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Robustness to Diffusion of Prediction-based Control for Convection
Processes

Delphine Bresch-Pietri, Miroslav Krstic

Abstract— In this paper, we consider an Ordinary Differ-
ential Equation (ODE) with convection and diffusion in the
actuation path. We prove that a prediction-based controller,
designed to compensate for the sole convective PDE, actually
achieves exponential stabilization of the complete plant, pro-
vided that diffusion is small enough. Our result is obtained
in Lp norm and covers two cases, full-state feedback and
boundary feedback. Simulation results emphasize the validity
of this approach.

I. INTRODUCTION

For linear systems subject to input-delay, prediction-based
control strategies, more commonly known as Smith Predictor
(see [1],[14],[20],) are state-of-the-art for systems with con-
stant input time-delays (see for instance [2],[4],[9],[11],[15],
or [19] and the references therein). Grounding on the use
of a prediction of the system state on a time horizon equal
to the delay, this technique aims at compensating it, which
notably improves transient performances.

When the actuation path is subject to both convection and
diffusion, this technique has been recently extended in [12],
[21] (see also [8] for an adaptive version) to compensate
for both effects. However, while delay dynamics can be
finitely stabilized, diffusion compensation should then be
understood differently as it introduces an infinite relative
degree. Correspondingly, while delay compensation requires
to predict future values of the ODE state, in the diffusion
case, the control law mainly accounts for an inversion of the
diffusion dynamics.

When the diffusive effect can be neglected with respect to
the convective one, one may be interested in using a standard
prediction-based control law to compensate only for the
dominant delay dynamics and, e.g., decrease the controller
complexity. However, a well-known fact about prediction-
based techniques [18] is that they suffer from being sensitive
to various disturbances such as delay mismatch or, to a lesser
extent, plant parameters uncertainties [16][17][23]. Thus,
there is no guarantee a priori that a prediction-based feedback
is robust to diffusion in the actuation path.

For this reason, in this paper, we consider a convec-
tion/diffusion PDE-ODE cascade coupled with a prediction-
based controller. To analyze the resulting closed-loop robust-
ness, we follow the distributed parameters systems method-
ology introduced in [13] which has proved to be effective
to conclude on the robustness of prediction-based controller
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to several classes of uncertainties [6], [4], [7]. In details,
focusing on the sole convection effect in the actuation path,
we propose to apply to the distributed input a backstepping
transformation which has been developed for input-delay
systems. This allows us to map the original system into
a target system which is suitable for Lyapunov stability
analysis. We investigate two distinct frameworks, full-state
feedback and boundary feedback, and show that, in both
cases, exponential stabilization is obtained in the sense of
the Lp norm, provided that the diffusion parameter is small
enough. This is the main contribution.

The paper is organized as follows. In Section II, we start
by presenting the problem under consideration. Then, in
Section III and IV, we tackle the cases of full-state and
boundary control respectively and present our robustness
results along with their proofs. This robustness property
is illustrated with a numerical example in Section V. We
conclude by sketching directions of future work.

II. PROBLEM STATEMENT AND CONTROL DESIGN

Consider the following ODE-PDE cascade
Ẋ(t) =AX(t)+Bu(0, t)

ut(x, t) =ux(x, t)+ εuxx(x, t)

u(1, t) =U(t)

εux(0, t) =0

(1)

in which X ∈ Rn, the control U is scalar, u(·,0) ∈
C (R,H1([0,1])) and ε ≥ 0 is a small parameter. We consider
in the following that the ODE state X is measured and that
the pair (A,B) is controllable. In the sequel, we will consider
K such that A+BK is Hurwitz.

When ε = 0, system (1) is an input-delay system, with a
unitary delay. It is well-known that the following control law
compensates for the delay

U(t) =K
(

eAX(t)+
∫ t

t−1
eA(t−s)BU(s)ds

)
=K

(
eAX(t)+

∫ 1

0
eA(1−x)Bu(x, t)dx

)
(2)

namely that, after one unit of time, the control law (2)
yields the delay-free dynamics Ẋ(t) = (A+BK)X(t) which
is exponentially stable. It is also worth noticing that, when
ε = 0, one can solve explicitly the transport PDE and obtain
u(x, t) = U(t + x−1) which explains the second expression
provided in (2).

