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Markov cubature rules for polynomial processes∗

Damir Filipović† Martin Larsson‡ Sergio Pulido§

December 16, 2016

Abstract

We study discretizations of polynomial processes using finite state Markov processes
satisfying suitable moment-matching conditions. The states of these Markov processes
together with their transition probabilities can be interpreted as Markov cubature rules.
The polynomial property allows us to study the existence of such rules using algebraic
techniques. These rules aim to improve the tractability and ease the implementation of
models where the underlying factors are polynomial processes.

1 Introduction

Polynomial processes have recently gained popularity thanks to their tractability and flex-
ibility. For instance, they have been applied in financial market models for interest rates
(Delbaen and Shirakawa, 2002; Zhou, 2003; Filipović et al., 2014), credit risk (Ackerer and
Filipović, 2016), variance swaps (Filipović et al., 2016), stochastic volatility (Ackerer et al.,
2016), stochastic portfolio theory (Cuchiero, 2016), and life insurance liabilities (Biagini and
Zhang, 2016). Polynomial processes, as considered in Cuchiero et al. (2012) and Filipović and
Larsson (2016), are stochastic processes with the property that the conditional expectation
of a polynomial is a polynomial of the same or lower degree. This implies that conditional
moments can be computed efficiently and accurately, which can be exploited to construct
tractable models. The polynomial class contains any affine jump-diffusion whose jump mea-
sure admits moments of all orders, but enjoys greater flexibility as it can accommodate more
general semialgebraic state spaces; see Filipović and Larsson (2016). In this paper we study
discretizations of polynomial processes, via moment-matching conditions, using finite state
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Markov polynomial processes. We call such a finite state polynomial process a Markov cu-
bature rule because the states of the process together with their transition probabilities can
be interpreted as cubature rules for the law of the original polynomial process at different
times. Markov cubature rules aim to facilitate the implementation of polynomial models in
order to simplify costly computational tasks such as Monte-Carlo simulation, and pricing of
path-dependent and American options.

Discretizations of stochastic models using finite state Markov processes appear regularly
in the numerical methods literature. In finance, these techniques have been used in order to
price and hedge exotic and American options via finite state Markov chain and tree approx-
imations; see e.g. Gruber and Schweizer (2006); Kifer (2006); Dolinsky (2016). As explained
in Kushner (1984) and Kushner and Dupuis (2013), these approximations are linked to nu-
merical analysis techniques such as the finite difference method. It is also relevant to mention
quantization methods, as for instance in Bally et al. (2005), that address the optimal choice
of the approximation grid on a finite time domain and in higher dimensional state spaces. In
all these cases, discretization happens at two levels: the discretization of the time domain,
as it is performed in simulation algorithms, and the discretization of the space domain using
grids.

Cubature methods also play a crucial role in numerous numerical algorithms. For instance,
classical cubature techniques have been applied within the context of filtering in Arasarat-
nam and Haykin (2009). Additionally, the cubature formulas on Wiener space, developed
by Lyons and Victoir (2004), have been used in multiple applications: in filtering problems
in Lee and Lyons (2013), to calculate the greeks of financial options in Teichmann (2006),
and to numerically approximate solutions of Stochastic Differential Equations in Bayer and
Teichmann (2008) and Doersek et al. (2013), Backward Stochastic Differential Equations
(BSDEs) in Crisan and Manolarakis (2012, 2014), and Forward-Backward Stochastic Dif-
ferential Equations (FBSDEs) in Chaudru de Raynal and Garcia Trillos (2015). Cubature
methods ease the calculation of conditional expectations, which are at the core of the above
mentioned numerical problems. Contrary to the techniques mentioned in the previous para-
graph where discretization is performed in the time and space domains, cubature on Wiener
space discretizes path space directly. These cubature rules extend Tchakaloff’s cubature the-
orem, as studied in Putinar (1997) and Bayer and Teichmann (2006), to the Wiener space of
continuous paths.

In this paper we study cubature-based discretizations of polynomial processes in the state
space variable, in continuous and discrete time domains. These approximations, which we call
Markov cubature rules, correspond to Markov polynomial processes that match the moments
of the original process up to a given order. The polynomial property allows us to study
the existence of such rules using algebraic techniques. Contrary to the classical cubature
problem, we look for cubature rules that use the same set of cubature points at all times
and the moments to be matched depend on those points. As explained in Section 2.1, it
turns out that in continuous time the notion of Markov cubature rule is too stringent. In
continuous time we instead solve a suitably relaxed version of the Markov cubature problem.
Our two main existence results are Theorem 4.4 and Theorem 5.1. Theorem 4.4 shows the
existence of what we call continuous time lifted Markov cubature rules. Theorem 5.1 shows
the existence of Markov cubature rules in discrete time for an appropriately chosen time grid.
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The existence of asymptotic moments is a crucial hypothesis and lies at the core of the proofs
of these theorems.

Our paper is organized as follows. In Section 2 we set the stage by providing the defini-
tions of Markov and lifted Markov cubature rules as well as some basic facts about polynomial
processes. In particular, in Section 2.1, we explain why the notion of continuous time Markov
cubature rule is too stringent, and introduce a relaxed version of the problem. In Section 3,
we give algebraic and geometric characterizations of continuous time Markov cubature rules
for polynomial processes and at the same time illustrate their complexity thorough examples.
The arguments and concepts introduced in this section facilitate and motivate the presen-
tation of lifted Markov cubature rules in Section 4. Theorem 4.4 shows the existence of
continuous time lifted Markov cubature rules for polynomial processes under the hypothesis
of existence of asymptotic moments. Similar assumptions allow us to prove, in Section 5, the
existence of discrete time Markov cubature rules on a conveniently chosen grid; see Theo-
rem 5.1. Appendix A presents the results on asymptotic moments of polynomial processes
needed throughout the paper and Appendix B contains the proofs of all results in the article.

We adopt the following notation throughout the manuscript: We write R+ for the set of
nonnegative real numbers and R++ for the set of positive real numbers. We denote by N

the set of positive natural numbers. For N,M ∈ N, RN×M designates the vector space of
matrices of size N ×M and by convention RN = RN×1 is the vector space of column vectors.
Given d ∈ N and a set E ⊆ Rd, we say that q is a polynomial on E if there exists p, a
polynomial on Rd, such that q = p|E . Its degree is defined by deg q = min{deg p : q = p|E}.
We let Pol(E) and Poln(E) denote the ring of polynomials on E and the vector space of
polynomials on E whose degree is less than or equal to n, respectively. For N ∈ N and a set
A ⊆ RN we write conv(A) for the convex hull of A and span(A) for the linear span of A.

2 Setup and overview

Fix a state space E ⊆ Rd. We consider a càdlàg adapted process X defined on a filtered
measurable space (Ω,F ,Ft), along with a family of probability measures Px, x ∈ E, such
that X is an E-valued Markov processes under each Px, starting at X0 = x. We assume
that X admits an extended generator G , whose domain contains all polynomials. That is,
we assume

p(Xt)−
∫ t

0
G p(Xs) ds is a Px-local martingale

for every x ∈ E and every p ∈ Pol(Rd). By taking p(x) = xi, this immediately implies that
X is a semimartingale under each Px. Moreover, the positive maximum principle holds, in
the sense that for any p ∈ Pol(Rd),

if p(x) = max
E

p for some x ∈ E, then G p(x) ≤ 0.1 (2.1)

1Indeed, suppose p(x) = maxE p, and assume for contradiction G p(x) = δ > 0. Define Mt = p(Xt) −
p(x) −

∫ t

0
G p(Xs)ds and τ = inf{t : G p(Xt) ≤ δ/2}. Then, under Px, M

τ is a nonpositive local martingale

with Mτ
0 = 0, hence Mτ = 0. On the other hand, Mt∧τ ≤ −

∫ t∧τ

0
G p(Xs)ds ≤ −(δ/2)(t∧ τ ), which is strictly

negative for t > 0. This contradiction proves G p(x) ≤ 0.
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In particular, G p = 0 on E whenever p = 0 on E, which implies that G is well-defined as an
operator on Pol(E).2

2.1 Markov and lifted Markov cubature rules

Definition 2.1. We say that a time-homogeneous Markov process Y with finite state space
EY = {x1, . . . , xM} ⊆ E defines an n-Markov cubature rule for X on T ⊆ [0,∞) if

Exi
[p(Xt)] = Exi

[p(Yt)] (2.2)

holds for all i = 1, . . . ,M , t ∈ T, and p ∈ Poln(E).

