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1. Introduction

The theory of equations of evolution plays an important role in various areas of pure
and applied mathematics, physics and other natural sciences, [4, 10, 12]. We focus on a
non-autonomous linear Cauchy problem of the form

u̇(t) = −(A+B(t))u(t), u(s) = us ∈ X, 0 < s 6 t 6 T, (1.1)

where {A+B(t), dom(A)∩dom(B(t))}t∈I is a family of closed linear operators on the sepa-
rable Banach space X, I = [0, T ] ⊂ R. Let I0 = (0, T ]. The solution operator {U(t, s)}0∈I ,
i.e. u(t) = U(t, s)us solves (1.1) in some sense, can be obtained using the Howland-Evans
approach. The main idea of this approach is to reformulate the non-autonomous problem
(1.1) on X to an autonomous Cauchy problem on the Banach space Lp(I, X) of p-summable
functions on I with values in X. The solution of the autonomous and the non-autonomous
Cauchy Problem correspond to each other, and therefore it is equivalent to solve the one or
the other equation. Once, the solution is obtained, the problem of a good approximation
appears. The Trotter product formula [13] or [2, Theorem 3.5.8] provides an approximation
in the strong-topology. In practice, a convergence in the operator-norm is more useful, espe-
cially, if the convergence can be estimated. Then, for example, in spite of the initial values,
the smallness of the steps can be calculated such that the error rate of the approximation is
lower than a given accuracy.
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Going to analyze a linear non-autonomous Cauchy problem of the form (1.1) the
aim is to find the so-called ”solution operator” or propagator {U(t, s)}(t,s)∈∆, ∆ = {(t, s) ∈
I0 × I0 : 0 < s 6 t 6 T}, I0 = (0, T ], of the Cauchy problem (1.1), which has the property
that u(t) = U(t, s)us for (t, s) ∈ ∆ is a “solution” of the initial Cauchy problem (1.1) for an
appropriate set of initial data us. By definition, a propagator {U(t, s)}(t,s)∈∆ is a strongly
continuous operator-valued function U(·, ·) : ∆→ B(X) satisfying

U(t, t) = I for t ∈ I0, U(t, r)U(r, s) = U(t, s) for t, r, s ∈ I0 with s 6 r 6 t,

‖U‖B(X) := sup
(t,s)∈∆

‖U(t, s)‖B(X) <∞.

Our goal is to find an approximation {Un(t, s)}(t,s)∈∆, n ∈ N, of the solution operator
{U(t, s)}(t,s)∈∆ in the operator norm with an explicit convergence rate estimate. Such con-
vergence rate estimates were already found by Ichinose and Tamura for positive self-adjoint
operators [3]. Recently, in [6] an error estimate was proved, where the underlying space is a
Banach space. In [6] the main technical tool to get such an approximation was the Trotter
product formula. It was verified in [6] that under the assumptions made there the Trotter
product formula converges not only in the strong topology but actually in the operator norm.
In a second step this result was carried over to the solution operator.

Following the ideas of [6] we improve the convergence rate estimate of [6] under
assumptions on the involved operators A and B(t) which are straightforward generalizations
of those of [3] to the Banach space. Despite this straightforward generalization we were
unable to reproduce the strong convergence rate of [3] for the Banach space. However, with
respect to the Trotter product formula we get a slightly stronger convergence rate estimate
than in [1].

2. Preliminaries and Assumptions

2.1. Preliminaries

Throughout the paper we are dealing with a separable Banach space (X, ‖ · ‖X). For
an linear operator A : dom(A) ⊂ X → X, we define the resolvent by R(λ,A) := (A− λ)−1 :
X → dom(A). A family {T (t)}t>0 of bounded linear operators on a Banach space X is called
a strongly continuous (one-parameter) semigroup if it satisfies the functional equation

T (0) = I, T (t+ s) = T (t)T (s), t, s > 0,

and the orbit maps [0,∞) 3 t 7→ T (t)x are continuous for every x ∈ X. In the following we
simply call them semigroups. For a given semigroup we define its generator by

Ax := lim
h↘0

1

h
(x− T (h)x)

with domain

dom(A) := {x ∈ X : lim
h↘0

1

h
(x− T (h)x) exists}.

Note that the definition differs from the standard one by the sign minus. It is well-known
that the generator of a semigroup is a closed and densely defined linear operator which
uniquely determines the semigroup (see e.g. [2, Theorem I.1.4]). For a given generator A we
will write T (τ) = e−τA, τ > 0.

For any semigroup {T (t)}t>0 there are constants MA, γA, such that it holds ‖T (t)‖ 6
MAe

γAt for all t > 0. Such semigroups are called of class G(MA, γA) and we write A ∈
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G(MA, γA). If γA 6 0, {T (t)}t>0 is called a bounded semigroup. If ‖T (t)‖ 6 1, the semigroup
is called contractive.

