") (d)

Qs = TQy =*TwiQy = TwioQe
definition of G™ shows that

=% rw; anQE,“). Hence, the

[xa("] - 7 [al X1a)] o [l X2a(] .
On the other hand, since X; X5 ﬁ* w1 lg wa2lg (simply delete 7 and
o), Lemma 4.1 shows that either X; (k=_1)>* wle and Xo (=k)>* wale;
or X; ?* w1 lg and Xo ﬁ}* walg. Let us assume the latter holds

(the other being treated similarly). Applying the induction hypothe-

sis, we find that [ng)XlQ((ﬁ)] ?* wy and [di)XgQS,u)] (k=1)>* wa,

hence we conclude the case with the k-index derivation [QgT)X Q,S“)] ?*
(b)

7[Qa X1Q,(f o [QY X, ﬁ* T [szb)XlQSf 0w, ﬁ* T Wy 0 wy.

29

The “only if” direction is proved similarly, this time by induction on the length
of the derivation [QS-S)XQ,f,u)] ?* w.

For the proof of point 2 the “C” direction is obvious by definition of depth-first
derivations. For the reverse direction “2” point 1 combined with the assumption

shows that for every iq,...,i4 € N the following equivalence holds:

wit . wh e L()?O) (@)
iff
(arwy)™ ... (agwg)i € EXOM (I A TIEE) Gy

So let D = X (=k)>* w be a depth-first k-index derivation of G™ with control

word conforming to I'. Now consider (D), it defines again a depth-first k-index
derivation except that this time the control word conforms to £(I"). Further, the
definition of £ shows that the word generated by £(D) results from deleting the

symbols {a1,...,aq} from w = (ajw1)® - - - (agwg)’@. To conclude, observe that

wil .. ~w3d € LE?J(G) and we are done. O O

The following proposition shows that Lg)(G'p) is captured by a subset of
depth-first derivations whose control words belong to some bounded expression.

Proposition 2. Let G = (5, @, A) be a visibly pushdown grammar, X € Z be
a nonterminal such that Lx,(G) is bounded. Then for each k =1 there exists a
bounded expression br over A such that Lx,(bp n TH®) G = Lg’;g(G)

Proof. Since Lx,(G) is bounded there exists a bounded expression b = wf ... w}

such that Ly, (G) € b.
Next, define {ai,...,aq} be an alphabet disjoint from ©. Lemma 5.2

shows that for every ij,...,iq € N the equivalence wi' ... w} e Lg’;g(G) iff

(arw1) ... (aqwq)it € Lg;gq (G™) holds. Next, applying Lemma 5.1 on L(;;gq (G™)

(whose assumptions holds by definition of G™) we obtain a bounded expression
brw over A™ such that I:ng (bps n DIER) Gy = ngzq (G™). Our next step
0

is to apply the results of Lemma 5.2 (second point) to obtain that Lg’;o) (G) =
fLXO (€(bpw) NI () @), Finally, since brw is a bounded expression, and £ is an
homomorphism we have that £(brx) is bounded (see Lem. 5.3), hence included
in a bounded expression and we are done by setting br to &(bpx). O O
5.2 Proof of Theorem 3

We recall two results from Ginsburg [14].

Theorem 5 (Theorem 3.3.2, [14]). Each gsm mapping preserves regqular sets.

Lemma 5.3 (Lemma 5.5.3, [14]). S(w¥...wk) is bounded for each gsm S and
all words w1y, ..., wy,.

And finally, the proof that query” is flattable.

30

k=2 k=3 k=4
t fp # t fp # t fp
identity| 210 0.10 no | 330 0.22 yes -

leq 152 0.12 no | 240 0.27 no | 328 041 yes
parity 384 014 no | 606 054 no | 828 1.31 yes
plus 462 053 mno | 728 254 no | 994 9.20 yes

times2 210 0.14 no | 330 0.35 yes -

Table 1: Experiments with recursive implementations of basic arithmetic func-
tions and predicates [1].

of Theorem. 5. Since P is bounded periodic we can apply Proposition 2 showing
the existence of a bounded expression br over A such that Lg(br ATIER) G =

(k)) . . 0
Ly’ (Gp). Hence we find that [Py coincides with UaeLg>(Gp)[[a]] which in

turn is equal to UaeiQ(meFdf(k)ycp)[[a]].