Remark 2.2. In condition (2.2), Exi
[p(Xt)] denotes the expectation with respect to the proba-

bility measure Pxi
while Exi

[p(Yt)] denotes the expectation with respect to the probability mea-
sure PY

xi
associated to the finite state Markov process Y . We adopt this convention throughout

the paper.

Suppose that Y is a n-Markov cubature rule for X on T. The moment-matching condi-
tion (2.2) can be rewritten as

Exi
[p(Xt)] =

M∑

j=1

p(xj)P
Y
xi
(Yt = xj)

for all i = 1, . . . ,M , t ∈ T, and p ∈ Poln(E). Hence, for any i = 1, . . . ,M and t ∈ T, the
points x1, . . . , xM together with the transition probabilities PY

xi
(Yt = x1), . . . ,P

Y
xi
(Yt = xM )

define an n-cubature rule for the law of Xt with respect to Pxi
. We observe that in this case,

contrary to classical cubature rules, the matched moments depend on the cubature points and
these points are used for all times t ∈ T. In addition, as stated in Propostition 2.7 below, the
properties of the weights inherited by the Markov property of Y guarantee time-consistency
features of these cubature rules.

We will also consider a relaxed version of n-Markov cubature. Indeed, it turns out that
the notion of an n-Markov cubature rule is too stringent in general. To see why, suppose X
is given as the solution of an SDE of the form

dXt = µ(Xt) dt+ σ(Xt) dWt.

Under linear growth conditions on the coefficients, one has the estimate

Ex[‖Xt − x‖4] ≤ κ(1 + ‖x‖4) t2, 0 ≤ t ≤ 1,

for all x ∈ E, where κ is a constant that only depends on µ and σ; see Problem 5.3.15
in Karatzas and Shreve (1991). If Y is a 4-Markov cubature rule for X on [0,∞), this
estimate carries over to Y , which in conjunction with the Markov property yields

Ex[‖Yt − Ys‖4] = Ex

[
EYs [‖Yt−s − Y0‖4]

]
≤ κ(t− s)2

2Indeed, if p ∈ Pol(Rd) is a representative of q = p|E ∈ Pol(E), we define G q = G p|E, which is independent
of the choice of representative p.
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for any x ∈ EY and any s ≤ t with t − s ≤ 1. By Kolmogorov’s continuity lemma, Y then
has continuous paths as well, which forces it to be constant. Consequently, in the generic
case, the diffusion X will not admit any non-trivial n-Markov cubature rule on [0,∞), unless
n < 4. Moreover, by the same argument and the intermediate value theorem, unless X
exhibits jumps, it is impossible to construct a non-trivial Markov process Y with countable
state space such that (2.2), with n ≥ 4, holds for all initial conditions. This is a rather severe
restriction.

One way to avoid this obstruction is to replace [0,∞) with a discrete time set T, in
which case one remains within the framework of Definition 2.1. This approach is pursued in
Section 5. Another possibility is to consider a suitable relaxation of Definition 2.1, which we
now describe.

To set the stage, motivated by Bayer and Teichmann (2006), observe that n-Markov
cubature rules forX correspond in a natural way to 1-Markov cubature rules for an associated
process X. To see this, fix n and let Nn denote the dimension of Poln(E). Let h1, . . . , hNn

be a basis for Poln(E), and define

Hn(x) = (h1(x), . . . , hNn(x))
⊤. (2.3)

Since each polynomial xi on E, i = 1, . . . , d, has a unique coordinate representation in terms
of this basis, there exists a unique matrix An ∈ Rd×Nn such that

AnHn(x) = x, x ∈ E.

Thus the map Hn : E → Hn(E) is a bijection, and it follows that the process X = Hn(X)
is a time-homogeneous Markov process with state space E = Hn(E). From this one deduces
the following lemma.

Lemma 2.3. The time-homogeneous Markov process Y with state space EY = {x1, . . . , xM}
is an n-Markov cubature rule for X on T if and only if Y = Hn(Y ) is a 1-Markov cubature
rule for X on T.

Consider now the dynamics of X . Its drift function is given by

B(x) = G Hn(Anx),

where G acts componentwise on Hn, i.e. G Hn = (Gh1, . . . ,GhNn)
⊤. Note that this relies on

the fact that G is well-defined as an operator on Pol(E). Therefore, one has

dX t = B(Xt) dt+ dM t,

where M is an RNn-valued local martingale. If B(x) is linear in x, M is a true martingale,
and X satisfies mild integrability conditions, then the first moment Ex[Xt] is equal to Zx

t ,
where Zx is the solution of the ODE

dZt = B(Zt) dt, Z0 = x. (2.4)

As we shall see later in Proposition 2.11, this holds if X is a polynomial process.
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While X is only well-defined for initial conditions x ∈ E = Hn(E), which can be inter-
preted as a subset of the moment curve and whose geometry is highly complex in general, the
solution Zx of (2.4) admits any point x ∈ RNn as initial condition. This is the motivation
behind the following definition, where the state space of Y is no longer restricted to be a
subset of E.

Definition 2.4. We say that a time-homogeneous Markov process Y with finite state space
EY = {x1, . . . , xM} ⊆ RNn defines a lifted n-Markov cubature rule for X on T ⊆ [0,∞) if

Exi [Y t] = Zxi
t

holds for all i = 1, . . . ,M and t ∈ T.

A lifted n-Markov cubature rule whose state space EY is contained in E gives rise to a
bona fide n-Markov cubature rule due to Lemma 2.3. Thus the notion of a lifted n-Markov
cubature rule is a relaxation of the notion of an n-Markov cubature rule. The adjective
lifted comes from the fact that the Markov process Y can be viewed as a Markov process
taking values in the set of signed measures supported on a suitable set of points x1, . . . , xM
in E. This is described in detail in Section 4. As we will show in Theorem 4.4, contrary
to n-Markov cubature rules, if the process X has asymptotic moments, then for arbitrary
n ∈ N, it is always possible to construct non-trivial lifted n-Markov cubature rules. As
shown in Remark 4.10, these non-trivial lifted n-Markov cubature rules can be interpreted as
relaxations of Markov cubature rules by allowing negative transition probabilities. Hence, the
limitation posed by Kolmogorov’s continuity lemma disappears in a framework with negative
probabilities.

2.2 Polynomial processes

In what follows we will study Markov cubature rules for a particular class of Markov process,
namely polynomial processes. In this section we establish the necessary definitions and basic
results.

Definition 2.5. The operator G is called polynomial if GPoln(E) ⊆ Poln(E) for all n ∈ N.
In this case X is called a polynomial process.

Remark 2.6. In the present paper, G is assumed to be the extended generator of some given
Markov process X. We are not concerned with the question of existence of such a process
given a candidate operator G . This issue is discussed in Filipović and Larsson (2016) for
polynomial diffusions.

If X is a polynomial process, then all mixed moments of Xt are polynomial functions of
the initial state. More precisely, fix n and let Hn(x) be as in (2.3). If G is polynomial, one
has

G Hn(x) = G⊤
n Hn(x) (2.5)

for some matrix Gn ∈ RNn×Nn , where G acts componentwise on Hn. From this one obtains
the following lemma.
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Lemma 2.7. Assume X is a polynomial process. Then for any polynomial p ∈ Poln(E) with
coordinate representation ~p ∈ RNn, that is, p(x) = Hn(x)

⊤~p, one has

Ex[p(Xt)] = Hn(x)
⊤etGn~p. (2.6)

Thus the left-hand side is a polynomial in Poln(E) with coordinate representation etGn~p.

Remark 2.8. As a consequence of Lemma 2.7, Markov cubature rules for polynomial pro-
cesses are polynomial processes as well.

We say that the time set T is stable under differences, if t − s ∈ T for all s, t ∈ T such
that s ≤ t. It turns out that if T is stable under differences, Markov cubature rules for a
polynomial process X on T can also be used for polynomials of the process X evaluated at
different times. This is one of the principal features of Markov cubature rules for polynomial
processes and the content of the following proposition.