For any semigroup we can construct a bounded semigroup by adding some constant
ν > γA to its generator: The operator Ã := A + ν generates a semigroup {T̃ (t)}t>0 with
‖T̃ (t)‖ 6 MA. It is known that for a generator A ∈ G(MA, γA), the open half plane {z ∈
C : Re(z) < γA} is contained in the resolvent set %(A) of A and the estimate ‖R(λ,A)‖ 6

MA

Re(λ)−γA
holds. If Ã = A+ν, then the open half-plane {z ∈ C : Re(z) < γA−ν} is contained

in the resolvent set of Ã.
The semigroup {T (t)}t>0 on X is called a bounded holomorphic semigroup if its

generator A satisfies ran(T (t)) ⊂ dom(A) for all t > 0 and supt>0 ‖tAT (t)‖ <∞. It is well-
known, that in this case the semigroup {T (t)}t>0 can be extended holomorphically to a sector
{z ∈ C : | arg(z)| < δ} ∪ {0} ⊂ C of angle δ > 0. For generators A of bounded holomorphic
semigroups with 0 ∈ %(A) one can define fractional powers Aα. Then, for α ∈ (0, 1), it holds
dom(A) ⊂ dom(Aα) ⊂ dom(A0) = X. In the following we need the well-known estimate for
generators of a bounded holomorphic semigroup:

sup
t>0
‖tαAαT (t)‖ = MA

α <∞. (2.1)

2.2. Assumptions

Below we made the following assumptions with respect to the operator A and the
family {B(t)}t∈∆.

Assumption 2.1.
(A1) The operator A is a generator of a bounded holomorphic semigroup of class G(MA, 0)
and 0 ∈ %(A). Let {B(t)}t∈I be a family of generators on X belonging to the same class
G(MB, β). The function I 3 t 7→ (B(t) + ξ)−1x ∈ X is strongly measurable for any x ∈ X
and any ξ > β.
(A2) There is an α ∈ (1

2
, 1) such that for a.e. t ∈ I it holds that dom(Aα) ⊂ dom(B(t))

and dom((Aα)∗) ⊂ dom(B(t)∗). Moreover, it holds

Cα := ess sup
t∈I

‖B(t)A−α‖B(X) <∞ and C∗α := ess sup
t∈I

‖B(t)∗(A−α)∗‖B(X∗) <∞, (2.2)

where A∗ and B(t)∗ denote the adjoint operators of A and B(t), respectively.
(A3) There is a constant L > 0 such that estimate

‖A−α(B(t)−B(s))A−α‖B(X) 6 L|t− s|,
holds for a.e. t, s ∈ I.

Remark 2.2.
(a) In [6] the assumptions are slightly weaker. It is assumed that the domains satisfy
dom(A∗) ⊂ dom(B(t)∗).
(b) The assumption 0 ∈ %(A) is just for simplicity. Otherwise, the generator A can be
shifted by a constant η > 0. One can prove that the domain of the fractional power of A
does not change either.
(c) In [3] both operators A and B(t) are assumed to be positive selfadjoint operators on a
separable Hilbert space. The assumptions made in [3] yield that Assumption 2.1 is valid.
(d) The assumptions above imply that for a.e. t ∈ I the operator B(t) is infinitesimally
small with respect to A. Indeed, fix t ∈ I and assuming (A1), (A2) we conclude

dom(A+ η) = dom(A) ⊂ dom(Aα) ⊂ dom(B(t))



4 Hagen Neidhardt, Artur Stephan, Valentin A. Zagrebnov

for η > 0 and hence

‖B(t)(A+ η)−1‖B(X) 6 ‖B(t)A−α‖B(X) · ‖Aα(A+ η)−1‖B(X) 6
CαC0

η1−α .

Therefore for any x ∈ dom(A) ⊂ dom(B(t)), we get

‖B(t)x‖X 6
CαC0

η1−α · ‖(A+ η)x‖X 6 CαC0η
α

(
1

η
‖Ax‖X + ‖x‖X

)
.

The relative bound can be chosen arbitrarily small by shifting η > 0. In particular, using
standard perturbation results ( [5, Corollary IX.2.5]), we conclude that A + B(t) is the
generator of a holomorphic semigroup, i.e. problem (1.1) is a parabolic evolution equation.

3. Solving strategy

Let us describe briefly our solving strategy. Details can be found in [6]. The approach
to finding the solution operator {U(t, s)}(t,s)∈∆ of (1.1) leads to a perturbation or extension
problem for linear operators. It can be used in very general settings and is quite flexible.
The usual idea can be described as follows: The non-autonomous Cauchy problem in X
can be reformulated as an autonomous Cauchy problem in a new Banach space Lp(I, X),
p ∈ [1,∞), of p-summable functions on the interval I with values in the Banach space X.
An operator family {C(t)}t∈I on X induces an multiplication operator C on Lp(I, X) defined
by

(Cf)(t) := C(t)f(t),

dom(C) :=

{
f ∈ Lp(I, X) :

f(t) ∈ dom(C(t)) for a.e. t ∈ I
I 3 t 7→ C(t)f(t) ∈ Lp(I, X)

}
.

Theorem 3.1 ( [6, Theorem 2.8]). Let {C(t)}t∈I be a family of generators on X such that
for almost all t ∈ I it holds that C(t) ∈ G(M,β) for some M > 1 and β ∈ R. If the function
I 3 t 7→ (C(t) + ξ)−1x ∈ X is strongly measurable for ξ > β, x ∈ X, then the induced
multiplication operator C is a generator in Lp(J , X) and its semigroup is given by

(e−τCf)(t) = e−τC(t)f(t), f ∈ L6P (I, X),

for a.e t ∈ I. In particular, for the operator-norms we get

‖e−τC‖B(Lp(I,X)) = ess sup
t∈I

‖e−τC(t)‖B(X).

So the generators C(t) and C belong to the same class.

In particular in our case, the operator family {B(t)}t∈I induces the generator B and A
induces trivially the generator A on Lp(I, X). Assuming (A1) and (A2) it turns out that the
operators BA−α andA−αB are bounded on Lp(I, X) and it holds that ‖BA−α‖B(Lp(I,X)) 6 Cα
and ‖A−αB‖B(Lp(I,X)) 6 C∗α.