In this paper, we aim at studying the stability of the closed-
loop system (1)–(2) in presence of diffusion, that is, for ε ≥



0. As, when ε 6= 0, the two expressions provided in (2) are
not equivalent, we consider them separately in the following.

III. FULL-STATE FEEDBACK

In this section, we consider that u(·, t) is measured.
This corresponds to a dynamical system where convec-
tion/diffusion arises from a physical transport process, as
opposed to computational or communication-based delay.
Consequently, we select the control law as

U(t) =K
(

eAX(t)+
∫ 1

0
eA(1−x)Bu(x, t)dx

)
(3)

We have the following robustness result.
Theorem 1: Consider the closed-loop system consisting of

the plant (1) and the control law (3). Define the following
functional

Γp(t) = |X(t)|2p +
∫ 1

0
u(x, t)2pdx (4)

for a given p ∈N∗. There exists ε?p > 0 such that, if ε < ε?p ,
then there exist ρ > 0 (independent of p) and Rp > 0 such
that

Γp(t)≤ RpΓp(0)e−2pρt , t ≥ 0 (5)

This result states that the desired exponential convergence
is achieved, provided that diffusion is small enough. It is
worth noticing that this result holds for any p ∈N∗, but that
the corresponding diffusion coefficient bound ε?p decreases
with p. Thus, one cannot obtain exponential stability in the
infinity norm (see Section III-B for more details on this
point).

We now provide the proof of this result.

A. Proof of Theorem 1

1) Backstepping transformation: We consider the follow-
ing backstepping transformation of the distributed state

w(x, t) =u(x, t)−
∫ x

0
KeA(x−y)Bu(y, t)dy−KeAxX(t) (6)

Lemma 1: The backstepping transformation (6), along
with the control law (3), transform the plant (1) into the
following target system

Ẋ =(A+BK)X(t)+Bw(0, t)
wt(x, t) =wx(x, t)+ εwxx(x, t)+ εg(x, t)

w(1, t) =0
εwx(0, t) =− ε(KBw(0, t)+K(A+BK)X(t))

(7)

in which

g(x, t) =KeAxA((A+BK)X(t)+Bw(0, t)) (8)

Proof: Taking a time-derivative of (6) and using an
integration by parts, one obtains

wt =ut −KBu(x, t)−K
∫ x

0
eA(x−y)(ABu+ εBuxx)dy−KeAxAX

(9)

Similarly, one obtains for the first and second-order spatial
derivatives

wx =ux−KBu(x, t)−K
∫ x

0
AeA(x−y)Bu(y, t)dy−KeAxAX(10)

wxx =uxx−KBux(x, t)−KABu(x, t)−K
∫ x

0
A2eA(x−y)Bu(y, t)dy

−KeAxA2X (11)

Thus, it follows that

wt =wx + εwxx + ε

[
−K

∫ x

0
eA(x−y)Buxxdy+KBux(x, t) (12)

+KABu(x, t)+K
∫ x

0
A2eA(x−y)Bu(y, t)dy+KeAxA2X

]
which gives the expected result with an integration by parts.
The boundary conditions in (7) follow straightforwardly
respectively from the definition of the control law (3) and
the backstepping transformation (6), and from equation (10)
evaluated at x = 0.