Proposition 2.9. Suppose that X is a polynomial process and that T is stable under differ-
ences. Let Y be a time-homogeneous Markov process with state space EY = {x1, . . . , xM}.
Then the process Y is an n-Markov cubature rule for X on T if and only if given t1, . . . , tl ∈ T

such that 0 ≤ t1 ≤ · · · ≤ tl and polynomials p1, . . . , pl ∈ Poln(E) with
∏

i pi ∈ Poln(E), we
have

Ex

[
l∏

i=1

pi(Xti)

]
= Ex

[
l∏

i=1

pi(Yti)

]
(2.7)

for all x ∈ EY .

Remark 2.10. Assume that Y is an n-Markov cubature rule for a polynomial process X on
T. Set T = {∑l

i=1 ti : ti ∈ T, l ∈ N}. The time set T is the smallest subset of [0,∞) that is
stable under sums and contains T. The argument in the proof of Proposition 2.9 shows that
Y is also an n-Markov cubature rule for X on T.

We now recall the notation X = Hn(X), with Hn given by (2.3). The following proposi-
tion is crucial for the study of lifted Markov cubature rules for polynomial processes.

Proposition 2.11. Suppose that X is a polynomial process and fix n ∈ N. Then the process
X is a polynomial process on Hn(E) with dynamics of the form

dXt = G⊤
nXt dt+ dMt (2.8)

with Gn as in (2.5) and M a martingale. Consequently, if Zx
t is the solution of (2.4) with

B(z) = G⊤
n z then Zx

t = Ex[X t].

To prove this proposition we need the following lemma from algebra.

Lemma 2.12. Let k ∈ N. Then p ∈ Polkn(E) if and only if p(x) = q(Hn(x)) for some
q ∈ Polk(Hn(E)).
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3 Continuous time Markov cubature

We assume hereafter that X is polynomial process and fix n ∈ N. In this section we will
study characterizations of continuous time n-Markov cubatures rules for X, namely n-Markov
cubature rules on [0,∞). Even though, as explained in Section 2.1, these cubature rules turn
out to be too stringent in general, the results of this section motivate and facilitate the study
in Section 4 of the relaxed notion of lifted Markov cubature rule.

We adopt the notation of Section 2 but for simplicity we often omit the index n. Given
points x1, . . . , xM ∈ E we shall denote by H = H(x1, . . . , xM ) the M × Nn-matrix whose
elements are

Hij = hj(xi) (3.1)

for all i = 1, . . . ,M and j = 1, . . . , Nn. Notice that the i-th row of the matrix H ∈ RM×Nn

is equal to Hn(xi)
⊤ as defined in (2.3).

By (2.5) and (2.6) we have

Ghj(xi) = (HG)ij , (3.2)

Exi
[hj(Xt)] = (H exp(tG))ij (3.3)

for all i = 1, . . . ,M and j = 1, . . . , Nn. Equations (3.2)-(3.3) establish a relationship between
the analytical calculation of the generator and semigroup acting on the functional space of
polynomials, and an algebraic calculation involving matrix multiplication.

Theorem 3.2 below is the main characterization theorem for the existence of a continuous
time n-Markov rule. Before stating the theorem we recall that a transition rate matrix is a
matrix whose columns add up to zero and off-diagonal elements are nonnegative. We also
need the following definition.

Definition 3.1. We say that a vector v ∈ Rm points into conv({v1, . . . , vn}) ⊂ Rm at vi if
there exist (Li,j)j 6=i ∈ Rm−1

+ such that

v =
∑

j 6=i

Li,j(vj − vi).

Theorem 3.2. Given a set of points EY = {x1, . . . , xM} ⊆ E the following statements are
equivalent.

(i) There exists a continuous time n-Markov cubature rule Y with state space EY ; see
Definition 2.1.

(ii) Given H as in (3.1), HG = LH, for some transition rate matrix L ∈ RM×M .

(iii) Given H as in (3.1), HG = LH, for some matrix L ∈ RM×M with nonnegative off-
diagonal elements.

(iv) For each x ∈ EY the vector G Hn(x) points into conv({Hn(x1), . . . ,Hn(xM )}) at the
point Hn(x); see Definition 3.1.
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If in addition M = Nn and the matrix H is invertible, there exists a Lagrange basis of
Poln(E), β̃ = (h̃1, . . . , h̃Nn), i.e. a basis with h̃j(xi) = δij , and the above statements are
equivalent to:

(v) G h̃j(xi) ≥ 0 for i 6= j.

Moreover, when condition (ii) is satisfied, L can be taken as the transition rate matrix of the
n-Markov cubature rule Y .

For the proof of Theorem 3.2 we will need the following lemma.

Lemma 3.3. Suppose that L is a matrix such that HG = LH. Then the columns of L add
up to zero.

As the proof shows, the conditions in Theorem 3.2 imply that if Y is an n-Markov cubature
rule then, for each x ∈ EY , the flow (Ex[Hn(Xt)])t≥0 never leaves conv({Hn(x1), . . . ,Hn(xM )}).
Indeed, notice that (exp(tL))t≥0 is a transition semigroup and for all i = 1, . . . ,M we have

Exi
[Hn(Xt)] = exp(tG⊤)Hn(xi) = i-th column of H⊤ exp(tL⊤).

The points {Hn(x1), . . . ,Hn(xM )} lie on the moment curve Hn(E) and correspond to the
rows of H. Their convex hull represents all the possible initial distributions of a Markov
chain with state space {Hn(x1), . . . ,Hn(xM )}.

In view of Lemma 2.3, this is not surprising as n-Markov cubatures rules for the process
X correspond to 1-Markov cubature rules for the process X = Hn(X) and the state space of
X lies on the moment curve. As explained in Section 2, due to the fact that the notion of n-
Markov cubature rule is too stringent in general, in Section 4 we work with the relaxed notion
of lifted n-Markov cubature rule. Lifted Markov cubature rules satisfy a related geometric
condition but are no longer bound to live on the moment curve.

Example 3.4 below illustrates the complexity of the algebraic conditions (ii)-(iii) and the
geometric condition (iv) of Theorem 3.2 for 2-Markov cubature rules when d = 1.

Example 3.4. Suppose that d = 1 and G is of the form

G f(x) = κ(Θ− x)f ′(x) +
1

2
κ(α + ax+Ax2)f ′′(x).

Consider the the canonical basis (1, x) of Pol1(E). For n = 1 the matrix of G restricted
to Pol1(E) with respect to this basis is

G1 =

(
0 κΘ
0 −κ

)
.

Let x1 < x2 be fixed. In this case the matrix

H = H(x1, x2) =

(
1 x1
1 x2

)

is invertible and

HG1H
−1 =

κ

x2 − x1

(
x1 −Θ Θ− x1
x2 −Θ Θ− x2

)
.
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Hence, if κ > 0, condition (ii) of Theorem 3.2 is satisfied if and only if

x1 ≤ Θ ≤ x2.

In other words the “cubature points” x1, x2 have to be around the asymptotic mean Θ.
Similarly, for n = 2, the matrix of G with respect to (1, x, x2), the canonical basis of

Pol2(E), is given by

G2 = κ



0 Θ α
0 −1 2Θ + a
0 0 A− 2.


 .

Let x1 < x2 < x3 be arbitrary. As before the matrix H = H(x1, x2, x3) is invertible and

HG2H
−1 = κΞΛ,

with Λ a diagonal matrix with positive entries on the diagonal and

Ξ11 = σ2(x1) + (Θ− x1)(x1 − x2)− (Θ − x1)(x3 − x1)

Ξ12 = −σ2(x1) + (Θ − x1)(x3 − x1)

Ξ13 = σ2(x1) + (Θ− x1)(x1 − x2)

Ξ21 = σ2(x2) + (x2 −Θ)(x3 − x2)

Ξ22 = −σ2(x2) + (x2 −Θ)(x2 − x1)− (x2 −Θ)(x3 − x2)

Ξ23 = σ2(x2)− (x2 −Θ)(x2 − x1)

Ξ31 = σ2(x3)− (x3 −Θ)(x3 − x2)

Ξ32 = −σ2(x3) + (x3 −Θ)(x3 − x1)

Ξ33 = σ2(x3)− (x3 −Θ)(x3 − x1)− (x3 −Θ)(x3 − x2),

(3.4)

where
σ2(x) = α+ ax+Ax2 ≥ 0.

The condition (iii) of Theorem 3.2 is satisfied when the off-diagonal elements of Ξ are non-
negative. In particular, necessarily we should have that x1 ≤ Θ ≤ x3.