Let us introduce the operator D0 := ∂t on Lp(I, X) defined by

D0f(t) := ∂tf(t), dom(D0) := {f ∈ W 1,p([0, T ], X) : f(0) = 0}.

Then, D0 is a generator of class G(1, 0) of the right-shift semigroup {S(τ)}τ>0 that has the
form

(e−τD0f)(t) = (S(τ)f)(t) := f(t− τ)χI(t− τ), f ∈ Lp(I, X), a.e. t ∈ I.
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We note that the generator D0 has empty spectrum since the semigroup {S(τ)}τ>0 is
nilpotent and therefore the integral

∫∞
0
e−τλS(τ)fdτ exists for any λ ∈ C and for any

f ∈ Lp(I, X).
Let us look at the operator sum D0 andA. Since A is time-independent, the operators

A and D0 commute, and, hence, also their semigroups commute. So, the operator family
{e−τAe−τD0}τ>0 defines a semigroup on Lp(I, X). Its generator is denoted by K0. It is
closure of the operator sum D0 +A, i.e. K0 = D0 +A. We note that all the generators K0,
A, A belong to the same class.

Remark 3.2. By assumption (A1) the operator A generates a holomorphic semigroup. Note
that the operator K0 is not a generator of a holomorphic semigroup. Indeed, if we have

(e−τK0f)(t) = (e−τD0e−τAf)(t) = e−τAf(t− τ)χI(t− τ), f ∈ Lp(I, X).

Since the right-hand side is zero for τ > t, the semigroup can not be extended to the complex
plane.

Now, look at the operator sum

K̃ = D0 +A+ B, dom(K̃) = dom(D0) ∩ dom(A) ∩ dom(B). (3.1)

In [6], the following theorem is proved.

Theorem 3.3 ( [6, Theorems 4.3 and 4.4]). Assume (A1) and (A2). Then, the operator

closure K̃ =: K is a generator on Lp(I, X), and it holds

K = K0 + B, dom(K) = dom(K0) ∩ dom(B). (3.2)

Moreover, it is an evolution generator, i.e. its semigroup defines the unique solution operator
U(t, s) of problem (1.1) by

(e−τKf)(t) = (U(τ)f)(t) = U(t, t− τ)χI(t− τ)f(t− τ), τ > 0, t ∈ I.

We note that for the proof it is not necessary that the operators B(t) are generators. After
proving the existence of a unique solution, we want to approximate the solution operator
U(t, s). This will be done by proving an operator-norm convergence for the Trotter product
formula for K = K0 + B.

4. Stability

Proving the Trotter product formula, it is important to establish stability conditions.
Notice that stability is satisfied if the contractivity of the involved semigroups is assumed
which might be too strong in applications. There are many stability conditions known for
evolution equations. In particular, the Kato-stability is of interest, cf. [7, Definition 4.1],
which is equivalent to a renormalizability conditions of the underlying Banach space, cf. [7].
We note that our following stability condition is weaker than Kato-stability.

Definition 4.1. Let A be a generator and let {B(t)}t∈I be a family of generators in X. The
family {B(t)}t∈I is called A-stable if there is a constant M > 0 such that

ess sup
(t,s)∈∆

∥∥∥∥∥
n←∏
j=1

Gj(t, s;n)

∥∥∥∥∥
B(X)

6M

holds for any n ∈ N where Gj(t, s;n) := e−
t−s
n
B(s+j t−s

n
)e−

t−s
n
A, j = 0, 1, 2, . . . , n, and the

product is ordered increasingly in j from the right to the left.
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Let us introduce the notion

T (τ) = e−τBe−τK0 , τ > 0.

Lemma 4.2 ( [6, Lemma 5.8]). If the operator family {B(t)}t∈I is A-stable, then

‖T
(τ
n

)m
‖B(Lp(I,X)) 6M

for any m ∈ N, n ∈ N and τ > 0. In particular, we have

‖T (τ)m‖B(Lp(I,X)) 6M

for any m ∈ N and τ > 0.

5. Convergence in the operator-norm topology

Theorem 3.3 leads to the problem, how the semigroup of K can be approximated in
terms of the semigroups generated by D0, A and B. The classical Trotter product formula
gives an approximation in the strong topology. In this section, we establish an approximation
in the operator-norm topology on Lp(I, X). This is done in several steps. This approximation
in Lp(I, X) can be used to prove an convergence rate estimate in X for the propagators.

5.1. Technical Lemmata

In this section, we state and prove all technical lemmas that we used to prove the
convergence and estimate of the Trotter product formula in the operator-norm in Lp(I, X).
For simplicity in notation, we set T (τ) := e−τBe−τK0 , τ > 0. Note that T (τ) = 0 for τ > T .
Similarly, e−τK = 0 for τ > T .

Lemma 5.1. Let the assumptions (A1) and (A2) be satisfied.
(i) Then dom(K0) ⊂ dom(Aα) and there is a constant Λα > 0 such that

‖Aαe−τK‖B(Lp(I,X)) 6
Λα

τα
(5.1)

holds for τ > 0.
(ii) If {B(t)}t∈I is A-stable, then there is a constant Πα > 0 such that the estimates

‖(T (τ)− e−τK)A−α‖B(Lp(I,X)) 6 Πατ (5.2)

‖A−α(T (τ)− e−τK)‖B(Lp(I,X)) 6 Πατ (5.3)

are valid for τ > 0.
(iii) If {B(t)}t∈I is A-stable, then there is a constant Yα > 0 such that the estimate

‖T (τ)kAα‖B(Lp(I,X)) 6 Yα

(
τ 1−2α +

1

(kτ)α

)
, τ > 0, k ∈ N. (5.4)

holds for τ > 0.