Lemma 3.2 shows that for all control word v € A* such that @ %; o we

have that [v] = {I-O | {Il,,,Oly,) € [o]}. This enables the use of Lemma 4.3
showing that such control word ~ is such that [v] = [[SCIZQ(V)]]. This is saying
the semantics of v in P can be obtained by computing that of SC’Z)(’Y) in query*.

We then conclude from Lem. 5.3 and Thm. 5, that ch(br‘) is a bounded
and regular language. Back to [H] jyeryx, we find that
IIH]] queryk = UaELq k (Gn) Haﬂ = UaEL k (GH)mSC’;\? (br) [[O[]]

uery query

and that [H] e+ is flattable since ch(br) is a bounded regular set. O O

6 Experiments

We have implemented the proposed method in the FLATA verifier [17] and
experimented with several benchmarks. The FLATA tool is publicly available®
and the benchmarks used in this section are given in the repository. First,
we have considered several programs from external sources [1], that compute
arithmetic functions or predicates in a recursive way such as identity (identity),
plus (addition), times2 (multiplication by two), leq (comparison), and parity
(parity checking). It is worth noting that all of these programs have bounded
index visibly pushdown grammars, i.e. L(GT) is of bounded index, for each
program P € {identity,plus,times2,leq,parity}, the stabilization of the
under-approximation sequence is thus guaranteed. For all our benchmarks,
the condition that the tuple of relation [P]*) is inductive with respect to the
statements of P is met for £k < 3. Table 1 shows the results, giving the size
(#) of each under-approximation query® (the number of transitions) and the
time (t) needed to compute its summary (in seconds). The column fp indicates
whether the fixpoint check was successful. The platform used for all experiments
is MacBookPro with Intel Core i7 2,3 GHz with 16 GB of RAM.

Next, we have considered two generalizations of the McCarthy 91 function
[10], a well-known verification benchmark that has long been a challenge. We
have automatically computed precise summaries of its generalizations F, (Table

8https://github.com/filipkonecny/flata

31

k=2 k=3 k=4
6 fp # t fp # t fp
Fi 32 0.05 no 50 0.07 no 68 0.09 yes
Fy 72 0.06 no 114 0.74 no 156 1.55 yes
F3 | 128 0.06 no 204 0.30 no 280 1.59 yes
Fy 200 0.06 no 320 0.44 no 440 4.02 yes
F5 | 288 0.07 no 462 0.63 no 636 5.97 yes
Fg | 392 0.07 no 630 0.82 no 868 7.54 yes
F7 | 512 0.08 no 824 0.86 mno | 1136 14.23 yes
Fg | 648 0.08 no | 1044 1.09 no | 1440 12.87 yes

Fa(x):{ x—10 if z > 101

(Fo)®(x+10-a—9) if 2 <100

Table 2: Generalized McCarthy F, Experiments. The function F5 is the original
McCarthy91 function.

k=2 k=3 k=4
t fp | # t fp | # t fp
G111 72 0.06 no | 114 0.74 no | 156 1.55 yes
Gi2 | 72 008 no | 114 153 no | 156 n/a ?
Giz | 72 0.08 no | 114 507 mno | 156 n/a ?
Gia | 72 008 mno | 114 7.07 no | 156 n/a ?

Go(z) z — 10 if z > 101
W= G(G(r+b) iz < 100

Table 3: Generalized McCarthy GGy Experiments. The function G1; is the original
McCarthy91 function.

32

91 if < 100
Gu(e) z—10 ifz > 101
91 if x <100 and 2|z + 1
Gia(z) | 92 if 2 < 100 and 2|z
x—10 if x > 101
91 if x <100 and 3|z + 1
i) | 2 if 2 < 100 and 3|z
1 93 if z < 100 and 3|z + 2
x—10 ifx > 101
91 if x <100 and 4|z + 3
92 if x <100 and 4|z + 2
Gia(z) | 93 if x <100 and 4|z + 1
94 x < 100 and 4|z
x—10 ifx > 101

Table 4: Automatically computed summaries for the generalized McCarthy Gy
functions (for index k = 3).

2) and Gy (Table 3) above for a = 2,...,8 and b = 12,13,14. For the F,
functions, the computed summaries are given by:

91 if x <100

Fa(:v)={ 2—10 ifz> 101 foralla=1,...,8.

The computed summaries for the G} functions are given in Table 4.