As explained after the proof of Theorem 3.2, if Y is an n-Markov cubature rule then, for
all x ∈ EY , the flow (Ex[Hn(Xt)])t should not leave the convex hull of a finite set of points
in RNn . Therefore, a natural question is whether the existence of asymptotic moments is
sufficient to guarantee the existence of n-Markov cubature rules.

Example 3.5 below shows that in general, even for n = 2, this is no the case. This
highlights the complexity of n-Markov cubature rules even for lower orders. We will see,
however, in Sections 4 and 5, that conditions on the asymptotic moments (see conditions (A1),
(A2) and (A3)) play a crucial role in order to guarantee the existence of relaxed versions of
Markov cubatures.

Example 3.5. We adopt the same notation than in Example 3.4. Assume that κ > 0 and
that

Θ = 0;A = α = 1;
√
2 ≤ a < 2.
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In this case the matrix G2 has negative nonzero eigenvalues. Additionally, the eigenvalue 0
has algebraic multiplicity 1. Corollary A.3 shows that the asymptotic moments exist and they
are independent of the state variable.

We show that in this case it is impossible to find 2-Markov cubature rules whose state
space consists of three points. Indeed, suppose that x1 < x2 < x3 are the states of a 2-Markov
cubature rule.

As explained in Example 3.4 this implies that HG2H
−1 = κΞΛ with Λ a diagonal matrix

with positive entries on the diagonal and Ξ as in (3.4), a matrix with nonnegative off-diagonal
elements. The condition Ξ32 ≥ 0 implies simultaneously that x3 > 0 and that

x1 < −a < 0.

This together with the condition Ξ13 ≥ 0 implies that

x2 ≤ − 1

x1
− a <

1

a
− a < 0.

On the other hand, using the condition Ξ21 ≥ 0, we deduce that that 1 + ax2 > 0 and hence

−1

a
< x2.

In conclusion

−1

a
< x2 <

1

a
− a,

which contradicts the fact that a ≥
√
2.

Examples 3.4 and 3.5 together with the discussion in Section 2 show that the notion of
n-Markov cubature rule in continuous time is too stringent in general. This motivates the
study of relaxed notions in Sections 4 and 5.

4 Lifted continuous time Markov cubature

We first recall the notion of lifted n-Markov cubature rule from Defition 2.4. Trivial lifted
n-Markov cubature rules always exist.

Example 4.1. By Proposition 2.11, if we take M = 1 and x1 = 0, then trivially the constant
process Y = x1 defines a continuous time lifted n-Markov cubature rule.

The next example illustrates other types of trivial cubature rules in continuous time.

Example 4.2. Suppose that GT has an real negative eigenvalue λ with eigenvector v. Let
x1 = v and x2 = −v. Define Y to be the Markov process on EY = {x1, x2} with transition
rate matrix

L =
λ

2

(
1 −1
−1 1

)
.

A simple calculation shows that
Exi [Y t] = etλxi,

11



for i = 1, 2 and for all t ≥ 0. On the other hand, by Proposition 2.11 we get

Zxi
t = etG

T

xi = etλxi.

for i = 1, 2 and for all t ≥ 0. Therefore, Y is a continuous time lifted n-Markov cubature
rule.

Observe that in the previous examples if EY is the state space of the lifted Markov
cubature rule, then we do not have span(EY ) = RNn . As we will highlight in Remark 4.10
below, this is a desirable property and motivates the following definition.

Definition 4.3. We say that a lifted n-Markov cubature rule Y with state space EY is non-
trivial if span(EY ) = RNn .

Theorem 4.4 below is the main result of this section. It is a positive result as it shows the
existence of non-trivial lifted Markov cubature rules in continuous time. The main assumption
in the theorem is given by the following condition

(A1) For all nonzero eigenvalues λ of G, we have that Re(λ) < 0 and for the eigenvalue 0,
the algebraic and geometric multiplicities coincide.

Theorem A.1 shows that this condition is equivalent to the existence of asymptotic moments
of order n. This is a natural condition in view of the discussion in Section 3.

Theorem 4.4. Let G ∈ RNn×Nn be a matrix that satisfies (A1). Then there exists a non-
trivial lifted n-Markov cubature rule for X on [0,∞).

In order to prove Theorem 4.4 we need the following caracterization lemma.

Lemma 4.5. The following statements are equivalent.

(i) There exists a matrix S ∈ RR×Nn with rank(S) = Nn and a transition rate matrix
L ∈ RR×R such that

SG = LS. (4.1)

(ii) There exist points EY = {x1, . . . , xR} in RNn and a Markov Process Y on EY such that
Y is a non-trivial lifted n-Markov cubature rule for X on [0,∞); see Definition 2.4.

Additionally, in the statements above the matrix L can be chosen as the transition rate
matrix of the process Y and the points x1, . . . , xR can taken as the rows of the matrix S.

Remark 4.6. The proof of Theorem 4.4 is constructive and provides an algorithm to find
the lifted Markov cubature rules by using the Jordan normal form of the matrix GT .

The next proposition motivates the terminology lifted Markov cubature rules. It shows
that a lifted Markov cubature rule can be viewed as a Markov process taking values in the
set of signed measures supported on a suitable set of points x1, . . . , xM in E. By considering
the set of signed measures, we are in some sense lifting the state space of the process X.

12



Proposition 4.7. Let EY = {x1, . . . , xM} ⊂ E be a set of points such that rank(H) = Nn,
where H ∈ RM×Nn is the matrix defined by (3.1). If M ≤ R, the statements in Lemma 4.5
are equivalent to:

(iii) There exist signed measures EỸ = {ν1, . . . , νR} on EY of the form

νi =
M∑

j=1

S̃ijδxj
, (4.2)

where S̃ ∈ RR×M has rank M , and a Markov Process Ỹ on EỸ such that

Eν [f(Xt)] =

∫

EY

Ex[f(Xt)]ν(dx) = Eν

[∫

EY

f(x)Ỹt(dx)

]
(4.3)

for all ν ∈ EỸ and f ∈ Poln(E).

Additionally, in the statements above the matrix L can be chosen as the transition rate
matrix of the process Ỹ .

In order to prove this proposition we need the following lemma of linear algebra.

Lemma 4.8. Let S ∈ RR×N . Suppose that M ≤ R and H ∈ RM×N satisfies rank(H) = N .
Then rank(S) = N if and only if there exists S̃ ∈ RR×M , with rank(S̃) = M , such that
S = S̃H.

Remark 4.9. The conditions rank(S̃) = M and rank(H) = Nn imply that rank(S̃H) = Nn.
This in turn implies that for any two polynomials p, q ∈ Poln(E), p = q if and only if for all
i = 1, . . . , R ∫

EY

p(x)νi(dx) =

∫

EY

q(x)νi(dx). (4.4)

In other words, the polynomials in Poln(E) are completely determined by their averages with
respect to the finitely supported signed measures ν1, . . . , νR. Indeed, (4.4) is equivalent to
S̃H~p = S̃H~q, where ~p and ~q are the coordinates, with respect to the basis h1, . . . , hNn , of the
polynomials p and q, respectively.

Non-trivial lifted Markov cubature rules are useful to calculate expectations of polynomi-
als of the original process X. Additionally, lifted Markov cubature rules can be interpreted
as relaxations of Markov cubature rules by allowing negative transition probabilities. These
are the contents of the following remark.

Remark 4.10. Suppose that the conclusion of Proposition 4.7 holds. Since S̃ has rank M ,
there exists A = (Aij) ∈ RM×R such that

δxi
=

R∑

j=1

Aijνj
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for all i = 1, . . . ,M . Then we have

Exi
[p(Xt)] =

R∑

j=1

AijEνj [p(Xt)]

=

R∑

j=1

AijEνj

[∫

EY

p(x)Ỹt(dx)

]

=
R∑

j,k=1

Aij(e
tL)jk

∫

EY

p(x) νk(x)

=

R∑

k=1

(AetL)ik

∫

EY

p(x) νk(x)

=

R∑

k=1

M∑

l=1

(AetL)ikS̃klp(xl)

=
M∑

l=1

(AetLS̃)ilp(xl)

(4.5)

for all t ≥ 0, p ∈ Poln(E) and i = 1, . . . ,M . Hence, in this case the matrix

W (t) = AetLS̃ ∈ RM×M (4.6)

can be seen as a matrix of weights (not necessarily nonnegative) for the cubature points
x1, . . . , xM at time t. From the identity

W (t)H = AS̃H exp(tG) = H exp(tG)

we deduce that the sums over the rows of W (t) are equal to 1. Therefore, the matrix
W (t) could also be interpreted as a “transition probability matrix” of a cubature rule with
possibly negative transition probabilities. Under this interpretation, Theorem 4.4 shows that,
for polynomial processes, if asymptotic moments of order n exist then, by allowing negative
probabilities, it is possible to find a relaxed version of a continuous time n-Markov cubature
rule.