Proof. (i)-(ii) The assertions dom(K0) ⊆ dom(Aα) as well as (5.1) and (5.2) follow from
Lemma 7.3, Lemma 7.4 and Lemma 7.6 of [6]. To prove (5.3) one has slightly to modify the
second part of the proof of Lemma 7.6 of [6].
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(iii) For kτ > T we have T (τ)k = 0. Hence, one has to prove the estimate (5.4) only
for kτ 6 T . In fact, using Lemma 4.2, we get ‖T (τ)k‖ 6M , τ ∈ [0,∞). Hence,

‖T (τ)kAαf‖ 6 ‖(T (τ)k − e−kτK0)Aαf‖+ ‖e−kτK0Aαf‖

6 ‖
k−1∑
j=0

T (τ)k−1−j(e−τB − I)e−(j+1)τK0Aαf‖+ ‖e−kτK0Aαf‖

6M

k−1∑
j=0

∫ τ

0

dσ‖e−σBBA−α‖ ‖A2αe−(j+1)τK0f‖+ ‖e−kτK0Aαf‖,

where we have used I − e−τB =
∫ τ

0
Be−σBdσ. Moreover, from (2.1) we get

‖A2αe−(j+1)τK0f‖ 6 MA
2α

((j + 1)τ)2α
‖f‖ and ‖Aαe−kτK0f‖ 6 MA

α

(kτ)α
‖f‖

for τ > 0. Hence, using α > 1
2
, we get

‖T (τ)kAαf‖ 6 MMT
BM

A
2αCατ

τ 2α

k−1∑
j=0

1

(j + 1)2α
‖f‖+

MA
α

(kτ)α
‖f‖

6
MMT

BM
A
2αCαζ(2α)

τ 2α−1
‖f‖+

MA
α

(kτ)α
‖f‖

for τ ∈ I, where ζ(β) :=
∑∞

j=1
1
jβ

, β > 1, is the Riemann ζ-function and we have set

MT
B := supτ∈I ‖e−τB‖. Using that T (τ)k = 0 for τk > T we find

‖T (τ)kAαf‖ 6 MMT
BM

A
2αCαζ(2α)

τ 2α−1
‖f‖+

MA
α

(kτ)α
‖f‖, f ∈ dom(A),

for τ > 0. Taking the supremum over the unit ball in dom(A) we prove (5.4). �

Lemma 5.2. Let the assumptions (A1), (A2) and (A3) be satisfied. Then there is a constant
Zα > 0 such that

‖A−α(T (τ)− e−τK)A−α‖B(Lp(I,X)) 6 Zατ
1+α, τ > 0. (5.5)

Proof. Let f ∈ dom(K0) = dom(K). We have

d

dσ
T (σ)e−(τ−σ)Kf =

d

dσ
e−σBe−σK0e−(τ−σ)Kf

=− e−σBBe−σK0e−(τ−σ)Kf − e−σBe−σK0K0e
−(τ−σ)Kf + e−σBe−σK0Ke−(τ−σ)Kf

=− e−σBBe−σK0e−(τ−σ)Kf + e−σBe−σK0Be−(τ−σ)Kf

=e−σB{e−σK0Bf − Be−σK0}e−(τ−σ)Kf,

which yields

T (τ)f − e−τKf =

∫ τ

0

d

dσ
T (σ)e−(τ−σ)Kfdσ =

∫ τ

0

e−σB{e−σK0B − Be−σK0}e−(τ−σ)Kfdσ.

(5.6)
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Now, we have the following identity

e−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)Kf

= (e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)f+

+ (e−σB − I){e−σK0B − Be−σK0}e−(τ−σ)K0f+

+ {e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)f + {e−σK0B − Be−σK0}e−(τ−σ)K0f.

which yields for f = A−αg

A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg =

= A−α(e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg+

+A−α(e−σB − I){e−σK0B − Be−σK0}A−αe−(τ−σ)K0g+

+A−α{e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg+

+A−α{(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)}e−(τ−σ)K0A−αg+

+A−α(e−σD0B − Be−σD0)A−αe−(τ−σ)K0g.

(5.7)

In the following, we estimate the five terms separately.
At first we use the fact that A and K0 commute and conclude that

(e−(τ−σ)K − e−(τ−σ)K0)A−αg =

∫ τ−σ

0

e−(τ−σ−r)KBA−αe−rK0gdr.

Thus, for the first term we get

A−α(e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg

= −
∫ σ

0

A−αBe−rBdr [e−σK0 ,B]A−α
∫ τ−σ

0

Aαe−(τ−σ−r)KBA−αe−rK0gdr.

where

[e−σK0 ,B]f := {e−σK0B − Be−σK0}f, f ∈ dom(K0), τ > 0.