2) Stability study in Lp-norm: Define the following Lya-
punov functional candidate

Vp(t) =(XT PX)p +b
∫ 1

0
e2pxw(x, t)2pdx (13)

in which b is a positive constant, p∈N∗ and P is the solution
to the Lyapunov equation associated to A+BK and a given
positive definite matrix Q. For the sake of conciseness, in
the sequel, we denote ‖w(t)‖2p

2p =
∫ 1

0 e2pxw(x, t)2pdx.
Taking a time-derivative of (13), one gets

V̇p(t) =−p(XT PX)p−1XT QX +2p(XT PX)p−1XT PBw(0, t)

−bw(0, t)2p−2pb‖w(t)‖2p
2p +2pbε

∫ 1

0
e2pxw2p−1wxxdx

+2pbε

∫ 1

0
e2pxg(x, t)w2p−1(x, t)dx (14)

Performing an integration by parts, one obtains

V̇p(t) =−p(XT PX)p−1XT QX +2p(XT PX)p−1XT PBw(0, t)

−bw(0, t)2p−2pb‖w(t)‖2p
2p + εb

(
2pw(0, t)2p

−2pw(0, t)2p−1wx(0, t)+(2p)2‖w(t)‖2p
2p

−
∫ 1

0
2p(2p−1)e2pxw(x, t)2p−2wx(x, t)2dx

)
+2pbε

∫ 1

0
e2pxg(x, t)w(x, t)2p−1dx (15)

Further, with an integration by parts and applying Young
inequality, one can observe that

2p
∫ 1

0
e2pxw(x, t)2pdx (16)

=−w(0, t)2p−2p
∫ 1

0
e2pxw(x, t)2p−1wx(x, t)dx

≤−w(0, t)2p + p
∫ 1

0
e2pxw(x, t)2p−2wx(x, t)2dx

+ p
∫ 1

0
e2pxw(x, t)2pdx



and thus that

−p
∫ 1

0
e2pxw(x, t)2p−2wx(x, t)2dx (17)

≤−w(0, t)2p− p‖w(t)‖2p
2p

Consequently, one gets

V̇p(t)≤− pλ (Q)(XT PX)p−1|X |2 +2p(XT PX)p−1|X ||PBw(0, t)|

−bw(0, t)2p−2pb‖w(t)‖2p
2p + εb

(
2pw(0, t)2p

−2pw(0, t)2p−1wx(0, t)−2(2p−1)w(0, t)2p

−2p(2p−1)‖w(t)‖2p
2p +(2p)2‖w(t)‖2p

2p

)
+2pbε

∫ 1

0
e2pxg(x, t)w(x, t)2p−1dx (18)

From the definition of the function g in (8) and applying
Young inequality, one obtains the existence of a positive
constant M > 0 (which does not depend on p) such that

2p
∫ 1

0
e2pxg(x, t)w(x, t)2p−1dx

≤M
(

2p‖w(t)‖2p
2p +w(0, t)2p + |X(t)|2p

)
(19)

Similarly, one gets

2p(XT PX)p−1|X ||PBw(0, t)|

≤(2p−1)
λ (Q)

4
λ (P)

λ (P)

(
(XT PX)p−1|X(t)|

) 2p
2p−1

+

(
4

λ (Q)

λ (P)
λ (P)

)2p−1

|PB|2pw(0, t)2p

≤ pλ (Q)

2
(XT PX)p−1|X(t)|2

+

(
4

λ (Q)

λ (P)
λ (P)

)2p−1

|PB|2pw(0, t)2p (20)

in which λ (·) and λ (·) denote respectively the minimum and
maximum eigenvalues of a given matrix, and

−2pw(0, t)2p−1wx(0, t)≤2pKBw(0, t)2p +(2p−1)w(0, t)2p

+ |K(A+BK)|2p|X(t)|2p (21)

Plugging these inequalities into (18), one gets

V̇p(t)≤−
pλ (Q)

4
(XT PX)p−1|X |2

−
(

pλ (Q)λ (P)p−1

4
−bε(M+ |K(A+BK)|2p)

)
|X |2p

−2pb(1− ε(M+1))‖w(t)‖2p
2p

−
(

b−

(
4

λ (Q)

λ (P)
λ (P)

)2p−1

|PB|2p

−bε(1+M+2p|KB|)
)

w(0, t)2p (22)

Assume that

b >2

(
4λ (P)

λ (Q)λ (P)

)2p−1

|PB|2p (23)

and that ε < ε?p with

ε
?
p =min

{
pλ (Q)λ (P)p−1

4b(M+ |K(A+BK)|2p)
,

1
2(M+1+2p|KB|)