In general, given 0 ≤ s ≤ t, p, q ∈ Poln(E) with pq ∈ Poln(E), and xi ∈ EY

Exi
[p(Xt)q(Xs)] 6=

R∑

j=1

AijEνj

[∫

EY

p(x)Ỹt(dx)

∫

EY

q(x)Ỹs(dx)

]
.

Hence, we do not have a simple time-consistency property as the one of Proposition 2.9.
Notice however that, under the assumptions above, if we define p̃(x) = Ex[p(Xt−s)] then

Exi
[p(Xt)q(Xs)] = Exi

[p̃(Xs)q(Xs)] =

R∑

j=1

AijEνj

[∫

EY

p̃(x)q(x)Ỹs(dx)

]
.
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Applying (4.5) twice we obtain

Exi
[p(Xt)q(Xs)] =

M∑

l,m=1

p(xm)q(xl)W (t− s)mlW (s)il

with W (t−s),W (s) as in (4.6). Therefore, allowing possibly negative transition probabilities,
non-trivial lifted Markov cubature rules also match expectations of polynomials of the process
X evaluated at different times.

Theorem 4.4 guarantees the existence of lifted Markov cubature rules under the assump-
tion of existence of asymptotic moments. This asymptotic assumption together with classical
cubature results facilitates, as explained in the next section, the construction of Markov
cubature rules in discrete time.

5 Discrete time Markov cubature

The construction of a discrete time n-Markov cubature rule forX (see Theorem 5.1 below) will
use cubature methods over the asymptotic moments. According to Theorem A.1, under (A1),
all the asymptotic moments of order less than or equal to n exist. We denote these asymptotic
moments by

µj(x) = lim
t→∞

Ex[hj(Xt)]. (5.1)

To use classical cubature rules, we would like the asymptotic moments (5.1) to be inde-
pendent of x. According to Corollary A.3, this is the case under the following assumption,
which is a stronger condition than (A1).

(A2) For all nonzero eigenvalues λ of G, we have that Re(λ) < 0 and the eigenvalue 0 is a
simple eigenvalue.

In this case we write the asymptotic moments (5.1) simply as µ1, . . . , µNn . In conjunction
with (A2), we will make the following assumption throughout this section.

(A3) There exist points x1, . . . , xM ∈ E and w ∈ RM
++ such that

µj =

M∑

i=1

wihj(xi) (5.2)

for all j = 1, . . . , Nn.

This condition states that the asymptotic moments (5.1) belong to conv(Hn(E)). As Ex[hj(Xt)] ∈
conv(Hn(E)) for all x ∈ E, t ≥ 0 and j = 1, . . . , Nn (see Putinar (1997), Bayer and Teich-
mann (2006)), this would be the case if for instance conv(Hn(E)) is closed. It would also hold
if the asymptotic moments are the moments of a probability distribution; see Proposition A.6.
Additionally, as the weights w in (A3) are strictly positive, there does not exist a strict subset
C ( {x1, . . . , xM} such that conv(Hn(C)) contains all the asymtotic moments (5.1).

Theorem 5.1 below is the main theorem of this section.

15



Theorem 5.1. Assume that (A2) and (A3) hold. Suppose additionally that for the points
x1, . . . , xM in (A3), the matrix H given by (3.1) satisfies rank(H) = Nn . Then, for ∆
large enough, there exists a n-Markov cubature rule for X on {l∆ : l ∈ N} with state space
EY = {x1, . . . , xM}.

To prove Theorem 5.1 we need the following lemma.

Lemma 5.2. Suppose the same hypotheses of Theorem 5.1 hold. Then, for t sufficiently large,
the exists a a probability matrix with positive entries Q(t) such that H exp(tG) = Q(t)H.

The following remark shows that the existence of discrete Markov cubature rules is true
under more general hypotheses.

Remark 5.3. Assume that (A1) holds. Suppose additionally that there exist points

x1, . . . , xM ∈ E

and

W = (wij)
M
i,j=1 ∈ RM×M

++

such that

µj(xk) =

M∑

i=1

wkihj(xi)

for all j = 1, . . . , Nn and k = 1, . . .M , with µj as in (5.1). The proof of Theorem 5.1 shows
that, if the matrix H = H(x1, . . . , xM ), defined in (3.1), satisfies rank(H) = Nn, then the
conclusion of Theorem 5.1 holds.

A Asymptotic moments of polynomial processes

Suppose that X is a polynomial process with extended generator G and state space E.
Fix n ∈ N and let G be the matrix of G restricted to Poln(E) with respect to a basis
β = (h1, . . . , hNn) of Poln(E).

The following theorem shows that Assumption (A1) is equivalent to the existence of
asymptotic moments of order n.

Theorem A.1. The following are equivalent:

(i) Assumption (A1) holds.

(ii) The sequence of matrices (exp(tG))t≥0 converges as t → ∞.

(iii) Ex[hj(Xt)] converges as t → ∞ for all x ∈ E and j = 1, . . . , Nn.

(iv) Ex[p(Xt)] converges as t → ∞ for all x ∈ E and p ∈ Poln(E).
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Proof. (i)⇔(ii) Suppose that G = V JV −1, where J is the (complex) Jordan normal form of
G. We have that (exp(tG))t≥0 converges as t → ∞ if and only if (exp(tJ))t≥0 converges as
t → ∞. Additionally, (exp(tJ))t≥0 converges as t → ∞ if and only if exp(tJi) converges for
all i, where the Ji’s are the Jordan blocks of the matrix J .

Each Ji is of the form Ji = λiId+Ni where λi is an eigenvalue of G and Ni is a nilpotent
matrix. Therefore, exp(tJi) = exp(tλi)pi(tNi), with pi a polynomial.

Assumption (A1) holds if and only if Re(λi) < 0 for all i such that λi 6= 0 and if λi = 0,
Ni = 0. These observations imply the equivalence between (i) and (ii).

(ii)⇒(iii) Suppose that the matrices (exp(tG))t≥0 converge to a matrix P̃ ∈ RNn×Nn as
t → ∞. By (2.6), we have that

lim
t→∞

Ex[hj(Xt)] =

Nn∑

i=1

P̃ijhi(x)

for all j = 1, . . . , Nn and x ∈ E. Hence (iii) holds.

(iii)⇔(iv) This follows from the fact that h1, . . . , hNn is a basis of Poln(E).

(iii)⇒(ii) Suppose now that Ex[hj(Xt)] converges for all x ∈ E and j = 1, . . . , Nn, as t
goes to infinity.

We claim that there exists Nn points, x1, . . . , xNn ∈ E, such that for all p ∈ Poln(E)

p(xi) = 0 for all i ⇒ p ≡ 0. (A.1)

Assume for the sake of contradiction that there are no points x1, . . . , xNn ∈ E such
that (A.1) holds. Let p1(x) 6= 0 be a polynomial on E and x1 ∈ E such that p1(x1) 6= 0.
By assumption, we can find p2 ∈ Poln(E) and x2 ∈ E such that p2(x1) = 0 and p2(x2) 6= 0.
Recursively, we would be able to construct points x1, . . . , xNn , and polynomials p1, . . . , pNn

such that

pi(xi) 6= 0 and pi(xj) = 0 for j < i. (A.2)

These polynomials would be linearly independent and hence a basis of Poln(E).

Assume that p ∈ Poln(E) satisfies p(xi) = 0 for all i. As p is a linear combination of the
polynomials pi we would conclude by (A.2) that all the coefficients of the linear combination
are equal to zero and p is zero everywhere, a contradiction.

Hence we can always find x1, . . . , xNn ∈ E such that (A.1) holds. These points allow us
to define a norm on the space Poln(E) by

‖p‖1 = sup
i

|p(xi)|.