Using Lemma 5.1, we obtain the estimate

‖A−α(e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖

6 σ 2C∗αC
2
αΛαM

T
BM

2
A

∫ τ−σ

0

1

(τ − σ − r)α
dr ‖g‖

6 σ(τ − σ)1−α 2C∗αC
2
αΛαM

T
BM

2
A

1− α
‖g‖

(5.8)

for σ ∈ [0, τ ] and τ > 0. For the second term, we get the estimate

‖A−α(e−σB − I){e−σK0B − Be−σK0}A−αe−(τ−σ)K0g‖ 6 σ 2C∗αCαM
T
BM

2
A‖g‖. (5.9)

for σ ∈ [0, τ ] and τ > 0. Since we have

e−(τ−σ)K − e−(τ−σ)K0h =

∫ τ−σ

0

e−(τ−r−σ)KBe−rK0hdr, h ∈ dom(K0),

one obtains for the third term the estimate

‖A−α{e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖ 6 (τ − σ) 2C∗αCαM
2
AMK ‖g‖ (5.10)
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for σ ∈ [0, τ ] and τ > 0. Moreover, using

e−σK0 − e−σD0h = −
∫ σ

0

e−rK0Ae−(σ−r)D0hdr,

we get for the fourth term

A−α{(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)}e−(τ−σ)K0A−αg =(
−
∫ σ

0

A1−αe−rK0e−(σ−r)D0drBA−α +A−αB
∫ σ

0

e−rK0A1−αe−(σ−r)D0dr
)
e−(τ−σ)K0g,

which yields the estimate

‖A−α{(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)}e−(τ−σ)K0A−αg‖

6 CαMAM
A
1−α

∫ σ

0

1

r1−αdr ‖g‖+ C∗αMAM
A
1−α

∫ σ

0

1

r1−αdr ‖g‖

=
(Cα + C∗α)MAM

A
1−α

α
σα‖g‖

(5.11)

for σ ∈ [0, τ ] and τ > 0. To estimate the fifth term, we note that

(e−σD0B − Be−σD0)f = e−σD0B(·)f(·)− BχI(· − σ)f(· − σ) =

= χI(· − σ)B(· − σ)f(· − σ)−B(·)χI(· − σ)f(· − σ) =

= χI(· − σ){B(· − σ)−B(·)}f(· − σ),

and therefore

‖A−α(e−σD0B − Be−σD0)e−(τ−σ)K0A−αg‖
6MA‖A−α{e−σD0B − Be−σD0}A−αg‖
6 ess sup

t∈I
‖A−α{B(t− σ)−B(t)}A−α‖B(X) ‖g‖ 6 Lσ‖g‖.

(5.12)

for σ ∈ [0, τ ] and τ > 0. From (5.7) we find the estimate

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

6 ‖A−α(e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖
+ ‖A−α(e−σB − I){e−σK0B − Be−σK0}A−αe−(τ−σ)K0g‖
+ ‖A−α{e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖
+ ‖A−α{(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)}e−(τ−σ)K0A−αg‖
+ ‖A−α(e−σD0B − Be−σD0)A−αe−(τ−σ)K0g‖.

for σ ∈ [0, τ ] and τ > 0. Taking into account (5.8), (5.9), (5.10), (5.11) and (5.12) we find

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

6
{
σ(τ − σ)1−α2C∗αC

2
αΛαM

T
BM

2
A

1− α
+ σ 2C∗αCαM

T
BM

2
A+

(τ − σ) 2C∗αCαM
2
AMK + σα

(Cα + C∗α)MAM
A
1−α

α
+ σ L

}
‖g‖
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for σ ∈ [0, τ ] and τ > 0. Setting

Z1 :=
2C∗αC

2
αΛαM

T
BM

2
A

1− α
, Z2 := 2C∗αCαM

T
BM

2
A + L

Z3 := 2C∗αCαM
2
AMK, Z4 :=

(Cα + C∗α)MAM
A
1−α

α

we obtain

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

6
{
Z1 σ(τ − σ)1−α + Z2 σ + Z3 (τ − σ) + Z4 σ

α
}
‖g‖

(5.13)

From (5.6) we derive the representation

A−α(T (τ)− e−τK)A−αg

=

∫ τ

0

A−αe−σB{e−σK0B − Be−σK0}e−(τ−σ)KA−αg dσ.

which yields the estimate

‖A−α(T (τ)− e−τK)A−αg‖

6
∫ τ

0

‖A−αe−σB{e−σK0B − Be−σK0}e−(τ−σ)KA−αg‖ dσ.

Inserting (5.13) into this estimate and using∫ τ

0

σ(τ − σ)1−αdσ = τ 3−α
∫ 1

0

x(1− x)1−αdx = τ 3−αΓ(1− α)

Γ(2− α)
,

we find the estimate

‖A−α(T (τ)− e−τK)A−αg‖ 6 Z1
Γ(1− α)

Γ(2− α)
τ 3−α +

Z2 + Z3

2
τ 2 +

Z4

1 + α
τ 1+α

for τ > 0. We have

‖A−α(T (τ)− e−τK)A−αg‖ 6
(
Z1

Γ(1− α)

Γ(2− α)
τ 2−2α +

Z2 + Z3

2
τ 1−α + Z4

)
τ 1+α

for τ > 0. Since T (τ) = 0 and e−τK = 0 for τ > T we finally obtain

‖A−α(T (τ)− e−τK)A−αg‖ 6
(
Z1

Γ(1− α)

Γ(2− α)
T 2−2α +

Z2 + Z3

2
T 1−α + Z4

)
τ 1+α

which proves the lemma. �

Lemma 5.3. Let α ∈ [0, 1). Then the estimates

n−1∑
m=1

1

mα
6

n1−α

1− α
and

n−1∑
m=1

1

(n−m)αmα
6

2

1− α
n1−2α (5.14)

are valid for n = 2, 3, . . . .