}
(24)

then, one obtains

V̇p(t)≤−2pmin

{
λ (Q)

8λ (P)
,

1
2

}
Vp(t) (25)

which gives

Vp(t)≤ e
−2pmin

{
λ (Q)

8λ (P)
, 1

2

}
t
Vp(0) (26)

3) Equivalence between Vp and Γp: To conclude the
proof, it now remains to show that Vp and Γp are equivalent,
i.e., that there exist c1,c2 > 0 such that c1Vp ≤ Γp ≤ c2Vp.
This fact actually follows straightforwardly by applying
Young inequality to (6) and its inverse

u(x, t) =w(x, t)+
∫ x

0
Ke(A+BK)(x−y)Bw(y, t)dy+Ke(A+BK)xX(t)

(27)

However, note that these constants c1 and c2 depend on p.
Then, it follows from (26) that (5) holds with Rp =

c2
c1

and

ρ = min
{

λ (Q)

8λ (P)
, 1

2

}
.

B. Comments on the norm selection

It is worth noting that, even if our robustness result holds
for all Lp norm, it does not extend to the infinity norm.
Indeed, the bound ε?p defined in (24) depends on the value of
p and tends to zero as p tends to infinity. Thus, according to
our analysis at least, prediction-based control is not robust to
diffusion in infinity norm. Interestingly, the same conclusion
can be obtained by studying the system via Input-to-State
Stability and attempting to apply the Small Gain Theorem.

IV. BOUNDARY FEEDBACK

In this section, as the distributed input is seldom measured
in application, we consider the more realistic case in which
the actuator state is unknown. Consequently, we choose the
control law as

U(t) =K
[

eAX(t)+
∫ t

t−1
eA(t−s)BU(s)ds

]
(28)

In this case, a similar result to the one provided in the
previous section holds.

Theorem 2: Consider the closed-loop system consisting of
the plant (1) and the control law (28). Define the following
functional

ϒp(t) =|X(t)|2p +
∫ t

t−1
U(s)2pds (29)

+
∫ t

t−1
U̇(s)2pds+

∫ t

t−1
Ü(s)2pds+

∫ 1

0
u(x, t)2pdx



for a given p∈N. For any initial condition U0 : s∈ [−1,0] 7→
U(s)∈C 2([−1,0],R), there exists ε?p > 0 such that, if ε < ε?p ,
then there exist ρ > 0 (independent of p) and Rp > 0 such
that

ϒp(t)≤ Rpϒp(0)e−2pρt , t ≥ 0 (30)

The definition (29) of the functional ϒ is due to the specific
form of Lyapunov functional considered in the following
proof.

Proof of Theorem 2:
To account for the fact that the control law explicitly

neglects diffusion in the actuator path, we define the dis-
tributed estimate û(x, t) = U(t + x− 1), x ∈ [0,1]. Thus, the
controller (28) can be reformulated as

U(t) =K
[

eAX(t)+
∫ 1

0
eA(1−x)Bû(x, t)dx

]
(31)

and, introducing the estimation error ũ = u− û, one obtains

Ẋ(t) =AX(t)+B[ũ(0, t)+ û(0, t)]
ũt(x, t) =ũx(x, t)+ ε(ũxx(x, t)+ ûxx(x, t))

ũ(1, t) =0
ε ũx(0, t) =− ε ûx(0, t)

ût(x, t) =ûx(x, t)

û(1, t) =U(t)

(32)

We now consider the following backstepping transformation

ŵ(x, t) =û(x, t)−
∫ x

0
KeA(x−y)Bû(y, t)dy−KeAxX(t) (33)

Following the same steps as in the proof of Lemma 1, one
can prove that this transformation, along with the control
law (31), map the previous system into

Ẋ(t) =(A+BK)X(t)+B[ũ(0, t)+ ŵ(0, t)]
ũt(x, t) =ũx(x, t)+ ε(ũxx(x, t)+h(x, t))