Another norm is given by

‖p‖2 = sup
i

|λi|

where p =
∑

j λjhj . As these norms are equivalent, convergence of a sequence of polynomials
on x1, . . . , xNn implies convergence of the coefficients. The coefficients of the polynomials of
the form Ex[hj(Xt)] are entries of the matrix exp(tG). Hence (ii) holds.
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In general, these asymptotic moments might depend on x. In fact we have the following
proposition.

Proposition A.2. Suppose that Assumption (A1) holds. Let G = V JV −1 be the canonical
Jordan decomposition of G, with V the matrix of generalized eigenvectors. Then

lim
t→∞

etG =

l∑

i=1

viri, (A.3)

where the vectors v1, . . . , vl are the eigenvectors of G corresponding to the eigenvalue 0 and
r1, . . . , rl are the rows of V −1. Moreover, the asymptotic moments (5.1) are given by

(µ1(x), . . . , µNn(x)) =

l∑

i=1

Hn(X)⊤viri. (A.4)

Proof. The proof of the equivalence between (i) and (ii) in Theorem A.1 shows that Assump-
tion (A1) implies that

lim
t→∞

etG = V

(
Id 0
0 0

)
V −1,

where the identity matrix Id comes from the block corresponding to the eigenvalue 0. This
implies (A.3). Moreover, (A.3), (3.3) and (5.1) imply (A.4).

An immediate corollary of these results characterizes the case when the asymptotic mo-
ments are independent of x.

Corollary A.3. Assumption (A2) holds if and only if the asymptotic moments µ1(x), . . . , µNn(x)
as defined in (5.1) exist and they are independent of x, i.e. constant on E.

Proof. We already have the equivalence between Assumption (A1) and the existence of the
asymptotic moments by Theorem A.1. Moreover, observe that (A.4) in the previous propo-
sition implies that for allj = 1, . . . , Nn

µj(x) =

l∑

i=1

ri(j)h̃i(x),

where the eigen-polynomials h̃1, . . . , h̃l (corresponding to the eigenvalue 0 of G ) are given by

h̃i(x) = Hn(x)
⊤vi,

for all i = 1, . . . , l. These polynomials are linearly independent, as polynomials in Poln(E).
This linear independence implies that µj(x) is constant on E for all j if and only if l = 1.

Example A.4. Suppose that X is a polynomial martingale. This holds when G1 = 0, where
G1 is the matrix of the generator restricted to the space Pol1(E). A particular example is
geometric Brownian motion. In this case we have that Ex[Xt] = x for all t ≥ 0 and x ∈ E,
and hence,

lim
t→∞

Ex[Xt] = x.

In this example, 0, as an eigenvalue of G1, has algebraic multiplicity 2.
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Example A.5. Suppose that d = 1 and G f(x) = −xf ′(x) + xf ′′(x). Then

lim
t→∞

Ex[Xt] = 0; lim
t→∞

Ex[X
2
t ] = x2.

In this example, 0 has multiplicity 1 as an eigenvalue of G1 (the matrix of the generator G

restricted to Pol1(E).) However, 0 has algebraic multiplicity 2 as an eigenvalue of G2 (the
matrix of the generator G restricted to Pol2(E)).

The following proposition gives sufficient conditions under which the limiting moments
µj(x) are moments of a positive Borel measure.

Proposition A.6. Let Gn+1 be the matrix of the generator restricted to the space Poln+1(E)
with respect to an extended basis β̃ = (h1, . . . , hNn , . . . , hR) of Poln+1(E). Assume that (A1)
holds for Gn+1. Then for all x ∈ E there exists a positive Borel measure πx such that

∫

E

hj(y)πx(dy) = µj(x) (A.5)

for all j = 1, . . . , Nn.

Proof. Let x ∈ E and j = 1, . . . , Nn be fixed. We have by Theorem A.1 that Ex[f(Xt)]
converges as t → ∞ for any polynomial f ∈ Poln+1(E). Define Yt = hj(Xt). De La Vallée-
Poussin’s theorem implies that (Yt)t≥0 is uniformly integrable. Additionally, we have that
the sequence of Borel probability measures on E given by (Px ◦X−1

t )t≥0 is tight.
Let πx be an accumulation Borel probability measure of this sequence. We conclude

that (A.5) holds. Indeed, assume with out loss of generality that Px ◦ X−1
t converges in

distribution to πx. By Fatou’s lemma
∫

E

|hj(y)|π(dy) =
∫ ∞

0
π(|hj(y)| > z)dz

≤ lim inf
t→∞

∫ ∞

0
Px(|Yt| > z)dz

= lim inf
t→∞

E[|Yt|] < ∞.

Therefore, given j = 1, . . . Nn and ǫ > 0, there exist constants C, T > 0 such that Ex[|Yt|1|Yt|>C ] <
ǫ for all t ≥ 0,

∫
|hj(y)|>C

|hj(y)|π(dy) < ǫ and for t ≥ T

∣∣∣∣∣Ex[Yt1|Yt|≤C ]−
∫

|hj(y)|≤C

hj(y)π(dy)

∣∣∣∣∣ < ǫ.

Hence, for t ≥ T
∣∣∣∣Ex[Yt]−

∫

E

Hj(y)πx(dy)

∣∣∣∣ ≤
∣∣∣∣∣Ex[Yt1|Yt|≤C ]−

∫

|hj(y)|≤C

hj(y)π(dy)

∣∣∣∣∣

+ Ex[|Yt|1|Yt|>C ] +

∫

E

|hj(y)|1|ht(y)|>Cπ(dy)

≤ 3ǫ.

Since ǫ > 0 was arbitrary we obtain (A.5); see also Theorem 3.5 in Billingsley (1995).
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In some cases the measure πx of the proposition above is not necessarily an invariant
measure.

Example A.7. Suppose that X is an exponential Brownian motion. In particular X is a
martingale and Ex[Xt] = x for all t, x ≥ 0. Hence, µ1(x) = x, where µ1 is the asymptotic
mean. In this case πx = δx which is not an invariant measure for x > 0.

B Proofs

Proof of Lemma 2.7. In view of (2.5) we obtain the vector equation

Hn(Xt) = Hn(x) +

∫ t

0
G⊤

n Hn(Xs)ds +Mt, t ≥ 0, (B.1)

for some local martingaleM withNn components. We claim that the expectation E[‖Hn(Xt)‖]
is locally bounded in t. This follows from the inequality

Ex

[
1 + ‖Xt‖2k

]
≤

(
1 + ‖x‖2k

)
eCt, t ≥ 0,

which holds for some constant C > 0 that depends on G but not on t or x. This inequality
is proved using the argument in Cuchiero et al. (2012). Furthermore, in conjunction with
Lemma B.1 below, this also implies that M is a true martingale. Taking expectations on
both sides of (B.1) thus yields the integral equation

E[Hn(Xt)] = Hn(x) +

∫ t

0
G⊤

nE[Hn(Xs)]ds, t ≥ 0,

whose solution is E[Hn(Xt)] = etG
⊤
n Hn(x). This yields (2.6).

Lemma B.1. Let p ∈ Pol(E). The local martingale Mt = p(Xt) −
∫ t

0 G p(Xs)ds admits a

predictable quadratic variation process, given by 〈M,M〉t =
∫ t

0 (G p2 − 2pG p)(Xs)ds.
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Proof. Squaring the expression for Mt and rearranging yields

p(Xt)
2 −M2

t = 2p(Xt)

∫ t

0
G p(Xs)ds−

(∫ t

0
G p(Xs)ds

)2

= 2

(
Mt +

∫ t

0
G p(Xs)ds

)∫ t

0
G p(Xs)ds −

(∫ t

0
G p(Xs)ds

)2

= 2Mt

∫ t

0
G p(Xs)ds +

(∫ t

0
G p(Xs)ds

)2

= 2

∫ t

0
MsG p(Xs)ds +

(∫ t

0
G p(Xs)ds

)2

+ (local martingale)

= 2

∫ t

0

(
p(Xs)−

∫ s

0
G p(Xu)du

)
G p(Xs)ds

+

(∫ t

0
G p(Xs)ds

)2

+ (local martingale)

= 2

∫ t

0
p(Xs)G p(Xs)ds+ (local martingale),

where the last equality follows from the identity (
∫ t

0 g(s)ds)
2 = 2

∫ t

0 g(s)
∫ s

0 g(u)du ds with
g(t) = G p(Xt). Therefore, since p2 is also a polynomial and hence in the domain of G , we
obtain

M2
t −

∫ t

0

(
G p2(Xs)− 2p(Xs)G p(Xs)

)
ds = (local martingale).