Proof. The function f(x) = x−α, x > 0, is decreasing. Hence

n−1∑
m=1

1

mα
6
∫ n−1

0

1

xα
dx 6

(n− 1)1−α

1− α
6

n1−α

1− α
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for n = 2, 3, . . . . Further, we have

n−1∑
m=1

1

(n−m)αmα
6 2

1

nα

n−1∑
m=1

1

mα
6 2

1

nα
n1−α

1− α
=

2

1− α
n1−2α,

and the claim follows. �

5.2. The Trotter product formula in operator-norm topology

Now, we are able to prove and estimate operator-norm convergence of the Trotter
product formula.

Theorem 5.4. Let the assumptions (A1), (A2) and (A3) be satisfied. If the family of
generators {B(t)}t∈I is A-stable, then there is a constant Cα,I > 0 (depending on α ∈ (1

2
, 1)

and on the compact interval I) such that

‖(e−τB/ne−τK0/n)n − e−τK‖B(Lp(I,X)) 6 Cα,I
1

n1−α (5.15)

for τ > 0 and n = 2, 3, . . ..

Proof. Let T (σ) := e−σBe−σK0 and U(σ) := e−σK, σ > 0. Then the following identity holds

T (σ)n − U(σ)n =
n−1∑
m=0

T (σ)n−m−1(T (σ)− U(σ))U(σ)m

= T (σ)n−1(T (σ)− U(σ)) + (T (σ)− U(σ))U(σ)n−1+

+
n−2∑
m=1

T (σ)n−m−1(T (σ)− U(σ))U(σ)m

= T (σ)n−1AαA−α(T (σ)− U(σ)) + (T (σ)− U(σ))A−αAαU(σ)n−1+

+
n−2∑
m=1

T (σ)n−m−1AαA−α(T (σ)− U(σ))A−αAαU(σ)m.

which yields the estimate

‖T (σ)n − U(σ)n‖

6 ‖T (σ)n−1Aα‖ ‖A−α(T (σ)− U(σ))‖+ ‖(T (σ)− U(σ))A−α‖ ‖AαU(σ)n−1‖+

+
n−2∑
m=1

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖.

From Lemma 5.1 we get the estimates

‖T (σ)n−1Aα‖ 6 Yα

(
σ1−2α +

1

((n− 1)σ)α

)
, n > 2,

as well as

‖A−α(T (σ)− U(σ))‖ 6 Πασ and ‖(T (σ)− U(σ))A−α‖ 6 Πα σ

for σ ∈ (0, τ ]. Hence

‖T (σ)n−1Aα‖ ‖A−α(T (σ)− U(σ))‖ 6 ΠαYασ
1−α
(
σ1−α +

1

(n− 1)α

)
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and

‖(T (σ)− U(σ))A−α‖ ‖AαU(σ)n−1‖ 6 ΠαΛα

(n− 1)α
σ1−α

where we have used (5.1). Since

‖A−α(T (σ)− e−σK)A−α‖B(Lp(I,X)) 6 Zα σ
1+α, τ ∈ [0, τ0),

by Lemma 5.2 we have

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖

6 Yα

(
σ1−2α +

1

((n−m− 1)σ)α

)
Zασ

1+α Λα
1

(σm)α

6 YαZαΛα

(
σ2−2α 1

mα
+ σ1−α 1

(n−m− 1)αmα

)
Using Lemma 5.3 we get

n−2∑
m=1

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖

6 ZαΛαYασ
2−2α

n−2∑
m=1

1

mα
+ ZαΛαYασ

1−α
n−2∑
m=1

1

(n−m− 1)αmα

6
ZαΛαYα
1− α

(
n1−ασ2−2α + 2n1−2ασ1−α) .

Summing up we get the estimate

‖T (σ)n − U(σ)n‖ 6Πα Yασ
1−α
(
σ1−α +

1

(n− 1)α

)
+

ΠαΛα

(n− 1)α
σ1−α+

ZαΛαYα
1− α

n1−ασ2−2α +
2ZαΛαYα

1− α
n1−2ασ1−α.

Setting σ := τ/n, we obtain

‖T (τ/n)n − U(τ/n)n‖

6
Πα Λα T

2−2α

(n− 1)2−2α
+

Πα Λα

n− 1
+

Πα Λα T
1−α

(n− 1)
+
ZαΛαYαT

2−2α

1− α
1

n1−α +
2ZαΛαYαT

1−α

1− α
1

nα
.

for τ > 0 and n = 2, 3, . . .. Hence there is a constant Cα,I > 0 such that (5.15) holds. �

Remark 5.5. It is worth saying that the result only depends on the domains of the operators
A and B(t) and not on the concrete form of them.

5.3. Norm convergence for propagators

Let us investigate the consequences of Theorem 5.4 for the approximation of the
solution operator {U(t, s)}(t,s)∈∆. We have

({(e−
τ
n
Be−

τ
n
K0)n−e−τ(B+K0)}g)(t) = {Un(t, t− τ)− U(t, t− τ)}χI(t− τ)g(s− τ).

for (t, t− τ) ∈ ∆ and g ∈ Lp(I, X) where

Un(t, s) :=
−→∏n

j=1
e−

t−s
n
B(s+(n−j+1) t−s

n
)e−

t−s
n
A, (t, s) ∈ ∆.
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Let us introduce the left-shift semigroup on Lp(I, X)

(L(τ)f)(t) := χI(t+ τ)f(t+ τ), f ∈ Lp(I, X).