ũ(1, t) =0
ε ũx(0, t) =− ε[ŵx(0, t)+KBŵ(0, t)+K(A+BK)X(t)]

ŵt(x, t) =ŵx(x, t)

ŵ(1, t) =0
(34)

in which, considering the inverse backstepping transforma-
tion (similar to the one defined in the previous section
in (27))

h(x, t) =ŵxx(x, t)+KBŵx(x, t)+K(A+BK)Bŵ(x, t)

+K
∫ x

0
(A+BK)2e(A+BK)(x−y)Bŵ(y, t)dy

+Ke(A+BK)x(A+BK)2X(t) (35)

In the following analysis, we also need the dynamics of
the first and second spatial-derivatives of the backstepping
variable which is simply{

ŵxt(x, t) =ŵxx(x, t)

ŵx(1, t) =0

{
ŵxxt(x, t) =ŵxxx(x, t)

ŵxx(1, t) =0
(36)

We are now ready to start the Lyapunov analysis. We
consider the following functional candidate

Vp(t) =(XT PX)p +b
∫ 1

0
e2pxũ(x, t)2pdx

+b
∫ 1

0
e2px(ŵ(x, t)2p + ŵx(x, t)2p + ŵxx(x, t)2p)dx

(37)

in which b > 0, p ∈ N∗ and P is the solution to the
Lyapunov equation associated to A+BK and a given positive
definite matrix Q. Taking a time-derivative and performing
integrations by parts, one obtains

V̇p(t) =−p(XT PX)p−1XT QX−bũ(0, t)2p−2pb‖ũ(t)‖2p
2p

+2p(XT PX)p−1XT PB[ũ(0, t)+ ŵ(0, t)]

−b(ŵ(0, t)2p + ŵx(0, t)2p + ŵxx(0, t)2p)

−2pb(‖ŵ(t)‖2p
2p +‖ŵx(t)‖2p

2p +‖ŵxx(t)‖2p
2p)

+2pbε

∫ 1

0
e2pxũ(x, t)2p−1(ũxx +h(x, t))dx (38)

in which, using integrations by parts,∫ 1

0
e2pxũ(x, t)2p−1ũxxdx

=− ũ(0, t)2p−1ũx(0, t)+ ũ(0, t)2p +2p‖ũ(t)‖2p
2p

− (2p−1)
∫ 1

0
e2pxũ2p−2ũ2

xdx (39)

Following similar steps as in (16)–(17), one gets

2p
∫ 1

0
e2pxũ(x, t)2p−1ũxxdx

≤−2pũ(0, t)2p−1ũx(0, t)+ ũ(0, t)2p +2p‖ũ(t)‖2p
2p

≤(3+ |KB|)ũ(0, t)2p + ŵx(0, t)2p + |KB|ŵ(0, t)2p

+2p‖ũ(t)‖2p
2p + |K(A+BK)|2p|X |2p (40)

in which the last inequality is obtained using the expression
of ũx(0, t) in (34) and Young inequality. Further, from (35),
applying Young inequality and integrations by parts, one
obtains the existence of a constant M̃ > 0 (independent of
p) such that

2p
∫ 1

0
e2pxũ(x, t)2p−1h(x, t)dx≤ M̃

(
2p‖ũ(t)‖2p

2p (41)

+‖ŵ(t)‖2p
2p +‖ŵx(t)‖2p

2p +‖ŵxx(t)‖2p
2p + |X |

2p
)

Plugging together (38), (40) and (41), one obtains, using
Young inequality,

V̇p(t)≤−p
λ (Q)

4
(XT PX)p−1|X |2

−
(

b−

(
8λ (P)

λ (Q)λ (P)

)2p−1

|PB|2p−bε|KB|
)

ŵ(0, t)2p

−
(

p
λ (Q)λ (P)p−1

4
− εb(M̃+ |K(A+BK)|2p)

)
|X(t)|2p

−
(

b−

(
8λ (P)

λ (Q)λ (P)

)2p−1

|PB|2p−bε(3+ |KB|)
)