This implies the assertion of the lemma.

Proof of Proposition 2.9. Clearly if (2.7) holds then Y is an n-Markov cubature rule for
X on T. Conversely, suppose that Y is an n-Markov cubature rule for X on T. By an
induction argument it is enough to show (2.7) with l = 2. To this end, fix p, q ∈ Poln(E)
with pq ∈ Poln(E) and let s, t ∈ T be such that 0 ≤ s ≤ t. Define the function

p̃(x) = Ex[p(Xt−s)].

Since X is a polynomial process, by Lemma 2.7 the function p̃ is a polynomial and p̃q ∈
Poln(E). On the other hand, by the definition of a Markov cubature rule and the stability
under differences of T we have

Ex[p̃(Xs)g(Xs)] = Ex[p̃(Ys)g(Ys)],

p̃(x) = Ex[p(Yt−s)]

for all x ∈ Ey. Therefore, as X and Y are Markov processes, we conclude that

Ex[p(Xt)q(Xs)] = Ex[q(Xs)EXs [p(Xt−s)]]

= Ex[p̃(Xs)q(Xs)]

= Ex[p̃(Ys)q(Ys)]

= Ex[q(Ys)EYs [p(Yt−s)]]

= Ex[p(Yt)q(Ys)]
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for all x ∈ EY .

Proof of Lemma 2.12. To simplify the notation throughout the proof for α = (α1, . . . , αd)
⊤ ∈

(N ∪ {0})d we set xα = xα1

1 · · · xαd

d and |α| = ∑
i αi.

Given a polynomial q ∈ Polk(Hn(E)), it is clear that p(x) = q(Hn(x)) belongs to
Polkn(E). Conversely, suppose that p ∈ Polkn(E). We want to show the existence of
q ∈ Polk(Hn(E)) such that p(x) = q(Hn(x)). Without loss of generality we can assume
that p is a monomial of the form p(x) = xα with α ∈ (N ∪ {0})d such that |α| ≤ kn. We
use an inductive argument over k. For k = 1 the existence of q follows from the fact that
h1, . . . , hNn constitute a basis of Poln(E).

Suppose now that for any m ≤ k and β ∈ (N ∪ {0})d with |β| ≤ mn we can find q ∈
Polm(Hn(E)) such that xβ = q(Hn(x)) on E. Assume that α ∈ (N∪{0})d and |α| ≤ (k+1)n.
There exist β, γ ∈ (N ∪ {0})d such that α = β + γ, |β| ≤ kn and |γ| ≤ n.

By induction hypothesis we find q1 ∈ Polk(Hn(E)) and q2 ∈ Pol1(Hn(E)) such that
xβ = q1(Hn(x)) and xγ = q2(Hn(x)) on E. Since xα = xβxγ = q1(Hn(x))q2(Hn(x)), and
q1q2 has degree at most k + 1, the conclusion follows.

Proof of Proposition 2.11. Since X is a polynomial process, X is also a polynomial process
thanks to Lemma 2.12. The proof of Lemma 2.7 shows that the drift of H (X) is G⊤H (X)
and the process M given in (2.8) is a martingale.

Proof of Lemma 3.3. Denote by v ∈ RNn the coordinates of the constant polynomial 1 with
respect to the basis h1(x), . . . , hNn(x). We have that

Hv = 1M ,

the vector of 1’s in RM . Additionally by (3.2),

HGv = (G1(xi))
M
i=1 = 0.

Hence

L1M = LHv = HGv = 0.

Proof of Theorem 3.2. (i) ⇒ (ii) Let L be the transition rate matrix of the n-Markov cubature
rule Y . Equations (3.3) and (2.2) imply that for all i = 1, . . . ,M , j = 1, . . . , Nn and t ≥ 0

(H exp(tG))ij = (exp(tL)H)ij .

Hence, H exp(tG) = exp(tL)H for all t ≥ 0. Differentiating with respect to t and evaluating
at t = 0 we obtain (ii).

(ii) ⇔ (iii) This follows directly from Lemma 3.3.

(ii) ⇒ (iv) By (3.2)

the i-th row of HG = G Hn(xi)
⊤
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for all i = 1, . . . ,M . On the other hand, the i-th row of LH can be written as a cone
combination of the form ∑

j 6=i

Lij(H
⊤
n (xj)− H

⊤
n (xi)), (B.2)

where the coefficients Lij are nonnegative. Since HG = LH we conclude (iv).
(iv) ⇒ (i) Condition (iv) implies the existence of coefficients Lij ≥ 0 for i 6= j such

that (B.2) is equal to the i-th row of HG for all i. Hence, we can find a transition rate matrix
L such that HG = LH. This implies, by an induction argument, that

HGl = LlH for all l ∈ N.

This in turn implies that
H exp(tG) = exp(tL)H. (B.3)

Since (exp(tL))t≥0 defines a transition semigroup, we can define a Markov process with state
space EY by

PY
xi
(Yt = xj) = (exp(tL))ij .

Equations (3.3) and (B.3) imply that Ex[hj(Xt)] = Ex[hj(Yt)] for all x ∈ E and j = 1, . . . , Nn,
i.e. Y defines a continuous time n-Markov cubature rule.

Suppose now that M = Nn and the matrix H is invertible. For all j = 1, . . . , Nn define
h̃j as the polynomial whose coordinates with respect to the basis (h1, . . . , hNn) are the j-

th column of H−1. We have that β̃ = (h̃1, . . . , h̃Nn) ⊂ Poln(E) is a basis that satisfies
h̃j(xi) = δij .

Given a Markov cubature rule Y , Y is a cubature rule with respect to any basis of Poln(E).
In particular with respect to the basis β̃. Observe that in this case

H̃ = (h̃j(xi))ij = INn ,

the identity matrix. Hence, the equivalence between (i) an (v) follows from the equivalence
between (i) and (iii).

Proof of Lemma 4.5. (i)⇒(ii) Define EY = {x1, . . . , xR} as the rows of S. Let Zt = E[Xt]
and denote by G Z its extended generator. By Proposition 2.11 we have that

(G Zp)(xi) = (SG~p)i.

for any p ∈ Pol1(R
Nn) and i = 1, . . . , R, where ~p are the coordinates of p with respect to the

canonical basis of Pol1(R
Nn). Hence since SG = LS we get

(G Z~p)(xi) = (LS~p)i,

for all p ∈ Pol1(R
Nn) and i = 1, . . . , R. Let Y be the Markov Process on EY with transition

rate matrix L. A similar argument as in the proof of Theorem 3.2 shows that Y is a lifted n-
Markov cubature forX on [0,∞). Additionally, since rank(S) = Nn we have that span(EY ) =
RNn , and Y is a non-trivial lifted n-Markov cubature rule.
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(ii)⇒(i) Define S with rows given by the points x1, . . . , xR. By the same argument as
above, since Y is a lifted n-Markov cubature for X on [0,∞), we deduce that SG = LS

where L is the transition rate matrix of the process Y . Since span(EY ) = RNn we have
rank(S) = Nn.

Proof of Theorem 4.4. We would like to show that the conditions of the theorem imply
Lemma 4.5(i). To simplify the notation throughout the proof we set 0k the vector of ze-
ros in Rk for k ∈ N.

Without loss of generality via a similarity transformation we can assume that GT is in
real Jordan normal form. In other words GT has the form




J1 0 0 · · · 0
0 J2 0 · · · 0

0 0
. . . · · · 0

...
...

... · · · Jq




where J1 = 0 ∈ Rl×l and each Ji for i ≥ 2 is either a matrix of the form



λ c 0 · · · 0
0 λ c · · · 0
...

...
...