Theorem 5.6. Let the assumptions (A1), (A2) and (A3) be satisfied. If the family of
generators {B(t)}t∈I is A-stable, then there is a constant Cα,I > 0

ess sup
(t,s)∈∆

‖Un(t, s)− U(t, s)‖B(X) 6
Cα,I
n1−α , n = 2, 3, . . . , (5.16)

where the constant Cα,I coincides with that one of Theorem 5.4.

Proof. We set

Sn(t, s) := Un(t, s)− U(t, s), (t, s) ∈ ∆, n ∈ N,

and

Sn(τ) := L(τ){(e−
τ
n
Be−

τ
n
K0)n − e−τ(B+K0)} : Lp(I, X)→ Lp(I, X).

for τ > 0 and n = 2, 3, . . . . We have

(Sn(τ)g)(t) = Sn(t+ τ, t)χI(t+ τ)g(t), t ∈ I0, g ∈ Lp(I, X).

Hence, for any τ ∈ I and n ∈ N, the operator Sn(τ) is a multiplication operator on Lp(I, X)
induced by the family {Sn(·+ τ, ·)χI(·+ τ)}τ∈I of bounded operators. Applying [6, Lemma
?], we conclude for τ > 0

‖(e−
τ
n
Be−

τ
n
K0)n − e−τ(B+K0)‖B(Lp(I,X)) > ‖V (τ){(e−

τ
n
Be−

τ
n
K0)n − e−τ(B+K0)}‖B(Lp(I,X))

= ‖Sn(τ)‖B(Lp(I,X)) = ess sup
t∈I0

‖Sn(t+ τ, t)χI(t+ τ)‖B(X) =

= ess sup
t∈I0

‖{Un(t+ τ, s)− U(t+ τ, s)}χI(t+ τ)‖B(X) =

= ess sup
t∈(0,T−τ ]

‖Un(t+ τ, s)− U(t+ τ, s)‖B(X).

Taking into account Theorem 5.4 we find

ess sup
t∈(0,T−τ ]

‖Un(t+ τ, t)− U(t+ τ, t)‖B(X) 6
Cα,I
n1−α , τ > 0, n ∈ 2, 3, . . . ,

which yields (5.16). �

Remark 5.7.
(i) Ichinose and Tamura proved in [3] a convergence rate of O( ln(n)

n
) assuming that the

operators A and B(t) are positive and self-adjoint. In [6], the authors proved the convergence
rate of O(n−(β−α)) for any β ∈ (α, 1) assuming dom(A∗) ⊂ dom(B(t)∗).
(ii) Moreover, we note that indeed, the estimates (5.15) and (5.16) are equivalent.
(iii) We note that a priori the operator family {Un(t, s)}(t,s)∈∆ do not define a propagator
since the co-cycle equation is in general not satisfied. But one can check that

Un(t, s) = Un−k

(
t, s+

k

n
(t− s)

)
Uk

(
s+

k

n
(t− s), s

)
,

is satisfied for 0 < s 6 t 6 T , n ∈ N and any k ∈ {0, 1, . . . , n}.
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6. Example: Diffusion equation perturbed by a time-dependent potential

We investigate the diffusion equation perturbed by a time-dependent potential. On
the Banach space X = Lq(Ω), where Ω ⊂ Rd is a bounded domain with C2-boundary (d > 2)
and q ∈ (1,∞), the equation reads

u̇(t) = ∆u(t)−B(t)u(t), u(s) = us ∈ Lq(Ω), t, s ∈ I0. (6.1)

∆ denotes the Laplace operator on Lq(Ω) with Dirichlet boundary conditions defined on

∆ : dom(∆) = H2
q (Ω) ∩ H̊1

q (Ω)→ Lq(Ω).

It turns out that−∆ is the generator of a holomorphic contraction semigroup on Lq(Ω) (cf. [9,
Theorem 7.3.5/6]). B(t) denotes a time-dependent scalar-valued multiplication operator
given by

(B(t)f)(x) = V (t, x)f(x), dom(B(t)) = {f ∈ Lq(Ω) : V (t, x)f(x) ∈ Lq(Ω)},
where

V : I × Ω→ C, V (t, ·) ∈ L%(Ω).

For α ∈ (0, 1), the fractional power of −∆ are defined on the domain

(−∆)α : H̊2α
q (Ω)→ Lq(Ω).

Note, that for 2α < 1
q
, it holds that H̊2α

q (Ω) = H2α
q (Ω). The adjoint operator of ∆ is

denoted by ∆∗ and it is defined on the domain dom(∆∗) = H2
q′(Ω)∩ H̊1

q′(Ω) ⊂ Lq
′
(Ω), where

1
q

+ 1
q′

= 1. It is well-known that also the operator (−∆∗) generates a bounded holomorphic

semigroup. The operators B(t) are scalar-valued and hence B(t)∗ = B(t) : dom(B(t)) ⊂
Lq
′
(Ω)→ Lq

′
(Ω). Moreover, one can show that K0 = D0 +A, i.e. the operator sum D0 +A

is already closed.
Now, we are going to verify the assumptions (A1) - (A3) in order to approximate the

solution of (6.1). This means, we determine the required regularity of V (t, ·) ∈ L%(Ω) to
ensure dom((−∆)α) ⊂ dom(B(t)) and dom((−∆∗)α) ⊂ dom(B(t)∗), i.e

H2α
q (Ω), H2α

q′ (Ω) ⊂ dom(B(t)). (6.2)

Using Sobolev embeddings, one obtains the general embedding

Hs
γ1

(Ω) ⊂ Lγ2(Ω) for

{
γ2 ∈ [γ1,

d
s
γ1

d
s
−γ1

], if γ1 ∈ (1, d
s
)