The visibly pushdown grammars corresponding to the recursive programs
implementing the F,, G, functions are not bounded. In the case of the F,
function, the under-approximation sequence reaches a fixpoint after 4 iterations.
In the case of Gy, for b = 12,13, 14, the summary of query® is the expected
result. However, due to the limitations of the FLATA tool, which is based on an
acceleration procedure without abstraction, we could not compute the summary
of query*, and we could not verify automatically that the fixpoint has been
reached.

7 Conclusions

We have presented an underapproximation method for computing summaries
of recursive programs operating on integers. The underapproximation is driven
by bounding the index of derivations that produce the execution traces of the
program, and computing the summary, for each index, by analyzing a non-
recursive program. We also present a class of programs on which our method is
complete. Finally, we report on an implementation and experimental evaluation
of our technique.

Acknowledgements. Pierre Ganty is supported by the EU FP7 2007-2013
program under agreement 610686 POLCA, by the Madrid Regional Government
under CM project S2013/ICE-2731 (N-Greens) and RISCO: Rlgorous analysis
of Sophisticated COncurrent and distributed systems, funded by the Spanish
Ministry of Economy and Competitiveness No. TIN2015-71819-P (2016-2018).
Pierre thanks Thomas Reps for pointing out inconsistencies in the examples.

33

References

[1] Termination Competition 2011. http://termcomp.uibk.ac.at/termcomp/
home.seam.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-
based algorithm for inter-procedural verification. In VMCAI ’12, volume
7148 of LNCS, pages 39-55. Springer, 2012.

[3] R. Alur and P. Madhusudan. Adding nesting structure to words. JACM,
56(3):16, 2009.

[4] M. F. Atig and P. Ganty. Approximating petri net reachability along
context-free traces. In FSTTCS ’11, volume 13 of LIPIcs, pages 152-163.
Schloss Dagstuhl, 2011.

[5] A. P. B. Cook and A. Rybalchenko. Summarization for termination: no
return! Formal Methods in System Design, 35:369-387, 2009.

[6] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast acceleration
of symbolic transition systems. In CAV ’03, volume 2725 of LNCS, pages
118-121. Springer, 2003.

[7] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, University of Liége, 1998.

[8] M. Bozga, R. Iosif, and F. Kone¢ny. Fast acceleration of ultimately periodic
relations. In CAV ’10, volume 6174 of LNCS, pages 227-242. Springer, 2010.

[9] M. Bozga, R. losif, and Y. Lakhnech. Flat parametric counter automata.
Fundamenta Informaticae, 91(2):275-303, 2009.

[10] J. Cowles. Knuth’s generalization of mccarthy’s 91 function. In Computer-
Aided reasoning: ACL2 case studies, pages 283-299. Kluwer Academic
Publishers, 2000.

[11] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis.
JACM, 57(6):33:1-33:47, 2010.

[12] A. Finkel and J. Leroux. How to compose presburger-accelerations: Ap-
plications to broadcast protocols. In FSTTCS 02, volume 2556 of LNCS,
pages 145-156. Springer, 2002.

[13] P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations.
Formal Methods in System Design, 40(2):206-231, 2012.

[14] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, Inc., New York, NY, USA, 1966.

[15] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional may-
must program analysis: unleashing the power of alternation. In POPL ’10,
pages 43-56. ACM, 2010.

[16] G. Godoy and A. Tiwari. Invariant checking for programs with procedure
calls. In SAS ’09, volume 5673 of LNCS, pages 326-342. Springer, 2009.

34

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

H. Hojjat, F. Kone¢ny, F. Garnier, R. Iosif, V. Kuncak, and P. Riimmer. A
verification toolkit for numerical transition systems - tool paper. In FM,
pages 247-251, 2012.

D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating loops
in C programs for fast counterexample detection. In CAV ’18: Proc. 23rd
Int. Conf. on Computer Aided Verification, LNCS, pages 381-396. Springer,
2013.

G. Lalire, M. Argoud, and B. Jeannet. Interproc. http:
//pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/
interproc/index.html.

M. Latteux. Mots infinis et langages commutatifs. Informatique Théorique
et Applications, 12(3), 1978.

M. Luker. A family of languages having only finite-index grammars. Infor-
mation and Control, 39(1):14-18, 1978.

M. Luker. Control sets on grammars using depth-first derivations. Mathe-
matical Systems Theory, 13:349-359, 1980.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL ’95, pages 49—61. ACM, 1995.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In Program Flow Analysis: Theory and Applications, chapter 7,
pages 189-233. Prentice-Hall, Inc., 1981.

35