... c
· · · · · · · · · · · · λ


 (B.4)

with λ < 0 and c ∈ {0, 1}, or a matrix of the form




a b 1 0 · · · · · · · · · · · · · · · · · ·
−b a 0 1 · · · · · · · · · · · · · · · · · ·
0 0 a b 1 0 · · · · · · · · · · · ·
0 0 −b a 0 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
· · · · · · · · · · · · · · · · · · a b 1 0
· · · · · · · · · · · · · · · · · · −b a 0 1
· · · · · · · · · · · · · · · · · · 0 0 a b
· · · · · · · · · · · · · · · · · · 0 0 −b a




(B.5)

with a < 0, b ∈ R.
We can reduce the problem to the construction of vectors x1, . . . , xR ∈ RNn , such that

span(x1, . . . , xR) = RNn , and nonnegative weights (Lij)1≤i 6=j≤R such that

GTxi =
∑

j 6=i

Lij(xj − xi) (B.6)

for all i = 1, . . . , R.
We will do the construction by induction on the number of Jordan blocks. For the Jordan

blocks of zeros, 0 ∈ Rl×l, we consider the canonical basis of Rl with weights all equal to 0
–this corresponds to the base case in the induction argument.
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Now suppose that we have q-blocks. Assume that the vectors x1, . . . , xRq−1
and weights

(Lij)i 6=j≤Rq−1
satisfy (B.6) for the first q − 1 blocks. Suppose first that Jq has size s× s and

that

span(x1, . . . , xRq−1
) = RNn−s.

We consider different cases.

(i) Assume first that Jq has the form (B.4). We can take in a recursive manner u(1) = 1
and u(j) > 0, for all j = 2, . . . , s, such that

u(j)λ + cu(j + 1) < 0

for all j < s.

We make the following observation: suppose that f(j), f(j+1) ∈ {−1, 1} are arbitrary.
Then

sign(f(j)u(j)λ + f(j + 1)cu(j + 1)) = −f(j).

Hence, in this case

sign((Jquf )(i)) = −f(i),

where

uf = (f(j)u(j))j .

We have that for each f ∈ {−1, 1}s

Jquf = (−f(j)vf (j))j

for some v(f) = (vf (j))j with positive entries. Define g(f, j)(j) = −f(j) and g(f, j)(i) =
f(i) for i 6= j. We can write then

Jquf =
∑

j≤s

vf (j)

2u(j)
(ug(f,j) − uf ).

This expression is of the form

Jquf =
∑

g 6=f

wg,f (ug − uf ),

with the weights wg,f ≥ 0.

If we consider the following vectors in RNn :

{(
x1
0s

)
, . . . ,

(
xrq
0s

)}
∪
{(

0Nn−s

uf

)
: f ∈ {−1, 1}s

}
,

we deduce that (B.6) is satisfied for some weights. Additionally, by induction hypothesis
and the configuration of the vectors of the form uf , which form a hypercube in Rs, we
also deduce that this set of vectors spans RNn .
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(ii) Suppose that Jq of size s× s has the form (B.5). We first consider the case when s = 2
and Jq has the form

Jq =

(
a −b
b a

)
= κ

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

with κ > 0 and ϕ ∈ (π/2, π], so that cosϕ < 0. This matrix represents a counter
clockwise rotation by ϕ followed by a scaling of κ – the clockwise rotation case can be
treated similarly.

Let m be the smallest positive integer greater than 2 such that

π(m+ 2)/2m ≤ ϕ.

One can show that in this case if we consider the regular polygon of m-sides in R2

centred at the origin, then at all the vertices in the polygon v1, . . . , vm, Jqvi points
inside the polygon.

Therefore in this case
{(

x1
0s

)
, . . . ,

(
xrq
0s

)}
∪
{(

0n−s

vi

)
: i = 1, . . . ,m

}
,

satisfies (B.6) for some weights and this set of vectors spans RNn .

(iii) Next, assume that Jq has the form




a b 1 0
−b a 0 1
0 0 a b
0 0 −b a




with the submatrix

(
a b
−b a

)
as before.

Let v1, . . . , vm ∈ R2 be as before. For each i = 1, . . . ,m consider the transformation
Ti : R

2 → R2 defined by

Tiu =

(
a b 1 0
−b a 0 1

)(
u
vi

)
.

For ‖u‖ sufficiently large we can bound the direction of the vector Tiu with respect to
the vector u by angles ϕ1 < ϕ2 ∈ (π/2, π].

By a similar argument as the one used before, we can construct an m′-regular polygon
with vertices u1, . . . , um′ such that Tiuk points inside the polygon for all k ≤ m′.

We conclude that at each the points

{(
ui
vj

)
: i ≤ m′, j ≤ m

}
,
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Jq

(
ui
vj

)
points inside the convex hull of these points.

Additionally these points span R4. Indeed, the differences between the vertices of the
regular polygon span R2 and we can span these differences concatenated with 0’s by
using the set specified above.

Therefore
{(

x1
0s

)
, . . . ,

(
xrq
0s

)}
∪







0Nn−s

ui
vj


 : i ≤ m′, j ≤ m



 ,

satisfies (B.6) for some weights and spans RNn .

(iv) The construction of the points of the form

(
ui
vj

)
presented above can be carried out

recursively for a matrix of the form (B.5) to complete the induction argument.

Proof of Lemma 4.8. It is clear that if there exists S̃ ∈ RR×M , with rank(S̃) = M , such
that S = S̃H, then rank(S) = N . Suppose now that rank(S) = N . Assume without loss
of generality that if v1, . . . , vR ∈ RN are the columns of S⊤, then v1, . . . , vN are linearly
independent. By assumption there exist w1, . . . , wN ∈ RM such that HTwi = vi for all i =
1, . . . , N . We have that w1, . . . , wN ∈ RM are linearly independent as well. Let xN+1 . . . xM
be a basis for the kernel ofH⊤. Suppose that vi =

∑N
k=1 α

i
kvk for i = N+1, . . . ,M . We define

wi = (
∑N

k=1 α
i
kvk) + xi for i = N + 1, . . . ,M . It can be shown that w1, . . . , wM are linearly

independent. Finally, for i = M + 1, . . . , R we define wi as any solution of the equation
H⊤wi = vi. Let S̃ ∈ RR×M be the matrix with rows w⊤

1 , . . . , w
⊤
R . Then rank(S̃) = M and

S = S̃H.

Proof of Proposition 4.7. Suppose that Lemma 4.5 (i) holds. Since H has rank Nn, by
Lemma 4.8, there exists S̃ ∈ RR×M , with rank(S̃), such that S = S̃H.

For i = 1, . . . , R, define νi as in (4.2). We have that S̃HG = LS̃H, with L a transition

rate matrix. Let EỸ = {ν1, . . . , νR} and Ỹ be the Markov process on EỸ with transition
rate matrix L. By similar arguments as in the proof of Theorem 3.2 we conclude that (4.3)
holds.

Assume now that (iii) holds. Suppose that the signed measure ν1, . . . , νR are given by (4.2)
and define S̃ = (S̃ij) ∈ RR×M .

A similar argument as in the proof of Theorem 3.2 shows that (4.3) implies that S̃HG =
LS̃H, where L is the transition rate matrix of Ỹ . We set S = S̃H and deduce (4.1). Addi-
tionally, rank(S) = Nn by Lemma 4.8.

Proof of Lemma 5.2. Equations (3.3), (5.1) and (5.2) imply that

lim
t→∞

HetG = W⊤H,
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where W ∈ RM×M is the matrix with all columns equal to w. Since H has rank Nn the set

B = {W̃H : W̃ ∈ RM×M has positive entries}

is an open set in RM×Nn . Then, for t large enough

HP (t) = Q(t)H ∈ B. (B.7)

The argument to show that the rows of Q(t) add up to 1 is similar to that of Lemma 3.3.
Suppose that v ∈ RNn are the coordinates of the constant polynomial 1 with respect to the
basis h1, . . . , hNn . We have that 1M = Hv, where 1M ∈ RM is the vector of 1’s. Since 1 is an
eigenvalue of G with corresponding eigenvalue 0, v is an eigenvector of P (t) with eigenvalue 1.
Hence, HP (t)v = 1M . This observation together with (B.7) implies that Q(t)1M = Q(t)Hv =
1M and the columns of Q(t) add up to 1, i.e. Q(t) is a probability matrix.

Proof of Theorem 5.1. Lemma 5.2 guarantees that for ∆ large enough, there exists a proba-
bility matrix Q ∈ RM×M such that

He∆G = QH, (B.8)

with H defined in (3.1).

Let Y be the time-homogeneous Markov Process with transition probability matrix Q as
in (B.8) and state space EY = {x1, . . . , xM}. By (3.3), Y is an n-Markov cubature for X on
{∆}. Remark 2.10 implies that Y is also an n-Markov cubature for X {l∆ : l ∈ N}.
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D. Ackerer and D. Filipović. Linear credit risk models. Swiss Finance Institute Research
Paper No. 16-34., 2016. Available at SSRN: http://ssrn.com/abstract=2782455.
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