γ2 ∈ [γ1,∞), if γ1 ∈ [d
s
,∞)

. (6.3)

For our case (6.2), we obtain H2α
q (Ω) ⊂ Lr(Ω) and H2

q′(Ω) ⊂ Lρ(Ω), for some constants
r, ρ ∈ (1,∞]. Hence, it suffices to ensure Lr(Ω), L%(Ω) ⊂ dom(B(t)). The parameters r, ρ
define r̃, ρ̃ via

1

r
+

1

r̃
=

1

q
,

1

ρ
+

1

ρ̃
=

1

q′
(6.4)

and since the operator B(t) is a multiplication operator defined by V (t, ·), the regularity of
V (t, ·) has to be at least % := max{r̃, ρ̃}.

Moreover, let

F (t) := (−∆)−αB(t)(−∆)−α : Lq(Ω)→ H̊2α
q (Ω) ⊂ Lq(Ω).
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We have to ensure Lipschitz-continuity for the operator-valued function t 7→ F (t). So, let

f ∈ Lq(Ω) and g ∈ Lq
′
(Ω). Define f̃ = ∆−αf ∈ H̊2α

q (Ω) ⊂ Lr(Ω) and g̃ = (∆−α)∗g =

(∆∗)−αg ∈ H̊2α,q′(Ω) ⊂ Lρ(Ω). Then, we have for t ∈ I

〈F (t)f, g〉 = 〈(−∆)−αB(t)(−∆)−αf, g〉 = 〈(−∆)−αf,B(t)∗(−∆∗)−αg〉 = 〈f̃ , B(t)∗g̃〉.

The boundedness of 〈f̃ , B(t)∗g̃〉 can be ensured by V (t, ·) ∈ Lτ (Ω), where τ ∈ (1,∞) is
defined via

1

r
+

1

τ
+

1

ρ
= 1. (6.5)

For fixed d > 2 and α ∈ (1
2
, 1), the following table turns out for the parameters r̃, ρ̃, τ :

q ∈ (1, d
2α

) q ∈ [ d
2α
,∞)

q′ ∈ (1, d
2α

) r̃ ∈ [ d
2α
,∞], ρ̃ ∈ [ d

2α
,∞], r̃ ∈ (q,∞], ρ̃ ∈ [ d

2α
,∞],

τ ∈ [ d
4α
,∞] τ ∈ [ d

2α+dq
,∞]

q′ ∈ [ d
2α
,∞) r̃ ∈ [ d

2α
,∞], ρ̃ ∈ (q′, 2α,∞], r̃ ∈ (q,∞], ρ̃ ∈ (q′,∞],
τ ∈ [ d

2α+dq′
,∞] τ ∈ (1,∞]

We remark that since we have r > q, it holds that τ 6 ρ̃ and hence, τ 6 % =
max{r̃, ρ̃}. To guarantee, that the operators B(t) are generators, we assume that the poten-
tial V (t, x) is positive, i.e.

Re(V (t, x)) > 0, for a.e. (t, x) ∈ I × Ω

Then, for any t ∈ I the operator V (t, x) is a generator of a contraction semigroup on
X = Lq(Ω) (cf. [2, Theorem I.4.11-12]). In particular, the operator family B(t) is A-stable.

Theorem 6.1. Let Ω ⊂ Rd be a bounded domain with C2-boundary, let q ∈ (1,∞) and let
α ∈ (1

2
, 1). Let B(t)f = V (t, ·)f define a scalar valued multiplication operator on Lq(Ω) with

V ∈ L∞(I, L%(Ω)) ∩ CLip(I, Lτ (Ω)),

where % = max{r̃, ρ̃} and r̃, ρ̃, τ is chosen from the above table. Moreover, let Re(V (t, x)) > 0
for t ∈ I and for a.e. x ∈ Ω.

Then, the evolution problem (6.1) has a unique solution operator U(t, s) which can
be approximated in operator-norm by

sup(t,s)∈∆||Un(t, s)− U(t, s)||B(Lq(Ω)) = O(n−(1−α)),

where

Un(t, s) =
−→∏n

j=1
e−

t−s
n
V (n−j+1

n
t+ j−1

n
s,·)e

t−s
n

∆. (6.6)

Proof. Using relations (6.4), (6.5) and Sobolev embeddings (6.3), it is easy to see that the
required inclusions hold. The claim follows, using Theorem 3.3 and Theorem 5.6. The
“ess sup” becomes a “sup”, since the solution operator and the approximating operator are
continuous. �

Remark 6.2.
(i) In [11], the existence of a solution operator for equation (6.1) is shown assuming weaker
regularity in space and time for the potential. We assumed uniform boundedness of the
function t 7→ ||B(t)(−∆)α||B(X), which is indeed too strong but important for the consider-
ations.
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(ii) We focused on domains, which are bounded and have C2-boundaries. Our considerations
can be extended to other domains, too.
(iii) Although the approximating propagator {Un(t, s)}(t,s)∈∆ defined in (6.6) looks elabo-
rate, it has a simple structure. The semigroup of the Laplace operator on Lq(Rd) is given
by the Gauss-Weierstrass semigroup (see for example [2, Chapter 2.13]) defined via

(et∆u)(x) = (T (t)u)(x) = (4πt)−d/2
∫
Rd
e−
|x−y|2

4t u(y)dy.

The terms e−τV (tj) are scalar valued and can be easily computed.
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