ũ(0, t)2p



−b(1− ε)ŵx(0, t)2−2pb(1− ε(1+ M̃))‖ũ(t)‖2p
2p

−2pb(1− ε)(‖ŵ(t)‖2p
2p +‖ŵx(t)‖2p

2p +‖ŵxx(t)‖2p
2p) (42)

Consequently, choosing

b > 2

(
8λ (P)

λ (Q)λ (P)

)2p−1

|PB|2p (43)

and if ε < ε?p with

ε
?
p = min

{
1

2(3+ |KB|)
,

pλ (Q)λ (P)p−1

4b(M̃+ |K(A+BK)|2p)

}
(44)

one obtains that

V̇p(t)≤−2pmin

{
λ (Q)

8λ (P)
,

1
2

}
Vp(t) (45)

It now remains to show that ϒp and Vp are equivalent.
This can be done as previously by considering the inverse
backstepping transformation and applying Young inequality.
It is also necessary to notice that ûx(x, t) = U̇(t + x− 1)
and ûxx(x, t) = Ü(t + x− 1) which explains the presence of
integrals of U̇ and Ü in (29). This concludes the proof.

The same comments as in the previous section regarding
the infinity norm apply here.

V. NUMERICAL SIMULATIONS

To illustrate the merits of the proposed controller, we
consider a numerical example inspired from the fluid flow
system considered, e.g., in [5] [10]. It consists in an hori-
zontal tube equipped with inlet and outlet fans and a mist
injector. The mist injection is fixed and the control objective
is to regulate the moisture at the output of the tube, that is,
the ODE state X is the moisture while the control U is the
fan power. A schematic view of the set-up is given in Fig. 1.

As studied in [5] [10], a stable first-order delay equation
encapsulates the main features of the dynamics under con-
sideration. A more detailed modeling enables to conclude
that diffusion also occurs inside the tube, but is negligible
compared to convection. The moisture measured at the output
thus satisfies (1) with A =−1/τ0 and B = KP/τ0 and A+BK
is Hurwitz for any constant K < 0. We chose K = −10 in
simulation.

Fig. 1. Schematic view of the flowtube system under consideration as an
illustrative example.
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(a) Evolution of the moisture, the fan power and the parameter estimate.
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(b) Distributed input.

Fig. 2. Numerical results for the closed-loop dynamics of the moisture
modeled by (1) with A =−1/τ0 and B(θ) = KP/τ0, for two different con-
trollers. The initial condition corresponds to a moisture (relative humidity)
equilibrium of 50% that one wants to regulate to a new operating condition
corresponding to 60% of moisture. The prediction-based controller (28)
has been implemented with a feedback gain K = −10. The nominal
diffusion/convection controller from [12], [21] has been implemented with
a similar feedback gain K =−10.

One can easily observe1 that the results presented in this
paper straightforwardly extend to the case of a non-unitary
delay D. Thus, for simulation, we take2 D = 6s, τ0 = 9s,
ε = 0.04s−1. This choice leads to a Peclet number of εD =
0.24. As only boundary measurements are available in this
example, we implement the controller (28).

We compare the obtained closed-loop performances with
the full-state diffusion/convection compensation solution pro-
posed in [12], [21] as a reference. Corresponding results are

1Performing, from an unnormalized process Dvt = vx + avxx, a simple
change of variable u(x, t) = v(x,Dt).

2Note that the convection speed is actually time-varying, but we neglect
those variations here for the sake of simplicity



depicted in Fig. 2. First, one can observe that convergence
is indeed obtained, even if the Peclet number is quite high
in this example. Also, one can notice that, when using the
proposed prediction-based controller, transient performances
are slightly degraded as an overshoot is generated. However,
overall, this controller reasonably performs compared to a
strategy tailored to handle diffusion and using the distributed
state knowledge.

VI. CONCLUSION

In this paper, we proved that prediction-based controller
for linear systems subject to a single input-delay are robust
to diffusion in the actuation path. Future works should
investigate the extension of this property to systems subject
to multiple input-delays [3], [22].
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